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Abstract
The Metropolis-Adjusted Langevin Algorithm (MALA), originally introduced to
sample exactly the invariant measure of certain stochastic differential equations
(SDE) on infinitely long time intervals, can also be used to approximate pathwise
the solution of these SDEs on finite time intervals. However, when applied to an
SDE with a nonglobally Lipschitz drift coefficient, the algorithm may not have
a spectral gap even when the SDE does. This paper reconciles MALA’s lack of
a spectral gap with its ergodicity to the invariant measure of the SDE and finite
time accuracy. In particular, the paper shows that its convergence to equilibrium
happens at exponential rate up to terms exponentially small in time-stepsize. This
quantification relies on MALA’s ability to exactly preserve the SDE’s invariant
measure and accurately represent the SDE’s transition probability on finite time
intervals.

Keywords: Stochastic Differential Equations, Metropolis-Hastings algorithm, Weak Accuracy, Spec-
tral Gap, Geometric Ergodicity

Subject classification: 60J05 (65C30, 65C05)

1 Introduction

The Metropolis-Adjusted Langevin Algorithm (MALA), originally proposed by
Roberts and Tweedie [RT96b, RT96a], is a technique to sample exactly complex,
high-dimensional probability distributions. MALA fits the general framework of
the Metropolis-Hastings method [MRTT53,Has70] and can be viewed as a special
case of smart and hybrid Monte-Carlo algorithms [RDF78, DKPR87]. The main
idea of MALA is to obtain the proposal moves from the forward Euler discretiza-
tion of an SDE whose invariant measure is the target distribution one seeks to
sample. Besides being ergodic with respect to this invariant measure by construc-
tion, it was shown recently that MALA also captures the dynamical behavior of the
solutions to the SDE [BV10]. Therefore MALA has the nice feature that it can be
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used to estimate finite time dynamical properties along infinitely long trajectories
of ergodic SDEs.

Still, one issue with MALA is its theoretical rate of convergence, see for exam-
ple [RT96a, CWG+08]. When applied to measures with tails that are lighter than
Gaussian, it is known that MALA does not exhibit a geometric rate of convergence
to equilibrium even though the exact solution to the SDE does. The main reason is
that the proposal moves generated by forward Euler are not globally stable. Indeed
for any time-stepsize one can find an energy value above which the drift in forward
Euler gives proposed moves that increase the energy, in contrast to the exact drift
in the SDE which always centers the solution towards lower energy values. Since
higher energy values have a lower equilibrium probability weight, these proposed
moves are typically rejected. While these rejections ensure that MALA is ergodic,
at high energy values they prevent MALA from having a spectral gap.

The question we investigate in this paper is how severe this problem is in prac-
tical applications. Above we have argued that the main cause of the lack of geo-
metric convergence is the behavior of the chain at high energy values. Since the
chain is unlikely to reach such high energy values over finite time horizons, one
does not expect their influence to be significant. In practice, it is the behavior of
MALA on finite but very long times that is of interest, since this behavior is what
one would experience when running the algorithm on a computer. The goal of this
article is to quantify the non-asymptotic behavior of MALA.

The main result of this paper states that the convergence of MALA to its equi-
librium distribution happens at exponential rate up to terms exponentially small
in time-stepsize. This can be formulated in the following way, and will later be
reformulated rigorously as Theorem 3.1:

Claim. Let Pnh denote the n-step transition probability of MALA and µ its equi-
librium measure. Set P = P

b1/hc
h . Under natural assumptions on the target dis-

tribution µ(dx) = Z−1 exp(−U (x)) dx (see Assumption 2.1), for h small enough
and for all x ∈ Rn satisfying U (x) < E0 there exist positive constants % ∈ (0, 1),
C1(E0) and C2 independent of h such that the bound

‖P k(x, ·)− µ‖TV ≤ C1(E0)(%k + e−C2/h1/4
) , (1.1)

holds for all k ∈ N.

Observe from (1.1) that the distance of MALA to equilibrium is bounded by
the sum of two terms. The first term converges to 0 exponentially fast and essen-
tially gives the speed of convergence to equilibrium for the exact solution to the
underlying SDE. The second term on the other hand remains bounded away from
0 as k → ∞. This term arises from the lack of a spectral gap in MALA, but its
important feature is that it is exponentially small in h. Therefore, its importance
will be negligible in applications for most practical purposes.

The crux of the proof is the demonstration that MALA inherits some of the
convergence properties of the solution to the underlying SDE up to exponentially
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small terms. This proof relies on finite time accuracy of MALA, ergodicity of
MALA with respect to the exact equilibrium measure of the SDE, and an applica-
tion of Harris’ theorem. In fact, if MALA did not exactly preserve the equilibrium
measure of the SDE, the second term in (1.1) would not be exponentially small in
the time-stepsize. For example, if MALA was replaced simply by the uncorrected
Euler approximations to the SDE, then one would expect the size of the error term
to be O(h).

The estimate (1.1) does not imply that MALA does not converge to the equilib-
rium of the SDE. In fact, it is known [RT96a] that the TV distance between MALA
and the equilibrium measure vanishes in the limit as k →∞. However, this asymp-
totic property provides no insight on the nonasymptotic behavior of MALA which
is the main focus of this paper. In fact, even though the upper bound in (1.1) does
not converge to zero in the limit k → ∞, it is the sharpest known bound on finite
time intervals.

The power 1/4 in the exponentially small term in (1.1) is due to the second-
order weak accuracy of the proposal moves generated by the forward Euler scheme,
and the conditions we impose on the potential energy. In particular, it can be
traced back to the appearance of the factor U4(x) appearing in the statement of
Lemma 5.3. Under the assumptions made in this paper, this power is sharp.

At the technical level, the main novelty of the proof of our result is twofold.
First, we prove finite-time accuracy of MALA in the total variation norm in our
setting. While accuracy in total variation of the forward Euler algorithm is known
[BT95], it is essential for our analysis to cover situations where the drift of the un-
derlying SDE is not globally Lipschitz continuous. Furthermore, we need to keep
track of the dependency of the error estimates with respect to the initial condition.
The main idea for this result is to first obtain an error estimate in some weaker
Wasserstein distance, and then to strengthen this into a total variation estimate by
making use of the regularising properties of the one-step transition probabilities of
the forward Euler algorithm. Second, we show that on a very large set, MALA
admits a Lyapunov function of the type Φ(x) = exp(θU (x)) for suitable θ > 0.
SinceU is allowed to grow much faster than quadratically at infinity, this Lyapunov
function fails to be integrable with respect to any Gaussian measure, including of
course the transition probabilities of forward Euler. While this leads to technical
complications, having such a fast-growing Lyapunov function is a crucial ingredi-
ent of our proof, as this is the key to obtaining bounds that are exponentially small
in h.

The remainder of this paper is organized as follows. In Section 2, we will
state the main assumptions required for the proof of our main result. Along the
way, we recall that MALA is ergodic. In Section 3, the proof of the main result
is provided. This proof relies crucially on comparison with a ‘patched’ MALA
algorithm, where the chain is reflected at the boundaries of a large level set. The
accuracy of this patched algorithm is investigated in Section 4. Finally, Section 5
shows that Φ is a Lyapunov function for the MALA algorithm (at least on a large
domain), which provides the strong a priori bounds required for our analysis.
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2 A short overview of the MALA algorithm

2.1 Overdamped Langevin equations
In this paper we focus on overdamped Langevin dynamics on an energy landscape
defined by a potential energy function U ∈ C4(Rn,R):

dY = −∇U (Y )dt+
√

2β−1dW , Y (0) = x ∈ Rn . (2.1)

Here ∇U : Rn → Rn denotes the gradient of the function U , W is a standard
n-dimensional Wiener process, or Brownian motion, and β > 0 is a parameter
referred to as the inverse temperature. Under certain regularity conditions on the
potential energy stated in Assumption 2.1 below, the solution to (2.1) is geometri-
cally ergodic with an invariant probability measure µ that possesses the following
density π(x) with respect to Lebesgue measure [Has80, RT96a]:

π(x) = Z−1 exp(−βU (x)) (2.2)

where Z =
∫
Rn exp(−βU (x))dx.

Before stating assumptions on the potential energy, let us fix some notation. For
a function G ∈ Cr(Rn,R) and an integer r > 1, let ∇G and DrG be the gradient
and the rth derivative of G, respectively. Let | · | denote the Euclidean vector norm
and ‖ · ‖ the Frobenius norm. Let L denote the generator of (2.1) defined for any
G ∈ C2(Rn,R) as

LG(x) def
= −∇U (x) · ∇G(x) + β−1∆G(x) . (2.3)

For any t ≥ 0, let Qt denote the transition probabilities of Y . We will generally
make an abuse of notation and use the same symbol for a Markov transition kernel
and the associated Markov operator. That is, for any measurable bounded function
ϕ : Rn → R, we define Qtϕ : Rn → R as

(Qtϕ)(x) def
=

∫
Rn
Qt(x, dy)ϕ(y) .

Throughout this article, we will make the following assumptions on the potential
energy. Not all of these assumptions will be required for every statement, but we
find it notationally convenient to have a single set of assumptions to refer to.
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Assumption 2.1. The potential energy U ∈ C4(Rn,R) satisfies the following.

A) One has U (x) ≥ 1 and, for any C > 0 there exists an E > 0 such that

U (x) ≥ C(1 + |x|2) ,

for all U (x) > E.

B) There exist constants c ∈ (0, β), d > 0 and E > 0 such that

∆U (x) ≤ c|∇U (x)|2 − dU (x) , (2.4)

for all x ∈ Rn satisfying U (x) > E.

