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Abstract
We introduce the dynamical sine-Gordon equation in two space dimensions with
parameter β, which is the natural dynamic associated to the usual quantum sine-
Gordon model. It is shown that when β2 ∈ (0, 16π3 ) the Wick renormalised
equation is well-posed. In the regime β2 ∈ (0, 4π), the Da Prato–Debussche
method [DPD02, DPD03] applies, while for β2 ∈ [4π, 16π3 ), the solution theory
is provided via the theory of regularity structures [Hai13]. We also show that this
model arises naturally from a class of 2 + 1-dimensional equilibrium interface
fluctuation models with periodic nonlinearities.

The main mathematical difficulty arises in the construction of the model for
the associated regularity structure where the role of the noise is played by a non-
Gaussian random distribution similar to the complex multiplicative Gaussian chaos
recently analysed in [LRV13].
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1 Introduction

The aim of this work is to provide a solution theory for the stochastic PDE

∂tu =
1

2
∆u+ c sin(βu+ θ) + ξ , (1.1)

where c, β, θ are real valued constants, ξ denotes space-time white noise, and the
spatial dimension is fixed to be 2.



2 INTRODUCTION

The model (1.1) is interesting for a number of reasons. First and foremost,
it is of purely mathematical interest as a very nice testbed for renormalisation
techniques. Indeed, even though we work with fixed spatial dimension 2, this model
exhibits many features comparable to those of various models arising in constructive
quantum field theory (QFT) and / or statistical mechanics, but with the dimension d
of those models being a function of the parameter β.

More precisely, at least at a heuristic level, (1.1) is comparable to Φ3
d Euclidean

QFT with d = 2 + β2

2π , Φ4
d Euclidean QFT with d = 2 + β2

4π , or the KPZ equation in
dimension d = β2

4π . In particular, one encounters divergencies when trying to define
solutions to (1.1) or any of the models just mentioned as soon as β is non-zero. (In
the case of the KPZ equation recall that, via the Cole-Hopf transform it is equivalent
to the stochastic heat equation. In dimension 0, this reduces to the SDE du = u dW
which is ill-posed ifW is a Wiener process but is well-posed as soon as it is replaced
by something more regular, say fractional Brownian motion with Hurst parameter
greater than 1/2.)

These divergencies can however be cured in all of these models by Wick renor-
malisation as long as β2 < 4π. At β2 = 4π (corresponding to Φ3

4, Φ4
3, and KPZ in

dimension 1), Wick renormalisation breaks down and higher order renormalisation
schemes need to be introduced. One still expects the theory to be renormalisable
until β2 = 8π, which corresponds to Φ3

6, Φ4
4 and KPZ in dimension 2, at which

point renormalisability breaks down. This suggests that the value β2 = 8π is critical
for (1.1) and that there is no hope to give it any non-trivial meaning beyond that,
see for example [DH00, Fal12] and, in a slightly different context, [LRV13]. This
heuristic (including the fact that Wick renormalisability breaks down at β2 = 4π) is
well-known and has been demonstrated in [Frö76, BGN82, Nic83, NRS86, DH00]
at the level of the behaviour of the partition function for the corresponding lattice
model.

From a more physical perspective, an interesting feature of (1.1) is that it is
closely related to models of a globally neutral gas of interacting charges. With
this interpretation, the gas forms a plasma at high temperature (low β) and the
various threshold values for β could be interpreted as threshold of formation of
macroscopic fractions of dipoles / quadrupoles / etc. The critical value β2 = 8π
can be interpreted as the critical inverse temperature at which total collapse takes
place, giving rise to a Kosterlitz-Thouless phase transition [KT73, FS81]. Finally,
the model (1.1) has also been proposed as a model for the dynamic of crystal-vapour
interfaces at the roughening transition [CW78, Neu83] and as a model of crystal
surface fluctuations in equilibrium [KP93, KP94].

In order to give a non-trivial meaning to (1.1), we first replace ξ by a smoothened
version ξε which has a correlation length of order ε > 0 and then study the limit
ε→ 0. Since we are working in two space dimensions, one expects the solution to
become singular (distribution-valued) as ε → 0. As a consequence, there will be
some “averaging effect” so that one expects to have sin(βuε) → 0 in some weak
sense as ε → 0. It therefore seems intuitively clear that if we wish to obtain a
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non-trivial limit, we should simultaneously send the constant c to +∞. This is
indeed the case, see Theorem 1.1 below.

We also study a class of 2 + 1-dimensional equilibrium interface fluctuation
models with more general periodic nonlinearities:

∂tuε =
1

2
∆uε + cε Fβ(uε) + ξε , (1.2)

where Fβ is a trigonometric polynomial of the form

Fβ(u) =
Z∑
k=1

ζk sin(kβu+ θk) (Z ∈ N) , (1.3)

and ζk, β and θk are real-valued constants. One may expect that the “averaging
effect” of sin(kβuε + θk) is stronger for larger values of k. This is indeed the case
and, as a consequence of this, we will see that provided the constant cε → ∞ at
a proper rate, the limiting process obtained as ε → 0 only depends on Fβ via the
values β, θ1, and ζ1. In this sense, the equation (1.1) also arises as the limit of the
models (1.2).

The main result of this article can be formulated as follows. (See Section 1.2
below for a definition of the spaces appearing in the statement; T2 denotes the
two-dimensional torus, and D′ denotes the space of distributions.)

Theorem 1.1 Let 0 < β2 < 16π
3 and η ∈ (−1

3 , 0). For u(0) ∈ Cη(T2) fixed,
consider the solution uε to

∂tuε =
1

2
∆uε + C%ε

−β2/4πFβ(uε) + ξε , u(0, ·) = u(0) ,

where Fβ is defined in (1.3), ξε = %ε ∗ ξ with %ε(t, x) = ε−4%(ε−2t, ε−1x) for some
smooth and compactly supported function % integrating to 1. Then there exists a
constant C% (depending only on β and the mollifier %) such that the sequence uε
converges in probability to a limiting distributional process u which is independent
of %.

More precisely, there exist random variables τ > 0 and u ∈ D′(R+ × T2) such
that, for every T ′ > T > 0, the natural restriction of u to D′((0, T )× T2) belongs
to XT,η = C([0, T ], Cη(T2)) on the set {τ ≥ T ′}. Furthermore, on the same set,
one has uε → u in probability in the topology of XT,η.

Finally, one has limt→τ ‖u(t, ·)‖Cη(T2) =∞ on the set {τ <∞}. The limiting
process u depends on the numerical values β, ζ1 and θ1, but it depends neither on
the choice of mollifier %, nor on the numerical values ζk and θk for k ≥ 2.

Remark 1.2 As already mentioned, one expects the boundary β2 = 16π
3 to be

artificial and a similar result is expected to hold for any β2 ∈ (0, 8π). In fact, 8π is
the natural boundary for the method of proof developed in [Hai13] and employed
here. However, as β2 → 8π, the theory requires proofs of convergence of more
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and more auxiliary objects. In the current context, we unfortunately do not have a
general convergence result for all of these objects but instead we need to treat all
of them separately “by hand”. Furthermore, the bounds we have on the simplest
“second-order” object unfortunately appear to break down at β2 = 6π.

Remark 1.3 It is interesting to note that for β2 ∈ (0, 4π), we only need to con-
struct one auxiliary process, and this construction does indeed involve a careful
tracking of cancellations due to the grouping of terms into “dipoles”, while for
β2 ∈ [4π, 16π

3 ), we need to build a second auxiliary process which requires to keep
track of cancellations obtained by considering “quadrupoles”. See Section 3 and
Section 4 below for more details.

Remark 1.4 The limiting process u is a continuous function of time, taking values
in a suitable space of spatial distributions. See Remark 2.6 below for more details.
Regarding the right hand side of the equation however, it only makes sense as a
random distribution at fixed time when β2 < 4π. For β2 ≥ 4π however, it exists
only as a random space-time distribution.

Remark 1.5 The article [AHR01] appears in principle to cover (1.1) as part of
a larger class of nonlinearities. It is however unclear what the meaning of the
solutions constructed there is and how they relate to the construction given in the
present article. The interpretation of the solutions in [AHR01] is that of a random
Colombeau generalised function and it is not clear at all whether this generalised
function represents an actual distribution. In particular, the construction given there
is completely impervious to the presence of the Kosterlitz-Thouless transition and
the collapse of multipoles which clearly transpire in our analysis.

1.1 Structure of the article

The rest of this article is organised as follows. In Section 2, we give an overview of
the proof of our main result. In particular, we reduce it to the proof of convergence
of a finite number of processes Ψk

ε , Ψkl
ε , and Ψkl̄

ε (see (2.2), (2.4), (4.3), (4.4)
and Remark 4.2 below) to a limit in a suitable topology. In Section 3, we then
prove Theorem 3.2, which gives bounds on arbitrary moments of the first order
processes Ψk

ε . When combined with a simple second moment estimate, these bounds
imply suitable convergence of the first order processes Ψk

ε , so that Theorem 2.1
is established, which in particular implies Theorem 1.1 for β2 < 4π. The main
ingredient in proving Theorem 3.2 is an inductive procedure, resulting in the bounds
in Proposition 3.5, which greatly simplifies the expressions of the moments.

The last two sections of the article are devoted to the proof of Theorem 4.3,
which gives bounds on arbitrary moments of second order processes Ψkl

ε and Ψkl̄
ε ,

as well as their convergence. It turns out that the proofs for the special case k = l
are quite different from the proofs for k 6= l. Section 4 only treats the former case,
which is already sufficient to obtain Theorem 1.1 in the particular case when Z = 1
in (1.3). The case k 6= l is then finally covered in Section 5. In particular, among
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these second order processes, only Ψkk̄
ε requires some renormalisations terms. The

convergence proof for these processes relies again on the procedure of Section 3, but
we have to incorporate into it additional cancellations created by the renormalisation
constants.

1.2 Some notations
Throughout the article, we choose the scaling for our space-time R3 to be the
parabolic scaling s = (2, 1, 1), and thus the scaling dimension of space-time is
|s| = 4. (See the conventions in [Hai13].) This scaling defines a distance ‖x− y‖s
on R3 by

‖x‖4s
def
= |x0|2 + |x1|4 + |x2|4 .

Recall from [Hai13, Def. 3.7] that for α < 0, r = −bαc, D ⊆ R3, we say that a
distribution ξ ∈ S ′(D) belongs to Cαs (D) if it belongs to the dual of Cr(D), and for
every compact set R ⊆ D, there exists a constant C such that

〈
ξ,Sδs,xη

〉
≤ Cδα

holds for all δ ≤ 1, all x ∈ R, and all η ∈ Cr with ‖η‖Cr ≤ 1 and supported on
the unit ds-ball centred at the origin. Here, the rescaled test function is given by
Sδs,xη(y) = δ−|s|η(δ−s0(y0 − x0), . . . , δ−s2(y2 − x2)).

Acknowledgements
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and Rémi Rhodes. MH’s research was funded by the Philip Leverhulme trust through a
leadership award, by the Royal Society through a research merit award, and by an ERC
consolidator grant.

2 Method of proof

Let K : R × R2 → R be a compactly supported function which agrees with the
heat kernel exp(−|x|2/2t)/(2πt) in a ball of radius 1 around the origin, is smooth
everywhere except at the origin, satisfiesK(t, x) = 0 for t < 0, and has the property
that

∫
K(t, x)Q(t, x) dt dx = 0 for every polynomial Q of degree 2. We then define

Φε = K ∗ ξε , (2.1)

where “∗” denotes space-time convolution, so that Rε
def
= ∂tΦε − 1

2∆Φε − ξε is a
smooth function that converges as ε→ 0 to a smooth limit R. The main reason for
considering convolution with K instead of the actual heat kernel is that we avoid
problems of convergence at infinity. It also allows us to fit more easily into the
framework of [Hai13, Sec. 5].

Let now Ψk
ε be defined by

Ψk
ε = C%ε

−β2/4π exp(ikβΦε) , (2.2)

and write Ψk
ε = Ψc,k

ε + iΨs,k
ε for its real and imaginary parts. Since the case k = 1

is special, we furthermore use the convention that Ψε = Ψ1
ε and similarly for Ψc

ε
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and Ψs
ε. Using the same trick as in [DPD02, DPD03], we set uε = vε + Φε, so that

∂tvε =
1

2
∆vε +

Z∑
k=1

ζk(sin(kβvε + θk) Ψc,k
ε + cos(kβvε + θk) Ψs,k

ε ) +Rε .

At this stage, we note that the PDE

∂tv =
1

2
∆v + fc(v) Ψc + fs(v) Ψs +R , (2.3)

is locally well-posed for any continuous space-time function R, any continuous
initial condition, any smooth functions fc and fs, and any Ψc,Ψs ∈ C−γs (R+ × T2)
provided that γ < 1. Furthermore, in this case, the solution v belongs to C2−γ

s

and it is stable with respect to perturbations of Ψc, Ψs and R. The only potential
problem are the products fc(v) Ψc and fs(v) Ψs, but the product map turns out to
be continuous from C2−γ

s times C−γs into C−γs as soon as γ < 1. (See for example
[Tri83, Sec. 2] or [BCD11, Thm 2.52].)

With this in mind, our first result is as follows:

Theorem 2.1 Assume that β2 ∈ (0, 8π). Let Ψε be as in (2.2) and let γ > β2/(4π).
Then, there exists a constant C% and a C−γs (R+ × T2,C)-valued random variable
Ψ independent of % such that, for every T > 0, one has Ψε → Ψ and Ψk

ε → 0 for
all k ≥ 2 in probability in C−γs ([0, T ]× T2,C).

Remark 2.2 This is essentially a consequence of [LRV13, Thm 3.1] in the special
case γ = 0. (Which is actually the simplest of the cases treated there.) Due
to a difference in normalisation (compare [LRV13, Eq. 1.2] to (3.27) below) our
values of β2 differ by a factor 2π, so that the boundary β2 = 8π appearing here
corresponds to β2 = 4 in the notations of [LRV13]. This is consistent with the
fact that parabolic space-time with two space dimensions actually has Hausdorff
dimension 4. We will provide a full proof of Theorem 2.1 in Section 3 for a number
of reasons. First, we require a much stronger notion of convergence than that given
in [LRV13] and our sequence of approximations is different than the one given there
(in particular it has no martingale structure in ε). We also require optimal bounds in
the parabolic scaling which are not given by that article. Finally, several ingredients
of our proof are reused in later parts of the article.

Given the above discussion, Theorem 1.1 is an immediate consequence of
Theorem 2.1 for the range β2 ∈ (0, 4π), if the initial data u(0) is equal to Φ(0) plus a
continuous function. The proof of Theorem 1.1 for general initial data u(0) ∈ Cη(T2)
with η ∈ (−1

3 , 0) can be obtained in a way similar to that of Theorem 2.5 below. At
β2 = 4π however, this appears to break down completely. Indeed, it is a fact that
the solutions to (2.3) are unstable with respect to perturbations of Ψs and Ψc in C−1

s .
However, it turns out that if we keep track of suitable higher order information, then
continuity is restored. More precisely, for each 1 ≤ k ≤ Z, let Ψs,k

ε and Ψc,k
ε be

two sequences of continuous space-time functions and let C(k)
ε be a sequence of real
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numbers. Then, for any two space-time points z = (t, x) and z̄ = (t̄, x̄) and any two
indices a, b ∈ {s, c}, we consider the functions

Ψab,kl
ε (z, z̄) = Ψa,k

ε (z̄)
(

(K ∗Ψb,l
ε )(z̄)− (K ∗Ψb,l

ε )(z))
)
− 1

2
C(k)
ε δa,bδk,l . (2.4)

In the sequel, we consider Ψab,kl
ε as functions of their first argument, taking values

in the space of space-time distributions, corresponding to their second argument.
We also use the convention that Ψab

ε
def
= Ψab,11

ε for simplicity.
Given a test function ϕ : R× R2 → R, a point z as before and a value λ > 0,

we write
ϕλz (z̄) = λ−4ϕ(λ−2(t̄− t), λ−1(x̄− x)) . (2.5)

We then impose the following assumption, which will later be justified in Theo-
rem 2.8.

Assumption A We assume that there exist distributions Ψa and distribution-valued
functions Ψab(z, ·) such that Ψa

ε → Ψa and Ψab
ε → Ψab, as well as Ψa,k

ε → 0
for k ≥ 2 and Ψab,kl

ε → 0 for (k, l) 6= (1, 1), in the following sense. For some
γ ∈ (1, 4

3 ), one has

λγ |Ψa(ϕλz )| . 1 , λγ |(Ψa
ε −Ψa)(ϕλz )| → 0 , (2.6a)

λ2γ−2|Ψab(z, ϕλz )| . 1 , λ2γ−2|(Ψab
ε −Ψab)(z, ϕλz )| → 0 , (2.6b)

λγ |Ψa,k(ϕλz )| → 0 , λ2γ−2|Ψab,kl
ε (z, ϕλz )| → 0 , (2.6c)

for all k ≥ 2 on the left and all (k, l) 6= (1, 1) on the right, where the limits on the
right (as ε → 0) and the bounds on the left are both assumed to be uniform over
all λ ∈ (0, 1], all smooth test functions ϕ that are supported in the centred ball of
radius 1 and with their C2 norm bounded by 1, as well as all z ∈ [−T, T ]× T2 for
any fixed T > 0.

Remark 2.3 The structure of (2.3) is essentially the same as that of (PAMg) in
[Hai13, Secs 1.5 and 10.4]. To make the link between the bounds (2.6) in Assump-
tion A and [Hai13, Sec. 10.4] more precise, one could have used the notations of
[Hai13, Sec. 8] and introduced 2Z abstract symbols Ξkc and Ξks of homogeneity
−γ, as well as an abstract integration operator I. One then has the following
correspondence with [Hai13, Sec. 8]:

ΠzΞ
k
a = Ψa,k , ΠzΞ

k
aI(Ξlb) = Ψab,kl(z, ·) . (2.7)

The fact that the notion of convergence given in Assumption A is equivalent to the
convergence of admissible models of [Hai13, Sec. 2.3] is an immediate consequence
of [Hai13, Thm 5.14], see also [Hai13, Thm 10.7].
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Remark 2.4 There exists an analogue to Kolmogorov’s continuity test in this
context, see [Hai13, Thm 10.7]. In our notations, it states that if there exists γ̄ < γ
such that, for every p ≥ 1, the bounds

Eλpγ̄ |Ψa(ϕλz )|p . 1 , Eλpγ̄ |(Ψa
ε −Ψa)(ϕλz )|p → 0 , Eλpγ̄ |Ψa,k≥2(ϕλz )|p → 0 ,

hold uniformly over λ, ϕ and z as before, and similarly for Ψab,kl
ε , Ψab,kl, then

Assumption A holds in probability.

One then has the following result. Note that the functions in vε that are multiplied
with Ψs,k

ε , Ψc,k
ε can be more general functions, as in the case of (PAMg); in the

statement of the theorem below we allow them to be trigonometric polynomials.
We call a function a trigonometric polynomial if it is a finite linear combination of
sin(νk ·+θk) for some constants νk and θk.

Theorem 2.5 Assume that the space-time functions Ψa,k
ε and Ψab,kl

ε with a, b ∈
{s, c}, 1 ≤ k, l ≤ Z, are related by (2.4) and that Assumption A holds for some
γ ∈ (1, 4

3 ). Let vε be the solution to

∂tvε = ∆vε +

Z∑
k=1

(
fc,k(vε) Ψc,k

ε + fs,k(vε) Ψs,k
ε

)
−

Z∑
k=1

C(k)
ε (fc,k(vε)f ′c,k(vε) + fs,k(vε)f ′s,k(vε)) +Rε ,

vε(0, ·) = v(0) , (2.8)

where Rε is a sequence of continuous functions converging locally uniformly to a
limit R and v(0) ∈ Cη(T2) for some η > −1

3 . Assume furthermore that for every k,
the functions fc,k and fs,k are trigonometric polynomials. Then the sequence vε
converges in probability and locally uniformly as ε→ 0 to a limiting process v.

More precisely, there exists a stopping time τ > 0 and a random variable
v ∈ D′(R+ × T2) such that, for every η ∈ (−1

3 , 0) and every T ′ > T > 0, the
natural restriction of v to D′((0, T )× T2) belongs to XT,η = C([0, T ], Cη(T2)) ∩
C((0, T ]× T2) on the set {τ ≥ T ′}. Furthermore, on the same set, one has vε → v
in probability in the topology of XT,η. Finally, one has limt→τ ‖v(t, ·)‖Cη(T2) =∞
on the set {τ < ∞}. The limiting process v depends on fs,1, fc,1 and β, but it
depends neither on the choice of mollifier %, nor on the functions fs,k, fc,k for
k ≥ 2.

