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Abstract
These are short notes from a series of lectures given at the University of Rennes in June
2013, at the University of Bonn in July 2013, at the XVIIth Brazilian School of Probability
in Mambucaba in August 2013, and at ETH Zurich in September 2013. They give a concise
overview of the theory of regularity structures as exposed in the article [Hai14]. In order to
allow to focus on the conceptual aspects of the theory, many proofs are omitted and statements
are simplified. We focus on applying the theory to the problem of giving a solution theory to
the stochastic quantisation equations for the Euclidean Φ4

3 quantum field theory.
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1 Introduction

Very recently, a new theory of “regularity structures” was introduced [Hai14], unifying various
flavours of the theory of (controlled) rough paths (including Gubinelli’s theory of controlled
rough paths [Gub04], as well as his branched rough paths [Gub10]), as well as the usual Taylor
expansions. While it has its roots in the theory of rough paths [Lyo98], the main advantage
of this new theory is that it is no longer tied to the one-dimensionality of the time parameter,
which makes it also suitable for the description of solutions to stochastic partial differential
equations, rather than just stochastic ordinary differential equations. The aim of this article
is to give a concise survey of the theory while focusing on the construction of the dynamical
Φ4

3 model. While the exposition aims to be reasonably self-contained (in particular no prior
knowledge of the theory of rough paths is assumed), most of the proofs will only be sketched.

The main achievement of the theory of regularity structures is that it allows to give a
(pathwise!) meaning to ill-posed stochastic PDEs that arise naturally when trying to describe



2 INTRODUCTION

the macroscopic behaviour of models from statistical mechanics near criticality. One example
of such an equation is the KPZ equation arising as a natural model for one-dimensional
interface motion [KPZ86, BG97, Hai13]:

∂th = ∂2
xh+ (∂xh)2 + ξ − C .

Another example is the dynamical Φ4
3 model arising for example in the stochastic quantisation

of Euclidean quantum field theory [PW81, JLM85, AR91, DPD03, Hai14], as well as a
universal model for phase coexistence near the critical point [GLP99]:

∂tΦ = ∆Φ + CΦ− Φ3 + ξ .

In both of these examples, ξ formally denotes space-time white noise, C is an arbitrary constant
(which will actually turn out to be infinite in some sense!), and we consider a bounded square
spatial domain with periodic boundary conditions. In the case of the dynamical Φ4

3 model, the
spatial variable has dimension 3, while it has dimension 1 in the case of the KPZ equation.
While a full exposition of the theory is well beyond the scope of this short introduction, we
aim to give a concise overview to most of its concepts. In most cases, we will only state
results in a rather informal way and give some ideas as to how the proofs work, focusing on
conceptual rather than technical issues. The only exception is the “reconstruction theorem”,
Theorem 2.10 below, which is the linchpin of the whole theory. Since its proof (or rather a
slightly simplified version of it) is relatively concise, we provide a fully self-contained version.
For precise statements and complete proofs of most of the results exposed here, we refer to the
original article [Hai14].

Loosely speaking, the type of well-posedness results that can be proven with the help of
the theory of regularity structures can be formulated as follows.

Theorem 1.1 Let ξε = δε ∗ ξ denote the regularisation of space-time white noise with a
compactly supported smooth mollifier δε that is scaled by ε in the spatial direction(s) and by
ε2 in the time direction. Denote by hε and Φε the solutions to

∂thε = ∂2
xhε + (∂xhε)2 − Cε + ξε ,

∂tΦε = ∆Φε + C̃εΦε − Φ3
ε + ξε .

Then, there exist choices of constants Cε and C̃ε diverging as ε→ 0, as well as processes h
and Φ such that hε → h and Φε → Φ in probability. Furthermore, while the constants Cε and
C̃ε do depend crucially on the choice of mollifiers δε, the limits h and Φ do not depend on
them.

Remark 1.2 We made a severe abuse of notation here since the space-time white noise
appearing in the equation for hε is on R× T1, while the one appearing in the equation for Φε

is on R× T3. (Here we denote by Tn the n-dimensional torus.)

Remark 1.3 We have not described the topology in which the convergence takes place in
these examples. In the case of the KPZ equation, one actually obtains convergence in some
space of space-time Hölder continuous functions. In the case of the dynamical Φ4

3 model,
convergence takes place in some space of space-time distributions. One caveat that also has to
be dealt with in the latter case is that the limiting process Φ may in principle explode in finite
time for some instances of the driving noise.
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From a “philosophical” perspective, the theory of regularity structures is inspired by the
theory of controlled rough paths [Lyo98, Gub04, LCL07], so let us rapidly survey the main
ideas of that theory. The setting of the theory of controlled rough paths is the following. Let’s
say that we want to solve a controlled differential equation of the type

dY = f (Y ) dX(t) , (1.1)

where X ∈ Cα is a rather rough function (say a typical sample path for an m-dimensional
Brownian motion). It is a classical result by Young [You36] that the Riemann-Stieltjes integral
(X,Y ) 7→

∫ ·
0 Y dX makes sense as a continuous map from Cα × Cα into Cα if and only if

α > 1
2 . As a consequence, “naı̈ve” approaches to a pathwise solution to (1.1) are bound to fail

if X has the regularity of Brownian motion.
The main idea is to exploit the a priori “guess” that solutions to (1.1) should “look like X

at small scales”. More precisely, one would naturally expect the solution Y to satisfy

Yt = Ys + Y ′sXs,t +O(|t− s|2α) , (1.2)

where we wrote Xs,t as a shorthand for the increment Xt−Xs. As a matter of fact, one would
expect to have such an expansion with Y ′ = f (Y ). Denote by CαX the space of pairs (Y, Y ′)
satisfying (1.2) for a given “model path” X . It is then possible to simply “postulate” the values
of the integrals

Xs,t =:

∫ t

s
Xs,r ⊗ dXr , (1.3)

satisfying “Chen’s relations”

Xs,t − Xs,u − Xu,t = Xs,u ⊗Xu,t , (1.4)

as well as the analytic bound |Xs,t| . |t − s|2α, and to exploit this additional data to give a
coherent definition of expressions of the type

∫
Y dX , provided that the path X is “enhanced”

with its iterated integrals X and Y is a “controlled path” of the type (1.2). See for example
[Gub04] for more information or [Hai11] for a concise exposition of this theory.

Compare (1.2) to the fact that a function f : R→ R is of class Cγ with γ ∈ (k, k + 1) if
for every s ∈ R there exist coefficients f (1)

s , . . . , f (k)
s such that

ft = fs +

k∑
`=1

f (`)
s (t− s)` +O(|t− s|γ) . (1.5)

Of course, f (`)
s is nothing but the `th derivative of f at the point s, divided by `!. In this sense,

one should really think of a controlled rough path (Y, Y ′) ∈ CαX as a 2α-Hölder continuous
function, but with respect to a “model” determined by the function X , rather than by the
usual Taylor polynomials. This formal analogy between controlled rough paths and Taylor
expansions suggests that it might be fruitful to systematically investigate what are the “right”
objects that could possibly take the place of Taylor polynomials, while still retaining many of
their nice properties.
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2 Definitions and the reconstruction operator

The first step in such an endeavour is to set up an algebraic structure reflecting the properties
of Taylor expansions. First of all, such a structure should contain a vector space T that will
contain the coefficients of our expansion. It is natural to assume that T has a graded structure:
T =

⊕
α∈A Tα, for some set A of possible “homogeneities”. For example, in the case of the

usual Taylor expansion (1.5), it is natural to take for A the set of natural numbers and to have
T` contain the coefficients corresponding to the derivatives of order `. In the case of controlled
rough paths however, it is natural to take A = {0, α}, to have again T0 contain the value of
the function Y at any time s, and to have Tα contain the Gubinelli derivative Y ′s . This reflects
the fact that the “monomial” t 7→ Xs,t only vanishes at order α near t = s, while the usual
monomials t 7→ (t− s)` vanish at integer order `.

This however isn’t the full algebraic structure describing Taylor-like expansions. Indeed,
one of the characteristics of Taylor expansions is that an expansion around some point x0 can
be re-expanded around any other point x1 by writing

(x− x0)m =
∑

k+`=m

m!

k!`!
(x1 − x0)k · (x− x1)` . (2.1)

(In the case when x ∈ Rd, k, ` and m denote multi-indices and k! = k1! . . . kd!.) Somewhat
similarly, in the case of controlled rough paths, we have the (rather trivial) identity

Xs0,t = Xs0,s1 · 1 + 1 ·Xs1,t . (2.2)

What is a natural abstraction of this fact? In terms of the coefficients of a “Taylor expansion”,
the operation of reexpanding around a different point is ultimately just a linear operation
from Γ: T → T , where the precise value of the map Γ depends on the starting point x0, the
endpoint x1, and possibly also on the details of the particular “model” that we are considering.
In view of the above examples, it is natural to impose furthermore that Γ has the property
that if τ ∈ Tα, then Γτ − τ ∈

⊕
β<α Tβ . In other words, when reexpanding a homogeneous

monomial around a different point, the leading order coefficient remains the same, but lower
order monomials may appear.

These heuristic considerations can be summarised in the following definition of an abstract
object we call a regularity structure:

Definition 2.1 Let A ⊂ R be bounded from below and without accumulation point, and let
T =

⊕
α∈A Tα be a vector space graded by A such that each Tα is a Banach space. Let

furthermore G be a group of continuous operators on T such that, for every α ∈ A, every
Γ ∈ G, and every τ ∈ Tα, one has Γτ − τ ∈

⊕
β<α Tβ . The triple T = (A, T,G) is called a

regularity structure with model space T and structure group G.

Remark 2.2 Given τ ∈ T , we will write ‖τ‖α for the norm of its component in Tα.

Remark 2.3 In [Hai14] it is furthermore assumed that 0 ∈ A, T0 ≈ R, and T0 is invariant
under G. This is a very natural assumption which ensures that our regularity structure is at
least sufficiently rich to represent constant functions.
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Remark 2.4 In principle, the set A can be infinite. By analogy with the polynomials, it is then
natural to consider T as the set of all formal series of the form

∑
α∈A τα, where only finitely

many of the τα’s are non-zero. This also dovetails nicely with the particular form of elements
in G. In practice however we will only ever work with finite subsets of A so that the precise
topology on T does not matter.

At this stage, a regularity structure is a completely abstract object. It only becomes useful
when endowed with a model, which is a concrete way of associating to any τ ∈ T and x0 ∈ Rd,
the actual “Taylor polynomial based at x0” represented by τ . Furthermore, we want elements
τ ∈ Tα to represent functions (or possibly distributions!) that “vanish at order α” around the
given point x0.

