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Abstract

It is shown that the law of an SDE driven by fractional Brownian motion with Hurst
parameter greater than 1/2 has a smooth density with respect to Lebesgue measure, provided
that the driving vector fields satisfy Hörmander’s condition. The main new ingredient of the
proof is an extension of Norris’ lemma to this situation.
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1 Introduction

In the celebrated paper [Hör67], L. Hörmander gave in 1967 a sufficient (and necessary in the
analytic case) condition for the hypoellipticity of second order differential operators. The original
proof of Hörmander was rather complicated and has been since then considerably simplified in
using the theory of pseudo-differential operators.
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In 1976, P. Malliavin used the deep connection between the theory of second order differential
operators and Itô’s theory of stochastic differential equations to point out the probabilistic counter-
part of Hörmander’s theorem. The problem of the hypoellipticity is closely related to the problem
of the existence of a smooth density with respect to the Lebesgue measure for the solution of
the corresponding stochastic differential equation. The idea of Malliavin’s proof of Hörmander’s
theorem is to show that the Itô’s map associated with a stochastic differential equation is differ-
entiable in a weak sense and then to show that, under Hörmander’s conditions, this derivative is
non-degenerate. The stochastic calculus of variations that has been developed in [Mal78] pre-
cisely in order to obtain a probabilistic proof of Hörmander’s theorem is now known as Malliavin
calculus and has since then found numerous applications (see for example [Nua95]).

In the last few years, there have been numerous attempts to define a notion of solution for
differential equations driven by a fractional Brownian motion. When the Hurst parameter of the
fractional Brownian motion is greater than 1/2, existence and uniqueness of the solution are ob-
tained by Lyons in [Lyo94], Zähle in [Zäh01], or Nualart-Rascânu in [NR02]. Let us note that, as
a consequence of the work of Coutin and Qian [CQ02], a notion of solution can actually be well-
defined for H > 1

4 . The problem of the existence and smoothness of the density with respect to
Lebesgue measure for solutions of stochastic differential equations that are driven by a fractional
Brownian motion with Hurst parameter greater than 1/2 is solved in some special cases. In [NS06]
the existence and smoothness of the density has been shown in the one-dimensional case by using
Doss-Süssman methods. In [NS05], the authors prove the existence of a density under ellipticity
assumptions. Finally, in [HN06], always under an ellipticity assumption, the smoothness of the
density is proved.

In the present work we prove a version of Hörmander’s theorem for solutions of differential
equations driven by a fractional Brownian motion. More precisely, we prove that as soon as
the usual Hörmander conditions are satisfied, there exists a smooth density for the law of the
solutions. One of the major difficulties that arise is to obtain a lemma that quantifies in which way
the integrand of a stochastic integral with respect to fractional Brownian motion has to be small if
the result of the stochastic integral is small. Such a result was first obtained in the case of Brownian
motion by Kusuoka and Stroock in [KS84, KS85] and its proof has subsequently been simplified
considerably by Norris in [Nor86]. We will follow here the commonly adopted terminology and
refer to it as Norris’ lemma.

This article is organised as follows. In a first section we recall the basics of Malliavin calculus
in the context of fractional Brownian motion, which is the main tool used in this article. We
then prove a version of Norris’ lemma for stochastic integrals with respect to fractional Brownian
motion. This lemma is then used to prove the main result of this work, that is the existence and
the smoothness of the density under Hörmander’s conditions. Finally, in a last section, we apply
this result to the analysis of the behaviour in small times of this density on the diagonal.
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2 Malliavin calculus with respect to fractional Brownian motion

Let us first recall some basic facts about Malliavin calculus with respect to the fractional Brownian
motion (for further details, we refer for instance to [HN06] or [NS05]).

We consider the Wiener space of continuous paths:

W⊗d =
(
C([0, 1],Rd), (Bt)0≤t≤1,P

)
where:

1. C([0, 1],Rd) is the space of continuous functions [0, 1] → Rd;

2. (βt)t≥0 is the coordinate process defined by βt(f) = f(t), f ∈ C([0, 1],Rd);

3. P is the Wiener measure;

4. (Bt)0≤t≤1 is the (P-completed) natural filtration of (βt)0≤t≤1.

A d-dimensional fractional Brownian motion with Hurst parameter H ∈ (0, 1) is a Gaussian
process

Bt = (B1
t , . . . , B

d
t ), t ≥ 0,

where B1, . . . , Bd are d independent centred Gaussian processes with covariance function

R(t, s) =
1
2
(
s2H + t2H − |t− s|2H

)
.

It can be shown that such a process admits a continuous version whose paths are Hölder p contin-
uous, p < H . Throughout this paper, we will always consider the ‘regular’ case, i.e. H > 1/2.
In this case, the fractional Brownian motion can be constructed on the Wiener space by a Volterra
type representation. Namely, the process

Bt =
∫ t

0
K(t, s)dβs, t ≥ 0 (2.1)

is a fractional Brownian motion with Hurst parameter H , where

K(t, s) = cHs
1
2
−H

∫ t

s
(u− s)H− 3

2uH− 1
2du , t > s.

and cH is a suitable constant. Let E be the space of Rd-valued step functions on [0, 1]. We denote
by H the closure of E for the scalar product:

〈(1[0,t1], · · · ,1[0,td]), (1[0,s1], · · · ,1[0,sd])〉H =
d∑

i=1

R(ti, si).

It can be shown that L1/H([0, 1],Rd) ⊂ H but that H also contains distributions (see for example
[PT00]).
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For ϕ,ψ ∈ L1/H([0, 1],Rd), we have

〈ϕ,ψ〉H = H(2H − 1)
∫ 1

0

∫ 1

0
| s− t |2H−2 〈ϕ(s), ψ(t)〉Rddsdt .