C) The Hessian of U is bounded from below in the sense that there exists C ≥ 0
such that

D2U (x)(η,η) ≥ −C|η|2 ,

uniformly for all x,η ∈ Rn.

D) There exists a constant C > 0 such that the first four derivatives of the
potential energy U ∈ C4(Rn,R) are bounded by the potential energy itself,
that is∥∥D4U (x)

∥∥ ∨ ∥∥D3U (x)
∥∥ ∨ ∥∥D2U (x)

∥∥ ∨ |∇U (x)| ≤ CU (x) ,

for all x ∈ Rn. Recall, the function ∨ returns the argument with the maxi-
mum value.

Remark 2.2. It follows immediately from Assumption 2.1 (A) above that exists a
constant Ec > 0 such that

µ({U (x) ≥ E}) ≤ e−
βE
2 , (2.5)

for all E > Ec. Indeed, it suffices to note that

µ({U (x) ≥ E}) =
1

Z

∫
U (x)≥E

e−βU (x)dx ≤ e−3βE/4

Z

∫
U (x)≥E

e−βU (x)/4dx

≤ Ce−3βE/4 < e−βE/2 ,

where the second to last inequality follows from point (A) above, and the last
inequality holds for E sufficiently large.

Remark 2.3. The only place where we actually use the fact that U (x) grows like
|x|2 is in the proof of Lemma 5.3 below. On the other hand, the statement of that
approximation result would certainly be true also for potentials that grow slower
at ∞. However, such potentials would not be of interest for the present work.
Indeed, if the potential grows slower than |x|2 and no slower than |x|, then MALA
can be shown to be exponentially ergodic, so that the results in this article would
be superfluous. If the potential grows slower than |x|, then MALA will not be
exponentially ergodic because the true solution of the SDE will not be either.
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Remark 2.4. Assumption 2.1 (C) is equivalent to the existence of C > 0 such that
∇U satisfies the one-sided Lipschitz property

〈−∇U (x) +∇U (y),x− y〉 ≤ C|x− y|2, ∀ x,y ∈ Rn .

All of these conditions are satisfied, for example, if U is smooth and U (x) ≈
|x|α with α > 2 for large values of x. However, they also allow for potentials that
have very asymmetric growth at infinity, and they even allow for the potential to
grow at exponential speed. As a consequence of Assumption 2.1 (B), one has the
following drift condition on the transition probability of the solution.

Lemma 2.5. Let Θ: R+ → R be a C2 function such that there exist u0 > 0 and
α > 0 such that Θ(u) > 0, Θ′(u) > 0, uΘ′(u) > αΘ(u), and Θ′′(u) ≤ (β−c)Θ′(u)
for u > u0. (Here, the constant c is the one appearing in (2.4) above.) Then, there
exist positive constants KΘ and γΘ such that

L(Θ ◦ U) ≤ KΘ − γΘ (Θ ◦ U) .

In particular,

(Qt(Θ ◦ U ))(x) ≤ e−γΘtΘ(U (x)) +
KΘ

γΘ
(1− e−γΘt) (2.6)

holds for every t ≥ 0 and for every x ∈ Rn.

Proof. Using the specific form of L, it follows that for U (x) > u0, we have

L(Θ ◦ U) = (Θ′ ◦ U)LU +
1

β
(Θ′′ ◦ U)|∇U |2

=
((Θ′′ ◦ U)

β
− (Θ′ ◦ U)

)
|∇U |2 +

(Θ′ ◦ U)

β
∆U

≤ 1

β
((Θ′′ ◦ U )− (β − c)(Θ′ ◦ U )) |∇U |2 − d

β
(Θ′ ◦ U)U

≤ −dα
β

(Θ ◦ U) .

The result then follows at once from the fact that the condition uΘ′(u) > αΘ(u)
implies that Θ(u)→∞ as u→∞.

Remark 2.6. The condition of Lemma 2.5 holds for example for Θ(u) = exp(θu),
provided that θ < β − c. It also holds for Θ(u) = u` for every ` > 0 and for
Θ(u) = u` exp(θu) with the same constraints on ` and θ. This will be useful in
the sequel. Throughout this article, we will write Φ(x) = exp(θU (x)) for some
unspecified θ < β − c, so that

LΦ ≤ K − γΦ . (2.7)

When the precise value of θ matters, we will denote the corresponding function by
Φθ.
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As a consequence of the ellipticity of the SDE (2.1), one has the following
minorization condition on the solution’s transition probability.

Lemma 2.7. For every t > 0 and E > 0, there exists ε > 0 such that

‖Qt(x, ·)−Qt(y, ·)‖TV ≤ 2(1− ε) , (2.8)

for all x,y satisfying U (x) ∨ U (y) < E.

Remark 2.8. Here and in the sequel, the total variation distance between two prob-
ability measures is defined as

‖µ− ν‖TV = 2 sup
A
|µ(A)− ν(A)| ,

where the supremum runs over all measurable sets. In particular, the total variation
distance between two probability measures is two if and only if they are mutually
singular.

Proof of Lemma 2.7. It follows from the ellipticity of the equations that there ex-
ists a function q(t,x,y) smooth in all of its arguments (for t > 0) such that the
transition probabilities are given by Qt(x, dy) = q(t,x,y) dy. Furthermore, q is
strictly positive (see, e.g., Lemma 2.2 of [Tal02]). Hence, by the compactness of
the set {x : U (x) < E}, one can find a probability measure η and a constant
ε > 0 such that,

Qt(x, ·) > εη(·)

for any x satisfying U (x) < E. This condition implies the following transition
probability Q̃t is well-defined:

Q̃t(x, ·) =
1

1− ε
Qt(x, ·)−

ε

1− ε
η(·)

for any x satisfying Φ(x) < E. Therefore,

‖Qt(x, ·)−Qt(y, ·)‖TV = (1− ε)‖Q̃t(x, ·)− Q̃t(y, ·)‖TV

for all x,y satisfying U (x) ∨U (y) < E. Since the TV norm is bounded by 2, one
obtains the desired result.

Harris’ theorem can now be invoked to conclude the transition probability of
the true solution converges at a geometric rate to its equilibrium measure. For
the reader’s convenience, we state the precise version used in this article. For a
proof, see the monograph [MT09], or [HM08] for a shorter and somewhat more
constructive version. Harris’ theorem essentially states that if a Markov chain P
on an arbitrary (Polish) state space X admits a Lyapunov function such that its
sublevel sets are ‘small’, then it is exponentially ergodic. More precisely, Harris’
theorem applies to any Markov chain that satisfies the following assumptions:
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Assumption 2.9 (Drift Condition). There exists a function Φ : X → R+ and
constants γ ∈ (0, 1) and K ≥ 0, such that the Markov chain P satisfies

(PΦ)(x) ≤ γΦ(x) +K , (2.9)

for all x ∈ X .

Assumption 2.10 (Associated ‘Minorization’ Condition). There exists a constant
α ∈ (0, 1) so that the Markov chain P satisfies

‖P(x, ·)− P(y, ·)‖TV ≤ 2(1− α) , (2.10)

for all x,y ∈ Rn with Φ(x) + Φ(y) ≤ 4K/(1 − γ), where K and γ are the
constants from Assumption 2.9.

Note that in this statement, we have normalised the total variation distance
between two probability measures in such a way that it is equal to 2 if and only if
the measures are mutually singular. One then has:

Theorem 2.11 (Harris’ theorem). Suppose a Markov chain P(x, dy) on Rn satis-
fies Assumptions 2.9 and 2.10. Then there exists a unique invariant measure µ for
P and there are constants C > 0 and % < 1, both depending only on the constants
γ, K and α appearing in the assumptions, such that

‖Pn(x, · )− µ‖TV ≤ C%nΦ(x) ,

for any x ∈ Rn.

With this tool at hand, we obtain the following exponential ergodicity result for
the solutions to (2.1):

Theorem 2.12. Let U be a potential function satisfying Assumption 2.1. Then, for
every θ ∈ (0, β − c) there exist positive constants δ ∈ (0, 1) and C such that

‖Qkt (x, ·)− µ‖TV ≤ Cδk exp(θU (x)) (2.11)

for all t > 0 and all x ∈ Rn.

Proof. According to Remark 2.6, for every θ ∈ (0, β − c), exp(θU ) is a Lyapunov
function for the Markov chainQt. Moreover, by Lemma 2.7 it satisfies a minoriza-
tion condition on every sublevel set of U . Hence, Harris’ theorem implies that
(2.11) holds.

Next we recall some integration strategies for (2.1) and summarize their proper-
ties. In particular, we discuss to what extent these strategies preserve the geometric
rate of convergence of the true solution.
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2.2 Forward Euler
Let the time-stepsize h be given, set tk = hk for k ∈ N, and consider the following
forward Euler discretization of (2.1):

X̃k+1 = X̃k − h∇U (X̃k) +
√

2β−1(W (tk+1)−W (tk)) , X̃0 = x ∈ Rn .
(2.12)

Here X̃k should be viewed as an approximation to Y k
def
= Y (tk). The iteration

rule (2.12) defines a Markov chain that possesses a transition probability with the
following smooth, strictly positive transition density:

qh(x,y) = (4πβ−1h)−n/2 exp

(
−|y − x+ h∇U (x)|2

4β−1h

)
. (2.13)

Hence, the chain is irreducible with respect to Lebesgue measure.
If ∇U is globally Lipschitz and h is small enough, forward Euler (2.12) can

be shown to be exponentially ergodic with respect to a probability distribution that
is a first-order approximant to the equilibrium distribution of the SDE (2.1). This
property is typically established using a Talay-Tubaro expansion of the global weak
error of forward Euler [TT90].