Since we would like to allow A to contain negative values and therefore allow elements in
T to represent actual distributions, we need a suitable notion of “vanishing at order α”. We
achieve this by considering the size of our distributions, when tested against test functions
that are localised around the given point x0. Given a test function ϕ on Rd, we write ϕλx as a
shorthand for

ϕλx(y) = λ−dϕ(λ−1(y − x)) .

Given r > 0, we also denote by Br the set of all functions ϕ : Rd → R such that ϕ ∈ Cr with
‖ϕ‖Cr ≤ 1 that are furthermore supported in the unit ball around the origin. With this notation,
our definition of a model for a given regularity structure T is as follows.

Definition 2.5 Given a regularity structure T and an integer d ≥ 1, a model for T on Rd

consists of maps

Π: Rd → L(T,S ′(Rd)) Γ: Rd × Rd → G

x 7→ Πx (x, y) 7→ Γxy

such that ΓxyΓyz = Γxz and ΠxΓxy = Πy. Furthermore, given r > | infA|, for any compact
set K ⊂ Rd and constant γ > 0, there exists a constant C such that the bounds

|(Πxτ)(ϕλx)| ≤ Cλ|τ |‖τ‖α , ‖Γxyτ‖β ≤ C|x− y|α−β‖τ‖α , (2.3)

hold uniformly over ϕ ∈ Br, (x, y) ∈ K, λ ∈ (0, 1], τ ∈ Tα with α ≤ γ, and β < α.

Remark 2.6 In principle, test functions appearing in (2.3) should be smooth. It turns out that
if these bounds hold for smooth elements of Br, then Πxτ can be extended canonically to allow
any Cr test function with compact support.

Remark 2.7 The identity ΠxΓxy = Πy reflects the fact that Γxy is the linear map that takes
an expansion around y and turns it into an expansion around x. The first bound in (2.3) states
what we mean precisely when we say that τ ∈ Tα represents a term that vanishes at order α.
(Note that α can be negative, so that this may actually not vanish at all!) The second bound in
(2.3) is very natural in view of both (2.1) and (2.2). It states that when expanding a monomial
of order α around a new point at distance h from the old one, the coefficient appearing in front
of lower-order monomials of order β is of order at most hα−β .
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Remark 2.8 In many cases of interest, it is natural to scale the different directions of Rd in a
different way. This is the case for example when using the theory of regularity structures to
build solution theories for parabolic stochastic PDEs, in which case the time direction “counts
as” two space directions. To deal with such a situation, one can introduce a scaling s of Rd,
which is just a collection of d mutually prime strictly positive integers and to define ϕλx in such
a way that the ith direction is scaled by λsi . In this case, the Euclidean distance between two
points should be replaced everywhere by the corresponding scaled distance |x|s =

∑
i |xi|1/si .

See also [Hai14] for more details.

With these definitions at hand, it is then natural to define an equivalent in this context of
the space of γ-Hölder continuous functions in the following way.

Definition 2.9 Given a regularity structure T equipped with a model (Π,Γ) over Rd, the
spaceDγ = Dγ(T ,Γ) is given by the set of functions f : Rd →

⊕
α<γ Tα such that, for every

compact set K and every α < γ, the exists a constant C with

‖f (x)− Γxyf (y)‖α ≤ C|x− y|γ−α (2.4)

uniformly over x, y ∈ K.

The most fundamental result in the theory of regularity structures then states that given
f ∈ Dγ with γ > 0, there exists a unique Schwartz distributionRf on Rd such that, for every
x ∈ Rd,Rf “looks like Πxf (x) near x”. More precisely, one has

Theorem 2.10 Let T be a regularity structure as above and let (Π,Γ) a model for T on Rd.
Then, there exists a unique linear mapR : Dγ → S ′(Rd) such that

|(Rf −Πxf (x))(ϕλx)| . λγ , (2.5)

uniformly over ϕ ∈ Br and λ as before, and locally uniformly in x.

Proof. The proof of the theorem relies on the following fact. Given any r > 0 (but finite!),
there exists a function ϕ : Rd → R with the following properties:

(1) The function ϕ is of class Cr and has compact support.
(2) For every polynomial P of degree r, there exists a polynomial P̂ of degree r such that,

for every x ∈ Rd, one has
∑

y∈Zd P̂ (y)ϕ(x− y) = P (x).

(3) One has
∫
ϕ(x)ϕ(x− y) dx = δy,0 for every y ∈ Zd.

(4) There exist coefficients {ak}k∈Zd such that 2−d/2ϕ(x/2) =
∑

k∈Zd akϕ(x− k).
The existence of such a function ϕ is highly non-trivial. This is actually equivalent to the
existence of a wavelet basis consisting of Cr functions with compact support, a proof of which
was first obtained by Daubechies in her seminal article [Dau88]. From now on, we take the
existence of such a function ϕ as a given for some r > | infA|. We also set Λn = 2−nZd and,
for y ∈ Λn, we set ϕny (x) = 2nd/2ϕ(2n(x−y)). Here, the normalisation is chosen in such a way
that the set {ϕny}y∈Λn is again orthonormal in L2. We then denote by Vn ⊂ Cr the linear span
of {ϕny}y∈Λn , so that, by the property (4) above, one has V0 ⊂ V1 ⊂ V2 ⊂ . . .. We furthermore
denote by V̂n the L2-orthogonal complement of Vn−1 in Vn, so that Vn = V0 ⊕ V̂1 ⊕ . . .⊕ V̂n.
In order to keep notations compact, it will also be convenient to define the coefficients ank with
k ∈ Λn by ank = a2nk.
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With these notations at hand, we then define a sequence of linear operatorsRn : Dγ → Cr
by

(Rnf)(y) =
∑
x∈Λn

(Πxf (x))(ϕnx)ϕnx(y) .

We claim that there then exists a Schwartz distribution Rf such that, for every compactly
supported test function ψ of class Cr, one has 〈Rnf, ψ〉 → (Rf)(ψ), and thatRf furthermore
satisfies the properties stated in the theorem.

Let us first consider the size of the components of Rn+1f −Rnf in Vn. Given x ∈ Λn,
we make use of properties (3-4), so that

〈Rn+1f −Rnf, ϕnx〉 =
∑

k∈Λn+1

ank〈Rn+1f, ϕn+1
x+k〉 − (Πxf (x))(ϕnx)

=
∑

k∈Λn+1

ank(Πx+kf (x+ k))(ϕn+1
x+k)− (Πxf (x))(ϕnx)

=
∑

k∈Λn+1

ank((Πx+kf (x+ k))(ϕn+1
x+k)− (Πxf (x))(ϕn+1

x+k))

=
∑

k∈Λn+1

ank(Πx+k(f (x+ k)− Γx+k,xf (x)))(ϕn+1
x+k) ,

where we used the algebraic relations between Πx and Γxy to obtain the last identity. Since
only finitely many of the coefficients ak are non-zero, it follows from the definition of Dγ that
for the non-vanishing terms in this sum we have the bound

‖f (x+ k)− Γx+k,xf (x)‖α . 2−n(γ−α) ,

uniformly over n ≥ 0 and x in any compact set. Furthermore, for any τ ∈ Tα, it follows from
the definition of a model that one has the bound

|(Πxτ)(ϕnx)| . 2−αn−
nd
2 ,

again uniformly over n ≥ 0 and x in any compact set. Here, the additional factor 2−
nd
2 comes

from the fact that the functions ϕnx are normalised in L2 rather than L1. Combining these two
bounds, we immediately obtain that

|〈Rn+1f −Rnf, ϕnx〉| . 2−γn−
nd
2 , (2.6)

uniformly over n ≥ 0 and x in compact sets. Take now a test function ψ ∈ Cr with compact
support and let us try to estimate 〈Rn+1f − Rnf, ψ〉. Since Rn+1f − Rnf ∈ Vn+1, we
can decompose it into a part δRnf ∈ Vn and a part δ̂Rnf ∈ V̂n+1 and estimate both parts
separately. Regarding the part in Vn, we have

|〈δRnf, ψ〉| =
∣∣∣ ∑
x∈Λn+1

〈δRnf, ϕnx〉〈ϕnx, ψ〉
∣∣∣ . 2−γn−

nd
2

∑
x∈Λn+1

|〈ϕnx, ψ〉| , (2.7)

where we made use of the bound (2.6). At this stage we use the fact that, due to the boundedness
of ψ, we have |〈ϕnx, ψ〉| . 2−nd/2. Furthermore, thanks to the boundedness of the support of
ψ, the number of non-vanishing terms appearing in this sum is bounded by 2nd, so that we
eventually obtain the bound

|〈δRnf, ψ〉| . 2−γn . (2.8)
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Regarding the second term, we use the standard fact coming from wavelet analysis [Mey92]
that a basis of V̂n+1 can be obtained in the same way as the basis of Vn, but replacing the
function ϕ by functions ϕ̂ from some finite set Φ. In other words, V̂n+1 is the linear span of
{ϕ̂nx}x∈Λn;ϕ̂∈Φ. Furthermore, as a consequence of property (2), the functions ϕ̂ ∈ Φ all have
the property that ∫

ϕ̂(x)P (x) dx = 0 , (2.9)

for any polynomial P of degree less or equal to r. In particular, this shows that one has the
bound

|〈ϕ̂nx, ψ〉| . 2−
nd
2
−nr .

As a consequence, one has

|〈δ̂Rnf, ψ〉| =
∣∣∣ ∑
x∈Λn

ϕ̂∈Φ

〈Rn+1f, ϕ̂nx〉〈ϕ̂nx, ψ〉
∣∣∣ . 2−

nd
2
−nr
∣∣∣ ∑
x∈Λn

ϕ̂∈Φ

〈Rn+1f, ϕ̂nx〉
∣∣∣ .

At this stage, we note that, thanks to the definition ofRn+1 and the bounds on the model (Π,Γ),
we have |〈Rn+1f, ϕ̂nx〉| . 2−

nd
2
−α0n, where α0 = infA, so that |〈δ̂Rnf, ψ〉| . 2−nr−α0n.

Combining this with (2.8), we see that one has indeed Rnf → Rf for some Schwartz
distributionRf .

It remains to show that the bound (2.5) holds. For this, given a distribution η ∈ Cα for
some α > −r, we first introduce the notation

Pnη =
∑
x∈Λn

η(ϕnx)ϕnx , P̂nη =
∑
ϕ̂∈Φ

∑
x∈Λn

η(ϕ̂nx) ϕ̂nx .