For our purposes, the following representation of the H-scalar product is useful. Let Iαϕ denote
the fractional integral of order α of ϕ, defined by

Iαϕ(t) =
1

Γ(α)

∫ t

0
(t− s)α−1ϕ(s) ds . (2.2)

If one extends ϕ and ψ to R+ by setting ϕ(t) = ψ(t) = 0 for t ≥ 1, a straightforward application
of Fubini’s theorem shows that one has the identity

〈ϕ,ψ〉H = 〈IH−1/2ϕ, IH−1/2ψ〉L2(R+) . (2.3)

Note that the integral on the right hand side extends to +∞ and not just to 1.
A B1-measurable real valued random variable F is said to be cylindrical if it can be written as

F = f
(∫ 1

0
〈h1

s, dBs〉, . . . ,
∫ 1

0
〈hn

s , dBs〉
)

,

where hi ∈ H and f : Rn → R is a C∞ bounded function with bounded derivatives. The set of
cylindrical random variables is denoted S. The Malliavin derivative of F ∈ S is the Rd valued
stochastic process (DtF )0≤t≤1 given by

DtF =
n∑

i=1

hi(t)
∂f

∂xi

(∫ 1

0
〈h1

s, dBs〉, . . . ,
∫ 1

0
〈hn

s , dBs〉
)
.

More generally, we can introduce iterated derivatives. If F ∈ S, we set

Dk
t1,...,tk

F = Dt1 . . .DtkF.

For any p ≥ 1, the operator Dk is closable from S into Lp
(
C([0, 1],Rd),H⊗k

)
. We denote by

Dk,p(H) the closure of the class of cylindrical random variables with respect to the norm

‖F‖k,p =

E(F p) +
k∑

j=1

E
(∥∥DjF

∥∥p

H⊗j

) 1
p

,

and
D∞(H) =

⋂
p≥1

⋂
k≥1

Dk,p(H).

We also introduce the localised spaces Dk,p
loc(H) by saying that a random variable F belongs to

Dk,p
loc(H) if there exists a sequence of sets Ωn ⊂ B1 and random variables Fn ∈ Dk,p(H) such that

Ωn ↑ C([0, 1],Rd) almost surely and such that F = Fn on Ωn.
We then have the following key result which stems from Theorem 2.1.2 and Corollary 2.1.2. in

[Nua95]:
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Theorem 2.1 Let F = (F1, . . . , Fn) be a B1-measurable random vector such that:

1. For every i = 1, . . . , n, Fi ∈ D1,2
loc(H);

2. The matrix Γ = (〈DFi,DFj〉H)1≤i,j≤nis invertible almost surely.

Then the law of F has a density with respect to the Lebesgue measure on Rn. If moreover F i ∈
D∞(H) for every i and, for every p > 1,

E
(

1
| det Γ |p

)
< +∞,

then this density is smooth.

Remark 2.2 The matrix Γ is called the Malliavin matrix of the random vector F .

3 Norris’ lemma for integrals with respect to fractional Brownian
motion

A main ingredient in many probabilistic proofs of Hörmander’s theorem (see for example [Nua95])
is Norris’ lemma [Nor86]. Loosely speaking, it is a more quantitative version of the uniqueness
property of the semimartingale decomposition, stating that if a semimartingale is small, then both
its bounded variation part and its martingale part must be small. In other words, the martingale
part and the bounded variation part cannot compensate each other. This section is devoted to the
proof of Proposition 3.4, which is a version of Norris’ lemma formulated in a framework suitable
for the purposes of this article.

Since classical tools of stochastic calculus are not available in our situation (note that the frac-
tional Brownian motion is not a semimartingale forH 6= 1/2), a completely new proof is required.
In particular, the main ingredient of the proof presented here is the use of a concentration inequal-
ity for Gaussian measures.

We start by stating a minor variant of a well-known concentration result for Gaussian measures.

Lemma 3.1 Let µ be a Gaussian measure on a separable Hilbert space H with covariance oper-
ator Γ and write T =

√
trΓ and λ =

√
‖Γ‖. Then, there exists a constant C independent of Γ

such that one has the bound

µ
(∣∣‖x‖ − T

∣∣ ≥ h
)
≤ C exp

(
− h2

4λ2

)
,

for every h ≥ 0.

Proof. We can assume H to be finite-dimensional; the general case follows from a simple ap-
proximation argument since none of the constants depends on the dimension of H. Define T̃ =
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∫
‖x‖µ(dx). It follows from the isoperimetric inequality for Gaussian measures [CIS76, Tal95]

that

µ
(∣∣‖x‖ − T̃

∣∣ ≥ h
)
≤ C exp

(
− h2

2λ2

)
, (3.4)

for every h ∈ R. Furthermore, it follows from [Bog98, Thm 1.7.1] that

T 2 − T̃ 2 ≤ π2

4
λ2 , and thus T − T̃ ≤ π2λ2

4T
≤ π2λ

4
.

The claim follows at once.

We now define the class of Gaussian processes that are of interest to us. For H ∈ (1
2 , 1], we say

that a Gaussian process B is of type H if it is centred and the function f defined by

f(s, t) = E(B(t)−B(s))2

is C2 outside the diagonal and satisfies

c1|t− s|2H ≤ f(s, t) ≤ c2|t− s|2H , |∂s∂tf(s, t)| ≤ c3|t− s|2H−2, (3.5)

for every pair of times s, t ∈ (0, 1) with s 6= t. The following is a direct consequence of (3.5)
combined with 3.1.

Lemma 3.2 Let Bi be i.i.d. Gaussian processes of type H > 1
2 and let δ,N > 0 be such that

δN < 1. Define the RN -valued random variables Xi = (Xi
1, . . . , X

i
N ) and the number T by

Xi
n = Bi(nδ)−Bi((n− 1)δ) , T 2 =

N∑
n=1

f(nδ, (n− 1)δ) .