When ∇U is nonglobally Lipschitz, forward Euler is a transient Markov chain
for any h > 0. In fact, all moments of forward Euler are unbounded on long time-
intervals for any initial condition x ∈ Rn. To be precise for any integer ` ≥ 1 and
for any h > 0

Ex|X̃k|` →∞ as k →∞ , (2.14)

where Ex denotes the expectation conditional on X̃0 = x, see e.g. [MSH02,
Tal02]. This instability implies that an equilibrium trajectory of forward Euler
does not sample any probability distribution. As is well known in the literature, a
Metropolis-Hastings method can stochastically stabilize forward Euler.

2.3 MALA Algorithm
A Metropolis-Hastings method is a Monte-Carlo method for producing samples
from a known probability distribution [MRTT53, Has70]. The method generates a
Markov chain from a given proposal Markov chain as follows. A proposal move
is computed according to the proposal chain and accepted with a probability that
ensures the Metropolized chain is ergodic with respect to the given probability dis-
tribution. Here we shall focus on the Metropolized forward Euler integrator defined
in terms of the equilibrium density π (2.2) and the transition density qh (2.13).

Given a time-stepsize h and input stateXk the algorithm calculates a proposal
move using the forward Euler updating scheme in (2.12):

X?
k+1 = Xk − h∇U (Xk) +

√
2β−1(W (tk+1)−W (tk)) , (2.15)

and accepts this proposal with a probability

αh(x,y) = 1 ∧ qh(y,x)π(y)
qh(x,y)π(x)

. (2.16)
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In other words, if ζk ∼ U (0, 1) is an i.i.d. sequence of uniformly distributed random
variables, the update is defined as:

Xk+1 =

{
X?

k+1 if ζk < αh(Xk,X
?
k+1)

Xk otherwise
(2.17)

for k ∈ N. To be consistent with the literature, we will refer to the Metropolized
forward Euler integrator as the Metropolis-adjusted Langevin algorithm (MALA)
[RT96b]. We emphasize that MALA is a special case of the smart and hybrid
Monte-Carlo algorithms which are older and more general sampling methods, see
[RDF78, DKPR87]. By construction, MALA preserves the invariant measure µ of
(2.1). This implies for any g : Rn → R,

Eµ(g(Xk)) =

∫
Rn
g(x)µ(dx), ∀ k ∈ N . (2.18)

Here Eµ denotes expectation conditioned on the initial distribution of the integrator
being the equilibrium distribution of the SDE (2.1):

Eµ(g(Xk)) =

∫
Rn

Ex(g(Xk))µ(dx), X0 = x ∈ Rn .

Moreover, it is quite standard to show that MALA gives rise to an ergodic Markov
chain. Indeed, denoting by Ph the transition probabilities defined by (2.17), one
has

Theorem 2.13 (Roberts and Tweedie, [RT96a]). LetU be a potential satisfying As-
sumption 2.1. For any h > 0 the k-step transition probability of MALA converges
to µ in the total variation metric on probability measures, that is

lim
k→∞

‖P kh (x, ·)− µ‖TV = 0 ,

for all x ∈ Rn.

If ∇U is globally Lipschitz and h is small enough, MALA is geometrically
ergodic (see Theorem 4.1 of [RT96a]). However, if ∇U is nonglobally Lipschitz,
MALA is not geometrically ergodic even though the solution to the SDE is (see
Theorem 4.2 of [RT96a]). Specifically, one can prove the following.

Theorem 2.14 (Roberts and Tweedie, [RT96a]). Let U be a potential satisfying
Assumption 2.1. If

lim inf
|x|→∞

|∇U (x)|
|x|

>
2β

h
(2.19)

then MALA operated at time-stepsize h is not geometrically ergodic.
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If (2.19) holds, the tail of the equilibrium density is no heavier than Gaussian.
For example, if U (x) = x4/4 then

lim inf
|x|→∞

|∇U (x)|
|x|

=∞ .

In this case the theorem states MALA is not geometrically ergodic, in contrast to
the true solution of the SDE. The main purpose of this article is to argue that, up
to errors that are exponentially small in the time-step size h, the convergence of
the transition probabilities of MALA towards equilibrium still takes place at an
exponential rate. The next section gives a precise statement of this result, as well
as an overview of its proof.

3 Main Results

We now state and prove the main result of the paper. Throughout this section,
Ph will denote the one-step transition probabilities of the MALA algorithm as de-
fined in Section 2.3 above. We will also use throughout this section the shorthand
notation P = P

b1/hc
h for the evolution of MALA over one unit of ‘physical time’.

Theorem 3.1. Let U be a potential function satisfying Assumption 2.1, and let P
be as above. Then, there exists δ̄ ∈ (0, 1) and, for everyE0 > 0, there exist positive
constants C1, C2, and hc(E0) such that MALA’s distance to stationarity satisfies

‖P k(x, ·)− µ‖TV ≤ C1Φ(x)(δ̄k + e−C2/h1/4
) ,

for all k ∈ N, all stepsizes h < hc, and all x satisfying U (x) < E0.

To quantify MALA’s distance to stationarity, ‖P k(x, ·) − µ‖TV, we adopt a
patching argument. The point of the patching argument is to use compactness to
boost a local property of MALA to a global property. The main ingredient of
this argument is a version of MALA with reflection on the boundaries of certain
compact sets.

To introduce this patched version of MALA, set Rh = {x : U (x) < Eh},
where Eh = E?h

−1/4 for a constant E? yet to be determined. The ‘patched
MALA’ algorithm is then defined as a Metropolized version of forward Euler with
a reflecting boundary condition at the boundary of Rh. This boundary condition
is enforced by setting the target distribution in MALA to be the equilibrium dis-
tribution µ conditional on being in Rh. This distribution possesses the following
density with respect to Lebesgue measure:

π̄(x) = Z−1
h e−βU (x)1Rh(x) , (3.1)

where Zh =
∫
Rh

exp(−βU (x))dx and 1Rh is the indicator function for the set
Rh ∈ Rn.
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To be more precise, given a time-stepsize h and input state X̄k ∈ Rh, the
algorithm calculates a proposal move using the forward Euler updating scheme
in (2.12):

X̄
?
k+1 = X̄k − h∇U (X̄k) +

√
2β−1(W (tk+1)−W (tk)) , (3.2)

and accepts this proposal with a probability

ᾱh(x,y) =

{
1 ∧ qh(y,x)π(y)

qh(x,y)π(x) if x ∈ Rh
0 otherwise .

(3.3)

In other words, if ζk ∼ U (0, 1) is an i.i.d. sequence of uniformly distributed random
variables, the update is defined as:

X̄k+1 =

{
X̄

?
k+1 if ζk < ᾱh(X̄k, X̄

?
k+1)

X̄k otherwise
(3.4)

for k ∈ N. We stress that patched MALA always remains in Rh since it rejects all
moves to Rch. Let P̄h denote the transition probability of patched MALA. Let µ̄
denote the invariant measure of P̄h with density π̄. The invariant measures of P̄h
and Ph are related by:

µ̄(A) =
µ(A ∩Rh)
µ(Rh)

(3.5)

for all measureable sets A. Set P̄ = P̄
b1/hc
h . With this notation we are ready to

prove Theorem 3.1.

Proof of Main Result. This proof relies on Lemmas 3.2 and 3.3 provided below.
Using the triangle inequality, we bound the distance of P k to stationarity by

‖P k(x, ·)− µ‖TV ≤ ‖P k(x, ·)− P̄ k(x, ·)‖TV + ‖P̄ k(x, ·)− µ̄‖TV + ‖µ̄− µ‖TV
def
= I1 + I2 + I3 . (3.6)

We now bound all three terms separately.
Lemma 3.2 bounds I1 in (3.6) using a coupling between MALA and patched

MALA, and the coupling characterization of the total variation distance. The
lemma states for every E0 > 0 there exist positive constants C̃1 and hc such that

I1 = ‖P k(x, ·)− P̄ k(x, ·)‖TV ≤ C̃1Φ(x)e−βEhk , (3.7)

for all h < hc and every x satisfying U (x) < E0.
Lemma 3.3 bounds I2 in (3.6) by using Harris’ theorem, Theorem 2.11. This

lemma relies on a drift and minorization condition for patched MALA. The lemma
states that patched MALA is exponentially ergodic, that is, for every δ̄ ∈ (δ, 1) and
E0 > 0, there exist positive constants C3 and hc such that

I2 = ‖P̄ k(x, ·)− µ‖TV ≤ C3Φ(x)δ̄k , (3.8)
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for all h < hc and for all x satisfying U (x) < E0.
To bound I3, we use the characterisation of µ̄ in (3.5) and the definition of the

total variation distance, to get

‖µ̄− µ‖TV = 2µ(Rch) ≤ 2e−βEh/2 , (3.9)

where we used Remark 2.2 to obtain the inequality.
Combining the bounds (3.7), (3.8) and (3.9) yields

‖P k(x, ·)− µ‖TV ≤ C̃1Φ(x)e−βEhk + C3Φ(x)δ̄k + 2e−βEh/2 . (3.10)

Since the total variation distance between a Markov chain and its invariant measure
is nonincreasing in the TV norm, the linear dependence on k can be eliminated as
follows. Set k = dh−1/4e in (3.10) to obtain:

C̃1Φ(x)e−βEhdh−1/4e+ C3Φ(x)eln(δ̄)dh−1/4e + 2e−βEh/2 .

Since Eh ∝ h−1/4, there exist positive constants C1 and C2 such that

‖P k(x, ·)− µ‖TV ≤ C1Φ(x)(e−C2/h1/4
+ δ̄k) .

for all k ∈ N and every x satisfying U (x) < E0. This observation concludes the
proof.

The next lemma bounds I1 in (3.6) using the drift condition obtained in Lemma 3.5.