Proof. The theorem would be a straightforward consequence of [Hai13, Thm 7.8]
and Remark 2.3 if we allowed v(0) to have positive regularity. However, we would
like to allow for negative regularity of the initial condition in order to be able to
deduce Theorem 1.1 from this result. The reason why negative regularity of the
initial condition is a natural requirement in the context of Theorem 1.1 is that
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solutions at positive times necessarily have negative regularity, whatever the initial
condition.

In order to allow initial data of negative regularity, we perform the transformation
vε = Gv(0) + wε, where Gv(0) denotes the solution to the heat equation with initial
condition v(0). As a consequence of trigonometric identities, wε then solves

∂twε = ∆wε +
∑
a,k

(
ga,k,v(0)(wε) Ψa,k

ε − C(k)
ε ga,k,v(0)(wε) g′a,k,v(0)(wε)

)
+Rε ,

(2.9)
with initial condition wε(0, ·) = 0. Here, the functions ga,k,v(0)(wε) are finite linear
combinations of terms of the type

sin(ν Gv(0) + θ) sin(ν̃wε + θ̃) , (2.10)

for some ν, ν̃, θ, θ̃ ∈ R, and g′
a,k,v(0) denotes the derivative of ga,k,v(0) with respect

to its argument wε.
In order to show that wε → w as ε→ 0, we make use of the theory developed

in [Hai13]. (We could also equivalently have used the theory developed in [GIP14]
which requires very similar assumptions.) We note that (2.9) is of the same type as
the class of equations treated in [Hai13, Secs 9.1, 9.3], one difference being that
the single noise ξε is replaced by a collection of noises Ψa,k

ε . As a consequence,
the relevant algebraic structure in our context is built in exactly the same way as
in [Hai13, Sec. 8], but with the single abstract symbol Ξ replaced by a collection
of symbols Ξka representing Ψa,k

ε , each of them of homogeneity −γ with γ as
in Assumption A. If we denote by P the integration operator corresponding to
convolution with the heat kernel (see [Hai13, Sec. 5]), (2.9) can be described by the
following fixed point problem:

W = P1t>0

(
Rε +

∑
a,k

ga,k,v(0)(Wε) Ξka

)
. (2.11)

Indeed, as already noted in Remark 2.3, the condition γ < 4/3 guarantees that
any model (Π,Γ) for the corresponding regularity structure is uniquely determined
by the action of Π onto the symbols Ξka and ΞkaI(Ξlb), and Assumption A precisely
states that sequence of models (Πε,Γε) given by (2.7) but with Ψ replaced by Ψε

converges to a limiting model (Π,Γ). Furthermore, it follows in exactly the same
way as [Hai13, Prop. 9.4] that if W solves (2.11) for the model given by (2.7), but
with Ψ replaced by Ψε and satisfying the relation (2.4), thenRW (whereR denotes
the corresponding reconstruction operator, which in this case simply discards the
higher order information encoded in W ) solves (2.9).

It therefore remains to show that (2.11) admits a unique (local) solution for
every admissible model, and that this solution depends continuously on the model
in question. In view of [Hai13, Thm 7.8], this is the case if we can show that the
map

W 7→ sin(ν Gv(0) + θ) sin(ν̃wε + θ̃)Ξka , (2.12)
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is locally Lipschitz from Dµ,0 into Dµ−α,−α for some µ > α and some α ∈ (0, 2).
(See [Hai13, Def. 6.2] for the definition of the spaces Dγ,η.)

At this stage, we claim that as long as µ ∈ (0, 2] and v(0) ∈ Cη(T2) for some
η ∈ (−1/3, 0), then g = sin(ν Gv(0) + θ) can be interpreted as an element in
Dµ,2η(T̄ ) where T̄ is the space of abstract Taylor polynomials (if only Taylor
polynomials are involved, these are just suitably weighted Hölder spaces). Indeed,
we have the bounds

|g(t, x)| . 1 . (t ∧ 1)η/2 . (t ∧ 1)η ,

|∂xg(t, x)| . |∂xG(v(0))| . (t ∧ 1)(η−1)/2 . (t ∧ 1)η−1/2 ,

|∂2
xg(t, x)|+ |∂tg(t, x)| . |∂xG(v(0))|2 + |∂2

xG(v(0))|+ |∂tG(v(0))|
. (t ∧ 1)η−1 + (t ∧ 1)(η−2)/2 . (t ∧ 1)η−1 ,

from which the fact that g ∈ Dµ,2η follows similarly to [Hai13, Lemma 7.5].
It furthermore follows from [Hai13, Prop. 6.13] that the mapW 7→ sin(ν̃W + θ̃)

is locally Lipschitz fromDµ,0 into itself. Combining this with the fact that g ∈ Dµ,2η
as mentioned above and that Ξka is of homogeneity −γ, we conclude from [Hai13,
Prop. 6.12] that the map (2.12) is indeed locally Lipschitz continuous from Dµ,0
into Dµ−γ,2η−γ . Since 2η − γ + 2 > −2

3 −
4
3 + 2 = 0 and µ− γ + 2 > µ, these

exponents do satisfy the required inequalities, thus concluding the proof.

Remark 2.6 In fact, the limiting process v belongs to C
(
(0, T ], C(2−γ)∨0(T2)

)
for

every γ > β2/4π, as soon as the random variable τ is strictly greater than T . Since
the Gaussian process Φ belongs to C

(
(0, T ], C−δ(T2)

)
for every δ > 0, the solution

to the original equation (1.1) is continuous in time for positive times, with values in
C−δ(T2) for every δ > 0.

Remark 2.7 The condition γ < 4
3 (corresponding to β2 < 16π

3 via the correspon-
dence γ > β2/4π which we have seen in Theorem 2.1) comes from the fact that we
restrict ourselves to second-order processes in Assumption A. If we were to consider
suitable additional third-order processes as well, this threshold would increase to
β2 < 6π. In principle, by obtaining convergence of the corresponding (suitably
renormalised) processes of arbitrarily high order, the threshold could be increased
all the way up to β2 < 8π, but this is highly non-trivial. At β2 = 8π, one loses
local subcriticality in the sense of [Hai13, Assumption 8.3] and the theory breaks
down.

At this stage, we note that in our specific situation fc,k(v) = ζk sin(kβv + θk)
and fs,k(v) = ζk cos(kβv + θk), so that one has the identity fc,kf ′c,k + fs,kf

′
s,k = 0

for each k. As a consequence, the “renormalised” equation (2.8) is identical to
the “original” equation (2.3)! It is now clear that Theorem 1.1 follows from the
following result, which is the main technical result of this article.

Theorem 2.8 Assume that β2 ∈ [4π, 16π
3 ). Let Ψk

ε = Ψc,k
ε + iΨs,k

ε be defined as
in (2.2), and Ψab,kl

ε for a, b ∈ {s, c} be defined as in (2.4). Then there exist choices
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of constants C(k)
ε depending only on β and the mollifier %, and distributions Ψa and

distribution-valued functions Ψab(z, ·) where a, b ∈ {s, c}, which are independent
of the mollifier %, such that Assumption A holds.

Theorem 2.8 is proved in Section 4. As discussed in Remark 4.2, this theorem
is an immediate consequence of Lemma 4.1 and Theorem 4.3.

At this stage one might wonder if, in view of [Hai13, Sec. 10] and [HQ14],
there is anything non-trivial left to prove at all. The reason why Theorem 2.8 is not
covered by these results is that, in view of (2.2), the stochastic processes Ψa,k

ε are
obviously not Gaussian. Worse, they do not belong to any Wiener chaos of fixed
order. As a consequence, we have no automatic way of obtaining equivalence of
moments and Wick’s formula does not hold, which is the source of considerable
complication.

3 Convergence of the first-order process

In this section, we prove Theorem 2.1 and we will retain the notations from the
introduction. This time however, we define Ψε somewhat more indirectly by

Ψε = :eiβΦε :
def
= eiβΦε+

β2

2
Qε(0) , Ψk

ε
def
= eikβΦε+

β2

2
Qε(0) (k ≥ 2) , (3.1)

where Qε denotes the covariance function of the Gaussian process Φε. Using the
definition (2.1), one has the identity

Qε = (K ∗ %ε) ∗ T (K ∗ %ε) , (3.2)

where T denotes the reflection operator given by (T F )(z) = F (−z). The link
between this definition and (2.2) is given by the following result, the proof of which
is postponed to the end of this section.

Lemma 3.1 There exists a constant Ĉ% depending only on the mollifier % and such
that

Qε(0) = − 1

2π
log ε+ Ĉ% +O(ε2) .

In particular, if Theorem 2.1 holds for Ψε defined as in (3.1), then it also holds for
Ψε defined as in (2.2).

Our first main result is then the following:

Theorem 3.2 Let 0 < β2 < 8π. There exists a stationary random complex
distribution-valued process Ψ independent of the mollifier % such that Ψε → Ψ in
probability. Furthermore, for every κ > 0 sufficiently small, one has

E|〈ϕλx,Ψε〉|p . λ−
β2p
4π , E|〈ϕλx,Ψε −Ψ〉|p . εκλ−

β2p
4π
−κ , (3.3)

E|〈ϕλx,Ψk
ε〉|p . εpκλ−

β2p
4π
−pκ (k ≥ 2) , (3.4)

uniformly over all test functions ϕ supported in the unit ball and bounded by 1, all
λ ∈ (0, 1], and locally uniformly over space-time points x.
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Remark 3.3 Throughout this paper we write 〈ϕλx,Ψ〉
def
=
∫

R3 ϕλx(x̄)Ψ(x̄) dx̄ when
Ψ is function of one space-time variable. In the following, we will also write
〈ϕλx,Ψ〉

def
=
∫

R3 ϕλx(x̄)Ψ(x, x̄) dx̄ if Ψ is function of two space-time variables such
as the functions defined in (2.4).

Proof. We first obtain the a priori bound stated in the theorem for finite values of ε.
Denote

Jε(z) = exp(−β2Qε(z)) , (3.5)

whereQε was defined in (3.2). We note that, as a consequence of the commutativity
of convolution and the fact that T (f ∗ g) = T f ∗ T g, (3.2) can be rewritten as

Qε = Q ∗ (%ε ∗ T %ε) , Q = K ∗ TK .

In particular, setting %̄ = % ∗ T %, one has

Qε = Q ∗ %̄ε , (3.6)

and this is the expression that we are going to make use of here.
Then, by Corollary 3.10 below, we have the bounds

(‖z‖s + ε)
β2

2π . Jε(z) . (‖z‖s + ε)
β2

2π , for 0 ≤ ‖z‖s ≤ 1, (3.7)

where the notation . hides proportionality constants independent of ε. We will
also use the notation J −ε (z) = J −1

ε (z) = 1/Jε(z). With this notation at hand, one
verifies that

E|〈ϕλx,Ψε〉|2N =

∫∫ ∏
i,j ϕ

λ
x(zi)ϕλx(yj)J −ε (zi − yj)∏

`<m J
−
ε (z` − zm)

∏
n<o J

−
ε (yn − yo)

dz dy ,

where both integrations are performed over (R3)N and each zi and yi is an element
of R3 (space-time). In a very similar context, a quantity of this type was already
bounded in [Frö76, Thm 3.4]. However, the proof given there relies on an exact
identity which does not seem to have an obvious analogue in our context. Further-
more, the construction given in this section will then also be useful when bounding
the second order processes.

By translation invariance, the above quantity is independent of x. Furthermore,
the function Jε is positive, so we can bound this integral by the “worst case scenario”
where ϕ is the indicator function of the unit ball. This yields the bound

E|〈ϕλx,Ψε〉|2N . λ−8N

∫
Λ2N

∏
`<m Jε(z` − zm)

∏
n<o Jε(yn − yo)∏

i,j Jε(zi − yj)
dz dy ,

(3.8)
where Λ denotes the parabolic ball of radius λ. At this stage, we remark that the
integrand of this expression consists of N (N − 1) factors in the numerator and N2

factors in the denominator. One would hope that some cancellations take place,
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allowing this to be bounded by a similar expression, but with only N terms, all in
the denominator.

This is precisely the case and is the content of Corollary 3.6 below with J
chosen to be our function Jε defined in (3.5), which allows us to obtain the bound

E|〈ϕλx,Ψε〉|2N . λ−8N
∣∣∣∫

Λ2

J −ε (x− y) dx dy
∣∣∣N . (3.9)

Taking such a bound for granted for the moment, we see that as a consequence of
(3.7), one has the bound∣∣∣∫

Λ2

J −ε (x− y) dx dy
∣∣∣ ≤ λ8−β

2

2π ,

uniformly in ε ∈ (0, 1], provided that β2 < 8π. (Otherwise J −ε is no longer
uniformly integrable as ε→ 0.) It follows immediately that

E|〈ϕλx,Ψε〉|2N . λ−
β2N
2π ,

which is the first of the two claimed bounds in (3.3).
For k ≥ 2 we proceed analogously. Indeed, it is straightforward to check that

E|〈ϕλx,Ψk
ε〉|2N is bounded by the right hand side of (3.8) multiplied by ε

(k2−1)β2N
2π ,

and with Jε replaced by J k2

ε . Since J k2

ε still satisfies (3.13), Corollary 3.6 still
applies. Therefore, together with (3.7), one has

E|〈ϕλx,Ψk
ε〉|2N . λ−8N

∣∣∣∫
Λ2

ε
(k2−1)β2

2π

(
ε+ ‖x− y‖s

)− k2β2

2π
dx dy

∣∣∣N .

Since β2 < 8π and k ≥ 2, one can choose κ > 0 sufficiently small so that

(ε+ ‖x− y‖s)−
k2β
2π . ‖x− y‖−

β2

2π
−2κ

s ε−
(k2−1)β2

2π
+2κ ,

which is still integrable at short scales. Therefore,

E|〈ϕλx,Ψk
ε〉|2N . ε2κNλ−(β

2

2π
+2κ)N ,

which is precisely the bound (3.4).
In order to obtain the second bound of (3.3), we first show that the sequence

〈ϕλx,Ψε〉 is Cauchy in L2(Ω) for every sufficiently regular test function ϕ and every
space-time point x. For this, we will also need a notation for

Qε,ε̄(z) def
= EΦε(0)Φε̄(z) = (Q ∗ (%ε ∗ T %ε̄))(z) , (3.10)

and we set analogously to (3.5) Jε,ε̄ = exp(−β2Qε,ε̄). Note thatQε,ε̄ = Qε̄,ε. With
this notation, a straightforward calculation yields

E|〈ϕλx,Ψε −Ψε̄〉|2 =

∫∫
ϕλx(y)ϕλx(y + z)(J −ε (z) + J −ε̄ (z)− 2J −ε,ε̄(z)) dy dz
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. λ−4

∫
Λ
|J −ε (z) + J −ε̄ (z)− 2J −ε,ε̄(z)| dz , (3.11)

where Λ now denotes a parabolic ball of radius 2λ centred around the origin. At
this stage we note that, thanks to (3.10), the functionQε,ε̄ also falls within the scope
of Lemma 3.7 since one can write

%ε ∗ T %ε̄ = %̂ε∨ε̄ ,

for a function %̂ which in general depends on ε and ε̄ but is bounded (and has
bounded support) independently of them. As a consequence of Lemma 3.7, we
can thus write J −ε = J − exp(Mε) and J −ε,ε̄ = J − exp(Mε,ε̄) where, assuming
without loss of generality that ε̄ ≤ ε, the functionsMε andMε,ε̄ are bounded by

|Mε(z)|+ |Mε,ε̄(z)| . ε

‖z‖s
for all space-time points z with ‖z‖s ≥ ε. Since, as a consequence of the first part
of Lemma 3.7, one can furthermore bound J −ε̄ (z) and J −ε,ε̄(z) by a suitable multiple

of ‖z‖−β
2/2π

s , it follows immediately that one has the global bound

|J −ε (z) + J −ε̄ (z)− 2J −ε,ε̄(z)| . ‖z‖−
β2

2π
s

( ε

‖z‖s
∧ 1
)
.

Inserting this bound into (3.11) and integrating over Λ eventually yields

E|〈ϕλx,Ψε −Ψε̄〉|2 .


(ε ∧ λ)4−β

2

2π λ−4 for β2 ∈ (6π, 8π),

(ε ∧ λ)λ−4(1 ∨ log(λ/ε)) for β2 = 6π,

(ε ∧ λ)λ−1−β
2

2π for β2 ∈ (0, 6π).

Since the bound (1 ∨ log(λ/ε)) . λα(ε ∧ λ)−α holds for every α > 0, one can
summarise these bounds by

E|〈ϕλx,Ψε −Ψε̄〉|2 . ε2κλ−2κ−β
2

2π , (3.12)

for some (sufficiently small depending on β) value of κ. Note that these bounds
are independent of ε̄ as long as ε̄ ≤ ε. The existence of limiting random variables
〈ϕλx,Ψ〉 follows immediately. The second bound in (3.3) is then a consequence of
the first by combining it with (3.12) and using the Cauchy-Schwarz inequality.

Let Ψ%
ε ,Ψ

%̄
ε be the processes defined via two mollifiers %, %̄ respectively, then

one has

E|〈ϕλx,Ψ%
ε −Ψ%̄

ε〉|2 =

∫∫
ϕλx(y)ϕλx(y + z)(J −ε,%(z) + J −ε,%̄(z)− 2J −ε,%,%̄(z)) dy dz

where Jε,%,%̄ = exp(−β2Qε,%,%̄) and Qε,%,%̄(z) = (Q ∗ %̂ε)(z) with %̂ε = (%ε ∗ T %̄ε).
Then it follows in the same way as above that all the moments of 〈ϕλx,Ψ

%
ε −Ψ%̄

ε〉
converge to zero as ε → 0. Therefore the limit process Ψ is independent of the
mollifier % as claimed.
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As an almost immediate corollary we obtain the

Proof of Theorem 2.1. It only remains to show that the bounds of Theorem 3.2
do imply convergence in probability in C−γs for every γ > β2

4π . This is an easy
consequence of the characterisation of the space C−γs in terms of wavelet coefficients
(see [Mey92] in the Euclidean case and [Hai13, Prop. 3.20] for the parabolic case
considered here), combined with the same argument as in the standard proofs of
Kolmogorov’s continuity test [RY91], see also the proof of [Hai13, Thm 10.7].

The proof of Theorem 3.2 is completed once we show that (3.7) holds and
that (3.8) does indeed imply the bound (3.9). For this, we consider the following
general situation. We are given N points xi ∈ Rd as well as corresponding signs
σi ∈ {±1}, so that each point can be interpreted as a “charge” (either positive or
negative). We are furthermore given a “potential” function J : Rd → R+ with the
following property. For every positive constant c > 0 there exists a constant C > 0
such that the implication

‖x‖s ≤ c‖x̄‖s ⇒ J (x) ≤ CJ (x̄) , (3.13)

holds for all x, x̄. Here, the scaling s of Rd is fixed throughout. In our case, one
has d = 3 (space-time) and the scaling is the usual parabolic scaling. As before,
we use the notation J −(x) = 1/J (x). Note that if there exists one point such that
J (x) 6= 0 (which is something we will always assume), then one necessarily has
J (x) 6= 0 for every x 6= 0 as a consequence of (3.13).

We then aim at bounding integrals of the type

I =

∫
Λ
· · ·
∫

Λ

N∏
i 6=j=1

J σiσj (xi − xj) dx1 · · · dxN ,

for some fixed domain Λ ⊂ Rd. This is exactly the situation of the right hand side
in (3.8) by taking for the xi the union of the yi and the zi and assigning one sign
to the yi and the opposite sign to the zi. Assuming that there are k indices with
σi = 1 (and therefore N − k indices with σi = −1) and assuming without loss of
generality that k ≤ N/2 (so that k ≤ N − k), we claim that

|I| .
∣∣∣∫

Λ2

J −1(x− y) dx dy
∣∣∣kJ̄ (N−2k

2 )|Λ|N−2k , (3.14)

where J̄ = sup‖x‖s≤diam Λ J (x), |Λ| denotes the volume of Λ, and the symbol .
hides a proportionality constant depending only onN and on the constants appearing
in (3.13). As a matter of fact, we will obtain a stronger pointwise bound on the
integrand of (3.13) from which (3.14) then follows trivially. Let us first give a brief
reality check of (3.14). In the case when J = 1 (which does indeed satisfy (3.13)),
both I and (3.14) are equal to |Λ|N . Furthermore, if we multiply J by an arbitrary
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constant K (which does not change the bound (3.13)), then both I and (3.14) are
multiplied by Kq with q = 2k(k −N ) +N (N − 1)/2.