Then, there exist constants C1, C2 such that one has the bound

P
(∣∣|Xi| − T

∣∣ ≥ h
)
≤ C1 exp

(
−C2

Nh2

(δN)2H

)
, (3.6)

P
(∣∣〈Xi, Xj〉

∣∣ ≥ h2
)
≤ C1 exp

(
−C2

Nh2

(δN)2H

)
, (3.7)

for every h ≥ 0 and every pair (i, j) with i 6= j.

Proof. Denote by Γ the covariance of Xi (this is independent of i). Then, one has

Γmn =
1
2

∫ mδ

(m−1)δ

∫ nδ

(n−1)δ
∂s∂tf(s, t) ds dt ,
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so that |Γmn| ≤ Cδ2H(1 + |m− n|)2H−2. This implies that

‖Γ‖2
HS =

N∑
m,n=1

|Γmn|2 ≤ CNδ4H
N∑

k=1

|k|4H−4 ≤ Cδ4HN4H−2. (3.8)

Since this is a bound on ‖Γ‖2, the first inequality follows from Lemma 3.1. Fix now an arbitrary
pair of indices i 6= j. Note that conditional on the value of Xj , the random variable 〈Xi, Xj〉
is normal with variance 〈Xj ,ΓXj〉. This motivates the introduction of the random vector X̄j =
Γ1/2Xj which is Gaussian with covariance Γ2. Note also that E‖X̄j‖2 = tr(Γ2) = ‖Γ‖2

HS. We
thus have, for any v > 0, the bound

P
(∣∣〈Xi, Xj〉

∣∣ ≥ h2
)

= E
(
P
(∣∣〈Xi, Xj〉

∣∣ ≥ h2 |Xj
))
≤ E

(
C exp(−h4/‖X̄j‖2)

)
≤ C exp

(
− h4

4(‖Γ‖HS + v)2

)
+ P

(
|‖X̄j‖ − ‖Γ‖HS| ≥ v

)
≤ C exp

(
− h4

8(‖Γ‖2
HS + v2)

)
+ C exp

(
− v2

4‖Γ2‖

)
≤ C exp

(
− h4

8(‖Γ‖2
HS + v2)

)
+ C exp

(
− v2

4‖Γ‖2
HS

)
.

Note now that the second inequality is non-trivial only for h2 ≥ ‖Γ‖HS, so that we assume that
we are in this situation from now on. Choosing v2 = h2‖Γ‖HS, we get

P
(∣∣〈Xi, Xj〉

∣∣ ≥ h2
)
≤ C exp

(
−h2/(16‖Γ‖HS)

)
(3.9)

which, together with (3.8), implies the required bound.

Remark 3.3 The bounds in Lemma 3.2 can be interpreted as saying that the ‘coarse-grained
quadratic variation’ of B on a scale δ and over a time interval t behaves like δ2H−1t to within
an error of order δHtH . Note that the relative magnitude of the error to the average value always
tends to 0 as δ → 0, but that this ratio becomes ‘worse’ as H → 1.

We now have the main tools in place to prove the following version of Norris’ lemma. Note
that here and in the sequel, we denote by ‖ · ‖α the α-Hölder norm of a function and by ‖ · ‖L∞ its
supremum norm.

Proposition 3.4 Let H ∈ (1
2 , 1) and let a and b be processes taking values in R and Rm respec-

tively such that E
(
‖a‖p

H̃
+
∑

i ‖bi‖
p

H̃

)
<∞ for every p ≥ 1 and every H̃ ∈ (1

2 ,H). Let

yt =
∫ t

0
a(s) ds+

∫ t

0
〈b(s), dB(s)〉 ,

where the Bi are m i.i.d. Gaussian process of type H . Then there exists q > 0 such that, for every
p > 0, the estimate

P(‖y‖L∞ < ε and ‖a‖L∞ + ‖b‖L∞ > εq) < Cpε
p (3.10)

holds. The constant Cp depends on a, b, and p but not on ε.
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Remark 3.5 Note that we do not require the Bi to be independent of the processes a and b. We
also do not require any adaptedness at this stage. The reason why we will require adaptedness
later on is that equation (4.21) for the Malliavin derivative of the solution does not hold otherwise.

Remark 3.6 The bound (3.10) actually implies the bound

P(‖y‖L∞ < ε) ≤ Cpε
p + min

{
P(‖a‖L∞ < εq),P(‖b‖L∞ < εq)

}
, (3.11)

which will be used repeatedly in the sequel.

Proof of Proposition 3.4. The proof consists of two parts. In the first part, we show that one has a
bound of the type

P(‖y‖L∞ < ε and ‖b‖L∞ > εq) < Cpε
p . (3.12)

In the second part, we use this information to show that one has also

P(‖y‖L∞ < ε and ‖a‖L∞ > εq) < Cpε
p . (3.13)

Combining both bounds then yields (3.10).
The key idea to the proof of (3.12), which should be translated to ‘if y is small then b must

also be small’ is the following. Choose two small length scales δ � ∆ � 1. Since we assume
some regularity on b, it is easy to control the error made by assuming that b is constant on intervals
of length ∆. One then considers the square root of the coarse-grained quadratic variation of y
on a scale δ over an interval of size ∆ around t. This is of course bounded by ‖y‖L∞δ

−1/2∆1/2.
By Remark 3.5, the contribution of the term including b to this expression is approximately equal
to δH−1/2∆1/2|b(t)|. The contribution of the term including a on the other hand is bounded by
‖a‖L∞δ

1/2∆1/2. Summing over all intervals of size ∆ yields a bound of the type

‖b‖L1 . δ−H‖y‖L∞ + δ1−H‖a‖L∞ ,

from which it is then straightforward to deduce (3.12) by making use of the a priori bounds on the
Hölder norms of a and b.