We also choose an integer value n ≥ 0 such that 2−n ∼ λ and we write

Rf −Πxf (x) = Rnf − PnΠxf (x) +
∑
m≥n

(Rm+1f −Rmf − P̂mΠxf (x))

= Rnf − PnΠxf (x) +
∑
m≥n

(δ̂Rmf − P̂mΠxf (x)) +
∑
m≥n

δRmf . (2.10)

We then test these terms against ψλx and we estimate the resulting terms separately. For the
first term, we have the identity

(Rnf − PnΠxf (x))(ψλx) =
∑
y∈Λn

(Πyf (y)−Πxf (x))(ϕny ) 〈ϕny , ψλx〉 . (2.11)

We have the bound |〈ϕny , ψλx〉| . λ−d2−dn/2 ∼ 2dn/2. Since one furthermore has |y − x| . λ
for all non-vanishing terms in the sum, one also has similarly to before

|(Πyf (y)−Πxf (x))(ϕny )| .
∑
α<γ

λγ−α2−
dn
2
−αn ∼ 2−

dn
2
−γn . (2.12)

Since only finitely many (independently of n) terms contribute to the sum in (2.11), it is indeed
bounded by a constant proportional to 2−γn ∼ λγ as required.
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We now turn to the second term in (2.10), where we consider some fixed value m ≥ n. We
rewrite this term very similarly to before as

(δ̂Rmf − P̂mΠxf (x))(ψλx) =
∑
ϕ̂∈Φ

∑
y,z

(Πyf (y)−Πxf (x))(ϕm+1
y ) 〈ϕm+1

y , ϕ̂mz 〉 〈ϕ̂mz , ψλx〉 ,

where the sum runs over y ∈ Λm+1 and z ∈ Λm. This time, we use the fact that by the property
(2.9) of the wavelets ϕ̂, one has the bound

|〈ϕ̂mz , ψλx〉| . λ−d−r2−rm−
md
2 , (2.13)

and the L2-scaling implies that |〈ϕm+1
y , ϕ̂mz 〉| . 1. Furthermore, for each z ∈ Λm, only finitely

many elements y ∈ Λm+1 contribute to the sum, and these elements all satisfy |y − z| . 2−m.
Bounding the first factor as in (2.12) and using the fact that there are of the order of λd2md

terms contributing for every fixed m, we thus see that the contribution of the second term in
(2.10) is bounded by∑

m≥n
λd2md

∑
α<γ

λγ−α−d−r2−dm−αm−rm ∼
∑
α<γ

λγ−α−r
∑
m≥n

2−αm−rm ∼ λγ .

For the last term in (2.10), we combine (2.7) with the bound |〈ϕmy , ψλx〉| . λ−d2−dm/2 and
the fact that there are of the order of λd2−md terms appearing in the sum (2.7) to conclude that
the mth summand is bounded by a constant proportional to 2−γm. Summing over m yields
again the desired bound and concludes the proof.

Remark 2.11 Note that the space Dγ depends crucially on the choice of model (Π,Γ). As a
consequence, the reconstruction operatorR itself also depends on that choice. However, the
map (Π,Γ, f ) 7→ Rf turns out to be locally Lipschitz continuous provided that the distance
between (Π,Γ, f ) and (Π̄, Γ̄, f̄ ) is given by the smallest constant % such that

‖f (x)− f̄ (x)− Γxyf (y) + Γ̄xyf̄ (y)‖α ≤ %|x− y|γ−α ,

|(Πxτ − Π̄xτ)(ϕλx)| ≤ %λα‖τ‖ ,

‖Γxyτ − Γ̄xyτ‖β ≤ %|x− y|α−β‖τ‖ .

Here, in order to obtain bounds on (Rf − R̄f̄)(ψ) for some smooth compactly supported test
function ψ, the above bounds should hold uniformly for x and y in a neighbourhood of the
support of ψ. The proof that this stronger continuity property also holds is actually crucial
when showing that sequences of solutions to mollified equations all converge to the same
limiting object. However, its proof is somewhat more involved which is why we chose not to
give it here.

Remark 2.12 In the particular case where Πxτ happens to be a continuous function for every
τ ∈ T (and every x ∈ Rd),Rf is also a continuous function and one has the identity

(Rf)(x) = (Πxf (x))(x) . (2.14)

This can be seen from the fact that

(Rf)(y) = lim
n→∞

(Rnf)(y) = lim
n→∞

∑
x∈Λn

(Πxf (x))(ϕnx)ϕnx(y) .
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Indeed, our assumptions imply that the function (x, z) 7→ (Πxf (x))(z) is jointly continu-
ous and since the non-vanishing terms in the above sum satisfy |x − y| . 2−n, one has
2dn/2(Πxf (x))(ϕnx) ≈ (Πyf (y))(y) for large n. Since furthermore

∑
x∈Λn ϕnx(y) = 2dn/2, the

claim follows.

3 Examples of regularity structures

3.1 The polynomial structure

It should by now be clear how the structure given by the usual Taylor polynomials fits into this
framework. A natural way of setting it up is to take for T the space of all abstract polynomials
in d commuting variables, denoted by X1, . . . , Xd, and to postulate that Tk consists of the
linear span of monomials of degree k. As an abstract group, the structure group G is then given
by Rd endowed with addition as its group operation, which acts onto T via ΓhX

k = (X −h)k,
where h ∈ Rd and we use the notation Xk as a shorthand for Xk1

1 · · ·X
kd
d for any multiindex

k.
The canonical polynomial model is then given by

(ΠxX
k)(y) = (y − x)k , Γxy = Γy−x .

We leave it as an exercise to the reader to verify that this does indeed satisfy the bounds and
relations of Definition 2.5.

In the particular case of the canonical polynomial model and for γ 6∈ N, the spacesDγ then
coincide precisely with the usual Hölder spaces Cγ . In the case of integer values, this should
be interpreted as bounded functions for γ = 0, Lipschitz continuous functions for γ = 1, etc.

3.2 Controlled rough paths

Let us see now how the theory of controlled rough paths can be reinterpreted in the light of
this theory. For given α ∈ (1

3 ,
1
2 ) and n ≥ 1, we can define a regularity structure T by setting

A = {α − 1, 2α − 1, 0, α}. We furthermore take for T0 a copy of R with unit vector 1, for
Tα and Tα−1 a copy of Rn with respective unit vectors Wj and Ξj , and for T2α−1 a copy of
Rn×n with unit vectors WjΞi. The structure group G is taken to be isomorphic to Rn and, for
x ∈ Rn, it acts on T via

Γx1 = 1 , ΓxΞi = Ξi , ΓxWi = Wi − xi1 , Γx(WjΞi) = WjΞi − xjΞi .

Let now X = (X,X) be an α-Hölder continuous rough path with values in Rn. In other words,
the functions X and X are as in the introduction, satisfying the relation (1.4) and the analytic
bounds |Xt −Xs| . |t− s|α, |Xs,t| . |t− s|2α. It turns out that this defines a model for T
in the following way (recall that Xs,t is a shorthand for Xt −Xs):

Lemma 3.1 Given an α-Hölder continuous rough path X, one can define a model for T on
R by setting Γsu = ΓXs,u and

(Πs1)(t) = 1 , (ΠsWj)(t) = Xj
s,t

(ΠsΞj)(ψ) =

∫
ψ(t) dXj

t , (ΠsWjΞi)(ψ) =

∫
ψ(t) dXi,js,t .
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Here, both integrals are perfectly well-defined Riemann integrals, with the differential in the
second case taken with respect to the variable t. Given a controlled rough path (Y, Y ′) ∈ CαX
as in (1.2), this then defines an element Ŷ ∈ D2α by setting

Ŷ (s) = Y (s) 1 + Y ′i (s)Wi ,

with summation over i implied.

Proof. We first check that the algebraic properties of Definition 2.5 are satisfied. It is clear
that ΓsuΓut = Γst and that ΠsΓsuτ = Πuτ for τ ∈ {1,Wj ,Ξj}. Regarding WjΞi, we
differentiate Chen’s relations (1.4) which yields the identity

dXi,js,t = dXi,ju,t +Xi
s,u dX

j
t .

The last missing algebraic relation then follows at once. The required analytic bounds follow
immediately from the definition of the rough path space Dα.

Regarding the function Ŷ defined in the statement, we have

‖Ŷ (s)− ΓsuŶ (u)‖0 = |Y (s)− Y (u) + Y ′i (u)Xi
s,u| ,

‖Ŷ (s)− ΓsuŶ (u)‖α = |Y ′(s)− Y ′(u)| ,

so that the condition (2.4) with γ = 2α does indeed coincide with the definition of a controlled
rough path given in the introduction.

In this context, the reconstruction theorem allows us to define an integration operator with
respect toW . We can formulate this as follows where one should really think of Z as providing
a consistent definition of what one means by

∫
Y dXj .

Lemma 3.2 In the same context as above, let α ∈ (1
3 ,

1
2 ), and consider Ŷ ∈ D2α built as

above from a controlled rough path. Then, the map Ŷ Ξi given by

(Ŷ Ξj)(s) = Y (s) Ξj + Y ′i (s)WiΞj

belongs to D3α−1. Furthermore, there exists a function Z such that, for every smooth test
function ψ, one has

(RŶ Ξj)(ψ) =

∫
ψ(t) dZ(t) ,

and such that Zs,t = Y (s)Xj
s,t + Y ′i (s)Xi,js,t +O(|t− s|3α).

Proof. The fact that Ŷ Ξi ∈ D3α−1 is an immediate consequence of the definitions. Since
α > 1

3 by assumption, we can apply the reconstruction theorem to it, from which it follows
that there exists a unique distribution η such that, if ψ is a smooth compactly supported test
function, one has

η(ψλs ) =

∫
ψλs (t)Y (s) dXj

t +

∫
ψλs (t)Y ′i (s) dXi,js,t +O(λ3α−1) .

By a simple approximation argument, it turns out that one can take for ψ the indicator function
of the interval [0, 1], so that

η(1[s,t]) = Y (s)Xj
s,t + Y ′i (s)Xi,js,t +O(|t− s|3α) .

Here, the reason why one obtains an exponent 3α rather than 3α − 1 is that it is really
|t− s|−11[s,t] that scales like an approximate δ-distribution as t→ s.
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Remark 3.3 Using the formula (2.14), it is straightforward to verify that if X happens to be a
smooth function and X is defined from X via (1.3), but this time viewing it as a definition for
the left hand side, with the right hand side given by a usual Riemann integral, then the function
Z constructed in Lemma 3.2 coincides with the usual Riemann integral of Y against Xj .