Lemma 3.2. Provided that E? is sufficiently small there exist positive constants
C1, C2 and hc such that

sup
t∈[0,T ]

‖P bt/hch (x, ·)− P̄ bt/hch (x, ·)‖TV ≤ C1Φ(x)e−C2/h1/4
(1 + T )

for all x ∈ Rh, every h < hc, and every T > 0.

Proof. The measures Ph(x, ·) and P̄h(x, ·) are not the same, even for a point x ∈
Rh, since their invariant distributions are different. In particular, patched MALA
rejects all proposed moves to Rch. However, if the input state and proposed move
are in Rh, the acceptance probabilities of the two chains are the same. Hence, if
we initiate the two chains in Rh, and drive them by the same realization of noise,
we obtain a coupling between the two chains such that they are identical up until
the first time MALA hits Rch. Based on this observation, we obtain a bound on the
total variation difference between the transition probabilities of the two chains in
the following way.

Let {Xk} and {X̄k} be instances of the Markov chains with respective tran-
sition probabilities Ph and P̄h, driven by the same realization of the noise W , the
same realisation of the acceptance variables ζk, and with identical initial condi-
tions X0 = X̄0 = x ∈ Rh. As argued above, we then have Xk = X̄k for k ≤ n
provided that the first time MALA hits Rch is greater than n. Let τh denote the first
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time thatXk hits Rch. The coupling characterization of the total variation distance
implies that,

‖Pnh (x, ·)− P̄nh (x, ·)‖TV ≤ 2Px(Xn 6= X̄n) ≤ 2Px(τh ≤ n) .

At this stage, one of our main ingredients is the fact that the function Φ(x) =
exp(θU (x)) is a Lyapunov function for the MALA algorithm, see Proposition 5.2
below. The probability of MALA first hitting Rch before time n can therefore be
expressed as

Px(τh ≤ n) =
n∑
k=1

Px(Φ(Xk) > eθEh) ≤ e−θEh
n∑
k=1

ExΦ(Xk)

where we made use of Chebychev’s inequality. We now note that we can apply
Proposition 5.2 since Eh < h−1/2 for h sufficiently small. Since Eh = E?h

−1/4,
we can make E? sufficiently small so that there exists some γ̄ > 0 such that

ExΦ(X1) ≤ e−γ̄hΦ(x) +Kh .

Combining this with the previous bound, we obtain

Px(τh ≤ n) ≤ e−θEh
n∑
k=1

(e−γ̄khΦ(x) +
Kh

1− e−γ̄h
) .

Summing over k and using the fact that Eh ∝ h−1/4 yields the existence of
positive constants C1 and C2 such that

Px(τh ≤ n) ≤ C1Φ(x)e−C2/h1/4
(1 + T ) , (3.11)

which is indeed the desired result.

The following lemma proves a geometric rate of convergence for the Markov
chain P̄ . Recall Rh = {x : U (x) < Eh}. The key tool used is Harris’ theorem,
Theorem 2.11.

Lemma 3.3. For every δ̄ ∈ (δ, 1), there exist positive constants C and hc such that

‖P̄ k(x, ·)− µ‖TV ≤ CΦ(x)δ̄k

for all x ∈ Rh and h < hc. In particular, δ̄ is independent of time-stepsize.

Proof. To prove this result, we use once again Harris’ theorem. The verification
of its conditions for the Markov chain P̄ is precisely the content of Lemmas 3.4
and 3.5 below.

In the next lemma, a minorization condition for patched MALA is derived using
finite time accuracy of patched MALA in the TV norm (see Lemma 4.1).
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Lemma 3.4. Let U be a potential function satisfying Assumption 2.1. Let ε be
the constant appearing in the minorization condition of the true solution (see
Lemma 2.7), and let P̄ be as above. For every E > 0 and ε̄ ∈ (0, ε), there ex-
ists a positive constant hc such that

‖P̄ (x, ·)− P̄ (y, ·)‖TV ≤ 2(1− ε̄) , (3.12)

for all x,y satisfying U (x) ∨ U (y) ≤ E and h ≤ hc.

Proof. According to Lemma 2.7, the bound (3.12) holds when P̄ is replaced by
Q1, the transition probability for the true solution Y at time one. Combining this
with Lemma 4.1 below, we thus obtain

‖P̄ (x, ·)− P̄ (y, ·)‖TV ≤ 2(1− ε) + 2 sup
Φ(x)≤E

‖P̄ (x, ·)−Q1(x, ·)‖TV

≤ 2(1− ε) + C(E)
√
h .

Choosing h sufficiently small so that C(E)
√
h < 2(ε− ε̄), the claim follows.

In the next lemma, we derive a drift condition for patched MALA using its
single-step accuracy in representing the Lyapunov function Φ. Deriving this drift
condition requires a generalization of Theorem 7.2 in [MSH02] to Lyapunov func-
tions that are neither globally Lipschitz nor essentially quadratic.

Lemma 3.5. Let U be a potential function satisfying Assumption 2.1 and let γ be
the constant appearing in the drift condition (2.7). For every γ̄ ∈ (0, γ/2), there
exist positive constants E? and hc such that

Ex
(
Φ(X̄b1/hc)

)
≤ e−γ̄Φ(x) +K , (3.13)

for all x ∈ Rh and all h < hc.

Proof. We will actually show that

Ex
(
Φ(X̄1)

)
≤ (1− γ̄h)Φ(x) +Kh ,

from which the required bound follows by induction, noting that U (X̄k) ≤ Eh for
every k > 0 by construction.

We decompose the expression that we want to bound as

Ex
(
Φ(X̄1)

)
= Ex

(
Φ(X̄1) , X̄?

1 ∈ Rh
)

+ Φ(x)Px
(
X̄

?
1 ∈ Rch

)
.

Since

Ex
(
Φ(X̄1) | X̄?

1 ∈ Rh
)

= Ex(Φ(X1) |X?
1 ∈ Rh) ≤ Ex(Φ(X1)) ,

it follows that

Ex
(
Φ(X̄1)

)
≤ Ex(Φ(X1))Px

(
X̄

?
1 ∈ Rh

)
+ Φ(x)Px

(
X̄

?
1 ∈ Rch

)
.
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SinceEh < h−1/2 for h sufficiently small, we can apply Proposition 5.2 to the first
term in this expression, thus obtaining

Ex
(
Φ(X̄1)

)
≤
(

1 + Px
(
X̄

?
1 ∈ Rh

)
(e−γh − 1 + CE4

?h)
)

Φ(x) +Kh .

By making E? sufficiently small, the requested bound now follows, provided that
we can find a lower bound on Px

(
X̄

?
1 ∈ Rh

)
that is arbitrarily close to 1

2 for small
values of h.

Recall that we have the identity

Px
(
X̄

?
1 ∈ Rh

)
= (4πβ−1h)−n/2

∫
Rh

exp

(
−|y − x+ h∇U (x)|2

4β−1h

)
dy .

Using (a+ b)2 ≤ 2a2 + 2b2 and Assumption 2.1 (D), it follows that we can bound
this by

Px
(
X̄

?
1 ∈ Rh

)
≥ (4πβ−1h)−n/2 exp

(
−β

hE2
h

2

)∫
Rh

exp

(
−β |y − x|

2

2h

)
dy

= 2−n/2 exp

(
−βh

1/2E2
?

2

)
P(ξ + x ∈ Rh) , (3.14)

where ξ denotes a Gaussian random variable with distribution N (0, β−1h). In
order to bound this term, denote by n(x) the unit vector opposite the direction of
the gradient of U at x, i.e. n(x) = −∇U (x)/|∇U (x)|. We claim that for every
δ > 0, there exists C > 0 and E0 > 0 such that for every unit vector m with
〈m,n(x)〉 ≥ δ, we have U (x+ κm) ≤ U (x), provided that κ ≤ CU (x)−1/2 and
U (x) ≥ E0.

Indeed, consider the function f (κ) = U (x+ κm)−U (x). Then f is a smooth
function such that f (0) = 0 and f ′(0) ≤ −δ|∇U (x)| ≤ −C1δ

√
U (x) for some C1

by Assumption 2.1. Furthermore, one has f ′′(κ) ≤ C2U (x) for some C2, as long
as f (κ) ≤ 0. Combining these, we see that f ′(κ) < 0 (and therefore f (κ) < 0) for
every κ < δC1/(C2

√
U (x)), as claimed.

For every x ∈ Rh, we now define a set A(x) ⊂ Sn−1 by A(x) = {m :
x + κm ∈ Rh ∀κ ≤ E−1

h }. As a consequence of our previous claim, for any
α < 1

2 there exists hc such that if h < hc, one has infx∈Rh |A(x)|/|Sn−1| ≥ α,
where | · | denotes the surface measure on the sphere. Denoting byB(x, r) the ball
of radius r centered at x, we conclude that

P(ξ + x ∈ Rh) ≥ P(ξ + x ∈ Rh ∩B(x, E−1
h )) ≥ αP(|ξ| ≤ h1/4E−1

? ) ,

where we used Assumption 2.1 (E) to obtain the last inequality. By making h suf-
ficiently small, this expression can be made arbitrarily close to α, and the prefactor
in (3.14) can be made arbitrarily close to 1, thus yielding the required bound.
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4 Accuracy of the Patched MALA Algorithm

When all of the derivatives of U are bounded, accuracy in the total variation dis-
tance for forward Euler has been derived using a Talay-Tubaro expansion and
Malliavin integration by parts [BT95]; see also [TT90]. In this section we treat
the situation where the derivatives of U are unbounded. The order of accuracy ob-
tained below is not sharp, but the proof is constructive and is sufficient for MALA
to inherit a minorization condition from the true solution. To sharpen the estimate,
retrace the steps of the proof in [BT95] and replace boundedness of the coefficients
by some coercivity.