This argument is of course extremely sloppy, since we have not justified in any way some of
the approximations made and we have not addressed the fact that b takes values in Rm. Fix some
small value of ε > 0 and fix two small numbers δ and ∆ such that 1/δ and 1/∆ are integers, 1/∆
divides 1/δ, and such that δ � ∆ � 1. We also fix H̃ ∈ (1

2 ,H) to be determined later. We
define b̄(t) as the stepfunction with steps of length ∆ approximating b(t), b̄(t) = b(∆[t/∆]) and
we write β(t) = b(t)− b̄(t). The stochastic integral of β is bounded as follows.

Lemma 3.7 There exists a constant C depending only on H̃ such that, for every t ≥ 0 and every
s ∈ [0,∆], one has ∣∣∣∣∫ t+s

t
〈β(r), dB(r)〉

∣∣∣∣ ≤ C‖b‖H̃‖B‖H̃∆H̃sH̃ .
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Proof. Since s ≤ ∆, we can assume without loss of generality that b̄ is constant on the interval
[t, t+ s]. It follows from [You36] that there exists a constant C such that∣∣∣∣∫ t+s

t
〈β(r), dB(r)〉 − 〈β(t), B(t+ s)−B(t)〉

∣∣∣∣ ≤ C‖b‖H̃‖B‖H̃s
2H̃ .

Furthermore, one has |〈β(t), B(t+ s)−B(t)〉| ≤ ‖b‖H̃‖B‖H̃∆H̃sH̃ , so that the result follows
at once.

Denote by r the (integer) ratio ∆/δ, set tn = δn and define for N = 1, . . . ,∆−1 and for
i, j = 1, . . . ,m the random variable

Xij
N =

Nr−1∑
n=(N−1)r

(
Bi(tn+1)−Bi(tn)

)(
Bj(tn+1)−Bj(tn)

)
.

Note that T 2 := EXii
N = rf(δ) ≈ ∆δ2H−1. With these notations and using Lemma 3.7, we have,

for n ∈ [(N − 1)r,Nr − 1], the relation

|〈b(N∆), B(tn+1)−B(tn)〉| ≤ |ytn+1 − ytn |+ ‖a‖L∞δ +
∣∣∣∣∫ tn+1

tn

〈β(s), dB(s)〉
∣∣∣∣

≤ 2‖y‖L∞ + ‖a‖L∞δ + C‖b‖H̃‖B‖H̃∆H̃δH̃ .

Taking squares on both sides, summing from n = (N − 1)r to n = Nr − 1 and taking square
roots, we get√∑

i,j

bi(N∆)bj(N∆)Xij
N ≤ ∆1/2δ−1/2

(
2‖y‖L∞ + ‖a‖L∞δ + C‖b‖H̃‖B‖H̃∆H̃δH̃

)
. (3.14)

At this point, it is convenient to introduce quantities Y i
N = (Xii

N )1/2 and Y ij
N = |Xij

N |1/2. With
this notation, we get

m∑
i=1

|bi(N∆)|Y i
N ≤ C

∑
i6=j

Y ij
N

√
|bi(N∆)bj(N∆)|+ C∆1/2δ−1/2‖y‖L∞

+ C∆1/2δ1/2‖a‖L∞ + C∆H̃+1/2δH̃−1/2‖b‖H̃‖B‖H̃ .

Summing over N yields

m∑
i=1

∆−1∑
N=1

|bi(N∆)|Y i
N ≤ C

∑
i6=j

∆−1∑
N=1

Y ij
N

√
|bi(N∆)bj(N∆)|+ C∆−1/2δ−1/2‖y‖L∞ (3.15)

+ C∆−1/2δ1/2‖a‖L∞ + C∆H̃−1/2δH̃−1/2‖b‖H̃‖B‖H̃ . (3.16)
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Note now that by Lemma 3.1 one can hope that Y i
N ≈ T for every i and N . Therefore, the left

hand side is very close to T/∆ times the sum of the L1 norms of the bi. More precisely, one has
for every i, the bound

∣∣∣∆ ∆−1∑
N=1

|bi(N∆)| − ‖bi‖L1

∣∣∣ ≤ ‖bi‖H̃∆H̃ ,

so that, multiplying (3.15) by ∆/T , we get the bound

m∑
i=1

‖bi‖L1 ≤ C∆H̃‖b‖H̃ + Cδ−H‖y‖L∞ + C∆H̃δH̃−H‖b‖H̃‖B‖H̃

+ Cδ1−H‖a‖L∞ + C∆1/2δ1/2−H
m∑

i=1

∆−1∑
N=1

|bi(N∆)||Y i
N − T |

+ C∆1/2δ1/2−H
∑
i6=j

∆−1∑
N=1

Y ij
N

√
|bi(N∆)bj(N∆)|

≤ C∆H̃‖b‖H̃ + Cδ−H‖y‖L∞ + C∆H̃δH̃−H‖b‖H̃‖B‖H̃

+ Cδ1−H‖a‖L∞ + C∆1/2δ1/2−H‖b‖H̃

m∑
i,j=1

∆−1∑
N=1

|Y ij
N − Tδij | ,

where we used δij to denote the Kronecker delta. At this point, we note that, for every γ ≤ 1, one
has the interpolation inequality

‖b‖L∞ ≤ C
(
γ‖b‖H̃ + γ−1/H̃‖b‖L1

)
. (3.17)

Therefore

‖b‖L∞ ≤ Cγ−1/H̃∆H̃‖b‖H̃ + Cγ−1/H̃δ−H‖y‖L∞ + Cγ−1/H̃δ1−H‖a‖L∞

+ Cγ−1/H̃∆H̃δH̃−H‖b‖H̃‖B‖H̃ + Cγ‖b‖H̃

+ Cγ−1/H̃∆1/2δ1/2−H‖b‖H̃

m∑
i,j=1

∆−1∑
N=1

|Y ij
N − Tδij | .

We now make the following choices for γ, δ, and ∆:

γ ≈ ε
H(1−H)

(1+H)(2−H) , δ ≈ ε
1

H(2−H) , ∆ ≈ ε
1−H

H(2−H) .