3.3 A classical result from harmonic analysis
The considerations above suggest that a very natural space of distributions is obtained in the
following way. For some α > 0, we denote by C−α the space of all Schwartz distributions η
such that η belongs to the dual of Cr with r > α some integer and such that

|η(ϕλx)| . λ−α ,

uniformly over all ϕ ∈ Br and λ ∈ (0, 1], and locally uniformly in x. Given any compact set
K, the best possible constant such that the above bound holds uniformly over x ∈ K yields a
seminorm. The collection of these seminorms endows C−α with a Fréchet space structure.

Remark 3.4 It turns out that the space C−α is independent of the choice of r in the definition
given above, which justifies the notation. Different values of r give raise to equivalent
seminorms.

Remark 3.5 In terms of the scale of classical Besov spaces, the space C−α is a local version
of B−α∞,∞. It is in some sense the largest space of distributions that is invariant under the scaling
ϕ(·) 7→ λ−αϕ(λ−1·), see for example [BP08].

It is then a classical result in the “folklore” of harmonic analysis that the product extends
naturally to C−α × Cβ into S ′(Rd) if and only if β > α. The reconstruction theorem yields a
straightforward proof of the “if” part of this result:

Theorem 3.6 There is a continuous bilinear mapB : C−α×Cβ → S ′(Rd) such thatB(f, g) =
fg for any two continuous functions f and g.

Proof. Assume from now on that ξ ∈ C−α for some α > 0 and that f ∈ Cβ for some
β > α. We then build a regularity structure T in the following way. For the set A, we take
A = N ∪ (N− α) and for T , we set T = V ⊕W , where each one of the spaces V and W is a
copy of the polynomial model in d commuting variables constructed in Section 3.1. We also
choose Γ as in the canonical model, acting simultaneously on each of the two instances.

As before, we denote by Xk the canonical basis vectors in V . We also use the suggestive
notation “ΞXk” for the corresponding basis vector in W , but we postulate that ΞXk ∈ Tα+|k|
rather than ΞXk ∈ T|k|. Given any distribution ξ ∈ C−α, we then define a model (Πξ,Γ),
where Γ is as in the canonical model, while Πξ acts as

(Πξ
xX

k)(y) = (y − x)k , (Πξ
xΞXk)(y) = (y − x)kξ(y) ,

with the obvious abuse of notation in the second expression. It is then straightforward to verify
that Πy = Πx ◦ Γxy and that the relevant analytical bounds are satisfied, so that this is indeed
a model.

Denote now byRξ the reconstruction map associated to the model (Πξ,Γ) and, for f ∈ Cβ ,
denote by F the element in Dβ given by the local Taylor expansion of f of order β at each
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point. Note that even though the space Dβ does in principle depend on the choice of model,
in our situation F ∈ Dβ for any choice of ξ. It follows immediately from the definitions
that the map x 7→ ΞF (x) belongs to Dβ−α so that, provided that β > α, one can apply the
reconstruction operator to it. This suggests that the multiplication operator we are looking for
can be defined as

B(f, ξ) = Rξ(ΞF ) .

By Theorem 2.10, this is a jointly continuous map from Cβ × C−α into S ′(Rd), provided that
β > α. If ξ happens to be a smooth function, then it follows immediately from Remark 2.12
that B(f, ξ) = f (x)ξ(x), so that B is indeed the requested continuous extension of the usual
product.

Remark 3.7 As a consequence of (2.5), it is actually easy to show that B : C−α × Cβ → C−α.

4 Products and composition by smooth functions

One of the main purposes of the theory presented here is to give a robust way to multiply
distributions (or functions with distributions) that goes beyond the barrier illustrated by Theo-
rem 3.6. Provided that our functions / distributions are represented as elements in Dγ for some
model and regularity structure, we can multiply their “Taylor expansions” pointwise, provided
that we give ourselves a table of multiplication on T .

It is natural to consider products with the following properties. Here, given a regularity
structure, we say that a subspace V ⊂ T is a sector if it is invariant under the action of the
structure group G and if it can furthermore be written as V =

⊕
α∈A Vα with Vα ⊂ Tα.

Definition 4.1 Given a regularity structure (T,A,G) and two sectors V, V̄ ⊂ T , a product
on (V, V̄ ) is a bilinear map ? : V × V̄ → T such that, for any τ ∈ Vα and τ̄ ∈ V̄β , one has
τ ? τ̄ ∈ Tα+β and such that, for any element Γ ∈ G, one has Γ(τ ? τ̄ ) = Γτ ? Γτ̄ .

Remark 4.2 The condition that homogeneities add up under multiplication is very natural
bearing in mind the case of the polynomial regularity structure. The second condition is also
very natural since it merely states that if one reexpands the product of two “polynomials”
around a different point, one should obtain the same result as if one reexpands each factor first
and then multiplies them together.

Given such a product, we can ask ourselves when the pointwise product of an element
Dγ1 with an element in Dγ2 again belongs to some Dγ . In order to answer this question, we
introduce the notation Dγα to denote those elements f ∈ Dγ such that furthermore

f (x) ∈ T+
α ≡

⊕
β≥α

Tβ ,

for every x. With this notation at hand, it is not too difficult to verify that one has the following
result:

Theorem 4.3 Let f1 ∈ Dγ1
α1(V ), f2 ∈ Dγ2

α2(V̄ ), and let ? be a product on (V, V̄ ). Then, the
function f given by f (x) = f1(x) ? f2(x) belongs to Dγα with

α = α1 + α2 , γ = (γ1 + α2) ∧ (γ2 + α1) . (4.1)
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Proof. It is clear that f (x) ∈
⊕

β>α Tβ , so it remains to show that it belongs to Dγ . Fur-
thermore, since we are only interested in showing that f1 ? f2 ∈ Dγ , we discard all of the
components in Tβ for β ≥ γ.

By the properties of the product ?, it remains to obtain a bound of the type

‖Γxyf1(y) ? Γxyf2(y)− f1(x) ? f2(x)‖β . |x− y|γ−β .

By adding and subtracting suitable terms, we obtain

‖Γxyf (y)− f (x)‖β ≤ ‖(Γxyf1(y)− f1(x)) ? (Γxyf2(y)− f2(x))‖β (4.2)

+ ‖(Γxyf1(y)− f1(x)) ? f2(x)‖β + ‖f1(x) ? (Γxyf2(y)− f2(x))‖β .

It follows from the properties of the product ? that the first term in (4.2) is bounded by a
constant times∑

β1+β2=β

‖Γxyf1(y)− f1(x)‖β1‖Γxyf2(y)− f2(x)‖β2

.
∑

β1+β2=β

‖x− y‖γ1−β1‖x− y‖γ2−β2 . ‖x− y‖γ1+γ2−β .

Since γ1 + γ2 ≥ γ, this bound is as required. The second term is bounded by a constant times∑
β1+β2=β

‖Γxyf1(y)− f1(x)‖β1‖f2(x)‖β2 . ‖x− y‖γ1−β1 1β2≥α2 . ‖x− y‖γ1+α2−β ,

where the second inequality uses the identity β1 + β2 = β. Since γ1 + α2 ≥ γ, this bound is
again of the required type. The last term is bounded similarly by reversing the roles played by
f1 and f2.

Remark 4.4 It is clear that the formula (4.1) for γ is optimal in general as can be seen from
the following two “reality checks”. First, consider the case of the polynomial model and take
fi ∈ Cγi . In this case, the truncated Taylor series Fi for fi belong to Dγi0 . It is clear that in this
case, the product cannot be expected to have better regularity than γ1 ∧ γ2 in general, which
is indeed what (4.1) states. The second reality check comes from the example of Section 3.3.
In this case, one has F ∈ Dβ0 , while the constant function x 7→ Ξ belongs to D∞−α so that,
according to (4.1), one expects their product to belong to Dβ−α−α , which is indeed the case.

It turns out that if we have a product on a regularity structure, then in many cases this also
naturally yields a notion of composition with smooth functions. Of course, one could in general
not expect to be able to compose a smooth function with a distribution of negative order. As a
matter of fact, we will only define the composition of smooth functions with elements in some
Dγ for which it is guaranteed that the reconstruction operator yields a continuous function.
One might think at this case that this would yield a triviality, since we know of course how
to compose arbitrary continuous function. The subtlety is that we would like to design our
composition operator in such a way that the result is again an element of Dγ .

For this purpose, we say that a given sector V ⊂ T is function-like if α < 0 ⇒ Vα = 0
and if V0 is one-dimensional. (Denote the unit vector of V0 by 1.) We will furthermore always
assume that our models are normal in the sense that (Πx1)(y) = 1. I this case, it turns out that
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if f ∈ Dγ(V ), thenRf is a continuous function and one has the identity (Rf)(x) = 〈1, f (x)〉,
where we denote by 〈1, ·〉 the element in the dual of V which picks out the prefactor of 1.

Assume now that we are given a regularity structure with a function-like sector V and a
product ? : V ×V → V . For any smooth function G : R→ R and any f ∈ Dγ(V ) with γ > 0,
we can then define G(f ) to be the V -valued function given by

(G ◦ f)(x) =
∑
k≥0

G(k)(f̄ (x))
k!

f̃ (x)?k ,

where we have set
f̄ (x) = 〈1, f (x)〉 , f̃ (x) = f (x)− f̄ (x)1 .

Here, G(k) denotes the kth derivative of G and τ?k denotes the k-fold product τ ? · · · ? τ . We
also used the usual conventions G(0) = G and τ?0 = 1.

Note that as long as G is C∞, this expression is well-defined. Indeed, by assumption, there
exists some α0 > 0 such that f̃ (x) ∈ T+

α0
. By the properties of the product, this implies that

one has f̃ (x)?k ∈ T+
kα0

. As a consequence, when considering the component of G ◦ f in Tβ
for β < γ, the only terms that give a contribution are those with k < γ/α0. Since we cannot
possibly hope in general that G ◦ f ∈ Dγ′ for some γ′ > γ, this is all we really need.

It turns out that if G is sufficiently regular, then the map f 7→ G ◦ f enjoys similarly nice
continuity properties to what we are used to from classical Hölder spaces. The following result
is the analogue in this context to the well-known fact that the composition of a Cγ function
with a sufficiently smooth function G is again of class Cγ .

Proposition 4.5 In the same setting as above, provided that G is of class Ck with k > γ/α0,
the map f 7→ G ◦ f is continuous from Dγ(V ) into itself. If k > γ/α0 + 1, then it is locally
Lipschitz continuous.

The proof of this result can be found in [Hai14]. It is somewhat lengthy, but ultimately
rather straightforward.