In order to obtain the pointwise bound mentioned above, we consider any
configuration of N distinct points {x1, . . . , xN} and we associate to it a decreasing
sequence {An}n∈Z of partitions of {1, . . . , N} in the following way.1 For n small
enough so that 2n < mini 6=j ‖xi − xj‖s, we take for An the partition consisting
only of singletons, namely

An = {{1}, {2}, . . . , {N}} . (3.15)

For every n, we furthermore introduce pairings Sn : An → ℘P(N ), where P(N )
denotes the set of (unordered) pairs of N elements (we interpret this as the set of
subsets of {1, . . . , N} of cardinality 2) and ℘E is the power set of E, in such a way
that

• If {i, j} ∈ Sn(A), then {i, j} ⊂ A. In other words, for every A ∈ An,
Sn(A) is a subset of the possible pairs constructed by using only elements
contained in A.

• If {i, j} ∈ Sn(A), then σi 6= σj , so only pairings of points with opposite
signs occur.

• If p1, p2 ∈ Sn(A), then either p1 = p2 or p1 ∩ p2 = ∅, so only disjoint
pairings occur.

• For any A ∈ An, if {i, j} ⊂ A \
⋃
Sn(A), then σi = σj . In other words,

indices of A that do not belong to any pairing all correspond to the same
sign. The number of such indices will play an important role in the sequel, so
we introduce the notation Tn(A) = |A \

⋃
Sn(A)|. We furthermore denote

by Σn(A) ∈ {±1} the sign of those indices in A that do not belong to any
pairing. (If all indices belong to some pairing, we can use the irrelevant
convention Σn(A) = 1.)

For values of n sufficiently small so that An is given by (3.15), we have no choice
but to set Sn(A) = ∅ for every A ∈ An.

For larger values of n, we then define An and Sn inductively in the following
way. Given An−1, we define an equivalence relation ∼n between elements of An−1

to be the smallest equivalence relation such that if A, Ā ∈ An−1 are such that there
exist x ∈ A and x̄ ∈ Ā with ‖x − x̄‖s ≤ 2n, then A ∼n Ā. The partition An is
then defined by merging all ∼n-equivalence classes of An−1. In other words, An
is the smallest partition with the property that for any A, Ā ∈ An−1 with A ∼n Ā,
there exists B ∈ An with A ∪ Ā ⊂ B.

The pairing Sn is then defined to be any pairing satisfying the above properties
that is furthermore compatible with Sn−1 in the sense that if A ∈ An−1 and
Ā ∈ An are such that A ⊂ Ā, then Sn−1(A) ⊂ Sn(Ā). Loosely speaking, we

1The sequence is decreasing in the sense that An+1 is a coarsening (or equal to) An. For n small
enough, An consists of all singletons and is therefore as fine as possible, while for n large enough
An is the coarsest possible partition consisting only of the whole set.
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keep the pairings of An−1 and, in any situation where a merger creates a set in our
partition containing both positive and negative indices, we pair up as many of them
as possible in an arbitrary way.

Remark 3.4 Our construction is such that there exists n0 such that for n ≥ n0 the
partition An necessarily consists of a single set. At this stage, the only information
of the construction that we will actually use is the pairing Sn0 .

With this construction in mind, our main result is then the following, recalling
that Tn(A) = |A \

⋃
Sn(A)|.

Proposition 3.5 Let J be as above, let N > 0, let {x1, . . . , xN} be an arbitrary
collection of distinct points in Rd and let {σ1, . . . , σN} be a collection of signs. Let
An and Sn be defined as above. Then, there exists a constant C depending only on
N and on the constants appearing in (3.13) such that, for every n ∈ Z and every
A ∈ An, one has the pointwise bound∣∣∣ ∏

i 6=j∈A
J σiσj (xi − xj)

∣∣∣ ≤ C( ∏
{i,j}∈Sn(A)

J −1(xi − xj)
)
J̄Dn(A)
n , (3.16)

where we have set Dn(A) =
(
Tn(A)

2

)
and J̄n = sup‖x‖s≤2n J (x).

Proof. The proof goes by induction on n. For n sufficiently small so that (3.15)
holds, both sides are empty products so the bound holds trivially. Note first that as a
consequence of (3.13) J̄n is essentially increasing in n (in the sense that Jm ≤ CJn
for m ≥ n, where C is independent of both m and n), so that as long as no merger
event takes place, the bound (3.16) gets weaker with increasing n. It therefore
remains to show that the bound still holds if two (or more) sets merge when going
from some level n to level n+ 1. Without loss of generality, we assume that only
two sets A and Ā merge. We also note that losing optimality by a multiplicative
factor possibly depending on N is harmless since there can altogether be only at
most a fixed number N − 1 of merger events.

Using the inductive hypothesis, we then obtain immediately the bound∣∣∣ ∏
i 6=j∈A∪Ā

J σiσj (xi − xj)
∣∣∣ . ( ∏

{i,j}∈Sn(A)∪Sn(Ā)

J −1(xi − xj)
)
J̄Dn(A)+Dn(Ā)
n

×
∏

i∈A,j∈Ā

J σiσj (xi − xj) .
(3.17)

At this stage we note that since A and Ā are distinct sets in An, we necessarily
have ‖xi − xj‖s ≥ 2n for i ∈ A and j ∈ Ā. On the other hand, since the two sets
merged at level n + 1, there exists a constant C (possibly depending on N ) such
that one has ‖xi − xj‖s ≤ C2n for any i, j ∈ A ∪ Ā. As a consequence of this and
of (3.13), there exists a constant C̄ such that for any i ∈ A and j ∈ Ā, one has

C̄−1J̄n+1 ≤ J (xi − xj) ≤ C̄J̄n+1 . (3.18)
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As a consequence, denote Ap = A \
⋃
Sn(A) and similarly for Āp. Then it follows

from (3.18) that∏
i∈A,j∈Ā

J σiσj (xi − xj) .
∏

i∈Ap,j∈Āp
J σiσj (xi − xj) , (3.19)

where the proportionality constant depends on C̄ and N in general. This is because
if i ∈ A and j belongs to some pair in Sn(Ā), then the two factors coming from
the two possible values of j cancel each other out. More precisely, if i ∈ A and
{j, j′} ∈ Sn(Ā), then by the triangle inequality,

‖xi − xj‖s . ‖xi − xj′‖s + ‖xj′ − xj‖s . ‖xi − xj′‖s ,

where the last inequality holds because ‖xj′ − xj‖s . 2n and ‖xi − xj′‖s & 2n+1.
The same bound holds with j and j′ interchanged, thus by (3.13) and σiσj = −σiσj′ ,
one has the cancellation

J σiσj (xi − xj)J σiσj′ (xi − xj′) . 1 .

(See Figure 1 for an illustration about the procedure we are following here.)

A Ā

−
a

+
b

+c

−
d

+e

− f

− g

J −

J −
J

J−

J −

Figure 1: This illustrates a situation where A, Ā ∈ An are merged into A ∪ Ā ∈ An+1,
with Σn(A) 6= Σn(Ā). In this case, Sn(A) = {{a, b}} and Sn(Ā) = {{d, e}}. The factors
J− drawn on {a, b} and {d, e} correspond to the factors J− in the first line of the right
hand side of (3.17). The two dashed lines correspond to two of the factors in the second line
of (3.17), and they “almost cancel” each other out since g is far away from {a, b}. There
are many other such cancellations which we didn’t draw. The pair {c, f} ∈ Sn+1 is a new
pair formed at this step but we could just as well have chosen to form {c, g} instead. As for
the factors J̄ , we have Dn(A) = 0, Dn(Ā) = 1, and Dn+1(A ∪ Ā) = 0, which is less than
Dn(A) +Dn(Ā) by 1 due to the newly formed factor J−(xc − xf ).

There are now two cases: either one has Σn(A) = Σn(Ā), or one has Σn(A) 6=
Σn(Ā). We first consider the case Σn(A) = Σn(Ā). In this case, one necessarily
has Sn+1(A ∪ Ā) = Sn(A), so that in view of (3.19) we only need to show that∏

i∈Ap,j∈Āp
J σiσj (xi − xj) . J̄Dn+1(A∪Ā)−Dn(A)−Dn(Ā)

n . (3.20)
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Since each factor in the product on the left is bounded by some multiple of J̄n, this
follows at once from the fact that the number of terms on the left is equal to

|Ap| |Āp| = |Tn(A)| |Tn(Ā)| .

Writing a = |Tn(A)| and ā = |Tn(Ā)| as a shorthand, the exponent on the right
hand side of (3.20) is equal to

(a+ ā)(a+ ā− 1)− a(a− 1)− ā(ā− 1)
2

=
2aā

2
.

Since both exponents are the same, the claim follows at once.
We now deal with the case Σn(A) 6= Σn(Ā). Using the same shorthands a, ā

as above, we note that this time Sn(A ∪ Ā) is given by Sn−1(A) ∪ Sn−1(Ā), plus
a ∧ ā of the aā pairs appearing in (3.19). Assuming without loss of generality that
a ≤ ā, the number of remaining factors is given by a(ā− 1). This time furthermore
each factor contributes one negative power of Jn, so it remains to show that

Dn+1(A ∪ Ā)−Dn(A)−Dn(Ā) = −a(ā− 1) .

Since this time around

Dn+1(A ∪ Ā) =
(ā− a)(ā− a− 1)

2
,

this identity follows at once, thus concluding the proof.

Corollary 3.6 The bound (3.14) holds.

Proof. It suffices to note that as soon as 2n > diam Λ, one hasAn = {{1, . . . , N}}
and therefore (3.16) implies∏

i 6=j
J σiσj (xi − xj) ≤ C

∑
S

( ∏
{i,j}∈S

J −1(xi − xj)
)
J̄ (N−2k

2 ) ,

where the sum runs over all possible ways S of pairing the k indices corresponding
to a positive sign with k of the indices corresponding to a negative sign. Since there
are only finitely many such pairings, the claim follows by integrating both sides of
the inequality.

We still have to prove that (3.13) actually holds for our Jε defined in (3.5). In
order to study the behaviour of such kernels we introduce the following notation.
For continuous function f,Q on Rd \ {0} we write

Q(z) ∼ f (z) if f (z) + c1 ≤ Q(z) ≤ f (z) + c2 , (3.21)

for some constants c1, c2 and for all z ∈ Rd \ {0}. We will also sometimes specify
that Q ∼ f on some domain, in which case it is understood that (3.21) is only
required to hold there. Given Q, we define Qε as in (3.6) by

Qε = Q ∗ %̄ε ,
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where %̄ is a mollifier supported in the ball of radius 1 and ε ∈ (0, 1]. The following
lemma shows that if Q(z) ∼ − 1

2π log ‖z‖s then its regularization Qε also satisfies
suitable upper and lower bounds. Note that if % integrates to 1, then so does
%̄ = % ∗ T %.

Lemma 3.7 Assume that Q is compactly supported, smooth away from 0, and such
that Q(z) ∼ − 1

2π log ‖z‖s. Assume furthermore that %̄ is any continuous function
supported on the unit ball around the origin integrating to 1, and that Qε is as in
(3.6). Then, for ‖z‖s ≤ 1, one has the two-sided bound

Qε(z) ∼ − 1

2π
log(‖z‖s + ε) . (3.22)

If furthermore Q is of class C1 and there exists a constant C such that |∂iQ(z)| ≤
C/‖z‖sis , then there exists a constant C̄ such that

|Qε(z)−Q(z)| ≤ C̄
( ε

‖z‖s
∧
(

1 +
∣∣∣log

ε

‖z‖s

∣∣∣)) , (3.23)

for all space-time points z.

Proof. We omit the proof since it is a rather straightforward calculation.

It remains to show that the function Q does indeed enjoy the properties we took
for granted in Lemma 3.7. Since these properties are invariant under the addition
of a smooth compactly supported function (as a matter of fact, it only needs to be
C1), we will use the symbol R to denote a generic such function which can possibly
change from one line to the next. Recall that in a distributional sense one has the
identity

∂tK −
1

2
∆K = δ +R , (3.24)

and that Q is given by

Q(z) =

∫
K(z + z̄)K(z̄) dz̄ ,

where z = (t, x) and z̄ = (t̄, x̄) are space-time points in R3. As a consequence of
(3.24), we then have the distributional identity

1

2
∆Q(z) =

1

2

∫
(∆K)(z + z̄)K(z̄) dz̄ =

∫
(∂tK)(z + z̄)K(z̄) dz̄ −K(−z) +R ,

where we used the fact that the convolution of R with K is a new function R with
the same properties. On the other hand, making the substitution z̄ 7→ z̄ − z we can
write

Q(z) =

∫
K(z̄ − z)K(z̄) dz̄ ,
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so that

1

2
∆Q(z) =

1

2

∫
(∆K)(z̄ − z)K(z̄) dz̄ =

∫
(∂tK)(z̄ − z)K(z̄) dz̄ −K(z) +R

=

∫
(∂tK)(z̄)K(z̄ + z) dz̄ −K(z) +R .

At this stage, we note that

(∂tK)(z + z̄)K(z̄) + (∂tK)(z̄)K(z̄ + z) = ∂t̄(K(z + z̄)K(z̄)) ,

which integrates to zero. Therefore, summing these two expressions yields the
identity

∆Q(z) = K(z) +K(−z) +R , (3.25)

for some smooth and compactly supported function R. Let now

K̂(z) = K(z) +K(−z) , G(x) = − 1

2π
log |x| ,

for z ∈ R3 and x ∈ R2. Then, one has

Lemma 3.8 One has the identity

Q(t, x) = (K̂(t, ·) ∗G)(x) +R , (3.26)

for some smooth function R.

Proof. As an immediate consequence of the definition of Q, the properties of K
and, for example, [Hai13, Lemma 10.14], we know that, for any t 6= 0, Q(t, ·) is a
smooth compactly supported function. This immediately implies that one has the
identity

Q(t, x) = (∆Q(t, ·) ∗G)(x) , (3.27)

and the claim follows at once from (3.25).

Lemma 3.9 The kernel Q can be decomposed as

Q(z) = − 1

2π
log ‖z‖s + R̂

( t

‖z‖2s
,
x

‖z‖s

)
+R(z) ,

where both R and R̂ are smooth functions of R3 and z = (t, x) as before. In
particular, it satisfies the assumptions of both parts of Lemma 3.7.

Proof. Let H be the heat kernel H(t, x) = (4π|t|)−1 exp(−|x|2/(4|t|)), and set
Q̂(t, x) = (H(t, ·) ∗ G)(x). Then, as a consequence of Lemma 3.8 and the fact
that H and K̂ differ by a smooth function by definition, Q̂ and Q only differ by a
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smooth function, so it is sufficient to show the result for Q̂. For this, note that as a
consequence of the scaling relation H(λ2t, λx) = λ−2H(t, x), one has the identity

Q̂(λ2t, λx) = − 1

2π

∫
R2
H(λ2t, λx− y) log |y| dy

= −λ
2

2π

∫
R2
H(λ2t, λx− λy) log |λy| dy

= − 1

2π

∫
R2
H(t, x− y) (log |y|+ logλ) dy = Q̂(t, x)− 1

2π
logλ .

Here we also used the fact that H(t, ·) integrates to 1 for any fixed t. It follows
immediately that if we set

R̂(z) = Q̂(z) +
1

2π
log ‖z‖s ,

then R̂ is smooth outside the origin and homogeneous of order 0 in the sense that
R̂(λ2t, λx) = R̂(t, x). The claim then follows at once.

Lemma 3.1 is now an immediate corollary of this fact.

Proof of Lemma 3.1. Using the decomposition of Lemma 3.9, the identity (3.6),
and the fact that %̄ integrates to 1, a straightforward calculation shows that we have
the identity

Qε(0) = − 1

2π
log ε+ Ĉ% +

∫
R3
%̄ε(z)(R(z)−R(0)) dz ,

with

Ĉ%
def
=

∫
R3
%̄(z)

(
R̂(z)− 1

2π
log ‖z‖s

)
dz +R(0) .

Since %̄ is necessarily symmetric under z 7→ −z, it annihilates linear functions so
that

∫
R3 %̄ε(z)(R(z)−R(0)) dz = O(ε2) as claimed.

Corollary 3.10 The estimates (3.7) and (3.13) for Jε hold for all ε > 0 with
proportional constants independent of ε.

Proof. By Lemmas 3.7 and 3.9, if ‖z‖s ≤ c‖z̄‖s, we obtain the bound

Jε(z) = e−β
2Qε(x,t) . e

β2

2π
log (‖z‖s+ε) . e

β2

2π
log (‖z̄‖s+ε) . Jε(z̄) ,

thus concluding the proof of (3.13). The estimate (3.7) is just a rewriting of the first
conclusion of Lemma 3.7.
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4 Second-order process bounds for k = l

In order to provide a solution theory for (1.1) at or beyond β2 = 4π, we have seen
in the introduction that one should construct suitable “second order” objects (2.4).
In this section we consider a closely related second order object

Ψ̃±ε (z, z̄) = Ψε(z̄)((K ∗ Ψ̄ε)(z̄)− (K ∗ Ψ̄ε)(z))− E(Ψε(K ∗ Ψ̄ε)) .

Generally, we define for 1 ≤ k, l ≤ Z

Ψ̃kl̄
ε (z, z̄) def

= Ψk
ε (z̄)((K ∗ Ψ̄l

ε)(z̄)− (K ∗ Ψ̄l
ε)(z))− δk,lE(Ψk

ε (K ∗ Ψ̄l
ε)) , (4.1)

where δk,l = 1 if k = l and equals 0 otherwise (see (4.4) below about the definition
of a variation of the above objects, written as Ψkl̄

ε ). We also define

Ψkl
ε (z, z̄) def

= Ψk
ε (z̄)((K ∗Ψl

ε)(z̄)− (K ∗Ψl
ε)(z)) . (4.2)

The objects Ψ̃kk̄
ε are the hardest ones to bound, so we will first obtain bounds for

them. The corresponding bounds on Ψ̃kl̄
ε with k 6= l and on Ψkl

ε will then be shown
in the very end of this section.

The last term of (4.1) is a renormalisation constant which, for the case Ψ̃±ε , can
also be expressed as

E(Ψε(K ∗ Ψ̄ε)) =

∫
K(x)J −ε (x) dx .

As a consequence of (3.7) and the behaviour of the heat kernel, this diverges as
ε→ 0 as soon as β2 ≥ 4π. When β2 = 4π, this divergence is logarithmic, and it
behaves like ε2−β2/2π for β2 ∈ (4π, 8π). For general Ψ̃kl̄

ε with (k, l) 6= (1, 1), one
can verify that

E(Ψk
ε (K ∗ Ψ̄l

ε)) = e
−β2

(
k2+l2

2
−1
)
Qε(0)

∫
K(x)Jε(x)−kl dx

. ε

(
k2+l2

2
−1
)
β2

2π

∫
K(x)(‖x‖s + ε)

−klβ2

2π dx

. εκ
∫
K(x)‖x‖

(
−kl+ k2+l2

2
−1
)
β2

2π
−κ

s dx

(4.3)

for sufficiently small κ > 0, where we used the fact

(‖x‖s + ε)
−klβ2

2π . ‖x‖
(
−kl+ k2+l2

2
−1
)
β2

2π
−κ

s ε
−
(
k2+l2

2
−1
)
β2

2π
+κ

for (k, l) 6= (1, 1). Now we note that if k 6= l, this integral is finite for all β2 < 8π as
long as κ > 0 is sufficiently small, so that the above expectation converges to zero
as ε→ 0. On the other hand, if k = l, it is easy to check (by the first line of (4.3)
and dividing the integration into ‖x‖s ≤ ε and ‖x‖s > ε) that E(Ψk

ε (K ∗ Ψ̄k
ε ))
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diverges when ε→ 0 for β2 ≥ 4π, with the same rates as in the case (k, l) = (1, 1).
This motivates (4.1), namely that there is only renormalisation in the second order
object Ψ̃kl̄ when k = l. For the case of Ψkl, it will be clear in the end of this section
that one does not need any renormalisation.