Note that, provided ε is small, one has indeed δ � ∆ � 1. With these choices, and by choosing
H̃ sufficiently close to H , we see that there exists a constant α > 0 and a constant C > 0 such
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that

‖b‖L∞ ≤ Cεα

‖b‖H̃

1 + ‖B‖H̃ +
∑
i,j,N

|Y ij
N − Tδij |

δ1/2∆H−3/2

+ ε−1‖y‖L∞ + ‖a‖L∞


≤ Cεα

1 + ‖b‖2
H̃

+ ‖B‖2
H̃

+

∑
i,j,N

|Y ij
N − Tδij |

δ1/2∆H−3/2

2

+
‖y‖L∞

ε
+ ‖a‖L∞

 .

Actually, the constant α can be brought arbitrarily close to H(1−H)
(1+H)(2−H) ≥

2
9(1 − H). Note that

Lemma 3.2 yields the bound

P
(
|Y ij

N − Tδij | > h
)
≤ C exp

(
−c h2

δ∆2H−1

)
,

for every possible value of i, j, and N . This immediately implies

P

∑
i,j,N

|Y ij
N − Tδij |

δ1/2∆H−3/2
> h

 ≤ C

∆
exp

(
−ch2

)
. (3.18)

Therefore, there exists a constant c such that, for ε small enough, one has the bound

P
(
‖b‖L∞ > εα/2 and ‖y‖L∞ < ε

)
≤ P

∑
i,j,N

|Y ij
N − Tδij |

δ1/2∆H−3/2
> cε−α/4

 (3.19)

+ P
(
‖b‖2

H̃
+ ‖B‖2

H̃
+ ‖a‖L∞ > cε−α/2

)
≤ Cpε

p .

The last inequality is obtained by combining (3.18) with the a priori bounds on the processes a,
b, and B. We now turn to the proof of (3.13). Fix again some small value of ∆ to be determined
later. We then have for every t ∈ [0, 1−∆] the inequality∣∣∣∣∫ t+∆

t
a(s) ds

∣∣∣∣ ≤ 2‖y‖L∞ + |〈b(t), B(t+ ∆)−B(t)〉|+ C‖b‖H̃‖B‖H̃∆2H̃

≤ 2‖y‖L∞ + ‖b‖L∞‖B‖H̃∆H̃ + C‖b‖H̃‖B‖H̃∆2H̃ .

It is easy to show that, similarly to (3.17) one has the inequality

‖a‖L∞ ≤ 2∆−1 sup
t∈[0,1−∆]

∣∣∣∫ t+∆

t
a(s) ds

∣∣∣+ 2∆H̃‖a‖H̃ ,

so that

‖a‖L∞ ≤ 2∆−1‖y‖L∞ + C‖b‖L∞‖B‖H̃∆H̃−1 + C‖b‖H̃‖B‖H̃∆2H̃−1 + 2∆H̃‖a‖H̃

≤ C
(
∆−1

(
‖y‖L∞ + ‖b‖2

L∞
)

+ ∆2H̃−1
(
‖B‖2

H̃
+ ‖b‖2

H̃
+ ‖a‖H̃

))
.
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At this point, we choose ∆ ≈ εα/H with α as in (3.19). This implies (by choosing as before H̃
sufficiently close to H) that there exists β > 0 such that

‖a‖L∞ ≤ Cεβ
(
‖y‖L∞

ε
+
‖b‖2

L∞

εα
+ ‖B‖2

H̃
+ ‖b‖2

H̃
+ ‖a‖H̃

)
.

Therefore, for ε small enough, there exists a constant c such that

P
(
‖a‖L∞ > εβ/2 and ‖y‖L∞ < ε

)
≤ P

(
‖b‖L∞ > εα/2 and ‖y‖L∞ < ε

)
+ P

(
‖B‖2

H̃
+ ‖b‖2

H̃
+ ‖a‖H̃ > cε−β/2

)
≤ Cpε

p ,

for arbitrary values of p. The last inequality is obtained by combining (3.19) with the a priori
bounds on the processes a, b, and B. This concludes the proof of (3.13) and thus of Proposition
3.4.

4 Existence and smoothness of the density under Hörmander’s type
assumptions for solutions of SDEs driven by a fractional Brownian
motion

We now arrive to the heart of our study and are interested in the study of the existence and regu-
larity for the density of solutions of stochastic differential equations on Rn

Xx
t = x+

∫ t

0
V0(Xx

s )ds+
d∑

i=1

∫ t

0
Vi(Xx

s )dBi
s (4.20)

where the Vi’s are C∞-bounded vector fields on Rn and B is the d dimensional fractional Brow-
nian motion defined by (2.1). For this type of equations, existence and uniqueness of the solution
have been investigated by many authors (for instance Nualart-Rascânu in [NR02]). It has also been
shown very recently in [HN06] that the law of the solution to (4.20) possesses a smooth density
with respect to the Lebesgue measure in the elliptic case. Recall first the following a priori bound
on the solutions to (4.20). (See for example [NR02] for a proof.)

Lemma 4.1 For every γ < H and every p > 0, E(‖X‖p
γ) < +∞.

Let us now denote by Φ the stochastic flow associated with equation (4.20), that is Φt(x) = Xx
t .

From [HN06], we can deduce:

Lemma 4.2 The map Φt is C1 and the first variation process defined by

J0→t =
∂Φt

∂x
,

satisfies the following equation:

J0→t = IdRn +
∫ t

0
DV0(Xx

s )J0→sds+
d∑

i=1

∫ t

0
DVi(Xx

s )J0→sdB
i
s.

12



and, for every p > 1,
E
(
‖ J−1

0→1 ‖
p
)
< +∞.