4.1 A simple example
A very important remark is that even if bothRf1 andRf2 happens to be continuous functions,
this does not in general imply that R(f1 ? f2)(x) = (Rf1)(x) (Rf2)(x)! For example, fix
κ < 0 and consider the regularity structure given by A = (−2κ,−κ, 0), with each Tα being a
copy of R given by T−nκ = 〈Ξn〉. We furthermore take for G the trivial group. This regularity
structure comes with an obvious product by setting Ξm ?Ξn = Ξm+n provided thatm+n ≤ 2.

Then, we could for example take as a model for T = (T,A,G):

(ΠxΞ0)(y) = 1 , (ΠxΞ)(y) = 0 , (ΠxΞ2)(y) = c , (4.3)

where c is an arbitrary constant. Let furthermore

F1(x) = f1(x)Ξ0 + f ′1(x)Ξ , F2(x) = f2(x)Ξ0 + f ′2(x)Ξ .

Since our group G is trivial, one has Fi ∈ Dγ provided that each of the fi belongs to Dγ and
each of the f ′i belongs to Dγ+κ. (And one has γ + κ < 1.) One furthermore has the identity
(RFi)(x) = fi(x).



16 SCHAUDER ESTIMATES AND ADMISSIBLE MODELS

However, the pointwise product is given by

(F1 ? F2)(x) = f1(x)f2(x)Ξ0 + (f ′1(x)f2(x) + f ′2(x)f1(x))Ξ + f ′1(x)f ′2(x)Ξ2 ,

which by Theorem 4.3 belongs to Dγ−κ. Provided that γ > κ, one can then apply the
reconstruction operator to this product and one obtains

R(F1 ? F2)(x) = f1(x)f2(x) + cf ′1(x)f ′2(x) ,

which is obviously different from the pointwise productRF1 · RF2.
How should this be interpreted? For n > 0, we could have defined a model Π(n) by

(ΠxΞ0)(y) = 1 , (ΠxΞ)(y) =
√

2c sin(nx) , (ΠxΞ2)(y) = 2c sin2(nx) .

Denoting byR(n) the corresponding reconstruction operator, we have the identity

(R(n)Fi)(x) = fi(x) +
√

2cf ′i(x) sin(nx) ,

as well asR(n)(F1 ?F2) = R(n)F1 · R(n)F2. As a model, the model Π(n) actually converges to
the limiting model Π defined in (4.3). As a consequence of the continuity of the reconstruction
operator, this implies that

R(n)F1 · R(n)F2 = R(n)(F1 ? F2)→ R(F1 ? F2) 6= RF1 · RF2 ,

which is of course also easy to see “by hand”. This shows that in some cases, the “non-standard”
models as in (4.3) can be interpreted as limits of “standard” models for which the usual rules
of calculus hold. Even this is however not always the case.

5 Schauder estimates and admissible models

One of the reasons why the theory of regularity structures is very successful at providing
detailed descriptions of the small-scale features of solutions to semilinear (S)PDEs is that
it comes with very sharp Schauder estimates. Recall that the classical Schauder estimates
state that if K : Rd → R is a kernel that is smooth everywhere, except for a singularity at the
origin that is (approximately) homogeneous of degree β − d for some β > 0, then the operator
f 7→ K ∗ f maps Cα into Cα+β for every α ∈ R, except for those values for which α+ β ∈ N.
(See for example [Sim97].)

It turns out that similar Schauder estimates hold in the context of general regularity
structures in the sense that it is in general possible to build an operator K : Dγ → Dγ+β

with the property that RKf = K ∗ Rf . Of course, such a statement can only be true if our
regularity structure contains not only the objects necessary to describeRf up to order γ, but
also those required to describe K ∗ Rf up to order γ + β. What are these objects? At this
stage, it might be useful to reflect on the effect of the convolution of a singular function (or
distribution) with K.

Let us assume for a moment that f is also smooth everywhere, except at some point x0. It
is then straightforward to convince ourselves that K ∗ f is also smooth everywhere, except at
x0. Indeed, for any δ > 0, we can write K = Kδ + Kc

δ , where Kδ is supported in a ball of
radius δ around 0 and Kc

δ is a smooth function. Similarly, we can decompose f as f = fδ +f cδ ,
where fδ is supported in a δ-ball around x0 and f cδ is smooth. Since the convolution of a
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smooth function with an arbitrary distribution is smooth, it follows that the only non-smooth
component of K ∗ f is given by Kδ ∗ fδ, which is supported in a ball of radius 2δ around x0.
Since δ was arbitrary, the statement follows. By linearity, this strongly suggests that the local
structure of the singularities of K ∗ f can be described completely by only using knowledge
on the local structure of the singularities of f . It also suggests that the “singular part” of the
operator K should be local, with the non-local parts of K only contributing to the “regular
part”.

This discussion suggests that we certainly need the following ingredients to build an
operator K with the desired properties:
• The canonical polynomial structure should be part of our regularity structure in order to

be able to describe the “regular parts”.
• We should be given an “abstract integration operator” I on T which describes how the

“singular parts” ofRf transform under convolution by K.
• We should restrict ourselves to models which are “compatible” with the action of I in

the sense that the behaviour of ΠxIτ should relate in a suitable way to the behaviour of
K ∗Πxτ near x.

One way to implement these ingredients is to assume first that our model space T contains
abstract polynomials in the following sense.

Assumption 5.1 There exists a sector T̄ ⊂ T isomorphic to the space of abstract polynomials
in d commuting variables. In other words, T̄α 6= 0 if and only if α ∈ N, and one can find basis
vectors Xk of T|k| such that every element Γ ∈ G acts on T̄ by ΓXk = (X − h)k for some
h ∈ Rd.

Furthermore, we assume that there exists an abstract integration operator I with the
following properties.

Assumption 5.2 There exists a linear map I : T → T such that ITα ⊂ Tα+β , such that
IT̄ = 0, and such that, for every Γ ∈ G and τ ∈ T , one has

ΓIτ − IΓτ ∈ T̄ . (5.1)

Finally, we want to consider models that are compatible with this structure for a given
kernel K. For this, we first make precise what we mean exactly when we said that K is
approximately homogeneous of degree β − d.

Assumption 5.3 One can write K =
∑

n≥0Kn where each of the kernels Kn : Rd → R is
smooth and compactly supported in a ball of radius 2−n around the origin. Furthermore, we
assume that for every multiindex k, one has a constant C such that the bound

sup
x
|DkKn(x)| ≤ C2n(d−β+|k|) , (5.2)

holds uniformly in n. Finally, we assume that
∫
Kn(x)P (x) dx = 0 for every polynomial P of

degree at most N , for some sufficiently large value of N .

Remark 5.4 It turns out that in order to define the operator K on Dγ , we will need K to
annihilate polynomials of degree N for some N ≥ γ + β.
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Remark 5.5 The last assumption may appear to be extremely stringent at first sight. In
practice, this turns out not to be a problem at all. Say for example that we want to define an
operator that represents convolution with G, the Green’s function of the Laplacian. Then, G
can be decomposed into a sum of terms satisfying the bound (5.2) with β = 2, but it does of
course not annihilate generic polynomials and it is not supported in the ball of radius 1.

However, for any fixed value ofN > 0, it is straightforward to decompose G as G = K+R,
where the kernel K is compactly supported and satisfies all of the properties mentioned above,
and the kernel R is smooth. Lifting the convolution with R to an operator from Dγ → Dγ+β

(actually to Dγ̄ for any γ̄ > 0) is straightforward, so that we have reduced our problem to that
of constructing an operator describing the convolution by K.

Given such a kernel K, we can now make precise what we meant earlier when we said that
the models under consideration should be compatible with the kernel K.

Definition 5.6 Given a kernel K as in Assumption 5.3 and a regularity structure T satisfying
Assumptions 5.1 and 5.2, we say that a model (Π,Γ) is admissible if the identities

(ΠxX
k)(y) = (y − x)k , ΠxIτ = K ∗Πxτ −ΠxJ (x)τ , (5.3)

holds for every τ ∈ T with |τ | ≤ N . Here, J (x) : T → T̄ is the linear map given on
homogeneous elements by

J (x)τ =
∑

|k|<|τ |+β

Xk

k!

∫
D(k)K(x− y) (Πxτ)(dy) . (5.4)

Remark 5.7 Note first that if τ ∈ T̄ , then the definition given above is coherent as long as
|τ | < N . Indeed, since Iτ = 0, one necessarily has ΠxIτ = 0. On the other hand, the
properties of K ensure that in this case one also has K ∗Πxτ = 0, as well as J (x)τ = 0.

Remark 5.8 While K ∗ ξ is well-defined for any distribution ξ, it is not so clear a priori
whether the operator J (x) given in (5.4) is also well-defined. It turns out that the axioms of a
model do ensure that this is the case. The correct way of interpreting (5.4) is by

J (x)τ =
∑

|k|<|τ |+β

∑
n≥0

Xk

k!
(Πxτ)(D(k)Kn(x− ·)) .

Note now that the scaling properties of the Kn ensure that 2(β−|k|)nD(k)Kn(x − ·) is a test
function that is localised around x at scale 2−n. As a consequence, one has

|(Πxτ)(D(k)Kn(x− ·))| . 2(|k|−β−|τ |)n ,

so that this expression is indeed summable as long as |k| < |τ |+ β.

Remark 5.9 As a matter of fact, it turns out that the above definition of an admissible model
dovetails very nicely with our axioms defining a general model. Indeed, starting from any
regularity structure T , any model (Π,Γ) for T , and a kernel K satisfying Assumption 5.3,
it is usually possible to build a larger regularity structure T̂ containing T (in the “obvious”
sense that T ⊂ T̂ and the action of Ĝ on T is compatible with that of G) and endowed with
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an abstract integration map I, as well as an admissible model (Π̂, Γ̂) on T̂ which reduces to
(Π,Γ) when restricted to T . See [Hai14] for more details.

The only exception to this rule arises when the original structure T contains some homoge-
neous element τ which does not represent a polynomial and which is such that |τ |+ β ∈ N.
Since the bounds appearing both in the definition of a model and in Assumption 5.3 are
only upper bounds, it is in practice easy to exclude such a situation by slightly tweaking the
definition of either the exponent β or of the original regularity structure T .

With all of these definitions in place, we can finally build the operator K : Dγ → Dγ+β

announced at the beginning of this section. Recalling the definition of J from (5.4), we set

(Kf)(x) = If (x) + J (x)f (x) + (N f)(x) , (5.5)

where the operator N is given by

(N f)(x) =
∑
|k|<γ+β

Xk

k!