Instead of considering Ψ̃kl̄
ε , it turns out to be more convenient to consider the

process Ψkl̄
ε given by

Ψkl̄
ε (z, z̄) =

∫
(K(z̄ − w)−K(z − w))

×
(

Ψk
ε (z̄)Ψ̄l

ε(w)− δk,lE(Ψk
ε (z̄)Ψ̄l

ε(w))
)
dw ,

(4.4)

where
E
(

Ψk
ε (z̄)Ψ̄k

ε (w)
)

= e−β
2(k2−1)Qε(0)Jε(z̄ − w)−k

2
,

which is simply equal to J −ε (z̄ − w) when k = 1. With this notation, one has the
identity

Ψ̃kl̄
ε (z, z̄) = Ψkl̄

ε (z, z̄)− δk,lF (k)
ε (z̄ − z) ,

where F (k)
ε is given by

F (k)
ε

def
= e−β

2(k2−1)Qε(0)TK ∗ J −k2

ε .

For k = 1, we simply write Fε
def
= F (1)

ε = TK ∗ J −ε . Regarding the functions F (k)
ε ,

we have the following lemma.

Lemma 4.1 Let β2 ∈ [4π, 8π) and let F (k)
ε be defined as above. Then, for every

sufficiently small κ > 0, the bounds

|Fε(z)| . ‖z‖2−
β2

2π
−κ

s , |Fε(z)− Fε̄(z)| . εκ ‖z‖2−
β2

2π
−κ

s ,

and, for k ≥ 2,

|F (k)
ε (z)| . εκ‖z‖2−

β2

2π
−κ

s ,

hold uniformly over z and over 0 < ε̄ < ε < 1.

Proof. In view of Corollary 3.10, the first bound is an immediate corollary of
[Hai13, Lemma 10.14]. For the second bound, as in the proof of Theorem 3.2, one
has

|J −ε − J −ε̄ | . ‖z‖
−β

2

2π
s

( ε

‖z‖s
∧ 1
)
.

Since ε
‖z‖s ∧ 1 ≤ εκ‖z‖−κ for every sufficiently small κ > 0, the second bound

follows again by [Hai13, Lemma 10.14].
For the cases k ≥ 2, one has the bound

Jε(z)−k
2
. ε−(k2−1)β

2

2π
+κ‖z‖−

β2

2π
−κ

s ,

and the bound for F (k)
ε follows immediately again from [Hai13, Lemma 10.14].
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Remark 4.2 As an immediate corollary, we conclude that if the bounds (2.6b) hold
for Ψkl̄

ε defined in (4.4) and for Ψkl
ε defined in (4.2), then they also hold for Ψab,kl

ε

defined in (2.4), with

C(k)
ε =

∫
K(z)E

(
Ψk
ε (0)Ψ̄k

ε (z)
)
dz .

The main technical result of this article is as follows, where we write Ψ± as a
shorthand for Ψ11̄ and Ψ⊕ as a shorthand for Ψ11.

Theorem 4.3 Assume that β2 ∈ [4π, 6π). There exist stationary random complex
distribution-valued processes Ψ± and Ψ⊕, such that

Ψ±ε → Ψ± , Ψ⊕ε → Ψ⊕ , Ψkl̄
ε → 0 , Ψkl

ε → 0

for all (k, l) 6= (1, 1) in probability. Furthermore, for every δ, κ > 0 sufficiently
small and m ∈ Z+, one has

E|〈ϕλz ,Ψa
ε〉|m . λ(2−β

2

2π
−δ)m , E|〈ϕλz ,Ψa

ε −Ψa〉|m . εκλ(2−β
2

2π
−δ)m−κ ,

where a ∈ {±,⊕}, and

E|〈ϕλz ,Ψkl̄
ε 〉|m . εκλ(2−β

2

2π
−δ)m−κ , E|〈ϕλz ,Ψkl

ε 〉|m . εκλ(2−β
2

2π
−δ)m−κ , (4.5)

for (k, l) 6= (1, 1), uniformly over all test functions ϕ supported in the unit ball and
bounded by 1, all λ ∈ (0, 1], and all space-time points z.

We remark that the complex conjugates of these processes of course also have the
corresponding bounds and convergence results. The remainder of this article is
devoted to the proof of Theorem 4.3. We will treat separately the cases kk, kk̄, kl,
and kl̄ for k 6= l. The first two cases are all that is required for the treatment of
(1.1), and these form the remainder of this section. The last section is then devoted
to the proof of the above bounds for the last two cases.

Remark 4.4 We actually expect that the above bounds hold for all β2 ∈ [4π, 8π).
The second order object could in principle be constructed below 8π, and 6π would
just be a threshold where it becomes necessary to construct even higher order objects
in order to study our equation. The reason that we assume β2 < 6π here is because
the analysis in the following will be not as sharp as possible, see Remark 4.13 below.
We choose to do so for simplicity since we are here only interested in solving the
equation for β2 < 16π/3 < 6π anyway.

As a corollary (see Remark 2.4), the bounds (2.6b) hold for Ψ±ε , Ψ⊕ε , and the
bounds (2.6c) hold for Ψkl̄

ε , Ψkl
ε for (k, l) 6= (1, 1), therefore Assumption A is

justified. The rest of this section devoted to the proof of Theorem 4.3. By translation
invariance, we only need to show the above bounds for z = 0.
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4.1 Moments of Ψkk̄
ε : renormalisations

Let us start from the most important case: the moments for Ψkl̄
ε with k = l. By

definition in (4.4), them-th moment withm = 2N an even integer can be expressed
as

E|〈ϕλ0 ,Ψkk̄
ε 〉|m = E

[∣∣∣ ∫∫ ϕλ0 (x) (K(x− y)−K(−y)) (4.6)

×
(

Ψk
ε (x)Ψ̄k

ε (y)− E[Ψk
ε (x)Ψ̄k

ε (y)]
)
dxdy

∣∣∣2N] .
We will rewrite this expression as an integral over 4N variables. Observe that half
of these 4N variables will be arguments of Ψk

ε , and the other half will be arguments
of Ψ̄k

ε . Also, these 4N variables appear as arguments of K(x − y) −K(−y) by
pairs, in such a way that the roles played by x and y are not symmetric. Based on
these simple observations we introduce the following terminologies and notations.

• Fix two integers 1 ≤ k, l ≤ Z. We will say that we are given a finite number
2m = 4N of charges (where N ∈ Z), by which we mean points in R3

endowed with a sign, as well as an index h ∈ {k, l}. We impose that exactly
2N of these charges have a positive sign (corresponding to the arguments
of Ψk

ε ), and the other 2N charges have a negative sign (corresponding to the
arguments of Ψ̄k

ε ).
• We denote by M a set of labels with cardinality 2m and, given j ∈M , we

write xj ∈ R3 for the location of the corresponding charge, σj for its sign,
and hj for its index. In this section, we will only consider the case k = l,
namely all the charges have the same index k. We therefore do not make any
reference to this index anymore until Section 5.

• These 4N charges are furthermore partitioned into 2N distinct oriented pairs
with each pair consisting of one positive and one negative charge. Here, an
oriented pair consists of two charges, with one of them called the outgoing
point and the other one called the incoming point. Given two charges i and
j, we write i→ j for the oriented pair with outgoing point i and incoming
point j. We denote this set of oriented pairs by R and we impose that R
is such that exactly N pairs are oriented from the positive to the negative
charge and N pairs are oriented the other way around. 2

• Generally, given an arbitrary oriented pair of charges e, we say that it is
renormalised if e ∈ R. Given a pair e ∈ R, we write e+ (resp. e−) for
the point in e with positive (resp. negative) charge, and e↑ (reps. e↓) for the
outgoing point (resp. incoming point) of e, in other words e = e↑ → e↓.

Remark 4.5 In order to shorten our expressions, we will sometimes identify a
charge i with the corresponding coordinate xi ∈ R3. For example, if J is a function
defined on R3 and we write J (e+ − e−), this is a shorthand for J (xe+ − xe−).

2This is a reflection of the fact that, in (4.6), half of the factors involve the complex conjugate.
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For any oriented pair e ∈ R, we use the shorthand notation

K(e) def
= K(e↓ − e↑)−K(−e↑) .

Then, using the notations introduced above, one can rewrite the right hand side of
(4.6) as∫

(R3)M
E
[ ∏
e∈R

(
Ψk
ε (e+)Ψ̄k

ε (e−)− E[Ψk
ε (e+)Ψ̄k

ε (e−)]
)] ∏

e∈R

(
ϕλ0 (e↓)K(e)

)
dx .

(4.7)
We will now expand the first product over e ∈ R, which amounts to assignment

of a subset P ⊂ R to the first term and R\P to the second term. This motivates
us to further introduce the following notations. For any subset P ⊂ R, we write
P ′ =

⋃
P for the set of all charges appearing in the pairs in P . Given subsets

A ⊂M , we write E(A) for the set of all pairs {i, j} with i, j ∈ A. Here, the pairs
are not oriented, and the two charges in any such pair are not necessarily of opposite
signs. Finally, for any pair e = {i, j} and a symmetric function J : R3 → R+, we
write

Je
def
= J (xi − xj) , Ĵe

def
= J (xi − xj)σiσj . (4.8)

Note that for this particular notation it does not matter whether an orientation is
specified for e since J is symmetric.

Given again a function J as above and any subset P ⊂ R, we then define the
quantity

HP (x;J ) =
(∏
e∈P
Ĵe
)( ∏

f∈E(M\P ′)

Ĵf
)

, (4.9)

where x ∈ (R3)M . Note that in the first product above, every e is a pair of opposite
charges {e+, e−}, so all the factors J (e+ − e−) are powered by −1; in the second
product, the factors J (xi − xj) for f = {i, j} could appear in either the numerator
or the denominator, depending on whether i, j having the same sign or not. We also
write

H(x;J ) =
∑
P⊂R

(−1)|P |HP (x;J ) ,

With all these notations at hand, the first product over e ∈ R in the expression
(4.7) is then written as∑

P⊂R
(−1)|P |

(∏
e∈P

E[Ψk
ε (e+)Ψ̄k

ε (e−)]
)

E
[ ∏
f∈E(M\P ′)

Ψk
ε (f+)Ψ̄k

ε (f−)
]

= e−β
2m(k2−1)Qε(0)H(x;J k2

ε ) .

Therefore, for m = 2N and the function Jε defined in (3.5), we have the identity

E|〈ϕλ0 ,Ψkk̄
ε 〉|m = e−β

2m(k2−1)Qε(0)
∫

(R3)M
H(x;J k2

ε )
( ∏
e∈R

ϕλ0 (e↓)K(e)
)
dx .

(4.10)
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Similarly to before, we aim to obtain suitable bounds on the functionH that are
uniform over ε ∈ (0, 1] and such that we can bound the small-λ behaviour of this
integral. The most important case would be k = 1 for whichH = H(x;Jε), since
only Ψ11̄

ε converges to a nontrivial limit.
Given J as above, we define for any two “dipoles” e 6= f ∈ R the quantity

∆f
e (J ) =

Je+f+Je−f−
Je+f−Je−f+

− 1 . (4.11)

This quantity plays an important role in this section because it is small if either
e+ ≈ e− or f+ ≈ f−. As a consequence, being able to extract sufficiently many
factors of this type from H(x;Jε) will enable us to compensate enough of the
divergence of the kernel K in the expression for E|〈ϕλ0 ,Ψkk̄

ε 〉|m.
We also define for A ⊂ R and e /∈ A the quantity

∆A
e (J ) =

∏
f∈A

∆f
e (J ) .

Finally, suppose that we are given a subset A ⊂ R as well as a map B : A →
℘R \ {∅} 3 associating to each pair e ∈ A a non-empty subset Be of R. Then,
provided that A 6= ∅, we define the quantity

∆BA(J ) =
∏
e∈A

∆Bee (J ) .

In the special case A = ∅ so that the above product is empty, we use the usual
convention that ∆BA(J ) = 1. This definition also makes sense if B is defined on a
larger set containing A. We also write

UBA = A ∪
⋃
e∈A
Be .

The following identity, which can easily be proved by induction, will be used:

( n∏
i=1

ai

)
− 1 =

∑
∅6=P⊆{1,...,n}

∏
i∈P

(ai − 1) . (4.12)

In order to rewrite H in a way that makes some of the cancellations more
explicit, we will make use of the following notations. Assume that we are given
an ordering of R so that R = {e1, . . . , em}, as well as a subset A ⊂ R. We set
R0 = ∅ and R`

def
= {e1, . . . , e`} for 0 < ` ≤ m, as well as A` = A ∩ R`. For

any ` ∈ {0, . . . ,m} and A ⊂ R`, we then writeM`(A) for the set of all maps
B : A→ ℘R \ {∅} which furthermore satisfy the following two properties:

• If ek ∈ A, then Bek ⊂ R \Ak.

3Given a set E, we write ℘E for its power set.
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• For every k ≤ `, one has ek ∈ A if and only if ek 6∈ UBAk−1
.

We have the following very useful recursive characterisation of the setsM`(A):

Lemma 4.6 Let ` ≥ 1 and A ⊂ R`. Then B ∈ M`(A) if and only if B restricted
to A`−1 belongs toM`−1(A`−1) and exactly one of the following two statements
holds:

• One has e` ∈ A, e` 6∈ UBA`−1
, and Be` ⊂ R \A.

• One has e` 6∈ A and e` ∈ UBA`−1
.

Proof. This follows immediately from the definitions.

Remark 4.7 For ` > 0, the second of these properties cannot be satisfied unless
e1 ∈ A. In particular, this shows that M`(∅) = ∅. For ` = 0 however, both
properties are empty so thatM0(∅) consists of one element, which is the trivial
map.

Proposition 4.8 Fix an arbitrary ordering of R as above. Then, for any given
function J , and for every 0 ≤ ` ≤ m, one has the identity

H(x;J ) =
∑
A⊆R`

∑
B∈M`(A)

∆BA(J )H(A,B;x;J ) (4.13)

where we made use of the notation

H(A,B;x;J ) def
=

∑
P⊆R\UBA

(−1)|P |HA∪P (x;J ) , (4.14)

for any set A ⊆ R. Here,HA∪P (x;J ) is as in (4.9).

Remark 4.9 The factor ∆BA appearing in this expression does of course also depend
on the specific configuration x of the charges. We drop this dependence in the nota-
tions in order not to overburden them. Figure 2 provides a pictorial representation
of an example of termH(A,B) appearing in the statement, the reader is encouraged
to read the proof with this example in mind.

Proof. In this proof, we hide the argument J in all theH functions for simplicity of
notations. The proof of the result now goes by induction over `. For ` = 0, A = ∅,
M0(∅) consists of one element which is the trivial map for which, by convention,
∆BA = 1 so that the statement is precisely the definition of H. Assuming that the
statement holds for ` − 1, we now show that it also holds for `. We rewrite the
induction hypothesis as

H =
∑

A⊆R`−1

∑
B∈M`−1(A)

(1e`∈UBA + 1e` /∈UBA )∆BAH(A,B) , (4.15)
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Figure 2: Pictorial representation ofH(A,B) in the case A = {e1} ⊆ R1 and Be1 = {e2}
with m = 4. The 4 horizontal pairs are, from top to bottom, e1, e2, e3 and e4. By definition,
UBA = {e1, e2}, and therefore P in (4.14) runs over all subsets of {e3, e4}: the 4 terms
above correspond toHA∪P with P being ∅, {e3}, {e4}, and {e3, e4}, respectively. Each
HA∪P is a product of J ’s (drawn in dashed lines) or J−’s (drawn in solid lines). Pairs in
A ∪ P are a bit thicker since they stand for the J−’s in the first product of (4.9).

and we consider the resulting two terms separately.
Consider first the case e` /∈ UBA . Writing Ā = A ∪ {e`}, one can then rewrite

H(A,B) as

H(A,B) =
∑

P⊆R\(UBA∪{e`})

(−1)|P |
(
HA∪P −HĀ∪P

)

=
∑

P⊆R\(UBA∪{e`})

(−1)|P |HĀ∪P
( ∏
f∈R\(Ā∪P )

Jf+e+`
Jf−e−`

Jf+e−`
Jf−e+`

− 1

)
.

Using the identity (4.12), this can be rewritten as

H(A,B) =
∑

P⊆R\(UBA∪{e`})

(−1)|P |HĀ∪P
∑

∅6=Q⊆R\(Ā∪P )

∆Q
e`

=
∑

∅6=Q⊆R\Ā

∆Q
e`

∑
P⊆R\(UBA∪Q∪{e`})

(−1)|P |HĀ∪P .

Given B ∈M`−1(A) and a non-empty set Q ⊂ R \ Ā as above, we then define a
map B̄ ∈ M`(Ā) by B̄(e) = B(e) for all e ∈ A and B̄(e`) = Q. As a consequence
of Lemma 4.6, we see that all maps in M`(Ā) arise in this way. One then has
UBA ∪Q ∪ {el} = U B̄

Ā
and thus∑

P⊆R\(UBA∪Q∪{e`})

(−1)|P |HĀ∪P = H(Ā, B̄) .

Making use of the identity ∆BA∆Q
e` = ∆B̄

Ā
, we conclude that∑

A⊆R`−1

∑
B∈M`−1(A)

1e` /∈UBA∆BAH(A,B) =
∑
Ā⊆R`
e`∈Ā

∑
B̄∈M`(Ā)

∆B̄ĀH(Ā, B̄) .
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Concerning the term in (4.15) with e` ∈ UBA , we use the fact that, again by
Lemma 4.6, if e` 6∈ A but e` ∈ UBA , thenM`−1(A) =M`(A), so that∑

A⊆R`−1

∑
B∈M`−1(A)

1e`∈UBA∆BAH(A,B) =
∑
Ā⊆R`
e` /∈Ā

∑
B̄∈M`(Ā)

∆B̄ĀH(Ā, B̄) .

Adding both identities concludes the proof of (4.13).

The most important point of Proposition 4.8 is that at an arbitrary step `, all the
renormalised pairs inR` are contained in the set UBA , as imposed by the definition
ofM`(A). The quantity ∆BA then generates factors of positive homogeneities for
the pairs in UBA (see the remarks after (4.11)). In order to make this statement more
precise, it is convenient to introduce the quantity

Aef
def
= ‖xe+ − xe−‖s‖xf+ − xf−‖s‖xe+ − xf−‖−1

s ‖xf+ − xe−‖−1
s , (4.16)

for any two dipoles e and f .

Lemma 4.10 Suppose that e+, e−, f+, f− ∈ R3 are four distinct points, and that

‖e+ − e−‖s ∧ ‖f+ − f−‖s ≤ ‖e+ − f−‖s ∧ ‖e− − f+‖s , (4.17)

Then, one has the inequality

‖e+ − e−‖s‖f+ − f−‖s . ‖e+ − f−‖s‖e− − f+‖s . (4.18)

In terms of the quantityAef defined in (4.16), we can also write this more succinctly
as Aef . 1.

Proof. Since the statement is symmetric under e↔ f , we can assume without loss
of generality that one has

‖e+ − e−‖s . ‖e+ − f−‖s ∧ ‖e− − f+‖s .

Then, by the triangular inequality,

‖f+ − f−‖s . ‖e+ − e−‖s + ‖e+ − f−‖s + ‖e− − f+‖s
. ‖e+ − f−‖s ∨ ‖e− − f+‖s .

The bound (4.18) follows by combining these two inequalities.

The following lemma will be used in the proof of Proposition 4.15 below.

Lemma 4.11 The final pairing S selected by the procedure in Section 3 maxi-
mizes (up to a multiplicative constant depending only on m but not on the specific
configuration of points x) the quantity ΠS

def
=
∏
{i,j}∈S J

−
ij .
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Proof. Let S be the pairing selected by the procedure in Section 3 and let S̄ 6= S be
a different pairing. Without loss of generality, we assume that in the procedure to
construct An and Sn in Section 3, at each step n only two sets merge together. Let
n be the smallest number such that there exist A ∈ An with e ∈ Sn(A) but e /∈ S̄.
Then, there exist a set B ∈ An−1 containing e+ and B̄ ∈ An−1 containing e− and
B 6= B̄.

Suppose that {e+, f−}, {e−, f+} ∈ S̄. One has f− /∈ B (otherwise there
would be already a pair with both charges in B which belongs to S but not S̄ , thus
contradicting the minimality assumption on n), and f+ /∈ B̄, so

‖xe+ − xf−‖s & 2n , ‖xe− − xf+‖s & 2n .

By ‖xe+ − xe−‖s . 2n and Lemma 4.10, one has

‖xe+ − xe−‖s‖xf+ − xf−‖s . ‖xe+ − xf−‖s‖xf+ − xe−‖s .

If we define S̃ by keeping all the parings in S̄ except that {e+, f−}, {e−, f+} are
replaced by {e+, e−}, {f+, f−}, we have ΠS̄ . ΠS̃ . Note that e ∈ S̃ . We can then
iterate the above procedure to consequently increase Π until we obtain the pairing
S .