Furthermore, for every i = 1, . . . , n, t > 0, and x ∈ Rn, Xx,i
t ∈ D∞(H). Moreover,

Dj
sX

x
t = J0→tJ−1

0→sVj(Xs), j = 1, . . . , d, 0 ≤ s ≤ t, (4.21)

where Dj
sX

x,i
t is the j-th component of DsX

x,i
t .

We can now turn to our version of Hörmander’s theorem for stochastic differential equa-
tions that are driven by a fractional Brownian motion with Hurst parameter H > 1/2. If I =
(i1, . . . , ik) ∈ {0, . . . , d}k, we denote by VI the Lie commutator defined by

VI = [Vi1 , [Vi2 , . . . , [Vik−1
, Vik ] . . .].

We also define the sets of vector fields

Vn =
{
VI , I ∈ {1, . . . , d} × {0, . . . , d}n−1

}
, V̄n =

n⋃
k=0

Vk .

With these notations, the main result of this article is the following:

Theorem 4.3 Assume that, at some x0 ∈ Rn, there exists N such that

span{V (x0), V ∈ V̄N} = Rn . (4.22)

Then, for any t > 0, the law of the random variable Xx0
t has a smooth density with respect to the

Lebesgue measure on Rn.

Given the results from the previous sections, the proof of this theorem is by now quite standard
and follows closely the argument given for instance in [Bis81], [Nor86] or [Nua95]. The main
difference is that it is not a priori obvious how to relate the L∞ bounds obtained in Proposition 3.4
to the fractional Sobolev norms appearing in the statement of Theorem 2.1.

Lemma 4.4 Let H > 1/2 and let H be defined as above. Then, for every γ > H − 1/2 there
exists a constant C such that

‖f‖H ≥ C
‖f‖3+1/γ

L∞

‖f‖2+1/γ
γ

,

for every continuous function f ∈ H. Here, ‖f‖γ denotes as before the γ-Hölder norm of f .

Proof. Let Dαf denote the fractional derivative of order α of f , defined by

Dαf(t) =
1

Γ(1− α)
d

dt

∫ t

0
(t− s)−αf(s) ds . (4.23)
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We also introduce the operator Dα
− defined by

Dα
−f(t) = − α

Γ(1− α)

∫ ∞

t
(s− t)−α−1

(
f(s)− f(t)

)
ds ,

which is nothing but the adjoint of Dα in L2(R+).
Since Iα and Dα are each other’s inverse [SKM93], (2.3) implies by Cauchy-Schwartz that∣∣〈f, g〉L2

∣∣ = ∣∣〈IH−1/2f,DH−1/2
− g〉L2

∣∣ ≤ ‖f‖H‖DH−1/2
− g‖L2 . (4.24)

The problem with (4.24) is that we would like to apply it to a function f which is γ-Hölder
continuous on [0, 1], but does not necessarily vanish at either 0 or 1, so that DH−1/2

− f does in
general not belong to L2. If we define however h(t) = tγ(1 − t)γ for t ∈ [0, 1] and h(t) = 0
for t ≥ 1, then ‖fh‖γ ≤ C‖f‖γ , but fh vanishes at 0 and at 1. In particular, this implies that
‖DH−1/2

− fh‖ ≤ C‖f‖γ , so that

‖f‖H ≥ C

∫ 1
0 t

γ(1− t)γf2(t) dt
‖f‖γ

,

for some constant C. On the other hand, it is a straightforward calculation to check that∫ 1

0
tγ(1− t)γf2(t) dt ≥ C

‖f‖3+1/γ
∞

‖f‖1+1/γ
γ

,

which implies the desired result.

Corollary 4.5 Let y be a random process with sample paths that are almost surely γ-Hölder
continuous for some γ > H − 1/2. Then, there exists an exponent α > 0 such that

P
(
‖y‖H < ε

)
≤ P

(
‖y‖L∞ < εα

)
+ P

(
‖y‖γ > ε−α

)
,

for every ε sufficiently small.

Proof. It follows from Lemma 4.4 that

P
(
‖y‖H < ε

)
≤ P

(
C‖y‖3+1/γ

L∞ ‖y‖−2−1/γ
γ < ε

)
.

For an arbitrary pair of positive random variables X and Y , one always has

P(X/Y < ε) ≤ P
(
X < ε1−α

)
+ P

(
Y > ε−α

)
,

so that the claim follows by taking α small enough.

This provides us with the necessary tools to complete the
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Proof of Theorem 4.3. We shall show thatXx0
1 admits a smooth density with respect to the Lebesgue

measure, by using the Malliavin covariance matrix Γ1 associated with Xx0
1 . Note that we can con-

sider the case t = 1 without any loss of generality by rescaling the vector fields Vi appropriately.
Let Γ1 be the Malliavin covariance matrix associated with Xx0

1 . By definition, we have

Γ1 =
(
〈DXi,x0

1 ,DXj,x0
1 〉H

)
1≤i,j≤n

.

To show that Xx0
1 has a a smooth density, it suffices to show that with probability one Γ1 is

invertible and that for every p > 1,

E
(

1
| det Γ1 |p

)
< +∞.

From Lemma 4.2,

Dj
sX

x0
1 = J0→1J−1

0→sVj(Xs), j = 1, . . . , d, 0 ≤ s ≤ 1.