Lemma 4.1. Let U be a potential satisfying Assumption 2.1. Let P̄h and Qh de-
note the transition probability of patched MALA and the true solution, respectively.
Then, for every T > 0, there exists C(T ) > 0 such that for all h < 1, the bound

‖P̄ bt/hch (x, ·)−Qbt/hch (x, ·)‖TV ≤ C(T )
√
hU3(x) , (4.1)

is valid for all x ∈ Rn and all t ∈ [0, T ].

Proof. This estimate is a consequence of Lemmas 4.2 and 4.6 below. Let P̃h denote
the transition probability of forward Euler (2.12). The triangle inequality implies
that,

‖P̄ bt/hch (x, ·)−Qbt/hch (x, ·)‖TV ≤

‖P̄ bt/hch (x, ·)− P̃ bt/hch (x, ·)‖TV + ‖P̃ bt/hch (x, ·)−Qbt/hch (x, ·)‖TV .

According to Lemma 4.6, the first term is bounded by C(T )
√
hU3(x). According

to Lemma 4.2, the second term is bounded by C(T )
√
hU2(x). Hence, the desired

error estimate is obtained.

Lemma 4.2. Let U be a potential satisfying Assumption 2.1. Let P̃h andQh denote
the transition probability of forward Euler and the true solution, respectively. Then,
for every T > 0, there exists C(T ) > 0 such that for all h < 1

‖P̃ bt/hch (x, ·)−Qbt/hch (x, ·)‖TV ≤ C(T )
√
hU2(x) ,

for all x ∈ Rn and all t ∈ [0, T ].

Proof. We bound the TV distance between forward Euler and the true solution
using Lemmas 4.3, 4.4, and 4.5 as follows. Using the triangle inequality, we split
the quantity that we wish to bound as

‖P̃ bt/hch (x, ·)−Qbt/hch (x, ·)‖TV ≤ ‖P̃ bt/hch (x, ·)− (P̃h ◦Q
bt/hc−1
h )(x, ·)‖TV

+ ‖(P̃h ◦Q
bt/hc−1
h )(x, ·)−Qbt/hch (x, ·)‖TV

def
= I1 + I2 . (4.2)
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We can rewrite the first term of (4.2) as

I1 = Ex‖P̃h(X̃bt/hc−1, ·)− P̃h(Y bt/hc−1, ·)‖TV ,

which, using Lemma 4.4, is bounded by

I1 ≤
1√

2β−1h
Ex(|X̃bt/hc−1 − Y bt/hc−1| ∧ 1)

+

√
h

2β−1
Ex(|∇U (X̃bt/hc−1)−∇U (Y bt/hc−1)| ∧ 1) .

Strong accuracy of forward Euler in a bounded metric (see Lemma 4.3) then yields

I1 ≤ C
√
hU2(x) .

The second term of (4.2) is bounded by

I2 ≤ Ex(‖P̃h(Y bt/hc−1, ·)−Qh(Y bt/hc−1, ·)‖TV) .

From Lemma 4.5 and (2.7), it follows that I2 is bounded by ChU2(x), and the
claim follows.

Even though forward Euler is numerically unstable for drifts that are not glob-
ally Lipschitz, one can prove the following ‘strong accuracy’ for forward Euler in
a bounded metric. As the proof shows, boundedness of the metric plays the role of
stability of the numerical scheme.

Lemma 4.3. Let U be a potential satisfying Assumption 2.1. Let X̃ and Y denote
forward Euler and the true solution, respectively. Then, for every T > 0 there
exists C(T ) > 0 such that

Ex(|X̃bt/hc − Y (bt/hch)| ∧ 1) ≤ C(T )hU2(x) ,

holds for all x ∈ Rn, all h ≤ 1, and all t ∈ [0, T ].

Proof. The proof goes by induction over the number of steps, so let us consider
one single step first. We then have

X̃1 − Yh = X̃0 − Y 0 −
∫ h

0
(∇U (X̃0)−∇U (Y s)) ds ,

so that

|X̃1 − Yh|2 = |X̃0 − Y 0|2 − 2h〈X̃0 − Y 0,∇U (X̃0)−∇U (Y 0)〉

+ 2

∫ h

0
〈X̃0 − Y 0,∇U (Y s)−∇U (Y 0)〉 ds

+
∣∣∣∫ h

0
(∇U (X̃0)−∇U (Y s)) ds

∣∣∣2 .
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Together with Remark 2.4, this implies that there exists a constant C such that

|X̃1 − Yh|2 ≤ (1 + Ch)|X̃0 − Y 0|2 + 2h2|∇U (X̃0)−∇U (Y 0)|2

+ 2

∫ h

0
〈X̃0 − Y 0,∇U (Y s)−∇U (Y 0)〉 ds

+ 2h

∫ h

0
|∇U (Y s)−∇U (Y 0)|2 ds . (4.3)

Note now that if η is any unit vector in Rn, we have the identity

〈∇U (Y s)−∇U (Y 0), η〉 =

∫ s

0
L〈∇U, η〉(Y r) dr +

√
2

β

∫ s

0
D2U (Y r)(η, dW r) .

Since ‖D2U‖ ≤ CU and |L〈∇U, η〉| ≤ CU2, it then follows from Remark 2.6
that there exists a constant C such that

E|∇U (Y s)−∇U (Y 0)|2 ≤ CsU4(Y 0) , ∀s ≤ 1 ,

|E〈η,∇U (Y s)−∇U (Y 0)〉| ≤ CsU2(Y 0) , ∀s ≤ 1 .

On the other hand, one also has the bound

|∇U (X̃0)−∇U (Y 0)|2 ≤ C|X̃0 − Y 0|2 exp(C|X̃0 − Y 0|)U2(Y 0) ,

which follows from Assumption 2.1 (D) and Lemma 5.1 below. In the case where
|X̃0 − Y 0| ≤ 1, this yields

|∇U (X̃0)−∇U (Y 0)|2 ≤ h−1|X̃0 − Y 0|2 + hCU4(Y 0) .

Inserting these bounds into (4.3), we see that there is C > 0 such that if |X̃0 −
Y 0| ≤ 1, then

E|X̃1 − Yh|2 ≤ (1 + Ch)|X̃0 − Y 0|2 + Ch3U4(Y 0) .

Since on the other hand, one obviously has E(|X̃1 − Yh|2 ∧ 1) ≤ 1, we conclude
that

E(|X̃1 − Yh|2 ∧ 1) ≤ (1 + Ch)(|X̃0 − Y 0|2 ∧ 1) + Ch3U4(Y 0) .

The requested bound now follows from the a priori bounds on the solution Y t
given by Remark 2.6.

Lemma 4.4. Let U be a potential satisfying Assumption 2.1. Let P̃h denote the
transition probability of forward Euler. For every h < 1 and for all x,y ∈ Rn,

‖P̃h(x, ·)− P̃h(y, ·)‖TV ≤
1√

2β−1h
|x− y|+

√
h√

2β−1
|∇U (x)−∇U (y)| .
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Proof. Recalling Pinsker’s inequality:

‖N (0, σ)−N (x, σ)‖TV ≤
|x|√
σ

,

we see that the claim follows from the fact that

P̃h(x, ·) = N (x− h∇U (x), 2β−1hI) ,

where I denotes the identity matrix.

Lemma 4.5. Let U be a potential satisfying Assumption 2.1. Let P̃h andQh denote
the transition probability of forward Euler and the true solution, respectively. Then,
there exists C > 0 such that, for every h < 1, the bound

‖P̃h(x, ·)−Qh(x, ·)‖TV ≤ ChU2(x) ,

holds for all x ∈ Rn.

Proof. We write E0 = U (x) as a shorthand. The bound is trivial if E2
0h ≥ 1,

so we can and will assume in the sequel that E2
0h ≤ 1. Recall that the transition

probabilities Qh are generated by the solutions at time h to

dY = −∇U(Y ) dt+
√

2β−1dW , Y (0) = x , (4.4)

whereas the transition probabilities P̃h of forward Euler can be interpreted as the
solution at time h to

dX̃ = −∇U(x) dt+
√

2β−1dW , X̃(0) = x . (4.5)

Therefore, the required quantity can be bounded from above by the total variation
distance between the measures generated by (4.4) and (4.5) on pathspace between
times 0 and h. Since only the drift differs in the SDEs (4.4) and (4.5), Girsanov’s
theorem can be used to quantify the distance between the laws of the solutions at
time h to (4.4) and (4.5).

We first replace the potential U by a modified potential Ũ which is bounded,
together with all of its derivatives. Indeed, let ϕ : R+ → R be a smooth increasing
function such that ϕ(x) = x for x ≤ 2 and ϕ(x) = 3 for x ≥ 4. With this definition
at hand, we set

Ũ (y) = U (x)ϕ(U (y)/U (x)) .

It then follows from Assumption 2.1 (D) that there exists a constant C such that

|Ũ (y)|+ ‖DŨ (y)‖+ ‖D2Ũ (y)‖ ≤ CE0 , (4.6)

uniformly over all y ∈ Rn.
Before we proceed, we argue that if we define

dỸ = −∇Ũ(Ỹ ) dt+
√

2β−1dW , Ỹ (0) = x , (4.7)
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then, one has P(∃t ≤ h : Y (t) 6= Ỹ (t)) ≤ CE2
0h, so that we can replace U

by Ũ in (4.4) without any loss of generality. In order to show this, we note that
Lemma 2.5 yields the existence of a constant K such that M (t) = U (Y (t)) −
Kt− U (x) is a supermartingale with quadratic variation process

〈M,M〉(t) = 2β−1

∫ t

0
|∇U (Y (s))|2 ds .