∫
D(k)K(x− y) (Rf −Πxf (x))(dy) . (5.6)

Note first that thanks to the reconstruction theorem, it is possible to verify that the right
hand side of (5.6) does indeed make sense for every f ∈ Dγ in virtually the same way as in
Remark 5.8. One has:

Theorem 5.10 LetK be a kernel satisfying Assumption 5.3, let T = (A, T,G) be a regularity
structure satisfying Assumptions 5.1 and 5.2, and let (Π,Γ) be an admissible model for T .
Then, for every f ∈ Dγ with γ ∈ (0, N − β) and γ + β 6∈ N, the function Kf defined in (5.5)
belongs to Dγ+β and satisfiesRKf = K ∗ Rf .

Proof. The complete proof of this result can be found in [Hai14] and will not be given here.
Let us simply show that one has indeedRKf = K ∗Rf in the particular case when our model
consists of continuous functions so that Remark 2.12 applies. In this case, one has

(RKf)(x) = (Πx(If (x) + J (x)f (x)))(x) + (Πx(N f)(x))(x) .

As a consequence of (5.3), the first term appearing in the right hand side of this expression is
given by

(Πx(If (x) + J (x)f (x)))(x) = (K ∗Πxf (x))(x) .

On the other hand, the only term contributing to the second term is the one with k = 0 (which
is always present since γ > 0 by assumption) which then yields

(Πx(N f)(x))(x) =

∫
K(x− y) (Rf −Πxf (x))(dy) .

Adding both of these terms, we see that the expression (K ∗Πxf (x))(x) cancels, leaving us
with the desired result.
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6 Application of the theory to semilinear SPDEs

Let us now briefly explain how this theory can be used to make sense of solutions to very
singular semilinear stochastic PDEs. We will keep the discussion in this section at a very
informal level without attempting to make mathematically precise statements. The interested
reader may find more details in [Hai14].

For definiteness, we focus on the case of the dynamical Φ4
3 model, which is formally given

by
∂tΦ = ∆Φ− Φ3 + ξ , (6.1)

where ξ denotes space-time white noise and the spatial variable takes values in the 3-dimensio-
nal torus. The problem with such an equation is that even the solution to the linear part of the
equation, namely

∂tΨ = ∆Ψ + ξ ,

only admits solutions in some spaces of Schwartz distributions. As a matter of fact, one has
Ψ(t, ·) ∈ C−α if and only if α > 1/2. As a consequence, it turns out that the only way of
giving meaning to (6.1) is to “renormalise” the equation by adding an “infinite” linear term
“∞Φ” which counteracts the strong dissipativity of the term −Φ3. To be slightly more precise,
one can prove a statement of the following kind:

Theorem 6.1 Consider the sequence of equations

∂tΦε = ∆Φε + CεΦε − Φ3
ε + ξε , (6.2)

where ξε = δε ∗ξ with δε(t, x) = ε−5%(ε−2t, ε−1x), for some smooth and compactly supported
function %, and ξ denotes space-time white noise. Then, there exists a choice of constants Cε
such that the sequence Φε converges in probability to a limiting (distributional) process Φ.
Furthermore, the limiting process Φ does not depend on the choice of mollifier %.

Remark 6.2 It turns out that in order to obtain a limit that is independent of the choice of
mollifier %, one should take Cε of the form

Cε =
c1

ε
+ c̃ log ε+ c3 ,

where c̃ is universal, but c1 and c3 depend on the choice of %.

Remark 6.3 The limiting solution Φ is only local in time, so that the precise statement has to
be slightly tweaked to allow for finite-time blow-ups. Regarding the initial condition, one can
take Φ0 ∈ C−β for any β < 2/3. This is expected to be optimal, even for the deterministic
equation.

The aim of this section is to sketch how the theory of regularity structures can be used to
obtain this kind of convergence results. First of all, we note that while our solution Φ will
be a space-time distribution (or rather an element of Dγ for some regularity structure with a
model over R4), the “time” direction has a different scaling behaviour from the three “space”
directions. As a consequence, it turns out to be effective to slightly change our definition of
“localised test functions” by setting

ϕλ(s,x)(t, y) = λ−5ϕ(λ−2(t− s), λ−1(y − x)) .
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Accordingly, the “effective dimension” of our space-time is actually 5, rather than 4. The
theory presented above extends mutatis mutandis to this setting. (Note in particular that when
considering the degree of a regular monomial, powers of the time variable should now be
counted double.) Note also that with this way of measuring regularity, space-time white noise
belongs to C−α for every α > 5

2 . This is because of the bound

(E〈ξ, ϕλx〉2)1/2 = ‖ϕλx‖L2 ≈ λ−
5
2 ,

combined with an argument similar to the proof of Kolmogorov’s continuity lemma.

6.1 Construction of the associated regularity structure
Our first step is to build a regularity structure that is sufficiently large to allow to reformulate
(6.1) as a fixed point in Dγ for some γ > 0. Denoting by G the heat kernel (i.e. the Green’s
function of the operator ∂t −∆), we can write the solution to (6.1) with initial condition Φ0 as

Φ = G ∗ (ξ − Φ3) + GΦ0 ,

where ∗ denotes space-time convolution and where we denote by GΦ0 the harmonic extension
of Φ0. In order to have a chance of fitting this into the framework described above, we first
decompose the heat kernel G as

G = K + K̂ ,

where the kernel K satisfies all of the assumptions of Section 5 (with β = 2) and the remainder
K̂ is smooth. If we consider any regularity structure containing the usual Taylor polynomials
and equipped with an admissible model, is straightforward to associate to K̂ an operator
K̂ : Dγ → D∞ via

(K̂f)(z) =
∑
k

Xk

k!
(D(k)K̂ ∗ Rf)(z) ,

where z denotes a space-time point and k runs over all possible 4-dimensional multiindices.
Similarly, the harmonic extension of Φ0 can be lifted to an element in D∞ which we denote
again by GΦ0 by considering its Taylor expansion around every space-time point. At this stage,
we note that we actually cheated a little: while GΦ0 is smooth in {(t, x) : t > 0, x ∈ T3}
and vanishes when t < 0, it is of course singular on the time-0 hyperplane {(0, x) : x ∈ T3}.
This problem can be cured by introducing weighted versions of the spaces Dγ allowing for
singularities on a given hyperplane. A precise definition of these spaces and their behaviour
under multiplication and the action of the integral operator K can be found in [Hai14]. For the
purpose of the informal discussion given here, we will simply ignore this problem.

This suggests that the “abstract” formulation of (6.1) should be given by

Φ = K(Ξ− Φ3) + K̂(Ξ− Φ3) + GΦ0 . (6.3)

In view of (5.5), this equation is of the type

Φ = I(Ξ− Φ3) + (. . .) , (6.4)

where the terms (. . .) consist of functions that take values in the subspace T̄ of T spanned
by regular Taylor polynomials. In order to build a regularity structure in which (6.4) can be
formulated, it is natural to start with the structure given by abstract polynomials (again with
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the parabolic scaling which causes the abstract “time” variable to have homogeneity 2 rather
than 1), and to add a symbol Ξ to it which we postulate to have homogeneity −5

2

−, where we
denote by α− an exponent strictly smaller than, but arbitrarily close to, the value α.

We then simply add to T all of the formal expressions that an application of the right hand
side of (6.4) can generate for the description of Φ, Φ2, and Φ3. The homogeneity of a given
expression is completely determined by the rules |Iτ | = |τ |+ 2 and |τ τ̄ | = |τ |+ |τ |. More
precisely, we consider a collection U of formal expressions which is the smallest collection
containing 1, X , and I(Ξ), and such that

τ1, τ2, τ3 ∈ U ⇒ I(τ1τ2τ3) ∈ U ,

where it is understood that I(Xk) = 0 for every multiindex k. We then set

W = {Ξ} ∪ {τ1τ2τ3 : τi ∈ U} ,

and we define our space T as the set of all linear combinations of elements in W . (Note
that since 1 ∈ U , one does in particular have U ⊂ W .) Naturally, Tα consists of those
linear combinations that only involve elements inW that are of homogeneity α. It is not too
difficult to convince oneself that, for every α ∈ R,W contains only finitely many elements of
homogeneity less than α, so that each Tα is finite-dimensional.

In order to simplify expressions later, we will use the following shorthand graphical notation
for elements ofW . For Ξ, we simply draw a dot. The integration map is then represented by a
downfacing line and the multiplication of symbols is obtained by joining them at the root. For
example, we have

I(Ξ) = , I(Ξ)3 = , I(Ξ)I(I(Ξ)3) = .

Symbols containing factors of X have no particular graphical representation, so we will for
example write XiI(Ξ)2 = Xi . With this notation, the space T is given by

T = 〈Ξ, , , , , , , Xi , 1, , , . . .〉 ,

where we ordered symbols in increasing order of homogeneity and used 〈·〉 to denote the linear
span. Given any sufficiently regular function ξ (say a continuous space-time function), there is
then a canonical way of lifting ξ to a model ιξ = (Π,Γ) for T by setting

(ΠxΞ)(y) = ξ(y) , (ΠxX
k)(y) = (y − x)k ,

and then recursively by
(Πxτ τ̄)(y) = (Πxτ)(y) · (Πxτ̄)(y) , (6.5)

as well as (5.3). (Note that here we used x and y as notations for generic space-time points in
order not to overload the notations.)

It turns out furthermore that there is a canonical way of building a structure group G
for T and to also lift ξ to a family of operators Γxy, in such a way that all of the algebraic
and analytic properties of an admissible model are satisfied. With such a model ιξ at hand,
it follows from (6.5) and the admissibility of ιξ that the associated reconstruction operator
satisfies the properties

RKf = K ∗ Rf , R(fg) = Rf · Rg ,
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as long as all the functions to which R is applied belong to Dγ for some γ > 0. As a
consequence, applying the reconstruction operatorR to both sides of (6.3), we see that if Φ
solves (6.3) then, provided that the model (Π,Γ) = ιξ was built as above starting from any
continuous realisation ξ of the driving noise,RΦ solves the equation (6.1).

At this stage, the situation is as follows. For any continuous realisation ξ of the driving
noise, we have factored the solution map (Φ0, ξ)→ Φ associated to (6.1) into maps

(Φ0, ξ)→ (Φ0, ιξ)→ Φ→ RΦ ,

where the middle arrow corresponds to the solution to (6.3) in some weighted Dγ-space. The
advantage of such a factorisation is that the last two arrows yield continuous maps, even in
topologies sufficiently weak to be able to describe driving noise having the lack of regularity
of space-time white noise. The only arrow that isn’t continuous in such a weak topology is the
first one. At this stage, it should be believable that a similar construction can be performed for
a very large class of semilinear stochastic PDEs. In particular, the KPZ equation can also be
analysed in this framework.