Therefore,

Γ1 = H(2H − 1)J0→1

∫ 1

0

∫ 1

0
J−1

0→uV (Xx0
u )V (Xx0

v )T
(
J−1

0→v

)T | u− v |2H−2 du dv JT
0→1 ,

where V denotes the n× d matrix (V1 . . . Vd). Since J0→1 is almost surely invertible with inverse
in Lp, p > 1, in order to show that Γ1 is invertible with probability one, it is enough to check that
with probability one, the matrix

C1 =
∫ 1

0

∫ 1

0
J−1

0→uV (Xx0
u )V (Xx0

v )T
(
J−1

0→v

)T | u− v |2H−2 dudv

is invertible and satisfies for every p > 1,

E
(

1
| detC1 |p

)
< +∞. (4.25)

By using Proposition 3.4, the idea is now to control the smallest eigenvalue of C1 by showing
that it can not be too small. More precisely, recall (Lemma 2.3.1. in [Nua95]) that if for any p ≥ 2,
there exists ε0(p) such that for every ε ≤ ε0(p),

sup
‖v‖=1

P(〈v, C1v〉 ≤ ε) ≤ εp,

then C1 is invertible with probability one and (4.25) holds for every p > 1. We thus want to
estimate P(〈v, C1v〉 ≤ ε). Let us observe that

〈v, C1v〉 =
d∑

j=1

∫ 1

0

∫ 1

0
| s− t |2H−2 〈v, (Φ∗sVj)(x0)〉〈v, (Φ∗tVj)(x0)〉 ds dt
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=
d∑

j=1

‖〈v, (Φ∗· Vi)(x0)〉‖2
H .

Here, Φ∗tV is the pullback of the vector field V by Φt, that is

Φ∗tV (x) = D(Φ−1
t )
(
Φt(x)

)
V (Φt(x)) .

Fix now an (arbitrarily large) value p > 0. It follows from Lemma 4.1 and Corollary 4.5 that there
exists α > 0 such that

P
(
〈v, C1v〉 ≤ ε

)
≤ Cεp + min

i=1,...,d
P(‖〈v, (Φ∗· Vi)(x0)〉‖L∞ ≤ εα) . (4.26)

Note now that if V is an arbitrary bounded vector field with bounded derivatives, the chain rule
reads

(Φ∗tV )(x0) =
∫ t

0

〈
y, (Φ∗s[V0, V ])(x0)

〉
ds+

d∑
j=1

∫ t

0

〈
y, (Φ∗s[Vj , V ])(x0)

〉
dBj

s .

Note that the chain rule applies to our situation since all the integrals are standard Riemann-
Stieltjes integrals. It thus follows from Proposition 3.4 and Corollary 4.5 that there exists α such
that

P
(
‖〈v, (Φ∗· V )(x0)〉‖L∞ < ε

)
≤ Cεp + min

i=0,...,d
P
(
‖〈v, (Φ∗· [Vi, V ])(x0)〉‖L∞ < εα

)
(4.27)

Consider now the integer N from the assumption. Combining (4.26) with (4.27), we see that there
exists α > 0 such that

P
(
〈v, C1v〉 ≤ ε

)
≤ Cεp + min

V ∈V̄N

P(‖〈v, (Φ∗· V )(x0)〉‖L∞ ≤ εα) .

for all ε small enough. On the other hand, we know by assumption that {V (x0) , V ∈ V̄N}
spans all of Rn, so that there exists some V ∈ V̄N such that 〈v, V (x0)〉 6= 0. Therefore, one has
P
(
〈v, C1v〉 ≤ ε

)
≤ Cεp for all ε sufficiently small, which is the required bound.

5 Asymptotics of the density in small times

In order to obtain asymptotics of the density of hypoelliptic diffusions on the diagonal in small
times, one method consists to approximate the diffusion by the lift of the Brownian motion in a
nilpotent Lie group that is called a Carnot group (see [RS76], [BA89], or [Bau05]). In a recent
work [BC06], Baudoin and Coutin have introduced and studied fractional Brownian motions on
Carnot groups. We shall see that the solution of a stochastic differential equation driven by frac-
tional Brownian motions can, under Hörmander’s type assumptions, be approximated by fractional
Brownian motions on Carnot groups. From this approximation, we will deduce an asymptotic de-
velopment of the density in small times.

We recall first the notion of Carnot group (see e.g. [Bau05]) and the main results that are
obtained in [BC06].
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Definition 5.1 A Carnot group of step (or depth) N is a simply connected Lie group G whose Lie
algebra can be decomposed as

V1 ⊕ . . .⊕ VN ,

where
[Vi,Vj ] = Vi+j

and
Vs = 0, for s > N.

Notice that the vector space V1, which is called the basis of G, Lie generates g, where g denotes
the Lie algebra of G. It is possible to show that for every N ≥ 1, up to an isomorphism, there
exists exactly one N -step nilpotent Carnot group with basis Rd. This group shall be denoted by
GN (Rd).

Since a Carnot group G is N -step nilpotent and simply connected, the exponential map is
a diffeomorphism. On g we can consider the family of linear operators δt : g → g, t ≥ 0
which act by scalar multiplication ti on Vi. These operators are Lie algebra automorphisms due
to the grading. The maps δt induce Lie group automorphisms ∆t : G → G which are called the
canonical dilations of G. Let us now take a basis U1, . . . , Ud of the vector space V1. The vectors
Ui can be seen as left invariant vector fields on G so that we can consider the following stochastic
differential equation on G:

dXt =
d∑

i=1

∫ t

0
Ui(Xs)dBi

s, t ≥ 0, (5.28)

which is easily seen to have a unique solution associated with the initial condition X0 = 1G. The
driving process (Bt)t≥0 is here a fractional Brownian motion with Hurst parameterH > 1/2. The
process (Xt)t≥0 is called the lift of (Bt)t≥0 in the group G. For this equation, the assumptions of
Theorem 4.3 are obviously satisfied, so that we have a smooth density for Xt, t > 0, with respect
to the Haar measure of G.

We have then the global scaling property

(Xct)t≥0
law= (∆cHXt)t≥0.

(See [BC06] for a proof.) This scaling property leads directly to the following value at 1G of the
density p̃t of Xt with respect to the Haar measure of G:

p̃t(1G) =
C

tDH
, t > 0, (5.29)

where C > 0 and D =
∑N

i=1 i dimVi. From this, we will see how to deduce asymptotics in small
times for any hypoelliptic stochastic differential equation driven by fractional Brownian motions.