Furthermore, for E0 sufficiently large (independently of h), one has

P(∃t ≤ h : Y (t) 6= Ỹ (t)) ≤ P(sup
t≤h

Mt ≥ 1
2U (x)) .

It then follows from the exponential martingale inequality [RY99, p. 153] that, for
every Λ > 0, one has the bound

P(∃t ≤ h : Y (t) 6= Ỹ (t)) ≤ exp(−U2(x)/(8Λ)) + P(〈M,M〉(h) ≥ Λ) .

For δ > 0 sufficiently small, the second term in this expression can then be
bounded by

P(〈M,M〉(h) ≥ Λ) ≤ exp(−
√
δΛh−1)E exp

√
δh−1〈M,M〉(h)

≤ exp(−
√
δΛh−1)

1

h

∫ h

0
E exp

√
2β−1δ|∇U (Y (s))|2 ds

≤ exp(−
√
δΛh−1)

1

h

∫ h

0
E exp(C

√
δU (Y (s))) ds

≤ C exp(−
√
δΛh−1) exp(C

√
δU (x)) .

Here, we have first used Chebychev’s inequality, followed by Jensen’s inequality,
then Assumption 2.1 (D), and finally Lemma 2.5 with δ small enough. Setting
Λ = U2(x)h−1/3, it follows that for h small enough we actually have P(∃t ≤
h : Y (t) 6= Ỹ (t)) ≤ 2 exp(−ch−1/3) for some positive constant c, which is much
better than needed.

We now proceed by comparing the true solution and forward Euler for Ũ . De-
note now by Qh the measure on pathspace generated by (4.7), by Ph the mea-
sure on pathspace generated by solutions to (4.5), and byWh Wiener measure on
C([0, h],Rd) with starting point x. It then follows from Girsanov’s theorem that

dQh
dWh

(W ) = Z−1
Q exp

(
− 1√

2β−1
(Ũ (W h)− Ũ (x))− β

∫ h

0
G(W t) dt

)
,

dPh
dWh

(W ) = Z−1
P exp

(
− 1√

2β−1
∇Ũ (x)T (W h − x)− hβ|∇Ũ (x)|2

)
,

for some normalisation factors ZP and ZQ, where the function G is given by

G(x) = |∇Ũ (x)|2 −∆Ũ (x) .
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(See for example [Elw82, Theorem 11A].) In particular, we have

dQh
dPh

(W ) = Z−1
h exp

(
− 1√

2β−1
(Ũ (W h)− Ũ (x)−∇Ũ (x)T (W h − x))

−
∫ h

0
β
(
G(W t)− |∇Ũ (x)|2

)
dt
)

def
= Z−1

h exp(Dh(W )) ,

where the normalisation constant Zh is given by

Zh =

∫
exp(Dh) dPh .

By (4.6), there exists a constant C > 0 such that the bound

|Dh(W )| ≤ CE0(|W h − x|2 + E0h) , (4.8)

holds for every W . As an immediate consequence, for every c > 0, there exists a
constant C > 0 such that∣∣∣log

∫
exp(cDh) dPh

∣∣∣ ≤ CE2
0h

for every h ≤ 1. In particular, one has Zh = 1 + O(E2
0h) and similarly for Z−1

h .
Denote now by Bh the set

Bh = {W : |Dh(W )| ≥ 1} .

It follows from the bound (4.8) that Ph(Bh) ≤ C exp(−c/(hE0)) for some c, C >
0 and for hE2

0 ≤ 1.
We conclude that

‖Qh − Ph‖TV =

∫
|1− Z−1

h exp(Dh)| dPh ≤ C
∫
Bch

|Dh| dPh +O(E2
0h)

+

∫
Bh

|1− Z−1
h exp(Dh)| dPh

≤ O(E2
0h) +

√
Ph(Bh)
Z2
h

(∫
exp(2Dh) dPh − 1

)
= O(E2

0h) ,

as required. In the last step, we have used the Cauchy-Schwarz inequality.

Lemma 4.6. For every T > 0, there exists a C(T ) > 0 such that

sup
t∈[0,T ]

‖P̄ bt/hch (x, ·)− P̃ bt/hch (x, ·)‖TV ≤ C(T )
√
hU3(x)

holds for every h < 1 and for every x ∈ Rn.
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Proof. Denote by X̃k the solution to the forward Euler algorithm after k steps and
by Xk the solution to the MALA algorithm. Since both agree until the first time
that one step is rejected, it follows from the coupling inequality that we have the
bound

‖P̄nh (x, ·)− P̃nh (x, ·)‖TV ≤ 2
n−1∑
k=0

Ex|1− αh(X̃k, X̃k+1)| .

At this stage, we note that since αh ∈ [0, 1], it follows from Lemma 5.5 that for
every α > 0 there exists a C > 0 such that the bound

Ex|1− αh(x, X̃1)| ≤ Ch3/2(U (x) ∧ αh−1/2)3 ,

holds for all x ∈ Rn. This is simply because this bound is trivial for U (x) >
1/
√
h.

Making α sufficiently small and combining this with Corollary 5.7, we then
obtain

Ex|1− αh(X̃k, X̃k+1)| ≤ Ch3/2Ex(U (X̃k) ∧ αh−1/2)3

≤ Ch3/2(U3(x) +Khk) ,

for some constant K > 0. The claim now follows at once by summing over k.

5 Local Drift Conditions

This section shows that the single-step accuracy of MALA and forward Euler im-
ply that these algorithms preserve Lyapunov functions of the true solution locally.
We refer to this property of a numerical method as a local drift condition. In the
lemmas that follow local drift conditions are derived for the MALA and forward
Euler algorithms. Deriving such drift conditions requires adapting Theorem 7.2
of [MSH02] to Lyapunov functions that are neither globally Lipschitz nor essen-
tially quadratic. Still, the proofs in this section are strongly inspired by the results
in [MSH02].

A key technical issue addressed below is that the natural Lyapunov function of
the true solution, namely Φ(x) = exp(θU (x)) grows so fast that it is not in general
integrable with respect to a Gaussian measure. In particular, it is not integrable
with respect to the transition probabilities of forward Euler. Nevertheless, we will
show that the expectation of Φ under one step of MALA is finite and close to the
expectation of Φ under the true solution. Integrability of Φ with respect to the tran-
sition probability of MALA is a consequence of MALA preserving an equilibrium
measure whose tails are lighter than Gaussian.

A first remark which will be useful in this section is that under our assumptions
on the potential U , it does not behave ‘worse than exponential’ in the following
sense:

Lemma 5.1. There exists C > 0 such that for every x,y ∈ Rn, we have

|U (x)| ≤ |U (y)| exp(C|x− y|) .
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Proof. It suffices to differentiate the function t 7→ U((1 − t)x + ty), invoke As-
sumption 2.1 (D), and apply Gronwall’s inequality over the interval t ∈ [0, 1].

Proposition 5.2. Set Φ(x) = exp(θU (x)). Let X1 denote MALA after one step.
Then there exist positive constants C and θ ∈ (0, β) such that the bound

Ex(Φ(X1)) ≤ (e−γh + CU4(x)h2)Φ(x) +
K

γ
(1− e−γh)

holds for all x ∈ Rn satisfying U (x) < h−1/2.

Proof. Denoting by Y (h) the true solution after time h, we write

Ex(Φ(X1)) = Ex(Φ(Y (h))) + Ex(Φ(X1)− Φ(Y (h))) .

We know from (2.7) that Φ is a Lyapunov function for the true solution, and hence,

Ex(Φ(X1)) ≤ e−γhΦ(x) +
K

γ
(1− e−γh) + |Ex(Φ(X1)− Φ(Y (h)))| .

The approximation result between MALA and the true solution given in Lemma 5.3
below then implies the desired result.

The following lemma states that the single step error of MALA in preserving
Φ isO(h2) with an error constant that depends on Φ(y) and U4(y) evaluated at the
initial condition.

Lemma 5.3. Set Φ(x) = exp(θU (x)). Let X1 and Y (h) denote MALA and the
true solution after one step, respectively. Then there exist positive constants C and
θ ∈ (0, β) such that the bound

|Ex(Φ(X1)− Φ(Y (h)))| ≤ CU4(x)Φ(x)h2 (5.1)

holds for all x ∈ Rn satisfying U (x) < h−1/2.

Remark 5.4. Note in particular that the bound (5.1) implies that ExΦ(X1) < ∞.
This is not obvious a priori since Φ(x) grows faster than exp |x|2 at infinity. As a
consequence, this expectation is infinite under the proposal moves.

Proof. Applying Itô’s formula twice to the exact solution yields

Ex(Φ(Y (h))) = Φ(x) + h(LΦ)(x) + h2

∫ 1

0
(1− t)Ex

(
L2Φ(Y (ht))

)
dt , (5.2)

where L denotes the generator as in (2.3).
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SettingX(s) = x+ s(X?
1 − x), we obtain by a simple application of Taylor’s

formula the following identity for the application of one step of MALA:

Ex(Φ(X1)) = Φ(x) (5.3)

+ Ex(DΦ(x)(X?
1 − x)αh(x,X?

1))

+
1

2
Ex
(
D2Φ(x)(X?

1 − x,X?
1 − x)αh(x,X?

1)
)

+
1

6
Ex
(
D3Φ(x)(X?

1 − x,X?
1 − x,X?

1 − x)αh(x,X?
1)
)

+
1

4!

∫ 1

0
(1− t)4Ex

(
D4Φ(X(t))(X?

1 − x)4αh(x,X?
1)
)
dt .