Given this construction, one is lead naturally to the following question: given a sequence
ξε of “natural” regularisations of space-time white noise, for example as in (6.2), do the lifts
ιξε converge in probably in a suitable space of admissible models? Unfortunately, unlike in the
case of the theory of rough paths where this is very often the case, the answer to this question
in the context of SPDEs is often an emphatic no. Indeed, if it were the case for the dynamical
Φ4

3 model, then one could have chosen the constant Cε to be independent of ε in (6.2), which
is certainly not the case.

7 Renormalisation of the dynamical Φ4
3 model

One way of circumventing the fact that ιξε does not converge to a limiting model as ε→ 0 is
to consider instead a sequence of renormalised models. The main idea is to exploit the fact
that our abstract definitions of a model do not impose the identity (6.5), even in situations
where ξ itself happens to be a continuous function. One question that then imposes itself
is: what are the natural ways of “deforming” the usual product which still lead to lifts to an
admissible model? It turns out that the regularity structure whose construction was sketched
above comes equipped with a natural finite-dimensional group of continuous transformations
R on its space of admissible models (henceforth called the “renormalisation group”), which
essentially amounts to the space of all natural deformations of the product. It then turns out that
even though ιξε does not converge, it is possible to find a sequence Mε of elements in R such
that the sequence Mειξε converges to a limiting model (Π̂, Γ̂). Unfortunately, the elements
Mε no not preserve the image of ι in the space of admissible models. As a consequence,
when solving the fixed point map (6.3) with respect to the model Mειξε and inserting the
solution into the reconstruction operator, it is not clear a priori that the resultong function (or
distribution) can again be interpreted as the solution to some modified PDE. It turns out that
in our case, at least for a certain two-parameter subgroup of R, this is again the case and the
modified equation is precisely given by (6.2), where Cε is some linear combination of the two
constants appearing in the description of Mε.

There are now three questions that remain to be answered:

1. How does one construct the renormalisation group R?
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2. How does one derive the new equation obtained when renormalising a model?

3. What is the right choice of Mε ensuring that the renormalised models converge?

7.1 The renormalisation group
In order to construct R, it is essential to first have some additional knowledge of the structure
group G for the type of regularity structures considered above. Recall that the purpose of the
group G is to provide a class of linear maps Γ: T → T arising as possible candidates for the
action of “reexpanding” a “Taylor series” around a different point. In our case, in view of
(5.3), the coefficients of these reexpansions will naturally be some polynomials in x and in the
expressions appearing in (5.4). This suggests that we should define a space T+ whose basis
vectors consist of formal expressions of the type

Xk
N∏
i=1

J`iτi , (7.1)

where N is an arbitrary but finite number, the τi are basis elements of T , and the `i are
d-dimensional multiindices satisfying |`i| < |τi| + 2. (The last bound is a reflection of the
restriction of the summands in (5.4) with β = 2.) The space T+ also has a natural graded
structure T+ =

⊕
T+
α by setting

|J`τ | = |τ |+ 2− |`| , |Xk| = |k| ,

and by postulating that the degree of a product is the sum of the degrees. Unlike in the case
of T however, elements of T+ all have strictly positive homogeneity, except for the empty
product 1 which we postulate to have degree 0.

To any given admissible model (Π,Γ), it is then natural to associate linear maps fx : T+ →
R by fx(Xk) = xk, fx(σσ̄) = fx(σ)fx(σ̄), and

fx(J`iτi) =

∫
D(`i)K(x− y) (Πxτi)(dy) . (7.2)

It then turns out that it is possible to build a linear map ∆: T → T ⊗T+ such that if we define
Fx : T → T by

Fxτ = (I ⊗ fx)∆τ , (7.3)

where I denotes the identity operator on T , then these maps are invertible and ΠxF
−1
x is

independent of x. Furthermore, there exists a map ∆+ : T+ → T+ ⊗ T+ such that

(∆⊗ I)∆ = (I ⊗∆+)∆ , ∆+(σσ̄) = ∆+σ ·∆+σ̄ . (7.4)

With this map at hand, we can define a product ◦ on the space of linear functionals f : T+ → R
by

(f ◦ g)(σ) = (f ⊗ g)∆+σ .

If we furthermore denote by Γf the operator T associated to any such linear functional as in
(7.3), the first identity of (7.4) yields the identity ΓfΓg = Γf◦g. The second identity of (7.4)
furthermore ensures that if f and g are both multiplicative in the sense that f (σσ̄) = f (σ)f (σ̄),
then f ◦ g is again multiplicative. It also turns out that every multiplicative linear functional f
admits a unique inverse f−1 such that f−1 ◦ f = f ◦ f−1 = e, where e : T+ → R maps every
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basis vector of the form (7.1) to zero, except for e(1) = 1. The element e is neutral in the sense
that Γe is the identity operator.

It is now natural to define the structure group G associated to T as the set of all multiplica-
tive linear functionals on T+, acting on T via (7.3). Furthermore, for any admissible model,
one has the identity

Γxy = F−1
x Fy = Γγxy , γxy = f−1

x ◦ fy .

How does all this help with the identification of a natural class of deformations for the
usual product? First, it turns out that for every continuous function ξ, if we denote again by
(Π,Γ) the model ιξ, then the linear map Π : T → C given by

Π = ΠyF
−1
y ,

which is independent of the choice of y by the above discussion, is given by

(ΠΞ)(x) = ξ(x) , (ΠXk)(x) = xk , (7.5)

and then recursively by

Πτ τ̄ = Πτ ·Πτ̄ , ΠIτ = K ∗Πτ .

Note that this is very similar to the definition of ιξ, with the notable exception that (5.3) is
replaced by the more “natural” identity ΠIτ = K ∗Πτ . It turns out that the knowledge of
Π and the knowledge of (Π,Γ) are equivalent since one has Πx = ΠFx and the map Fx can
be recovered from Πx by (7.2). (This argument appears circular but it is possible to put a
suitable recursive structure on T and T+ ensuring that this actually works.) Furthermore, the
translation (Π,Γ)↔ Π actually works for any admissible model and does not at all rely on
the fact that it was built by lifting a continuous function. However, in the general case, the
first identity in (7.5) does not of course not make any sense anymore and might fail even if the
coordinates of Π consist of continuous functions.

At this stage we note that if ξ happens to be a stationary stochastic process and Π is built
from ξ by following the above procedure, then Πτ is a stationary stochastic process for every
τ ∈ T . In order to define R, it is natural to consider only transformations of the space of
admissible models that preserve this property. Since we are not in general allowed to multiply
components of Π, the only remaining operation is to form linear combinations. It is therefore
natural to describe elements of R by linear maps M : T → T and to postulate their action on
admissible models by Π 7→ ΠM with

ΠMτ = ΠMτ .

It is not clear a priori whether given such a map M and an admissible model (Π,Γ) there is
a coherent way of building a new model (ΠM ,ΓM ) such that ΠM is the map associated to
(ΠM ,ΓM ) as above. It turns out that one has the following statement:

Proposition 7.1 In the above context, for every linear map M : T → T commuting with I
and multiplication byXk, there exist unique linear maps ∆M : T → T ⊗T+ and ∆̂M : T+ →
T+ ⊗ T+ such that if we set

ΠM
x τ = (Πx ⊗ fx)∆Mτ , γMxy (σ) = (γxy ⊗ fx)∆̂Mσ ,

then ΠM
x satisfies again (5.3) and the identity ΠM

x ΓMxy = ΠM
y .
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At this stage it may look like any linear map M : T → T commuting with I and multipli-
cation by Xk yields a transformation on the space of admissible models by Proposition 7.1.
This however is not true since we have completely disregarded the analytical bounds that every
model has to satisfy. It is clear from Definition 2.5 that these are satisfied if and only if ΠM

x τ
is a linear combination of the Πxτj with |τj | ≥ |τ |. This suggests the following definition.

Definition 7.2 The renormalisation group R consists of the set of linear maps M : T → T
commuting with I and with multiplication by Xk, such that for τ ∈ Tα and σ ∈ T+

α , one has

∆Mτ − τ ⊗ 1 ∈
⊕
β>α

Tα ⊗ T+ , ∆̂Mσ − σ ⊗ 1 ∈
⊕
β>α

T+
α ⊗ T+ .

Its action on the space of admissible models is given by Proposition 7.1.

7.2 The renormalised equations

In the case of the dynamical Φ4 model considered in this article, it turns out that we only need
a two-parameter subgroup of R to renormalise the equations. More precisely, we consider
elements M ∈ R of the form M = exp(−C1L1 − C2L2), where the two generators L1 and
L2 are determined by the substitution rules

L1 : 7→ 1 , L2 : 7→ 1 .

This should be understood in the sense that if τ is an arbitrary formal expression, then L1τ
is the sum of all formal expressions obtained from τ by performing a substitution of the type
7→ 1, and similarly for L2. For example, one has

L1 = 3 , L1 = , L2 = 3 .

One then has the following result:

Proposition 7.3 The linear maps M of the type just described belong to R. Furthermore, if
(Π,Γ) is an admissible model such that Πxτ is a continuous function for every τ ∈ T , then
one has the identity

(ΠM
x τ)(x) = (ΠxMτ)(x) . (7.6)

Remark 7.4 Note that it it is the same value x that appears twice on each side of (7.6). It is in
fact not the case that one has ΠM

x τ = ΠxMτ ! However, the identity (7.6) is all we need to
derive the renormalised equations.

It is now rather straightforward to show the following:

Proposition 7.5 Let M = exp(−C1L1 − C2L2) as above and let (ΠM ,ΓM ) = Mιξ for
some smooth function ξ. Let furthermore Φ be the solution to (6.3) with respect to the model
(ΠM ,ΓM ). Then, the function u(t, x) = (RMΦ)(t, x) solves the equation

∂tu = ∆u− u3 + (3C1 − 9C2)u+ ξ .
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Proof. By Theorem 4.3, it turns out that (6.3) can be solved in Dγ as soon as γ is a little
bit greater than 1. Therefore, we only need to keep track of its solution Φ up to terms of
homogeneity 1. By repeatedly applying the identity (6.4), we see that the solution Φ is
necessarily of the form

Φ = + ϕ 1− − 3ϕ + 〈∇ϕ,X〉 , (7.7)

for some real-valued function ϕ and some R3-valued function∇ϕ. (Note that∇ϕ is treated as
an independent function here, we certainly do not suggest that the function ϕ is differentiable!
Our notation is only by analogy with the classical Taylor expansion...) Similarly, the right hand
side of the equation is given up to order 0 by

Ξ− Φ3 = Ξ− − 3ϕ + 3 − 3ϕ2 + 6ϕ + 9ϕ − 3〈∇ϕ, X〉 − ϕ3 1 . (7.8)

Combining this with the definition of M , it is straightforward to see that, modulo terms of
strictly positive homogeneity, one has

M (Ξ− Φ3) = Ξ− (MΦ)3 + 3C1 + 3C1ϕ1− 9C2 − 9C2ϕ1
= Ξ− (MΦ)3 + (3C1 − 9C2)MΦ .