From now on, we consider d vector fields Vi : Rn → Rn which are C∞ bounded and shall
always assume that the following assumption is satisfied.
Strong Hörmander’s Condition: For every x ∈ Rn, we have:

span{VI(x), I ∈ ∪k≥1{1, . . . , d}k} = Rn.
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We recall that if I = (i1, . . . , ik) ∈ {1, . . . , d}k is a word, we denote by VI the commutator
defined by

VI = [Vi1 , [Vi2 , . . . , [Vik−1
, Vik ] . . .].

Let us introduce some concepts of differential geometry. The set of linear combinations with
smooth coefficients of the vector fields V1, . . . , Vd is called the differential system (or sheaf) gen-
erated by these vector fields. It shall be denoted by D in the sequel. Notice that D is naturally
endowed with a C∞(Rn,R)-module structure. For x ∈ Rn, we denote

D(x) = {X(x), X ∈ D}.

If the integer dimD(x) does not depend on x, then D is said to be a distribution. The Lie brackets
of vector fields in V generate a flag of differential systems,

D ≡ D1 ⊂ D2 ⊂ · · · ⊂ Dk ⊂ · · · ,

where Dk is recursively defined by the formula

Dk = Dk−1 + [D,Dk−1].

As a module, Dk is generated by the set of vector fields VI , where I describes the set of words
with length k. Moreover, due to Jacobi identity, we have [Di,Dj ] ⊂ Di+j . This flag is called
the canonical flag associated with the differential systemD. Hörmander’s strong condition, which
we supposed to hold, states that for each x ∈ Rn, there is a smallest integer r(x) such that
Dr(x) = Rn. For each x ∈ Rn, the canonical flag induces a flag of vector subspaces,

D(x) ⊂ D2(x) ⊂ · · · ⊂ Dr(x)(x) = Rn.

The integer list
(
dimDk(x)

)
1≤k≤r(x)

is called the growth vector of V at x. The point x is said to
be a regular point of V if the growth vector is constant in a neighbourhood of x. Otherwise, we
say that x is a singular point. On a Carnot group, due to the homogeneity, all points are regular.

Let Vi = Di/Di−1 denote the quotient differential systems, and define

N (D) = V1 ⊕ · · · ⊕ Vk ⊕ · · · .

The Lie bracket of vector fields induces a bilinear map on N (D) which respects the grading:
[Vi,Vj ] ⊂ Vi+j . Actually, N (D) inherits the structure of a sheaf of Lie algebras. Moreover, if x
is a regular point of D, then this bracket induces a r(x)-step nilpotent graded Lie algebra structure
on N (D)(x). Observe that the dimension of N (D)(x) is equal to n and that from the definition,
(V1(x), . . . , Vd(x)) Lie generates N (D)(x).

Definition 5.2 If x is a regular point of D, the r(x)-step nilpotent graded Lie algebra N (D)(x)
is called the nilpotentisation of D at x. This Lie algebra is the Lie algebra of a unique Carnot
group which shall be denoted Gr(D)(x) and called the tangent space to D at x. The integer
D =

∑r(x)
k=1 k dimDk(x) is called the homogeneous dimension of Gr(D)(x).
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Proposition 5.3 Let x be a regular point of D. Let pt, t > 0, denote the density with respect to
the Lebesgue measure of the solution of the stochastic differential equation

Xx
t = x+

d∑
i=1

∫ t

0
Vi(Xx

s )dBi
s, (5.30)

where (Bt)t≥0 is a d-dimensional fractional Brownian motion with Hurst parameter H > 1/2.
We have,

pt(x) ∼t→0
C(x)
tHD(x)

, (5.31)

where C(x) is a strictly positive constant and D(x) the homogeneous dimension of the tangent
space Gr(D)(x).

Proof. Let us first introduce some notations: For k ≥ 1, we denote by ∆k[0, t] the simplex of
ordered k-tuples with values in [0, t], i.e.

∆k[0, t] = {(t1, . . . , tk) ∈ [0, t]k, t1 < . . . < tk};

If I = (i1, . . . , ik) ∈ {1, . . . , d}k is a word with length k, we define the corresponding iterated
integral of B by ∫

∆k[0,t]
dBI =

∫
0<t1<...<tk<t

dBi1
t1
· · · dBik

tk
,

where the right hand side consists of nested Riemann-Stieltjes integrals.
We denote Sk the group of the permutations of the index set {1, . . . , k} and if σ ∈ Sk and I

is a word I = (i1, . . . , ik), we denote by σ · I the word (iσ(1), . . . , iσ(k)).
If σ ∈ Sk, we denote e(σ) the cardinality of the set

{j ∈ {1, . . . , k − 1}, σ(j) > σ(j + 1)} ,

i.e. e(σ) is the number of raising sequences of σ. Finally, if I = (i1, . . . , ik) ∈ {1, . . . , d}k is a
word

ΛI(B)t =
∑

σ∈Sk

(−1)e(σ)

k2

(
k − 1
e(σ)

) ∫
∆k[0,t]

dBσ−1·I .

As a consequence of Proposition 23 in [FV06], we get the following approximation result

Xx
t =

exp

r(x)∑
k=1

∑
I=(i1,...,ik)

ΛI(B)tVI

(x) + tH(r(x)+1)R(t), t ≥ 0 .

Here, the remainder term R(t) is bounded in probability as t → 0. Actually, it is commonly
admitted that one has the following Castell-type estimate: there exist α, c > 0 such that, for all
A > c,

lim sup
t→0

P

(
sup

0≤s≤t
sH(N+1) | RN (s) |≥ AtH(N+1)

)
≤ exp

(
−A

α

c

)
.
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We deduce therefore
pt(x) ∼t→0 qt(0),

where qt is the density of exp

r(x)∑
k=1

∑
I=(i1,...,ik)

ΛI(B)tVI

(x).

We can now conclude with (5.29).
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