(Here we interpret D4Φ(y)(x)4 as being the quadrilinear form D4Φ(y) applied to
(x,x,x,x).) Subtracting (5.2) from (5.3) and using the definition of the forward
Euler proposal move to collect this difference in powers of h, we obtain:

Ex(Φ(X1)− Φ(Y (h))) = h1/2I1/2 + hI1 + h3/2I3/2 + h2I2 +R2 . (5.4)

Here we have introduced:

I1/2 =
√

2β−1Ex(αh(x,X?
1)DΦ(x)ξ)

I1 =− θΦ(x)|∇U (x)|2Ex(αh(x,X?
1)− 1)

+ β−1Ex
(
D2Φ(x)(ξ, ξ)(αh(x,X?

1)− 1)
)

I3/2 =−
√

2β−1Ex
(
D2Φ(x)(ξ,∇U (x))αh(x,X?

1)
)

+
1

6

(
(2β−1)3/2Ex

(
D3Φ(x)(ξ, ξ, ξ)αh(x,X?

1)
))

I2 =
1

2

(
Ex
(
D2Φ(x)(∇U (x),∇U (x))αh(x,X?

1)
))

− 1

6

(
Ex
(
D3Φ(x)(∇U (x), (−

√
h∇U (x) +

√
2β−1ξ)2)αh(x,X?

1)
))

− 1

6

(√
2β−1Ex

(
D3Φ(x)(ξ,∇U (x),−

√
h∇U (x) +

√
2β−1ξ)αh(x,X?

1)
))

− 1

6

(
2β−1Ex

(
D3Φ(x)(ξ, ξ,∇U (x))αh(x,X?

1)
))

+

∫ 1

0
(1− t)Ex

(
L2Φ(Y (ht))

)
dt

R2 =
1

4!

∫ 1

0
(1− t)4Ex

(
D4Φ(X(t))(X?

1 − x)4αh(x,X?
1)
)
.

We now bound each of these terms separately. The estimates that follow will often
rely on the hypothesis that U (x) < 1/

√
h together with Assumption 2.1 (D) which

implies that the `th derivative of Φ satisfies:

‖D`Φ(x)‖ ≤ CU `(x)Φ(x) , (5.5)
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for ` = 1, 2, 3, 4.
Since the term I1/2 in (5.4) involves an odd function of ξ, one can rewrite it as

I1/2√
2β−1

= Ex(αh(x,X?
1)DΦ(x)ξ) = Ex((αh(x,X?

1)− 1)DΦ(x)ξ) .

Using (5.5), we infer that

|I1/2| ≤ CU (x)Φ(x)Ex
(
|1− αh(x,X?

1)|2
)1/2 ≤ C̃U3(x)Φ(x)h3/2 ,

where we used Lemma 5.5 in the last inequality. One can similarly bound I3/2

since it also involves an odd function of ξ. The term I1 is of the form where
Lemma 5.5 can be directly applied after using the Cauchy-Schwarz inequality and
Assumption 2.1 (D). The terms in I2 without integrals are bounded in a similar
fashion, but without the need to invoke Lemma 5.5.

Note now that
|L2Φ(y)| ≤ CU4(y)Φ(y) ,

which is a Lyapunov function for the true solution by Remark 2.6, so that the
integrand appearing in I2 is bounded by:

|Ex
(
L2Φ(Y (r))

)
| ≤ CEx

(
U4(Y (r))Φ(Y (r))

)
≤ CU4(x)Φ(x) . (5.6)

Finally, we describe how to bound R2 in (5.4). It follows from (5.5) that

R2 =
1

4!

∣∣∣∣∫ 1

0
(1− t)4Ex

(
D4Φ(X(t))(X?

1 − x)4αh(x,X?
1)
)∣∣∣∣

≤ CEx
(
U4(X(s))Φ(X(s))|X?

1 − x|4αh(x,X?
1)
)

,

so that our claim follows if we can show that the bound

EU4(X(s))Φ(X(s))|X?(ξ)− x|4αh(x,X?(ξ)) ≤ CU4(x)Φ(x)h2 , (5.7)

holds uniformly for s ∈ [0, 1], where ξ is a normally distributed random variable.
Here, we have introduced the shorthand notation

X?(ξ) = x− h∇U (x) +
√

2hβ−1ξ .

Note that for all x satisfying U (x) < 1/
√
h, we have the bound

|X?(ξ)− x| ≤ C
√
h(1 + |ξ|) . (5.8)

Hence, to prove (5.7) it suffices to show that

E
(
(1 + |ξ|4)U4(X(s))Φ(X(s))αh(x,X?(ξ))

)
≤ CU4(x)Φ(x) .

We can then use the Cauchy-Schwarz inequality to get rid of the factor (1 + |ξ|4),
so that it suffices to show that

E(Fθ(U (X(s)))αh(x,X?(ξ))) ≤ CFθ(U (x)) , (5.9)
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where we defined the shorthand notation

Fθ(u) = u8e2θu .

Our next step is to turn the occurrences of X(s) in this expression into X?(ξ). In
order to do this, we use the fact that Assumption 2.1 (C) implies that U is ‘almost’
convex. Indeed, choose any x, y ∈ Rn and set xs = (1− s)x+ sy, so that one has
the identity

U (xs) = (1− s)U (x) + sU (y) + s(1− s)
∫ 1

0
〈∇U (xst)−∇U (xst+1−t), y−x〉 dt .

Since xst+1−t−xst = (1− t)(y−x), it then follows from Assumption 2.1 (C) that

U (xs) ≤ (1− s)U (x) + sU (y) + Cs(1− s)|x− y|2
∫ 1

0
(1− t) dt

≤ (1− s)U (x) + sU (y) + C|x− y|2 , (5.10)

for some constantC independent of s ∈ [0, 1]. Note also that there exists a constant
C such that the bound

Fθ(u+ v) ≤ CFθ(u) exp(Cv) , (5.11)

holds uniformly for all u, v such that u ≥ 1 and v ≥ 0.
Since furthermore Fθ is convex, we deduce from (5.11) and (5.10) that

Fθ(U (X(s))) ≤ C exp(C|X?(ξ)− x|2)((1− s)Fθ(U (x)) + sFθ(U (X?(ξ)))) .

To bound the first term in this expression, note that it follows from (5.8) that

E exp
(
C|X?(ξ)− x|2

)
≤ E exp

(
Ch(1 + |ξ|2)

)
≤ C ,

so that it is bounded by some multiple of Fθ(U (x)).
Combining this bound with (5.9) and the Cauchy-Schwarz inequality, we con-

clude that it remains to show that

E
(
F 2
θ (U (X?(ξ)))αh(x,X?(ξ))

)
≤ CF 2

θ (U (x)) .

Since αh is bounded, we can reduce ourselves to showing that

E
(
F 2
θ (U (X?(ξ)))αh(x,X?(ξ)) , U (X?(ξ)) ≥ U (x)

)
≤ CF 2

θ (U (x)) . (5.12)

Note now that one has from the definition (2.16) of αh the bound

αh(x,y) ≤ qh(y,x)
qh(x,y)

exp(βU (x)− βU (y)) ,
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where qh denotes the one-step transition probabilities for forward Euler. The left-
hand side of (5.12) can therefore be bounded by∫

U (y)≥U (x)
F 2
θ (U (y))qh(y,x) exp(βU (x)− βU (y)) dy .

We break this integral into two regions by setting

R1 = {y : U (x) ≤ U (y) ≤ αh−1/2} , R2 = {y : U (y) ≥ αh−1/2} ,

for some α > 0 to be determined.
Observe now that for y ∈ R1, one has the bound

qh(y,x) = (4πβ−1h)−n/2 exp
(
− β

4h
|x− y + h∇U (y)|2

)
≤ (4πβ−1h)−n/2 exp

(
− β

8h
|x− y|2 +

βh

4
|∇U (y)|2

)
≤ Ch−n/2 exp

(
− β

8h
|x− y|2

)
, (5.13)

whereC depends on the choice of α, but not on h. Furthermore, we have the bound

F 2
θ (U (y)) exp(βU (x)− βU (y)) dy (5.14)

≤ F 2
θ (U (x)) exp(C|x− y|+ (β − 2θ)(U (x)− U (y))) ,

where we have used Lemma 5.1 in order to obtain the last inequality. Combining
(5.14) and (5.13) and using the fact that U (y) ≥ U (x) onR1, we obtain indeed the
bound ∫

R1

F 2
θ (U (y))qh(y,x) exp(βU (x)− βU (y)) dy ≤ CF 2

θ (U (x)) .

Finally, in order to bound the integral over R2, we make use of the fact that
qh(y,x) ≤ Ch−n/2, so that , combining this with (5.14), we have the bound∫

R2

F 2
θ (U (y))qh(y,x) exp(βU (x)− βU (y)) dy

≤ Ch−n/2F 2
θ (x)

∫
R2

exp(C|x− y|+ (β − 2θ)(U (x)− U (y))) dy

≤ Ch−n/2F 2
θ (x) exp(βh−1/2)

∫
R2

exp(−δU (y)) dy ,

for some fixed constant δ > 0. Here, we have made use of the fact that U (x) ≤
h−1/2 by assumption, and that U grows faster than quadratically by Assump-
tion 2.1 (A). It follows from (2.5) and the definition ofR2 that∫

R2

exp(−δU (y)) dy ≤ exp
(
−βδα

2
h−1/2

)
,

so that the requested bound follows, provided that we choose α sufficiently large
so that α > 2δ−1.
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The following lemma is useful to bound the average rejection probability of
MALA.

Lemma 5.5 (see also [BV10]). For every p ∈ N, there exists an hc > 0 and a
constant C > 0, such that for any h < hc the bound

Ex
(
|1− αh(x,X?