Lemma 4.12 Assume that we are given a function Q(z) ∼ − 1
2π log ‖z‖s, that %̄ is

any continuous function supported on the unit ball around the origin integrating
to 1, and that Qε is as in (3.6). Given α ≥ 2, let J (z) = e−2παQ(z) and Jε(z) =
e−2παQε(z). Assume furthermore that Q is of class C2 and there exists a constant
C such that |∇kQ(z)| ≤ C/‖z‖|k|ss for |k| ≤ 2. Let e+, e−, f+, f− ∈ R3 be four
distinct points such that

‖e+ − e−‖s ∧ ‖f+ − f−‖s ≤ ‖e+ − f−‖s ∧ ‖e− − f+‖s , (4.19)

and write e = {e+, e−}, f = {f+, f−}. One then has the bound∣∣∣∣Jε(e+ − f+)Jε(e− − f−)
Jε(e+ − f−)Jε(e− − f+)

− 1

∣∣∣∣ . Aef , (4.20)

uniformly for all ε ≥ 0, where Aef is as in (4.16).
In particular, for k ≥ 1, the function ∆f

e (J k2

ε ) with Jε defined in (3.5) satisfies
(4.20) on the set (4.19) by choosing α = k2β2/(2π).

Proof. As a consequence of the symmetries e ↔ f and (e+, f+) ↔ (e−, f−) we
can assume without loss of generality that

‖e+ − e−‖s ≤ ‖f+ − f−‖s , (4.21a)

‖f+ − e−‖s ≤ ‖e+ − f−‖s . (4.21b)

First of all, we consider the “easier” case, that is

‖e+ − f+‖s ≤ 5‖e+ − e−‖s .
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In this case, by the triangular inequality one has ‖f+ − e−‖s ≤ 6‖e+ − e−‖s and,
using the triangle inequality together with (4.21a), one also has ‖e+ − f−‖s ≤
6‖f+ − f−‖s, so that Aef ≥ 1/36. Furthermore, by the triangle inequality, (4.19),
and (4.21a), one has ‖e+ − f+‖s . ‖f+ − e−‖s and ‖e− − f−‖s . ‖e+ − f−‖s.
Therefore the left hand side of (4.20) is bounded by some constant independent of
ε, and (4.20) follows.

If ‖e− − f−‖s ≤ 5‖e+ − e−‖s then the bound (4.20) holds in a similar way.
Therefore it remains to consider the situation where

‖e− − f−‖s ∧ ‖e+ − f+‖s ≥ 5‖e+ − e−‖s ,

which in particular implies that

4‖e+ − e−‖s ≤ ‖e± − f±‖s , (4.22)

for any of the four choices of signs that can appear on the right hand side. Define a
function F depending on e+, f+ and ε by

F (ze, zf ) def
= Jε(e+ − f+)Jε(ze − zf )− Jε(e+ − zf )Jε(f+ − ze) .

Since Jε is assumed to be symmetric, one has F (ze, zf ) = 0 whenever ze = e+ or
zf = f+. In particular ∂kzeF (ze, f+) = ∂kzfF (e+, zf ) = 0 for all k ≥ 0. We will
show that under the assumptions of the lemma, one has the bound

|F (e−, f−)| . Jε(e+ − f−)Jε(f+ − e−)Aef , (4.23)

which then immediately concludes the proof of the lemma.
To show (4.23), let γe : [0, 1]→ R3 be the piecewise linear path from e+ to e−

which is made up from three pieces, each of them parallel to one of the coordinate
axes. Then, since F (e+, f−) = 0, one has

|F (e−, f−)| .
2∑
i=0

|γ(i)
e | sup

ze∈γe
|∇(i)

zeF (ze, f−)| , (4.24)

where ∇(i)
z denotes the derivative with respect to the ith component of the variable

z and |γ(i)
e | denotes the total (Euclidean!) length of the pieces of the path γe that are

parallel to the ith coordinate axis. Note that one has |γ(i)
e | ≤ ‖e+ − e−‖sis .

Similarly, let γf : [0, 1]→ R3 be a piecewise linear path from f+ to f−, again
with each piece parallel to one of the coordinate axes, but this time with possibly
more than three pieces. We claim that one can furthermore choose γf in such a way
that each of its pieces has parabolic length at most ‖f+ − f−‖s and such that the
bounds

‖f+ − e−‖s . ‖ze − zf‖s . ‖e+ − f−‖s , (4.25)

hold uniformly over ze ∈ γe and zf ∈ γf . Here, the upper bound is a simple
consequence of the triangle inequality and the fact that (4.21) and (4.22) imply that
‖e+ − f+‖s + ‖e+ − e−‖s + ‖f− − f+‖s . ‖e+ − f−‖s.
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e+

e−

f+

f−

γe

γf

Figure 3: Construction of the paths γe and γf . The “exclusion zone” Z is shaded in light
grey.

In order to enforce the lower bound, more care has to be taken. Define an
“exclusion zone”Z ⊂ R3 as the convex hull of {z : ‖z−z̄‖s ≥ ‖f+−e−‖s/4 ∀z̄ ∈
γe}. It then follows from (4.22) that both f± are located outside of Z, so it suffices
to choose γf in such a way that it does not intersect Z. A typical situation with Z
draw in light grey is depicted in Figure 3.

Since F (ze, f+) = 0 for every ze and thus∇zeF (ze, f+) = 0, we can apply the
gradient theorem to |∇(i)

zeF (ze, f−)|, yielding

|F (e−, f−)| .
2∑

i,j=0

|γ(i)
e ||γ

(j)
f | sup

ze∈γe
sup
zf∈γf

|∇(i)
ze∇

(j)
zf
F (ze, zf )| . (4.26)

Write now ‖z‖s,ε
def
= ‖z‖s + ε so that Jε(z) is bounded from above and below by

some fixed multiple of ‖z‖αs,ε and note that |∇kQε(z)| . ‖z‖−|k|ss,ε as a consequence
of our assumptions and of [Hai13, Lemma 10.17]. As a consequence, one has the
bound |∇kJε(z)| . ‖z‖α−|k|ss,ε so that one has

|∇(i)
ze∇

(j)
zf
F (ze, zf )| . ‖e+ − f+‖αs,ε · ‖ze − zf‖

α−si−sj
s,ε

+ ‖e+ − zf‖
α−sj
s,ε · ‖f+ − ze‖α−sis,ε .

(4.27)

Combining the triangle inequality with (4.19), (4.21a), and (4.25), the factors
appearing in the right hand side of (4.27) are bounded as follows (here we use the
fact that α ≥ 2 so that α− sj is guaranteed to be positive):

‖e+ − zf‖
α−sj
s,ε . ‖e+ − f−‖α−sjs,ε ,

‖f+ − ze‖α−sis,ε . ‖f+ − e−‖α−sis,ε ,

‖ze − zf‖
α−si−sj
s,ε . ‖e+ − f−‖α−sjs,ε ‖f+ − e−‖−sis,ε ,

‖e+ − f+‖αs,ε . ‖f+ − e−‖α−sis,ε ‖f+ − e−‖sis,ε .

Inserting these bounds into (4.27), we conclude that

|∇(i)
ze∇

(j)
zf
F (ze, zf )| . Jε(e+ − f−)Jε(f+ − e−)‖e+ − f−‖−sjs,ε ‖f+ − e−‖−sis,ε ,
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uniformly for ze,f ∈ γe,f . Finally, we observe that

|w(i)
1 | . ‖e

+ − e−‖s ‖f+ − e−‖si−1
s , |w(j)

2 | . ‖f
+ − f−‖s ‖e+ − f−‖sj−1

s ,

so that the claim (4.23) follows from (4.26).

Remark 4.13 The analysis we are following here is not as sharp as possible. In the
above proof, we essentially performed a first order Taylor expansion of ∆f

e (viewed
as a function of e−) around e+, which allowed us to gain a factor ‖e+ − e−‖s. This
factor, when multiplied by K(e)J −e , is integrable as long as β2 < 6π. However,
the linear term e− − e+ is an odd function, while all other functions (K,J etc.) are
even in their spatial coordinates, so that the integration over e− in a neighborhood
of e+ essentially vanishes. As a consequence, we believe that it should be possible
to gain a factor ‖e+ − e−‖2s , thus allowing to control the second-order objects for
all β2 < 8π. This would however require us to change our strategy, which is to
obtain bounds on the absolute value of H that are sufficiently sharp to guarantee
that (4.10) has the correct order of magnitude.

Before we proceed, we introduce the following definition, where S is assumed
to be a pairing constructed as in Section 3, whileR is a fixed set of renormalised
pairs as before.

Definition 4.14 We say that e ∈ R ∩ S is a bad pair if there exists an f ∈ R such
that the condition (4.17) of Lemma 4.10 is not satisfied, namely

‖e+ − f−‖s ∧ ‖e− − f+‖s ≥ ‖e+ − e−‖s ∧ ‖f+ − f−‖s . (4.28)

If such an f exists, one must have f ∈ R\S since the construction of S guarantees
that any two pairs e, f ∈ S do satisfy (4.17). We say that e ∈ R ∩ S is a good
pair if it is not a bad pair. We denote by D ⊆ R ∩ S the set of good pairs and by
Dc def

= (R∩ S) \ D the set of bad pairs.

If we were to do the expansion (4.12) for a “bad pair”, the conditions of
Lemma 4.12 and Lemma 4.10 would be violated. Therefore we will only do
the expansion for “good pairs”. The next important proposition shows that one
can bound H(x;J ) by

∏
{i,j}∈S J

−
ij with a paring S, multiplied by some factors

Aef , in such a way that there appear additional factors ‖e+ − e−‖s taming the
non-integrable divergence of the function K(e)J −(e), for every e ∈ D. Further-
more, these factors Aef are all bounded, so that we will have freedom to erase
some of them for convenience of the integrations over all the space-time points in
Subsection 4.2. One may worry that K(e)J −(e) would still be non-integrable for a
bad pair e, but in fact we will see later that one can just insert a factor Aef for these
pairs “for free” (see the proof of Proposition 4.16 below).
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Proposition 4.15 Assume that J ∈ {J k2

ε ,J k2}. Let S be the pairing selected by
the procedure in Section 3 and let D be the set of good pairs. One has the bound

H(x;J ) .
( ∏
{i,j}∈S

J −ij
) ∑

P⊂R2

′ ∏
(e,f )∈P

Aef , (4.29)

where the sum
∑′ is restricted to those sets P such that

• for every e ∈ D, there exists at least one f ∈ R, f 6= e with (e, f ) ∈ P,

• for every (e, f ) ∈ P, one has e ∈ D or f ∈ D,

• for every (e, f ) ∈ P, one has Aef . 1.

Proof. The following bound will turn out to be useful for our calculation. For any
set A ⊂ R, one has(∏

e∈A
Ĵe
)( ∏

f∈E(M\A′)

Ĵf
)
.

∏
{i,j}∈S

J −ij . (4.30)

Recall here that A′ denotes the set of all charges covered by A, i.e. A′ =
⋃
A. In

order to show this, we apply Proposition 3.5 to the collection of points M \ A′,
which allows us to bound the left hand side of (4.30) by the expression

∏
{i,j}∈S̄ J

−
ij

for some pairing S̄. By Lemma 4.11, the latter is bounded by the same expression
with S̄ replaced by S.

Combining this bound with Proposition 4.8, where we choose the ordering ofR
in such a way that D = {e1, . . . , e`} for some ` ≥ 0, we obtain

H(x;J ) ≤
∑
A⊆D

∑
B∈M`(A)

|∆BA(J )| H(A,B;x;J )

.
( ∑
A⊆D

∑
B∈M`(A)

|∆BA(J )|
)( ∏
{i,j}∈S

J −ij
)

,
(4.31)

where we used the fact thatH(A,B) is nothing but an alternating sum of terms of
the type appearing in the left hand side of (4.30), but with different choices of A.
We recall that ∆BA is, by definition, given by

∆BA =
∏
e∈A

( ∏
f∈Be

∆f
e

)
. (4.32)

At this stage, we observe that since A ⊆ D, every e ∈ A is a good pair and
therefore for each of the quadrupoles (e, f ) appearing in (4.32), the shortest distance
between ‖xe+ − xe−‖s, ‖xf+ − xf−‖s, ‖xf+ − xe−‖s and ‖xe+ − xf−‖s is always
one of the first two, at least up to a constant multiple depending only on m. Then,
we can apply Lemma 4.12 to obtain the following bound

H(x;J ) .
( ∑
A⊆D

∑
B∈M`(A)

∏
e∈A

∏
f∈Be

Aef
)( ∏
{i,j}∈S

J −ij
)
. (4.33)
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By the definition of M`(A), for every A,B in the above summation, one has
D ⊆ UBA , in other words for every e ∈ D, there exists at least one f 6= e such that
the factor Aef (or possibly Afe, but these are identical) appears in (4.33). Since
A ⊂ D it is also the case that for every factor Aef appearing in (4.33), one has
either e ∈ D or f ∈ D. Finally, the definition of “good pairs” implies that for every
factor Aef appearing in (4.33) the bound (4.17) holds and thus Aef . 1. Therefore
we can indeed bound the right hand side of (4.33) by a multiple of( ∏

{i,j}∈S

J −ij
) ∑

P⊂R2

′ ∏
(e,f )∈P

Aef ,

where the sum
∑′ is restricted to those sets P satisfying all the conditions described

in the statement.

4.2 Moments of Ψkk̄
ε : integrations

The bound given in Proposition 4.15 turns out not to be very convenient to use
when one tries to actually perform the final integration over the positions of the
charges, so we will first derive a slightly weaker bound which has a “nicer” form.
We start with some definitions. Suppose that we are given a graph G = (V, E) with
vertices V and edges E . For a subset of vertices V ′ ⊆ V , we then define a subgraph
GV ′ = (V ′, E ′), with E ′ consisting of the edges in E with both ends in V ′.

We can also define a graph GV ′ by identifying all the vertices in V ′ as one vertex
called v, so that the set of vertices of GV ′ is given by (V \ V ′) t {v}. Regarding
the edges of GV ′ , we postulate that (x, y) is an edge of GV ′ if and only if either
v /∈ {x, y} and (x, y) ∈ E , or x = v, y 6= v, and there exists z ∈ V ′ such that
(z, y) ∈ E . The set of edges of GV ′ can be identified canonically with the set
E \ {edges with both ends in V ′}. If the original graph G is directed, both GV ′ and
GV ′ inherit its direction in the obvious way.

Given a vertex set V , we define the set of admissible graphs GV to be the set
of all directed graphs over V such that every vertex has degree at least 1 and there
exists a partitioning V = VL t VT of V with the following properties:
• Each connected component of GVL is a tree. The connected component

containing the distinguished vertex v is considered as a rooted tree with root
v and all other connected components should contain at least two vertices.

• Each connected component of GVL is a directed loop.
Here, a directed loop is a connected graph with at least two vertices such that every
vertex is of degree 2 and has exactly one directed edge going into it and the other
directed edge going out of it. A tree is a non-empty connected graph without loops.
Given an admissible graph G, we furthermore write EL for the edges connecting
two vertices in VL and ET for the remaining edges. We also remark that if G is
admissible, then the decomposition V = VL t VT is unique. See Figure 4 for a
generic admissible graph.

Now letR be the set of renormalised pairs as above, which is going to be our
vertex set. To every G ∈ GR, we associate a pairing SG of the 2m charges as
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=⇒

Figure 4: An admissible graph G (left) and the corresponding graph GVL (right). The
admissible graph consists of four connected components. Elements of VL are shown as
little circles , elements of VT are shown as black dots , edges in EL are shown as solid
lines with arrows, while edges in ET are shown as dashed lines.

follows. If e ∈ VT , then {e+, e−} ∈ SG . If e ∈ VL, and therefore there exist
f, g ∈ VL such that (f, e) is an edge pointing from f to e and (e, g) is an edge
pointing from e to g, then {f+, e−} ∈ SG and {e+, g−} ∈ SG . In particular, we
only care about the orientation of the edges connecting vertices in VL. With this
notation at hand, we can reformulate our bound onH(x,J ) as follows.

Proposition 4.16 Assume that J ∈ {J k2

ε ,J k2}. One has the bound

H(x;J ) .
∑
G∈GR

( ∏
{i,j}∈SG

J −ij
)( ∏

(e,f )∈ET

Aef
)
. (4.34)

Proof. Given a pairing S (in practice we take the specific pairing selected in Sec-
tion 3) and a set P ⊂ R2 satisfying the conditions listed in Proposition 4.15, we
construct an admissible graph G ∈ GR as follows.

First, we define a set of oriented edges EL by setting

EL = {(e, f ) : {e+, f−} ∈ S \ R} .

This set of edges has the property that if (e, f ) ∈ EL, then we necessarily have
{e, f} ⊂ R \ S. Furthermore, one can see that the graph (R, EL) consists of loops
of length at least two, as well as of singletons, with the singletons consisting of
R∩ S , see Figure 5. (If we had only imposed that {e+, f−} ∈ S , the graph would
consist of loops with every vertex belonging to exactly one loop, but some loops
could consist of only one vertex.) We therefore define at this stage VL = R \ S .

We now consider the graph GP = (R,P). Here, we note that by the constraints
on P given in Proposition 4.15, every edge in P contains at least one element of
R∩ S (the “singletons” of the first step) so that the reduced graph GVLP contains the
same edges as GP. We then select an arbitrary spanning forest E (1)

T ⊂ P for GVLP . In
other words, ET is such that the connected components of (R, T )VL are the same
as those of GVLP , but each such component is a tree. (Here, the orientation of these
edges is irrelevant.)
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Figure 5: Generic situation for the construction of EL: pairs inR are drawn as thick lines
and pairs in S are drawn as dotted lines. The arrows show the edges belonging to EL.

Finally, letR(0) ⊂ R be those vertices inR∩ S that are not in P′. Because of
the first condition on P, any e ∈ R(0) necessarily belongs to Dc, i.e. it is a “bad
pair”. Therefore, for every such e, there exists an fe ∈ R \ S such that (4.28) holds.
We then define E (0)

T = {(e, fe) : e ∈ R(0)}.
With all of these definitions at hand, we now set G = (R, EL ∪ ET ) with ET =

E (0)
T ∪ E

(1)
T , which is indeed an admissible graph with decomposition VL = R \ S

and VT = R∩ S . Furthermore, our construction and the definition of SG guarantee
that one actually has SG = S . Finally, we claim that one has∏

(e,f )∈P

Aef .
∏

(e,f )∈ET

Aef . (4.35)

Indeed, since E (1)
T ⊂ P by construction and, for every (e, f ) ∈ P \ ET , one has

Aef . 1 by the last condition on P, this bound holds with ET replaced by E (1)
T . On

the other hand, for every (e, f ) ∈ E (0)
T , one hasAef & 1 by combining the definition

of a bad pair with Lemma 4.10, so that (4.35) does hold. The claim now follows by
applying the above inequality to the right hand side of (4.29) and then bounding it
by the sum over all possible admissible graphs.

The bound (4.34) has two major advantages: first, it does not make any reference
to the special pairing S anymore, so that we now have one single bound which
holds for any configuration of charges x. Second, the tree structure given by the
notion of “admissible graph” will make it possible to bound the integral (4.10) by
inductively integrating over the variables corresponding to the “leaves” until we are
only left with the “loops” which can then be handled separately. Now we have all
the elements in place to give the proof to Theorem 4.3. For a simpler notation, from
now on we will write

β̄
def
=

β2

2π
.

We now have everything in place for the proof of Theorem 4.3. We first give the
proof of the bounds and convergence statements for Ψkk̄

ε . In Section 4.4 below,
we then bound the objects Ψkk

ε , while the bounds on Ψkk
ε and Ψkk

ε with k 6= ` are
postponed to Section 5.

4.3 Moments of Ψkk̄
ε

Proof of Theorem 4.3 for Ψkk̄
ε . We first prove the statements for Ψ±ε which is the

harder case. The modifications required to obtain the analogous statements for Ψkk̄
ε
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with k > 1 will be indicated at the end of the proof. Recall from (4.10) that for
m = 2N , one has

E|〈ϕλ0 ,Ψ±ε 〉|m =

∫
H(x;Jε)

∏
e∈R

(
ϕλ0 (e↓)K(e)

)
dx .

As a consequence of Proposition 4.16, we can bound this expression by

E|〈ϕλ0 ,Ψ±ε 〉|m .
∑
G∈GR

∫ ( ∏
{i,j}∈SG

J −ij,ε
∏

(e,f )∈ET

Aef
) ∏
e∈R

(
|ϕλ0 (e↓)| |K(e)|

)
dx.