Combining this with (7.6), the claim now follows at once.

7.3 Convergence of the renormalised models
It remains to argue why one expects to be able to find constants Cε1 and Cε2 such that the
sequence of renormalised models M ειξε converges to a limiting model. Instead of considering
the actual sequence of models, we only consider the sequence of stationary processes Π̂

ε
τ :=

ΠεM ετ , where Πε is associated to (Πε,Γε) = ιξε as before. Since there are general arguments
available to deal with all the expressions τ of positive homogeneity, we restrict ourselves to
those of negative homogeneity which, leaving out Ξ which is easy to treat, are given by

, , , , , , Xi .

For this section, some elementary notions from the theory of Wiener chaos expansions are
required, but we will try to hide this as much as possible. At a formal level, one has the identity

Πε = K ∗ ξε = Kε ∗ ξ ,

where the kernel Kε is given by Kε = K ∗ δε. This shows that, at least formally, one has

(Πε )(z) = (K ∗ ξε)(z)2 =

∫ ∫
Kε(z − z1)Kε(z − z2) ξ(z1)ξ(z2) dz1 dz2 .

Similar but more complicated expressions can be found for any formal expression τ . This
naturally leads to the study of random variables of the type

Ik(f ) =

∫
· · ·
∫
f (z1, . . . , zk) ξ(z1) · · · ξ(zk) dz1 · · · dzk . (7.9)

Ideally, one would hope to have an Itô isometry of the type EIk(f )Ik(g) = 〈f sym, gsym〉,
where 〈·, ·〉 denotes the L2-scalar product and f sym denotes the symmetrisation of f . This is
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unfortunately not the case. Instead, one should replace the products in (7.9) by Wick products,
which are formally generated by all possible contractions of the type

ξ(zi)ξ(zj) 7→ ξ(zi) � ξ(zj) + δ(zi − zj) .

If we then set

Îk(f ) =

∫
· · ·
∫
f (z1, . . . , zk) ξ(z1) � · · · � ξ(zk) dz1 · · · dzk ,

One has indeed
EÎk(f )Îk(g) = 〈f sym, gsym〉 .

See [Nua95] for a more thorough description of this construction, which also goes under the
name of Wiener chaos. It turns out that one has equivalence of moments in the sense that, for
every k > 0 and p > 0 there exists a constant Ck,p such that

E|Îk(f )|p ≤ Ck,p‖f sym‖p ≤ Ck,p‖f‖p ,

where the second bound comes from the fact that symmetrisation is a contraction in L2. Finally,
one has EÎk(f )Î`(g) = 0 if k 6= `. Random variables of the form Îk(f ) for some k ≥ 0 and
some square integrable function f are said to belong to the kth homogeneous Wiener chaos.

Returning to our problem, we first argue that it should be possible to choose M in such a
way that Π̂

ε
converges to a limit as ε→ 0. The above considerations suggest that one should

rewrite Πε as

(Πε )(z) = (K ∗ ξε)(z)2 =

∫ ∫
Kε(z − z1)Kε(z − z2) ξ(z1) � ξ(z2) dz1 dz2 +Cε , (7.10)

where the constant Cε is given by

Cε =

∫
K2
ε (z1) dz1 =

∫
K2
ε (z − z1) dz1 .

Note now thatKε is an ε-approximation of the kernelK which has the same singular behaviour
as the heat kernel. In terms of the parabolic distance, the singularity of the heat kernel scales like
K(z) ∼ |z|−3 for z → 0. (Recall that we consider the parabolic distance |(t, x)| =

√
|t|+ |x|,

so that this is consistent with the fact that the heat kernel is bounded by t−3/2.) This suggests
that one has K2

ε (z) ∼ |z|−6 for |z| � ε. Since parabolic space-time has scaling dimension 5
(time counts double!), this is a non-integrable singularity. As a matter of fact, there is a whole
power of z missing to make it borderline integrable, which suggests that one has

Cε ∼
1

ε
.

This already shows that one should not expect Πε to converge to a limit as ε→ 0. However,
it turns out that the first term in (7.10) converges to a distribution-valued stationary space-time
process, so that one would like to somehow get rid of this diverging constant Cε. This is
exactly where the renormalisation map M (in particular the factor exp(−C1L1)) enters into
play. Following the above definitions, we see that one has

(Π̂
ε

)(z) = (ΠεM )(z) = (Πε )(z)− C1 .
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This suggests that if we make the choice C1 = Cε, then Π̂
ε

does indeed converge to a
non-trivial limit as ε→ 0. This limit is a distribution given by

(Πε )(ψ) =

∫ ∫
ψ(z)K(z − z1)K(z − z2) dz ξ(z1) � ξ(z2) dz1 dz2 .

Using again the scaling properties of the kernel K, it is not too difficult to show that this yields
indeed a random variable belonging to the second homogeneous Wiener chaos for every choice
of smooth test function ψ. Once we know that Π̂

ε
converges, it is immediate that Π̂

ε
X

converges as well, since this amounts to just multiplying a distribution by a smooth function.
A similar argument to what we did for allows to take care of τ = since one then has

(Πε )(z) =

∫ ∫
Kε(z − z1)Kε(z − z2)Kε(z − z3) ξ(z1) � ξ(z2) � ξ(z3) dz1 dz2 dz3

+ 3

∫ ∫
Kε(z − z1)Kε(z − z2)Kε(z − z3)δ(z1 − z2) ξ(z3) dz1 dz2 dz3 .

Noting that the second term in this expression is nothing but

3Cε

∫
Kε(z − z1) ξ(z1) dz1 = 3Cε(Π

ε )(z) ,

we see that in this case, provided again that C1 = Cε, Π̂
ε

is given by only the first term
in the expression above, which turns out to converge to a non-degenerate limiting random
distribution in a similar way to what happened for .

Turning to our list of terms of negative homogeneity, it remains to consider , , and .
It turns out that the latter two are the more difficult ones, so we only discuss these. Let us first
argue why we expect to be able to choose the constants C1 and C2 in such a way that Π̂

ε

converges to a limit. In this case, the “bad” terms comes from the part of (Πε )(z) belonging
to the homogeneous chaos of order 0. This is simply a constant, which turns out to be given by

Ĉε = 2

∫
K(z)Q2

ε(z) dz , (7.11)

where the kernel Qε is given by

Qε(z) =

∫
Kε(z̄)Kε(z̄ − z) dz̄ .

Since Kε is an ε-mollification of a kernel with a singularity of order −3 and the scaling
dimension of the underlying space is 5, we see that Qε behaves like an ε-mollification of
a kernel with a singularity of order −3 − 3 + 5 = −1 at the origin. As a consequence,
the singularity of the integrand in (7.11) is of order −5, which gives rise to a logarithmic
divergence as ε→ 0. This suggests that one should choose C2 = Ĉε in order to cancel out this
diverging term and obtain a non-trivial limit for Π̂

ε
as ε→ 0. This is indeed the case.

We finally turn to the symbol . In this case, the “bad” terms appearing in the Wiener
chaos decomposition of Πε are the terms in the first homogeneous Wiener chaos, which are
of the form

3

∫
Q̂ε(z − z1)Kε(z1 − z2)ξ(z2) dz1 dz2 = 3

∫
(Q̂ε ∗Kε)(z − z2)ξ(z2) dz2 , (7.12)
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where Q̂ε is the kernel given by

Q̂ε(z) = 2K(z)Q2
ε(z) .

As already mentioned above, the problem here is that as ε → 0, Q̂ε converges to a kernel
Q̂ = 2KQ2, which has a non-integrable singularity at the origin. In particular, the action of
integrating a test function against Q̂ε does not converge to a limiting distribution as ε→ 0.

This is akin to the problem of making sense of integration against a one-dimensional
kernel with a singularity of type 1/|x| at the origin. For the sake of the argument, let us
consider a function W : R→ R which is compactly supported and smooth everywhere except
at the origin, where it diverges like W (x) ∼ 1/|x|. It is then natural to associate to W a
“renormalised” distribution RW given by

(RW )(ϕ) =

∫
W (x)(ϕ(x)− ϕ(0)) dx .

Note that RW has the property that if ϕ(0) = 0, then it simply corresponds to integration
against W , which is the standard way of associating a distribution to a function. In a way, the
extra term can be interpreted as subtracting a Dirac distribution with an “infinite mass” located
at the origin, thus cancelling out the divergence of the non-integrable singularity. It is also
straightforward to verify that if Wε is a sequence of smooth approximations to W (say one has
Wε(x) = W (x) for |x| > ε and Wε ∼ 1/ε otherwise), then RW ε → RW in a distributional
sense, and (using the usual correspondence between functions and distributions) one has

RW ε = W ε − Ĉεδ0 , Ĉε =

∫
W ε(x) dx .

The cure to the problem we are facing for showing the convergence of Πε is virtually
identical. Indeed,by choosing C2 = Ĉε as in (7.11), the term in the first homogeneous Wiener
chaos for Π̂

ε
corresponding to (7.12) is precisely given by

3

∫
Q̂ε(z − z1)Kε(z1 − z2)ξ(z2) dz1 dz2 − 3C2

∫
Kε(z − z2)ξ(z2) dz2

= 3

∫
(RQ̂ε ∗Kε)(z − z2)ξ(z2) dz2 .

It turns out that the convergence of RQ̂ε to a limiting distribution RQ̂ takes place in a
sufficiently strong topology to allow to conclude that Π̂

ε
does indeed converge to a non-

trivial limiting random distribution.
It should be clear from this whole discussion that while the precise values of the constants

C1 and C2 depend on the details of the mollifier δε, the limiting (random) model (Π̂, Γ̂)
obtained in this way is independent of it. Combining this with the continuity of the solution to
the fixed point map (6.3) and of the reconstruction operatorR with respect to the underlying
model, we see that the statement of Theorem 6.1 follows almost immediately.
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