1)|p
)
≤ CU2p(x)h3p/2

holds for all x ∈ Rn satisfying U (x) < h−1/2.

Proof. Introduce the function G : Rn × Rn → R given by

G(x,y) = U (y)− U (x)− 1

2
〈∇U (y) +∇U (x),y − x〉

+
h

4

(
|∇U (y)|2 − |∇U (x)|2

)
,

and the set
R(x) = {y ∈ Rn | G(x,y) > 1} .

By (2.16) it follows that, for ξ a normally distributed random variable, one has

Ex|1− αh(x,X?
1)|p = E|1− (1 ∧ exp(−βG(x,X?(ξ)))|p ,

where we have used the shorthand notation

X?(ξ) = x− h∇U (x) +
√

2hβ−1ξ .

Since |1− (1 ∧ e−x)| ≤ |x| for every x ∈ R, it follows that

Ex|1− αh(x,X?
1)|p ≤ E|βG(x,X?(ξ))|p .

Introduce the interpolant

X(t) = x− t(h∇U (x)−
√

2hβ−1ξ) ,

so that X(0) = x and X(1) = X?(ξ). An straightforward but tedious calculation
yields the identity

G(x,X?(ξ)) =
h

2

∫ 1

0
D2U (X(t))(∇U (X(t)),X?(ξ)− x)dt

+
1

2

∫ 1

0
t(t− 1)D3U (X(t))(X?(ξ)− x)3 dt .

(Here we interpret D3U (x)y3 as being the trilinear form D3U (x) applied to the
triple (y, y, y).) Note now that for all x satisfying U (x) < 1/

√
h, we have the

bound
|X?(ξ)− x| ≤ C

√
h(1 + |ξ|) .
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On the other hand, we know from Assumption 2.1 (D) that ‖D(k)U (x)‖ ≤ CU (x)
for k = 1, 2, 3 and it follows from Lemma 5.1 that

U (X(r)) ≤ exp
(
C
√
h(1 + |ξ|)

)
U (x) .

for all r ∈ [0, 1]. Combining these bounds, we obtain

|G(x,X?(ξ))| ≤ Ch
3
2U2(x)(1 + |ξ|)3 exp

(
C
√
h(1 + |ξ|)

)
,

for some constant C > 0. Since the expression involving ξ has moments of all
orders that are independent of h, the result follows.

In the following lemmas we prove a local drift condition for forward Euler. As
mentioned the ‘strong’ Lyapunov function Φ(y) is not integrable with respect to
the transition probability of forward Euler since its tails are lighter than Gaussian.
But U (y)` is integrable as a consequence of Assumption 2.1 (D) which ensures
that it grows at most exponentially fast. We will show that single-step accuracy of
forward Euler implies that it locally inherits this weaker Lyapunov function.

Lemma 5.6. Let X̃1 denote forward Euler after one step. Then there exists a
constant C` > 0 such that for every E > 0 and ` ∈ N the bound

Ex(U `(X̃1)) ≤ (e−γ`h + C`U (x)2h2)U `(x) +
K`

γ`
(1− e−γ`h)

holds for all x ∈ Rn satisfying U (x) < h−1/2.

Proof. Since
U `(x) ≤ e`C|x|U `(0)

by Lemma 5.1, U `(x) is integrable with respect to Gaussian measures for every
` ∈ N. Thus, (P̃hU `)(x) is finite (recall, P̃h is the transition probability for forward
Euler).

Denoting by Y (h) the true solution after time h, we write

Ex(U `(X̃1)) = Ex(U `(Y (h))) + Ex(U `(X̃1)− U `(Y (h))) .

Remark 2.6 then implies that there are positive constants γ` and K` such that

Ex(U `(X̃1)) ≤ e−γ`hU `(x) +
K`

γ`
(1− e−γ`h) + |Ex(U `(X̃1)− U `(Y (h)))| ,

and the approximation result between forward Euler and the true solution given in
Lemma 5.8 below implies the desired result.

An immediate corollary of this bound is given by
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Corollary 5.7. For every ` > 1 there exist positive constants α` and K` such that
the bound

Ex(U (X̃1) ∧ α`h−1/2)` ≤ (U (x) ∧ α`h−1/2)` + hK` ,

holds for every x ∈ Rn.

Proof. It follows from Lemma 5.6 that, provided that α` is small enough, one has

Ex(U `(X̃1) ∧ α`h−1/2) ≤ Ex(U `(X̃1)) ≤ U `(x) + hK` ,

for all x such that U (x) ≤ α`h−1/2. On the other hand, one has the obvious bound

Ex(U (X̃1) ∧ α`h−1/2)` ≤ (α`h
−1/2)` ,

which is valid for all x. Collecting both bounds concludes the proof.

Lemma 5.8. Let X̃1 and Y (h) denote forward Euler and the true solution after
one step, respectively. For every ` ∈ N, there exists a constant C` > 0 such that
the bound ∣∣∣Ex

(
U `(X̃1)− U `(Y (h))

)∣∣∣ ≤ C`h2U `+2(x)

holds for all x ∈ Rn satisfying U (x) < h−1/2 and for all h < 1.

Proof. Observe that a single step of forward Euler is equivalent in law to the fol-
lowing Langevin diffusion with constant drift:

X̃1 ∼X(h)

where the processX satisfies

dX = −∇U (x)dt+
√

2β−1dW , X(0) = x . (5.15)

The infinitesimal generator of this process is given by:

(Lhg)(y) = −∇U (x)T∇g(y) + β−1∆g(y) .

Since LhU `(x) = LU `(x), an exact Itô-Taylor expansion yields,

Ex
(
U `(X̃1)− U `(Y (h))

)
=

Ex
(∫ h

0

∫ s

0

(
L2
hU

`(X(r))− L2U `(Y (r))
)
drds

)
.

The triangle inequality implies∣∣∣Ex
(
U `(X̃1)− U `(Y (h))

)∣∣∣ ≤ (5.16)∫ h

0

∫ s

0

∣∣∣Ex
(
L2
hU

`(X(r))
)∣∣∣ dr ds+

∫ h

0

∫ s

0

∣∣∣Ex
(
L2U `(Y (r))

)∣∣∣ dr ds .
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Assumption 2.1 (D) implies that there exists a positive constant C such that

(L2U `)(y) ≤ CU `+2(y) , (L2
hU

`)(y) ≤ CU2(x)U `(y) ,

for all x,y ∈ Rn. These inequalities bound the integrands in (5.16). For the second
term, we have∣∣∣Ex

(
L2U `(Y (r))

)∣∣∣ ≤ CEx
(
U `+2(Y (r))

)
≤ C̃U `+2(x) , (5.17)

where Remark 2.6 is used in the last step.
To bound the first term, note that∣∣∣Ex

(
L2
hU

`(X(r))
)∣∣∣ ≤ CU2(x)Ex

(
U `(X(r))

)
(5.18)

where r ∈ [0, h]. The definition of an Euler step yields

Ex
(
U `(X(r))

)
= (2π)−n/2

∫
Rn
U `(x−r∇U (x)+

√
2β−1rξ) exp

(
−|ξ|

2

2

)
dξ .

Since, by hypothesis,

r|∇U (x)| ≤ h|∇U (x)| ≤ Ch|U (x)| ≤ C
√
h ,

it follows from Lemma 5.1 that

U `(x− r∇U (x) +
√

2β−1rξ) ≤ exp
(
`
√
h(C +

√
2β−1|ξ|)

)
U `(x)

for all r ∈ [0, h]. Therefore,

Ex(U `(X(r))) ≤ CU `(x) , (5.19)

for some C > 0 independent of h. Combining (5.19), (5.18) and (5.17) and insert-
ing these bounds into (5.16) yields the required bound.

6 Conclusion

In this paper we showed that MALA’s lack of a spectral gap is not severe. In
particular, our main result, Theorem 3.1, states its convergence to equilibrium hap-
pens at exponential rate up to terms exponentially small in time-stepsize. This
quantification relies on MALA exactly preserving the SDE’s invariant measure
and accurately representing the SDE’s transition probability on finite time inter-
vals. The first property is automatic since the target distribution in the Metropolis-
Hastings step is the SDE’s equilibrium distribution. Deriving the second property
requires a generalization of finite-time estimates for MALA [BV10] and forward
Euler [BT95,MSH02]. This derivation involves obtaining new results on the accu-
racy of MALA and forward Euler with respect to the true solution of the SDE in
the context where the drift is not be globally Lipschitz.
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A key technical issue addressed in the proof of Theorem 3.1 is that MALA
locally inherits a Lyapunov function of the true solution Φ(x) = exp(θU (x)). Since
U grows faster than a quadratic function, the function Φ is not integrable with
respect to a Gaussian measure including the transition probability of forward Euler.
Nevertheless, we prove integrability of Φ with respect to the transition probability
of MALA as a consequence of MALA preserving an equilibrium measure whose
tails decrease faster than Φ increases.

Finite-time accuracy implied MALA inherits a minorization and local drift con-
dition from the SDE. As a consequence the paper proved that its mixing time is
nearby the mixing time of the SDE on compact sets. The patching argument in
Theorem 3.1 compares MALA to a version of MALA with reflection on the bound-
ary of these compact sets to boost this local property to a global property plus terms
exponentially small in time-stepsize.

Finally, we note that the proof of Lemma 3.2 motivates the following question:
is forward Euler a strongly or weakly convergent method on finite time intervals?
The answer is no because a necessary condition for a numerical method to converge
on finite time intervals is stability which we have shown forward Euler lacks for
nonglobally Lipschitz drifts. However, the lemma does motivate using forward
Euler as a proposal chain in the Metropolis-Hastings algorithm to sample from the
equilibrium measure of the SDE.
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