The proof of Theorem 4.3 now goes by induction over m. Suppose that for
every m̄ < m and every δ > 0, the bound∫ ( ∏

{i,j}∈SḠ

J −ij,ε
∏

(e,f )∈ĒT

Aef
)( ∏

e∈R̄

|ϕλ0 (e↓)| |K(e)|
)
dx . λ(2−β̄−δ)m̄ , (4.36)

holds uniformly over λ ∈ (0, 1] for every admissible graph Ḡ ∈ GR̄ over the set R̄
of cardinality m̄. Here we are not assuming any more that exactly half of the pairs
in R̄ are oriented from the positive to the negative and the other half of the pairs
the other way. We aim to prove that in this case the analogous bound also holds for
every admissible graph G ∈ GR overR of cardinality m. (Again, not assuming that

To make the calculations more clear and visual, we introduce some graphical
notation. A line x yα with a label α represents the function ‖x− y‖αs .
A dashed line with an arrow x y represents the function K(x→ y) =
K(x− y)−K(x). A gray dot means that the point is integrated out, while a black
dot simply stands for a point without integration. We then distinguish between the
following two cases.
Case 1. In this case, we assume that VT 6= ∅, where VT is associated to the
admissible graph G as above. Since GVL is a union of disjoint trees, one can always
find a vertex e such that the degree of e is one (namely, e is a leaf.) Let f be the
unique pair inR such that (e, f ) ∈ ET . There are then two possible situations. The
first situation is that f ∈ VT and f is also a leaf (see the bottom-right connected
component of the graph in Figure 4). In this situation, the integration over e± and
f± factors out and is either of the form

I1
def
=

∫
|ϕλ0 (e+)||ϕλ0 (f−)| |K(e− → e+)K(f+ → f−)| ĴeĴfAef de±df± ,

(4.37)
where the integration is over (R3)4, or of the form

I2
def
=

∫
|ϕλ0 (e+)||ϕλ0 (f+)| |K(e− → e+)K(f− → f+)| ĴeĴfAef de±df± .

(4.38)
Of course, it could also be (4.37) or (4.38) with all the signs flipped, but these can
be reduced to the above two cases by symmetry. Leaving aside the test functions
ϕλ0 , the integrands in I1 and I2, are depicted by
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f+f−

e+ e−

1− β̄

1− β̄

−1−1

f+f−

e+ e−

1− β̄

1− β̄

−1−1

respectively. By Lemma 4.18 we have

|I1|+ |I2| . λ2 (2−β̄−δ) , (4.39)

for every sufficiently small δ > 0, so that the statement follows from the induction
hypothesis with m̄ = m− 2 and R̄ = R \ {e, f}.

The second situation is that when either f /∈ VT or f ∈ VT but has degree
greater than one. In this situation, the integration over e± again factors out and has
the form

I3
def
=

∫
ϕλ0 (e+)|K(e− → e+)| ĴeAef de+de− , (4.40)

or the same expression with all the signs flipped. Graphically, ignoring again the
test function, the integrand is given by

f+f−

e+ e−

1

1− β̄

−1−1

Note now that the integrand in the full expression (4.36) necessarily contains either
a factor |ϕλ0 (f+)| or a factor |ϕλ0 (f−)|. Therefore, we can restrict the integral to
those configurations for which ‖f+‖s ∧ ‖f−‖s ≤ λ, which allows us to apply
Lemma 4.17 below, thus yielding the bound |I3| . λ2−β̄−δ, for every δ > 0. The
required bound now follows by using the induction assumption with m̄ = m− 1,
R̄ = R \ {e}.
Case 2. We now turn to the case when VT = ∅ (which in particular implies that
ET = ∅), and therefore EL 6= ∅. In this case, the integral (4.36) factors according
to the connected components of the graph G, which consist of loops. The integral
for a loop of size n linking vertices {ei}ni=1 ⊂ R is given by

IL =

∫ n∏
i=1

(
ϕλ0 (ei,↓) |K(ei)| J −e−i e+i+1

) n∏
i=1

(
de+
i de

−
i

)
, (4.41)

where we made the identification en+1
def
= e1. Furthermore, each ei ∈ R comes with

an arbitrary orientation which appears in the definition of K(ei). Integrals of this
type are bounded in Lemma 4.20 below, which yields

|IL| . λ(2−β̄−δ)n , (4.42)

thus again allowing us to invoke the induction hypothesis with m̄ = m − n and
R̄ = R \ {e1, . . . , en}.
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We now turn to prove the convergence statement of the theorem. Define for
e = (e+, e−), f = (f+, f−) ∈ R3 × R3

Hε,ε̄(e, f ) def
=

Jε,ε̄(e+ − f+)Jε,ε̄(e− − f−)
Jε(e+ − e−)Jε̄(f+ − f−)Jε,ε̄(e+ − f−)Jε,ε̄(e− − f+)

− Ĵe,εĴf,ε̄

where Jε,ε̄ is defined in the proof of Theorem 3.2. Then one has

E|〈ϕλ0 ,Ψ±ε −Ψ±ε̄ 〉|2 =

∫
(Hε(e, f ) +Hε̄(e, f )− 2Hε,ε̄(e, f ))

×
(
ϕλ0 (e+)ϕλ0 (f−)K(e− → e+)K(f+ → f−)

)
de±df± .

Assume without loss of generality that ε̄ ≤ ε. As in the proof of Theorem 3.2, one
has J −ε = J − exp(Mε) and J −ε,ε̄ = J − exp(Mε,ε̄) where the functionsMε and
Mε,ε̄ are bounded by |Mε(z)| + |Mε,ε̄(z)| . ε/‖z‖s for all space-time points z
with ‖z‖s ≥ ε, and, the function J −ε,ε̄ also falls within the scope of Lemma 4.12 and
therefore satisfies the bound (4.20).

For our collection of four charges e±, f±, there are only two possible admissible
graphs: the first one is VL = {e, f} (i.e. e and f form a loop), and the second one
is VT = {e, f} (i.e. e and f form a tree). It is then straightforward to show that

|Hε(e, f ) +Hε̄(e, f )− 2Hε,ε̄(e, f )|

. ‖e+ − f−‖−β̄s ‖e− − f+‖−β̄s

∑
x 6=y∈{e±,f±}

( ε

‖x− y‖s
∧ 1
)

+ ‖e+ − e−‖−β̄s ‖f+ − f−‖−β̄s Aef
( ε

‖e+ − e−‖s
∧ 1 +

ε

‖f+ − f−‖s
∧ 1
)

for all e±, f± ∈ R3.
Now to perform the integrations over e±, f±, one needs the following fact:

suppose that |DkK1(x)| . ( ε
‖x‖s ∧ 1)‖x‖ζ1−|k|ss , and K2 is of order ζ2, then

|Dk(K1 ∗K2)(x)| . εκ‖x‖ζ̄−|k|s−κs (4.43)

for sufficiently small κ > 0 where ζ̄ = ζ1 + ζ2 − |s| /∈ N and k is such that
ζ̄ − |k|s < 0. To prove (4.43), observe that if ‖x‖s < 2ε, then one just bounds
|DkK1(x)| by ‖x‖ζ1−|k|ss and then uses ‖x‖κs . εκ to obtain the desired bound.

If ‖x‖s ≥ 2ε on the other hand, writing (K1 ∗K2)(x) as
∫
K1(y)K2(x− y)dy,

we distinguish three cases as in the proof of [Hai13, Lemma 10.14]. The first case
is that ‖y‖s < ‖x‖s/2: we bound ‖x− y‖s by ‖x‖s, and integrate K1(y) following
the steps above (3.12). The second case is that ‖y − x‖s < ‖x‖s/2 and therefore
ε/‖y‖s < 1, we can bound K1(y) by εκ‖x‖ζ1−κs . The third case is the complement
of the above two regions, where one still has ε/‖y‖s < 1, following the same
arguments as in the proof of [Hai13, Lemma 10.14] one obtains the desired bound.

We can then integrate over e±, f± analogously as in the proof of 4.17 and 4.20.
One has

E|〈ϕλ0 ,Ψε −Ψε̄〉|2 . ε2κλ−2κ+2(2−β̄−δ) ,
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so the second bound stated by the theorem follows by Cauchy-Schwarz inequality.
We now prove the bounds for Ψkk̄

ε with k > 1. One has

E|〈ϕλ0 ,Ψkk̄
ε 〉|m = e−β

2m(k2−1)Qε(0)
∫
H(x;J k2

ε )
∏
e∈R

(
ϕλ0 (e)K(e)

)
dx .

By Proposition 4.16, one has

E|〈ϕλ0 ,Ψkk̄
ε 〉|m . ε

β2

2π
m(k2−1)

∑
G∈GR

∫ ( ∏
{i,j}∈SG

J −k2

ij,ε

∏
(e,f )∈ET

Aef
)

×
∏
e∈R

(
ϕλ0 (e)|K(e)|

)
dx .

In the above expression, there are m of factors J −k2

ε . In fact, for some sufficiently
small parameter κ > 0, one has

ε
β2

2π (k2−1)Jε(xi − xj)−k
2
. εκ‖xi − xj‖

−β2

2π
−κ

s .

Then, the required bounds follow in the same way as the case of Ψ±ε , except that
εκ → 0 as ε→ 0.

Now we proceed to prove the bounds for all the integrals in the proof of the
previous theorem. Notice that the entire integral comes with a test function ϕλ0 (f+)
or ϕλ0 (f−), which justifies the assumption of the following lemma.

Lemma 4.17 Let I3 be given by (4.40). Then the bound |I3| . λ2−β̄−δ holds
uniformly over all f± such that ‖f+‖s ∧ ‖f−‖s ≤ λ and ‖f+‖s ∨ ‖f−‖s . 1.

Proof. By the gradient theorem, one has

|K(e− → e+)| .
∣∣K(e+ − e−)−K(e−)

∣∣
. ‖e+‖3−β̄−δs

(
‖e−‖β̄−5+δ

s + ‖e+ − e−‖β̄−5+δ
s

)
for every δ > 0 sufficiently small, where we used the fact 3− β̄ ∈ (0, 1]. By our
definitions, the left hand side of (4.40) is bounded by λ−4‖f− − f+‖s (T1 + T2),
where

T1 =

0

f+f−

e+ e−−4 + δ

−1−1

3− β̄ − δ

T2 =

0

f+f−

e+ e−1− β̄

−1−1

3− β̄ − δ β̄ − 5 + δ
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and the thick lines indicate that the corresponding (parabolic) distance is restricted
to taking values less than λ.

We bound the first term T1. Integrating e− using [Hai13, Lemma 10.14], one
has

T1 .
∫

Λ
‖e+ − f−‖−1

s ‖e+ − f+‖−1+δ
s ‖e+‖3−β̄−δs de+ , (4.44)

where Λ denotes the ball of radius λ. We now distinguish two cases. If ‖f+‖s ≥
2λ, then one must have ‖f−‖s ≤ λ which together with ‖e+‖s ≤ λ implies
‖e+−f+‖−1+δ

s . ‖f−−f+‖−1+δ
s . Inserting this bound into (4.44) and integrating

over e+, one obtains

T1 . λ6−β̄−δ ‖f− − f+‖−1+δ
s . (4.45)

If on the other hand ‖f+‖s ≤ 2λ, then one has ‖e+ − f+‖s . λ and therefore
‖e+ − f+‖−1+δ

s . λ3‖e+ − f+‖−4+δ
s , so that

T1 . λ6−β̄−δ
∫

R3
‖e+ − f−‖−1

s ‖e+ − f+‖−4+δ
s de+ .

Integrating over e+, one again obtains (4.45), which yields the required bound on
this term.

Next, we bound the term T2. Define the quantity

S(e+, f+) def
=

∫
‖e− − f+‖−1

s ‖e+ − e−‖−β̄+1
s ‖e−‖β̄−5+δ

s de− ,

so that T2 can be rewritten as

T2 =

∫
Λ
‖e+ − f−‖−1

s ‖e+‖3−β̄−δs S(e+, f+) de+ . (4.46)

We estimate S(e+, f+) using Holder’s inequality

S(e+, f+) =

∫ (
‖e−‖β̄−

7
2

+ δ
2

s ‖e+ − e−‖−β̄+2− δ
2

s

)(
‖e−‖−

3
2

+ δ
2

s ‖f+ − e−‖−
δ
2

s

)
×
(
‖e+ − e−‖−1+ δ

2
s ‖f+ − e−‖−1+ δ

2
s

)
de−

.
∥∥∥‖e−‖β̄− 7

2
+ δ

2
s ‖e+ − e−‖−β̄+2− δ

2
s

∥∥∥
L

8
3

∥∥∥‖e−‖− 3
2

+ δ
2

s ‖f+ − e−‖−
δ
2

s

∥∥∥
L

8
3

×
∥∥∥‖e+ − e−‖−1+ δ

2
s ‖f+ − e−‖−1+ δ

2
s

∥∥∥
L4

. ‖e+ − f+‖−1+δ
s

where all the Lp norms are defined on functions in the variable e−. In fact the two
L

8
3 norms are both bounded by constants. We are now back to the same situation as

(4.44) for T1, so that the claim follows.
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In the sequel, we will make repeated use of the inequality

‖z‖−αs ‖z̄‖−βs . ‖z‖−α−βs + ‖z̄‖−α−βs , (4.47)

which holds for every z, z̄ in R4 and any two exponents α, β > 0.

Lemma 4.18 The bound (4.39) holds for I1 and I2 given by (4.37) and (4.38).

Proof. We first show the bound for I1. Define a function (which also depends on
e+, f−)

F (z, w) def
=

∫
‖e+ − e−‖−β̄+1

s K(e− − z)‖e− − f+‖−1
s

× ‖f+ − f−‖−β̄+1
s K(f+ − w) de−df+

for every z, w ∈ R3. Then

|I1| .
∫ ∣∣∣F (e+, f−)− F (0, f−)− F (e+, 0) + F (0, 0)

∣∣∣
× ϕλ0 (e+)ϕλ0 (f−)‖e+ − f−‖−1

s de+df− .

Since 3− β̄ ∈ (0, 1], applying gradient theorem to K(e− → e+) as in the proof of
Lemma 4.17, one has

|F (e+, f−)− F (0, f−)| . H1 +H2 . H1 +H3

where Hi are defined as follows, and in the last inequality (4.47) has been applied
to ‖e−‖β̄−5+δ

s · ‖e+ − e−‖1−β̄s .

H1

0

f+ f−

e+

ϕ
e−

−β̄ − 1

−4 + δ

−1

3− β̄ − δ

H2

0

f+ f−

e+

ϕ
e−

−β̄ − 1

1− β̄

−1

3− β̄ − δ β̄ − 5 + δ

H3

0

f+ f−

e+

ϕ
e−

−β̄ − 1

−1

3− β̄ − δ −4 + δ

Performing the convolutions in e−, and then bounding ‖f+‖−1+δ
s by ‖f+‖−1−δ

s for
H3 and bounding ‖e−−f+‖−1+δ

s by ‖e−−f+‖−1−δ
s forH1, and finally integrating

f+, we obtain

|F (e+, f−)− F (0, f−)| . ‖e+‖3−β̄−δs

(
‖f−‖2−β̄−δs + ‖f− − e+‖2−β̄−δs

)
In the similar way, applying gradient theorem to K(e− → e+) again as above,

one obtains that |F (e+, 0)− F (0, 0)| is bounded by the sum of the following two
terms
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0

f+ f−

e+

ϕ
e−

1− β̄

−2

−4 + δ

−1

3− β̄ − δ

0

f+ f−

e+

ϕ
e−

1− β̄

−2

1− β̄

−1

3− β̄ − δ
β̄ − 5 + δ

Applying (4.47) to ‖e−‖β̄−5+δ
s · ‖e+ − e−‖1−β̄s , and to ‖f+ − f−‖−β̄+1

s · ‖f+‖−2
s ,

it is then straightforward to obtain the bound

|F (e+, 0)−F (0, 0)| . ‖e+‖3−β̄−δs

(
‖f−‖2−β̄+δ

s +‖e+‖2−β̄+δ
s +‖f−−e+‖2−β̄+δ

s

)
Then the integrations over e+, f− are straightforward; this concludes the proof for
the desired bound on I1.

The bound for I2 follows simply by expanding K+(e)K+(f ) into four terms
according to the definitions and then bounding the integral with each term separately,
using (4.47).

The bound (4.42) holds as a consequence of the following result for integrating
general “cycles” or “chains”. Before stating the result we introduce a notation.

We denote by Kϕ
i (x, y) functions that are given by either ϕλ0 (y)K(x → y) or

ϕλ0 (x)K(y → x). Given real numbers {α1, ..., αn, α
′, ᾱ′}, we aim to bound the

integration of the following functions

FL = FL

(
{x}ni=1, {y}ni=1

)
def
=

n∏
i=1

(
|Kϕ

i (xi, yi)| · ‖yi − xi+1‖αis
)

(with n ≥ 2) where xn+1 is identified with x1; and FC = FC({x}ni=1, {y}ni=1, z, z̄)
with

FC
def
= g(x1, z) ḡ(yn, z̄)

n−1∏
i=1

(
|Kϕ

i (xi, yi)| · ‖yi − xi+1‖αis
)
Kϕ
n (xn, yn)

(with n ≥ 1) where
g(x1, z) def

= ‖x1 − z‖α
′

s ϕλ0 (z)

and ḡ is defined in the same way with change of roles x1 ↔ yn, z ↔ z̄ and α′ ↔ ᾱ′.

Remark 4.19 By inspection, one can realise that FL corresponds to a cycle shaped
graph L: (x1 − y1 − ... − xn − yn − x1), and, FC corresponds to a chain shaped
graph C: (z − x1 − y1 − ...− xn − yn − z̄). All the variables xi, yi and z, z̄ will
be integrated. For the case of FC , we will allow α′ (the same discussion applies to
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ᾱ′) to be zero, which means g(x1, z) = 2ϕλ0 (z) will be factored out and the integral
of it over z gives a constant; in other words one can simply think of the chain as
ending with the function K(x1, y1). Our notation is just in order to treat the chain
in a unified way no matter it ends with a function K or g.

Lemma 4.20 In the setting above, suppose that n ≥ 2 and that αi ∈ (−4,−2] for
i ∈ {1, . . . , n}. Then one has∫

FL dx dy . λh(L)−δ , (4.48)

for any δ > 0 arbitrarily small, where h(L) def
= 2n+

∑n
i=1 αi, and the integration

is over x = {xi}ni=1 ∈ (R3)n, y = {yi}ni=1 ∈ (R3)n.
Suppose additionally that α′, ᾱ′ ∈ (−4,−2]∪ {0}, and if α′ = 0 (resp. ᾱ′ = 0)

then x1 (resp. yn) is an incoming point. Then, for every n ≥ 1, one has∫
FC dx dy dz dz̄ . λh(C)−δ , (4.49)

for any δ > 0 arbitrarily small, where h(C) def
= 2n +

∑n−1
i=1 αi + α′ + ᾱ′ and the

integration is over x = {xi}ni=1 ∈ (R3)n, y = {yi}ni=1 ∈ (R3)n, and z, z̄ ∈ R3.

Proof. The integrand FL, ignoring the test functions, can be depicted graphically
by the left picture below
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y1

x2

y2
x3

y3
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x5

y5

α6
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α2
α3
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x2

y3

y4

x5

x4
x3

x6
y5 y1

y2

α6

2 + α1

4 + α2
2 + α3

α4

4 + α5

The picture illustrates the generic situation (with n = 6) showing that the
orientations of {xi, yi} are arbitrary. We will first integrate out all the outgoing
points (see the definitions of outgoing / incoming points of oriented pairs in the
beginning of Subsection 4.1). We claim that after these integrations, one has the
bound ∣∣∣ ∫ FL dxdy

∣∣∣ . ∫ n∏
i=1

(
ϕλ0 (zi) Gli(zi, zi+1)

)
dz (4.50)
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where the integration is over z = {zi}ni=1 ∈ (R3)n, and zn+1 = z1, li ∈ (−4, 2),∑n
i=1 li = h(L)− δ and

Gli(x, y) =


‖x− y‖lis li ∈ (−4,−2] ,
‖x− y‖lis + ‖x‖lis + ‖y‖lis li ∈ (−2, 0] ,
‖x‖lis + ‖y‖lis li ∈ (0, 2] .

(4.51)

The integrand of (4.50), ignoring the test functions, is drawn as the right picture
above (where only the subscripts of G are drawn; and the dummy z-variables are
still written as x or y-variables to make a clearer comparison with the left picture
and the variables that have been integrated out are still indicated in light gray). We
substitute the definition of Gk into (4.50) and expand, and obtain a sum where each
summand falls into the scope of (4.54) of Lemma 4.21 below (in fact αi > −4
implies 2n+

∑n
i=1 αi > −2n ≥ −4(n− 1) for n ≥ 2, so the assumption of (4.54)

of Lemma 4.21 is satisfied). Therefore the bound (4.48) follows.
To show the claim (4.50), one needs to show the following bounds.
• The case of integrating out a single point when its two neighboring points

are both incoming points (e.g. the y1 in the picture): for any α ∈ (−4,−2],∫
|K(y → x)| · ‖y − z‖αs dy . ‖z − x‖2+α−δ

s + ‖z‖2+α−δ
s ;

• The case of two incoming points are adjacent so “nothing has to be integrated”
(e.g. in the picture, the successive charges y4 and x5 are both incoming points,
so neither of them need to be integrated now);

• The case of integrating out two adjacent outgoing points (e.g. in the picture,
the successive charges y2 and x3 are both outgoing points, so both of them
have to be integrated now): for any α ∈ (−4,−2],∫∫

|K(y → x′)|·‖y−x‖αs ·|K(x→ y′)| dxdy . G4+α−δ(x′−y′) . (4.52)

The first bound follows from [Hai13, Lemma 10.14]. The second case is trivial. To
show the last bound, one writes

Q(x′ − y′) def
=

∫
K(x′ − y) · ‖x− y‖αs ·K(y′ − y) dxdy .

Then, the left hand side of (4.52) is given by

|Q(x′ − y′)−Q(x′)−Q(y′) +Q(0, 0)| = |Q̂(x′ − y′)− Q̂(x′)− Q̂(y′)|

where
Q̂(x) def

= Q(x)−Q(0)− x · ∇Q(0) .

It is then straightforward to show that |Q̂(x)| . ‖x‖4+α−δ
s . Therefore (4.52) follows

and we obtain (4.50). This completes the proof of the bound for integration of FL.
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The integration of FC can be bounded analogously. Note first that FC can
not simply be a function K, since if n = 1 by assumption of the lemma one
has α′ ∧ ᾱ′ < 0. In fact, there exist li ∈ (−4, 2) for 0 ≤ i ≤ n + 1, and∑n+1

i=0 li = h(C)− δ, such that one has

∣∣∣ ∫ FC dxdydzdz̄
∣∣∣ . ∫ n+1∏

i=0

ϕλ0 (zi)
n∏
i=0

Gli(zi, zi+1) dz (4.53)

where Gli are defined in (4.51) and the integration is over z0, ..., zn+1. The integra-
tion variables z0, zn+1 correspond to z, z̄ respectively, and z1, ..., zn correspond to
the incoming points, i.e. the points that have not been integrated. To show (4.53),
we integrate out all the outgoing points in the same way as above, except that we
only need to treat the two ends of the chain separately. Since the chain is symmetric
under reflection we only consider the end at the function g. If α′ = 0, by assumption
x1 is an incoming point, so we simply take l0 = 0; the factored function ϕλ0 (z0) can
be simply integrated out over z0 which gives a constant. If α′ < 0, then arguing
as above we can have the bound (4.53) with l0 = α′ ∈ (−4,−2] if y1 → x1, or
l0 = α′ + 2 ∈ (−2, 0] if x1 → y1.

As before we can then expand the right hand side and obtain a sum in which
each summand falls into the scope of (4.55) of Lemma 4.21 below.

Lemma 4.21 Given n real numbers {αi}ni=1, let gαi(x, y) be one of the three
functions: ‖x − y‖αis with αi > −4, or, ‖x‖αis or ‖y‖αis with αi > −2. Let
ᾱ =

∑n
i=1 αi. Then:

1) Assuming n ≥ 2 and ᾱ > −4(n − 1), with zn+1 identified with z1, the
following bound hold∫

(R3)n

n∏
i=1

gαi(zi, zi+1)
n∏
i=1

(
ϕλ0 (zi) dzi

)
. λᾱ . (4.54)

2) Assuming n ≥ 1, the following bound hold∫
(R3)n+1

n∏
i=1

gαi(zi, zi+1)
n+1∏
i=1

(
ϕλ0 (zi) dzi

)
. λᾱ . (4.55)

Proof. First of all we bound all the functions ϕλ0 (z) by λ−4 times the character-
istic function for the set Λ = {z : ‖z‖s ≤ λ}. We can therefore bound every
gαi(zi, zi+1) with positive αi by λαi and restrict the integration of all the zk over Λ.
The integral then factorises into integrations of the form∫ `−1∏

i=k

‖zi − zi+1‖αis dz

where 1 ≤ k ≤ ` ≤ n with αk, ..., α`−1 < 0, and the integration is one of the
following cases
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• an integration over zk, ..., z`;
• an integration over zk, ..., z`−1 with z` ≡ 0; or its “symmetric” case: an

integration over zk+1, ..., z` with zk ≡ 0;
• an integration over zk+1, ..., z`−1, where zk = z` ≡ 0;
• an integration over z1, ..., zn, with zn+1 identified with z1.

In the first case, one can successively integrate the variables using the assumption
αi > −4, for instance∫

Λ

`−1∏
i=k

‖zi − zi+1‖αis dzk . λαk+4
`−1∏
i=k+1

‖zi − zi+1‖αis

The second case follows in a similar way by starting to integrate from zk or zl that
is not the one fixed to be 0.

For the third case, we can integrate zk+1:∫
Λ
‖zk+1‖αks ‖zk+1 − zk+2‖

αk+1
s dzk+1 . ‖zk+2‖

ᾱk+1
s

where ᾱk+1
def
= αk + αk+1 + 4. If ᾱk+1 ≥ 0, then we bound the right hand side

above by λᾱk+1 , and the rest of the integral falls into the second case. If ᾱk+1 < 0,
then note that by the assumption of the Lemma, ᾱk+1 > −2 − 4 + 4 = −2, and
therefore we can proceed to integrate zk+2 in the same way as zk+1. We iterate this
procedure until either it reduces to the second case, or k + 2 = `− 1, namely zk+2

is the last integration variable and we are left with∫
Λ
‖z`−1‖

ᾱ`−2
s ‖z`−1‖

α`−1
s dz`−1

where ᾱ`−2 =
∑`−2

i=k αi + 4(`− k− 2). Then since ᾱ`−2 + α`−1 > −2− 2 = −4,
it is integrable and bounded by λ

∑`−1
i=k αi+4(`−k−1). Since there is an overall factor

λ−4(`−k−1) from all the functions ϕλ0 , one obtains the desired bound.
The last case happens only when gαi(x, y) = ‖x− y‖αis for every i ∈ {1, ..., n},

so that we are in a situation of a whole cycle consisting of n points. We can
integrate the variables one by one from z1 to zn−2 as in the third case, and the
condition αi > −4 guarantees integrability. Then we are left with an integration
of ‖zn−1 − zn‖ᾱ+4(n−2)

s , and by the assumption on ᾱ one has ᾱ+ 4(n− 2) > −4,
so we can integrate zn−1, zn over Λ to get a factor λᾱ+4n. With the overall factor
λ−4n from test functions we obtain the desired bound.

4.4 Moments of Ψkk
ε

We now turn to consider the objects defined in (4.2), whose m-th moment, with
m = 2N , can be expressed as

E|〈ϕλ0 ,Ψkl
ε 〉|m = E

[∣∣∣ ∫∫ ϕλ0 (x) (K(x− y)−K(−y)) Ψk
ε (x)Ψl

ε(y) dx dy
∣∣∣2N] .

(4.56)
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In this subsection we show the required bounds for the case k = l.
Similarly as in Subsection 4.1, we would like to rewrite the 2N -th power of

the integral as an integral over 4N variables, which again leads us to a situation
with 2m = 4N charges, and we denote by M a set of cardinality 2m indexing
them. Again, each charge i ∈ M comes with a sign σi ∈ {±}, an index hi ≡ k,
and a location xi ∈ R3. There are again m positive charges (corresponding to the
arguments of Ψk

ε ) and m negative charges (corresponding to the arguments of Ψ̄k
ε ).

Observe that in (4.56), x and y are both arguments of Ψk
ε , rather than one for

Ψk
ε and the other for Ψ̄k

ε as in the discussion for Ψkk̄
ε in Subsection 4.1. Due to this

difference, we abandon the notationR defined in Subsection 4.1, and consider in
this subsection the situation where the 2m charges are partitioned into a setR′ of
m disjoint oriented pairs such that there are N pairs containing two positive charges
and N pairs containing two negative charges.

Proof of Theorem 4.3 for Ψkk
ε . Recall our notation that for any pair e = {i, j} (not

necessarily inR′), we define a quantity Ĵ (ε)
e by

Ĵε,e
def
= Jε(xi − xj)σiσj .

It is straightforward to check that

E|〈ϕλ0 ,Ψkk
ε 〉|m = e−β

2m(k2−1)Qε(0)
∫

(R3)M

(∏
e∈R′

ϕλ0 (e↓)K(e)
)( ∏

e∈E(M )

Ĵ k2

ε,e

)
dx.

By the procedure in Section 3, with J chosen to be J k2

ε which certainly satisfies
(3.13), one obtains a pairing S for each configuration of the 2m charges. Therefore,

E|〈ϕλ0 ,Ψkk
ε 〉|m . ε

β2

2π
m(k2−1)

∑
S

∫ ( ∏
e∈R′

ϕλ0 (e↓)|K(e)|
)(∏

f∈S
Ĵ k2

ε,f

)
dx ,

where the sum runs over all possible positive-negative pairings of the 2m charges.
Note that this time, for every factorK(e) appearing in the integrand, the two charges
in e have the same sign, while in every factor Ĵε,f appearing above, the two charges
of the pair f have opposite signs. In other words, we have

S ∩R′ = ∅ ,

for every S in the summation. This makes the construction of the objects Ψkk

much easier. One can then bound the integral for each S. When k = 1, the
integration falls into the scope of Lemma 4.20 and the required bound for Ψ⊕ε
follows immediately. The bounds for Ψ⊕ε −Ψ⊕ε̄ and the independence of mollifiers
can be shown analogously as before. When k > 1, the arguments are the same as
for the case of Ψkk̄

ε and the moments converge to zero due to the factors ε.
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5 Second-order process bounds for k 6= l

This final section contains the proof of Theorem 4.3 for Ψkl̄
ε and Ψkl

ε with k 6= l.
These are only required for the full proof of Theorem 1.1, but are not needed for the
actual definition of the limiting process loosely described by (1.1).

We now prove Theorem 4.3 for Ψkl̄
ε and Ψkl

ε where k 6= l. As before, the m-th
moment can be expressed as integrals over 2m variables. Therefore we are now
again in a situation with 2m = 4N charges, and we still denote by M the set
of cardinality 2m. Each charge i ∈ M comes with a sign σi ∈ {±}, an index
hi ∈ {k, l}, and a location xi ∈ R3. There are exactly m positive charges and m
negative charges.

The current situation differs from that of Subsection 4.1 or 4.4 since indices of
charges vary. Therefore we should define new sets of pairs in place of R and R′
above.

• For the case of Ψkl̄
ε (resp. Ψkl

ε ), the 2m charges are partitioned intom disjoint
(oriented) pairs, and we call this set of pairsR1 (resp. R2), such that: there
are exactly N pairs in R1 of the type (−; l) → (+; k) 4, and the other N
pairs inR1 are of the type (+; l)→ (−; k); also, there are exactly N pairs in
R2 of the type (+; l)→ (+; k), and the other N pairs inR2 are of the type
(−; l)→ (−; k).

Proof of Theorem 4.3 for Ψkl
ε and Ψkl̄

ε with k 6= l. For any pair e = {i, j} (not nec-
essarily inR1,2), we can define the quantity

J̃ (ε)
e

def
= Jε(xi − xj) σiσjhihj . (5.1)

It is then straightforward to check that

E|〈ϕλ0 ,Ψkl̄
ε 〉|m = e

β2

2
m(k2+l2−2)Qε(0)

∫
(R3)M

( ∏
e∈R1

ϕλ0 (e↓)K(e)
) ∏
e∈E(M )

J̃ (ε)
e dx ,

(5.2)
and Ψkl

ε satisfies the same identity withR1 replaced byR2.
Our current situation is different from before and we can’t directly apply the

procedure in Section 3, because there is not a unique function which plays the role
of J in the procedure of Section 3 any more (we have instead multiple ones J hh′ε

with h, h′ ∈ {k, l}). In fact, when two charges of opposite signs become close, the
cancellations such as (3.19) in that procedure do not necessarily hold anymore since
these two charges could have different indices.

Given such a configuration of indexed 2m charges, we construct a new configu-
ration of un-indexed m(k + l) charges, in other words the charges all have index 1.
The new configuration is simply defined as follows. For each of the 2m charges,
assuming that it has a sign σ and an index h ∈ {k, l}, one regards it as h distinct

4In other words the outgoing point is negative and indexed by l, and the incoming point is positive
and indexed by k.
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charges, all having the sign σ and the same location. More formally, we denote by
M a set of cardinality m(k + l) and we fix a map π : M→M with the property
that |π−1(i)| = hi. For a ∈M we will make an abuse of notation and write again
xa for xπ(a) and σa for σπ(a). We remark that we do not mean to integrate over
these “m(k + l) space-time points”: at the end we will still integrate over only 2m
space-time points. We claim that the following bound holds

E|〈ϕλ0 ,Ψkl̄
ε 〉|m . ε

β̄m
2

(k+l−2)

∫
(R3)M

( ∏
e∈R1

ϕλ0 (e↓)|K(e)|
) ∏
{i,j}∈E(M)

Jε(xi−xj)σiσj dx

(5.3)
where the integration is still over x ∈ (R3)2m, but the second product is now over
pairs of un-indexed charges inM. The function Ψkl

ε satisfies the same bound with
R1 replaced byR2.

Remark 5.1 From now on we writeR as a shorthand for eitherR1 orR2, depend-
ing on whether we are considering the bound for Ψkl̄

ε or for Ψkl
ε .

To see that (5.3) holds, note that for every i ∈M with index h ∈ {k, l}, a new
factor Jε(xi−xi)

1
2
h(h−1) appeared in the integrand when compared to (5.2). In fact,

the factor in front of the integral in (5.2) is bounded by ε
β̄
2
m(k2+l2−2). For each i ∈

M with index h ∈ {k, l}, we associate to it a factor ε
β̄
2
h(h−1) . Jε(xi−xi)

1
2
h(h−1).

There are then a total of β̄m2 (k(k− 1) + l(l− 1)) factors of ε that are turned into the
new factors Jε(0) in this way. We are left with a power of ε which is precisely the
factor in front of the integral in (5.3).

The above product of Jε’s now falls again into the setting of Section 3 with the
“potential” function J simply being Jε, except that the points indexed byM are
not all distinct. This does not matter because one can just start for n sufficiently
small so that

An = {A1, A2, . . . , A2m}

where each of Ap contains k or l un-indexed charges with the same sign at the same

location. The bound
∣∣∣∏i 6=j∈A J σiσj (xi − xj)

∣∣∣ ≤ CJ̄Dn(A)
n then holds trivially for

each A ∈ An defined above and we can start the recursive construction of Section 3
from there. That procedure then provides a pairing S∗ forM and, writing

Iε
def
= ε

β̄m
2

(k+l−2)
∏

{i,j}∈E(M)

Jε(xi − xj)σiσj

as a shorthand, one has the bound

Iε . ε
β̄m
2

(k+l−2)
∏

{i,j}∈S∗

J −ε (xi − xj) . (5.4)

Note that on the right hand side, the total number of factors J −ε is m
2 (k + l), and

the total number of factors εβ̄ is m
2 (k+ l− 2). In the following, we will use the fact
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that εβ̄ . Jε to “cancel” some of the factors J −ε with the factors εβ̄ . We remark
that after such cancellations the number of factors J −ε will always be more by m
than the number of factors εβ̄ .

Given the pairing S∗, one can associate to it a graph G with vertex set M
and edges E in such way that {i, j} ∈ E if and only if there exist a ∈ π−1(i)
and b ∈ π−1(j) such that {a, b} ∈ S∗. Of course, one then automatically has
σiσj = −1, i.e. the vertices correspond to charges with opposite signs. Using the
bound εβ̄J −ε . 1, we immediately obtain from (5.4) the bound

Iε . εβ̄(|E|−m)
∏
{i,j}∈E

J −ε (xi − xj) . (5.5)

Since S? is a pairing ofM, every vertex in G has degree at least one, so that in
particular |E| ≥ m, but G is not necessarily connected.

The set of edges E interplays with the setR in the following way. In the case
of Ψkl̄

ε , every element inR = R1 is a pair of charges having opposite signs. On the
other hand, for the case Ψkl

ε , every element inR = R2 is a pair of charges having
the same sign. In both cases, every edge in E connects two points of opposite signs,
therefore E ∩R2 = ∅, while E ∩R1 may not be empty.

We now proceed to simplify the graph G in such a way that the bound (5.5)
still holds at each stage of the simplification. Since εβ̄J −ε . 1, we are allowed to
simply erase edges, but we want to do this in such a way that there are at least m
edges left at the end (so that the prefactor contains a positive power of ε) and so that
the resulting graph is as “simple” as possible. This simplification step is slightly
different between the bound on Ψkl̄

ε and that on Ψkl
ε .

For the case Ψkl
ε , let FG be a spanning forest of G. For each connected com-

ponent TG (which is a tree) of FG, let i be a leaf of TG, and j be the unique vertex
connected to i. We erase all edges of the form {j, k} where k is a vertex but not a
leaf of TG. We obtain in this way a connected component which is a star (consisting
of at least two points) centred at j. Iterating this procedure, we can reduce ourselves
to the case where every connected component ofG is a star with at least two vertices.
Denote the resulting graph by G1. Note that the condition that every vertex has
degree at least one still holds for G1, so that there are indeed still at least m edges
left.

In the case Ψkl̄
ε , we encounter one additional difficulty: since E ∩ R may be

non-empty in this case, the procedure described above may create a graph in which
one of the connected components is given by a single edge e which also happens to
belong toR. Going back to (5.3), this implies that the right hand side is bounded
by a quantity that containing a factor∫

|K(x→ y)| J −ε (x− y)ϕλ0 (y) dx dy .

Unfortunately, this quantity diverges as ε→ 0, so we should avoid such a situation.
The key observation is that since k 6= l, there does not exist any connected com-
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ponent of the original graph G consisting of only one edge inR, so we tweak the
procedure described above in order to avoid creating one.

As before, we consider a spanning forest FG of G, and we denote by E(FG)
the set of edges of FG. This time, we furthermore let G1 be the graph defined by
contracting all the edges in E(FG) ∩ R. More precisely, define an equivalence
relation ∼ on M by: i ∼ j if and only if {i, j} ∈ E(FG) ∩ R. Obviously each
equivalence class consists of either one or two points of M . For every i ∈M , write
[i] for its equivalence class. The contracted graph F̄G has the set of equivalence
classes as its set of vertices. for [i′] 6= [j′] ∈ F̄G, {[i′], [j′]} is an edge of F̄G if
and only if there exist i ∈ [i′], j ∈ [j′] and {i, j} is an edge of FG. Self loops of
the form {[i], [i]} are not considered as edges of F̄G. Note that F̄G is necessarily a
forest, with every tree component consisting of at least 2 points.

We then erase edges of the forest F̄G according to the same procedure as in the
case Ψkl

ε and denote by Ē1 ⊂ E(F̄G) the set of erased edges. This procedure turns
F̄G into a graph Ḡ1 consisting of disjoint stars, with each star consisting of at least
two points. Each edge e ∈ Ē1 has an obvious counterpart in E(FG), and we denote
by G1 ⊂ FG the graph obtained from FG by erasing these. (In particular, Ḡ1 is
obtained from G1 via the contraction given by ∼.) This graph has the following
properties:

• E(G1) ∩R = E(FG) ∩R, where E(G1) is the set of edges of G1.
• Every connected component T of G1 is a tree, and contracting edges in
E(T ) ∩R turns T into a star.

The two pictures below illustrates two possible configurations of such a connected
component T , where solid lines stand for edges in E(T ) and dashed lines stand for
edges inR.

iT

i′

j
k k′

i i′
(5.6)

Every connected component T ⊂ G1 correspondes to a connected component T̄ of
Ḡ1, which is a star by construction. Denote by [i] the centre of that star, choosing
any of its two vertices if it only consists of one edge. If [i] = {i, i′} ∈ E(T ) ∩R1,
then at least one of i and i′ necessarily have degree strictly larger than 1 in G1, for
otherwise T̄ would consist of only one point. If both have degree strictly larger than
1 (as in the right hand figure above), then we erase the edge {i, i′} and obtain two
connected components, both consisting of stars having at least two points. In this
way, we can reduce ourselves to the case when either [i] = {i}, or [i] = {i, i′} and
i′ is of degree 1 in G1. In either case, we call i the root of the connected component
T and we denote it by iT .

By construction, the root iT may connect to three types of edges:
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• an edge {iT , i′} ∈ R such that i′ has degree 1 - call it an edge of type i′;
• an edge {iT , j} /∈ R such that j has degree 1 - call it an edge of type j;
• an edge {iT , k} /∈ R such that k has degree 2, and there exists k′ ∈ T such

that {k, k′} ∈ E(T ) ∩R - call it an edge of type k.
See the left hand figure in (5.6) for an example showing each type of edge. Further-
more, it follows from the construction that iT is connected to at most one edge of
type i′ and to at least one edge of type j or k. Lemma 5.2 below then allows us to
integrate out all edges of type k. More precisely, if there exist edges of the type j
connected to iT , then we apply the first bound of Lemma 5.2 to integrate over the
variables corresponding to the vertices k and k′ of all the edges of type k connected
to iT . After performing such an integration, the bound (5.3) still holds, but with m
lowered by 1 and the graph G1 replaced by the new graph where the vertices k and
k′, as well as the edges {iT , k} and {k, k′} have been erased. Since the number of
edges is reduced by 2 and m is lowered by 1, we should indeed “use” one power of
εβ̄ , as required by Lemma 5.2. Note also that the bound λ2−β̄ appearing in the right
hand side of Lemma 5.2 is consistent with the bound (4.5) we are aiming for.

If on the other hand there is no edge of type j connected to iT , then we integrate
out all edges of type k except for one. If there then still remains an edge of type i′ we
apply the second bound of Lemma 5.2 to integrate the entire connected component.
Again, this preserves the bound (5.3) provided that we decrease m by 2 and remove
the entire connected components (now consisting of 3 edges and 4 vertices) from
G1.

Lemma 5.2 Let Kϕ(x, y) be a function that is given by either ϕλ0 (y)K(x→ y) or
ϕλ0 (x)K(y → x). Then,

εβ̄
∫
J −ε (x− y)

(
|Kϕ(y, z)|J −ε (y − z)

)
dydz . λ2−β̄ ,

εβ̄
∫
J −ε (x− y)

(
|Kϕ(w, x)|J −ε (w − x)

)(
|Kϕ(y, z)|J −ε (y − z)

)
. λ4−2β̄ .

where the second integral is over x, y, z and w. Both bounds hold with proportion-
ality constants that are uniform over ε, λ ∈ (0, 1], and the first bound is furthermore
uniform over x ∈ R3.

Proof. For the first bound, assume that Kϕ(y, z) = ϕλ0 (z)(K(y − z)−K(y)). We
bound the integral involving the twoK terms separately. For the term withK(y−z),
it suffices to bound εβ̄J −ε (y − z) . 1, then integrate over y, and finally use the fact
that

∫
‖x− z‖2−β̄s ϕλ0 (z) dz . λ2−β̄ . The latter bound is obtained by discussing the

two cases ‖x‖s < 3λ and ‖x‖s ≥ 3λ separately. For the term with K(y), bound
εβ̄J −ε (x − y) . 1, then integrate over y and follow the same estimate as above.
Assume on the other hand that Kϕ(y, z) = ϕλ0 (y)(K(z − y)−K(z)). For the term
with K(z − y), integrating over z yields a factor ε2−β̄ which, when multiplied by
εβ̄J −ε (x− y), can be bounded by ‖x− y‖2−β̄s . It then remains to integrate over y
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in the same way as above. For the term with K(z), we bound εβ̄J −ε (x − y) . 1
and then integrate over z and y similarly as above.

For the second bound, integrating out y, z in the same way as above would
result in a non-integrable function J −ε K of w − x. Instead, we first integrate out

the point in {x,w} at which ϕλ0 is not evaluated making use of a factor ε
β̄
2 . Since

the techniques are analogous with that used above we only give the result:

ε
β̄
2

∫
ϕλ0 (x′)

(
‖x′ − y‖2−

3
2
β̄

s + ‖y‖2−
3
2
β̄

s

)(
|Kϕ(y, z)|J −ε (y − z)

)
dx′ dy dz ,

where x′ is the variable in {w, x} that is not integrated. This integral can be bounded
in the analogous way as the first bound above.

In this way we obtain a graph G1 such that (5.5) still holds, and such that every
connected component of G1 is a star, which is the same situation as in the case Ψkl

ε .
For both cases of Ψkl

ε and Ψkl̄
ε , if one of these stars consists of more than 3 points

(i.e. has more than 2 leaves), we can perform an additional simplification as follows.
Denote by j the centre of the star and by X the set of its leaves. Among all the
distances ‖xi−xj‖s for i ∈ X , let k be such that ‖xk−xj‖s is the shortest one, and
pick an i ∈ X \ {k} such that {i, k} /∈ R, which is always possible since one has at
least two distinct choices for i. We then use the bound J −ε (xi−xj) . J −ε (xi−xk)
to change the edge {i, j} into the edge {i, k} and erase the edge {j, k} without
violating the bound (5.5). Since in the case of Ψkl̄

ε , i and k necessarily have the
same sign, the newly formed edge is such that {i, k} /∈ R.

The following picture shows an example of this operation, where each solid line
stands for an edge in the star, i.e. a factor J −ε .

j

k

i

⇒

j

k

i

(5.7)

Repeating this operation, we can reduce each star to disconnected components,
where each component has either two or three vertices. Again, the condition that
every vertex has degree at least one still holds, so that there are still at least m edges
left.

Summarising this discussion, we have just demonstrated that one can always
build a graph G? consisting of disconnected components, where each component is
a star having either two or three vertices, and such that (5.5) holds. Furthermore,
G? can be chosen in such a way that its edges E? = E(G?) satisfy E? ∩ R = ∅.
In order to deal with the components with three vertices, we define the function
Tε(x, y; z) def

= J −ε (x− z)J −ε (y − z). Let τ be the total number of appearances of
the factor Tε in (5.5), i.e. the number of connected components of the type
in G?. Note that τ is necessarily an even number since the total number of charges
is even and each such component involves 3 of them.
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The total number of edges in the graphG? is equal tom+ τ
2 , so that the prefactor

appearing in (5.5) is given by εβ̄τ/2. In other words, (5.5) contains exactly one
factor J −ε for each connected component of the type and one factor εβ̄/2Tε
for each connected component of the type .

We now return to the task of actually estimating the full right hand side of (5.3).
We can depict this by also drawing a dashed arrow for every occurrence of
K(e), i.e. for every edge inR. Consider now the graph Ĝ whose edges are the union
of the “plain” edges in G? and the “dashed” edges inR. If τ = 0, then the topology
of Ĝ is very simple: since the edges of G? are disjoint from those ofR and since
both sets of edges form a pairing of the vertex set M , it simply consists of a finite
number of cycles which alternate between plain and dashed edges, so that we are
in the situation of (4.48) of Lemma 4.20 with all the αi given by −β̄ ∈ (−4,−2].
Furthermore, each of these cycles involves at least 4 vertices as required by the
definition of FL there, so that the assumptions of Lemma 4.20 are satisfied and do
yield the required bound.

We therefore now consider all the possible ways in which the factors Tε(x, y; z)
can interplay with the kernels K in the graph Ĝ. The presence of these factors
can either create connections between cycles or it can terminate them and create
“ends”. For i = 1, ..., 6, denote by Vi = Vi(x, y, z, x̄, ȳ, z̄) the following functions
describing all possible ways of creating a connection, where a plain line connecting
two variables x and y denotes a factor (‖y − x‖s + ε)−β̄ , which is an upper bound
for J −ε (x− y), and a dashed arrow connecting x to y denotes a factor |K(x→ y)|.
We ignore the presence of the test functions ϕλ0 in (5.3) at this stage, but we will
restrict ourselves to the situation where the corresponding variables (i.e. the variables
located at the tip of a dashed arrow) are of parabolic norm less than λ.

V1:
z

x

x̄

y

ȳ

z̄

· · ·

· · · · · ·

V2:
z

x

x̄

y

ȳ

z̄

· · ·

· · · · · ·

V3:
z

x

x̄

y

ȳ

z̄

· · ·

· · · · · ·

V4:
z

x

x̄

y

ȳ

z̄

· · ·

· · · · · ·

V5:
z

x

x̄

y

ȳ

z̄

· · ·

· · · · · ·

V6:
z

x

x̄

y

ȳ

z̄

· · ·

· · · · · ·
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For example, one has

V1 = |K(x̄→ x)K(ȳ → y)K(z → z̄)| (‖z − x‖s + ε)−β̄(‖z − y‖s + ε)−β̄ ,

and similarly for the other Vi. Using the same graphical notation, the different
possible ways of creating an “ending” are described by the following functions Ei
with i ∈ {1, 2, 3, 4}:

E1:

· · ·

z

x
y

w

E2:

· · ·

z

x
y

w

E3:

· · ·

z

x
y

w

E4:

· · ·

z

x y
w

These are viewed as functions of x, y, z and w. Note that E3 and E4 only differ by
the direction of an arrow between x and w, while for E1 and E2 the direction of
that arrow is not important when bounding them.

In order to bound the contributions coming from these factors, we integrate
them over those variables that are depicted by a circle (as opposed to a black dot) in
the above pictorial representations. Note that these integration variables are never
located at the tip of a dashed arrow, so we do not need to take into account the
presence of the test functions ϕλ0 when we integrate them out. We further introduce
the notation V (x) as a shorthand for the function

∫
V1(x, y, z, x̄, ȳ, z̄) dx, where we

integrated out the x variable, V (x,y) for the function obtained from V by integrating
out both the x and the y variable, etc.

With this notation, we then have the following bounds:

Lemma 5.3 Let Vi and Ei be defined as above and assume that the variables
located at the tip of a dashed arrow are bounded by λ. Then, for β̄ ∈ [2, 8/3), one
has the bound

ε
β̄
2 V1 . |K(x̄→ x)| |K(ȳ → y)|

(
‖x− z‖−

3
2
β̄

s + ‖y − z‖−
3
2
β̄

s

)
|K(z → z̄)| ,

uniformly over ε, λ ∈ (0, 1], and ε
β̄
2 V2 is bounded by the same expression with

K(z → z̄) replaced by K(z̄ → z). We furthermore have the bounds

ε
β̄
2 V (y)

3 . λ2− β̄
2 |K(x̄→ x)| ‖x− z‖−β̄s |K(z̄ → z)| ,

ε
β̄
2 V (y,z)

4 ∨ ε
β̄
2 V (y,z)

5 . λ4− 3
2
β̄ |K(x̄→ x)| , ε

β̄
2 V (x,y,z)

6 . λ6− 3
2
β̄ ,

ε
β̄
2E(y)

1 ∨ ε
β̄
2E(y)

2 . λ2− β̄
2 ‖x− z‖−β̄s |K(x,w)| , ε

β̄
2E(x,z)

3 . λ4− 3
2
β̄ ,

ε
β̄
2E(z)

4 . λ2− β̄
2

(
‖y − x‖−β̄s + ‖y‖−β̄s

)
|K(w → x)| .
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Proof. In the proof [Hai13, Lemma 10.14] will be repeatedly applied without
explicitly mentioning it every time. The bound for V1 is then obtained using (4.47)
and the uniform bound

εβ̄/2(‖x‖s + ε)−β̄ . ‖x‖−β̄/2s . (5.8)

The bound for V2 follows in the same way.
The bound for V3 is obtained by using again (5.8), then integrating over y:∫

‖y − z‖−
β̄
2

s |K(ȳ − y)−K(−y)| dy . ‖ȳ‖2−
β̄
2

s . λ2− β̄
2 ,

where the last inequality uses the fact that ȳ is a variable located at the tip of a
dashed arrow (and therefore eventually arising as an argument of ϕλ0 ), so that we
assumed ‖ȳ‖s ≤ λ. Regarding the bound for V4, integrating over y results in a factor
‖ȳ− z‖2−β̄s + ‖z‖2−β̄s . Then one uses again (5.8) and applies (4.47), integrates over
z, and finally observes that 4− 3

2 β̄ > 0 and x, ȳ, z̄ all have norms bounded by λ by
assumption.

To obtain the bound for V5, one uses the bound

εβ̄/4(‖x− z‖s + ε)−β̄ . ‖x− z‖−3β̄/4
s , (5.9)

integrates out x using the fact that the function K arises as a difference, and
2− 3

4 β̄ ∈ (0, 1), and finally observe that x̄, ȳ, z are all within a distance λ from the
origin. Then one treats y in the same way as x.

To obtain the bound for V6, one uses again (5.9), then use gradient theorem for
K(x→ x̄) to obtain a factor ‖x̄‖s . λ times a function of x and x̄ of homogeneity
−3. Then integrate out x and obtain a function of homogeneity 1− 3

4 β̄ < 0. One
then treats y in the same way as x, and apply (4.47) to get a function of homogeneity
2 − 3

2 β̄ < 0. Finally, we integrate out z using that K arises as a difference, and
obtain a power 4− 3

2 β̄ ∈ (0, 1] of λ.
To obtain the bound for E1, we simply note that if we set ȳ = x in V3 divided

by K(x̄→ x), then the resulting function is equal to E1 after an obvious relabeling
of variables, except that z̄ → z in V3 while the corresponding arrow between x,w
in E1 can be pointing to either direction. Since the bound we obtained on V (y)

3 is
independent of ȳ and its proof did not use the fact that z is the tip of an arrow, it
immediately implies the required bound on E1.

The bound for E2 can be obtained analogously as that for E1 by taking ȳ = z
now in V3, and noting that the proof of the bound for V3 did not use the fact that x
is the tip of an arrow. The bound for E3 can be shown by setting z̄ = x in V4.

Regarding the bound for E4, note that one has

|K(y − z)−K(−z)| . ‖y‖2−
β̄
2
−δ

s

(
‖y − z‖

β̄
2
−4+δ

s + ‖z‖
β̄
2
−4+δ

s

)
for any small δ > 0. The integration over z involving the first term above is
performed by applying (5.8) to y − z to get a factor ‖y − z‖−β̄/2s , followed by a
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convolution. Regarding the second term above, apply (5.8) to x− z to get a factor

‖x− z‖−β̄/2s , then bound ‖x− z‖−β̄/2s ‖z‖
β̄
2
−4+δ

s . ‖x− z‖−4+δ
s + ‖z‖−4+δ

s , and
finally integrate over z. Noting that ‖y‖s . λ, we obtain the desired bound.

Remark 5.4 The bounds obtained in Lemma 5.3 all preserve the natural homo-
geneities associated to each of the expressions appearing there in the following
way. The natural homogeneity associated to εβ̄/2Vi is −6 − 3β̄/2, since K has
a singularity of order −2 at the origin. Furthermore, the scaling dimension of
parabolic space-time is 4, so that each integration should increase the homogeneity
by 4. For example, εβ̄/2V (y,z)

4 then has natural homogeneity 2 − 3β̄/2, which is
also the case for λ4−3β̄/2K.

For each of the Vi, the bound of Lemma 5.3 greatly simplifies the dependency
structure of the resulting integrand. In the case of V1–V3, the “triple junction” is
replaced by a “double junction” and an “endpoint”, while it is replaced by three
“endpoints” in the case of V4–V6. After applying the bounds of Lemma 5.3 to each
occurrence of Tε, one may obtain “singletons”, i.e., a factor of the type

∫
ϕλ0 (x) dx.

This happens for instance in the situation where the oriented edge x → x̄ of one
instance of V6 is the same as the oriented edge x̄→ x of one instance of V4. In this
case, the bounds in Lemma 5.3 yield a factor

∫
ϕλ0 (y) dy, where y is the integration

variable depicted by the vertex located at the end of that oriented edge. Since ϕλ0
integrates to a constant independent of λ, such “singletons” can simply be discarded.

As a consequence, we are left with only cycles and chains consisting of functions
with known homogeneities and ϕλ0 ·K’s in an alternative way (one ϕλ0 (x)K(y → x)
followed by such a homogeneous function, then followed by another ϕλ0 ·K etc.)
Here, a function in a cycle, or in a chain but not at the two ends of the chain, can be
one of the following three functions

ϕλ0 (x)K(y → x), ‖x− y‖−β̄s , ‖x− y‖−
3
2
β̄

s .

A function at an end of a chain can be one of the two functions

ϕλ0 (x)K(y → x), ϕλ0 (x) ‖x− y‖−β̄s ,

where, in both cases, the variable x is the one that terminates the chain. Note that
the bound for E4 gives a term λ2− β̄

2 ‖y‖−β̄s |K(w → x)|, and since there is a test
function ϕλ0 (y), we simply integrate over y and obtain an end of chain of the first
type.

Let us recapitulate now the situation so far. Recall that our aim is to prove
that the bound (4.5) holds, where the right hand side is given by λ to the power
(2 − β̄)m. The left hand side on the other hand is given by (5.3), which is also
naturally associated with the homogeneity (2− β̄)m, provided that one associates
homogeneity 1 to each power of ε, homogeneity −2 to each factor K, 4 to each
space-time integration variable, −4 to each factor ϕλ0 , and β̄ to each factor Jε,
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noting that the total homogeneity contributed from the product of factors Jε is
− β̄m

2 (k + l).
All of the subsequent simplifications (applying the procedure in Section 3;

applying the bound εβ̄J −ε . 1, applying Lemma 5.2, applying the bound (5.7), and
finally applying Lemma 5.3) retain this homogeneity. At this point, as a consequence
of the right hand sides of the bounds appearing in Lemma 5.3, our bound does not
contain any factor ε anymore. Summarising, the right hand side of (5.3) is bounded
by a sum such that each summand is of the type λγ (for some γ ≥ 0), multiplied by
a product of terms that have precisely the form of the left hand sides of (4.48) and /
or (4.49). The sum of the natural homogeneities (counted in the same way as above)
of these factors is precisely equal to λ(2−β̄)m−γ , so that the claim follows if we can
guarantee that the assumptions of Lemma 4.20 are satisfied for each factor. This is
because the powers h(L), h(C) of λ appearing in Lemma 4.20 are indeed equal to
the natural homogeneities associated with the corresponding integrals counted in
the same way as above.

Since we are considering the regime β̄ ∈ [2, 8
3 ), we have in particular 2 ≤

β̄ < 3β̄
2 < 4, which shows that the exponents αi appearing in the formulation of

Lemma 4.20 do indeed belong to (−4,−2] as required. Also, each cycle resulting
from the formation of “double junction” after applying Lemma 5.3 to V1, V2, V3

obviously has at least 4 points, so that the assumptions of Lemma 4.20 are indeed
satisfied. This immediately yields the required bound (4.5) with κ = 0. To conclude,
we note that just as in the bound for Ψkk̄

ε for k > 1, one can gain a factor εδ for
a sufficiently small δ > 0 by “pretending” that the homogeneity of Jε is slightly
worse than what it really is, so that the required moments of Ψkl̄

ε and Ψkl
ε actually

converge to zero as ε → 0. The same argument also covers the borderline case
β̄ = 2.
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no. 3, (2000), 499–541. doi:10.1007/s000230050005.

http://dx.doi.org/10.1007/s004400100153
http://dx.doi.org/10.1103/PhysRevLett.40.733
http://dx.doi.org/10.1007/s000230050005


SECOND-ORDER PROCESS BOUNDS FOR k 6= l 63

[DPD02] G. DA PRATO and A. DEBUSSCHE. Two-dimensional Navier-Stokes equations
driven by a space-time white noise. J. Funct. Anal. 196, no. 1, (2002), 180–210.
doi:10.1006/jfan.2002.3919.

[DPD03] G. DA PRATO and A. DEBUSSCHE. Strong solutions to the stochastic quantiza-
tion equations. Ann. Probab. 31, no. 4, (2003), 1900–1916.

[Fal12] P. FALCO. Kosterlitz-Thouless transition line for the two dimensional
Coulomb gas. Comm. Math. Phys. 312, no. 2, (2012), 559–609.
doi:10.1007/s00220-012-1454-7.

[Frö76] J. FRÖHLICH. Classical and quantum statistical mechanics in one and two
dimensions: two-component Yukawa- and Coulomb systems. Comm. Math.
Phys. 47, no. 3, (1976), 233–268.
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