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Abstract

We study the long time behavior of an Ornstein—Uhlenbeck process under the
influence of a periodic drift. We prove that, under the standard diffusive rescaling,
the law of the particle position converges weakly to the law of a Brownian motion
whose covariance can be expressed in terms of the solution of a Poisson equation.
We also derive upper bounds on the convergence rate in several metrics.

1 Introduction

In this paper we study the long time behavior of solutions of the following Langevin

equation:

Ti(t) = v(z(t)) — &) + oB(t) , z(t) € R™, (1.1)

wheref(t) is a standard Brownian motion aad 7 > 0. The parameter can be
thought of as a nondimensional particle relaxation time, which measures the inertia
of the particle. The drift terna is taken to be smooth, periodic with peribdn all
directions; further, it is assumed that it satisfies an appropriate centering condition.
It is well known that ag- tends to0, and provided that(x) is Lipschitz con-
tinuous, the solution of (1.1) converges with probabilityo the solution of the

Smoluchowski equation

2(t) = v(z() + 0B@1), z(t) € R™, (1.2)
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uniformly over every finite time interval, see e.g. [Nel67, Ch 10]. The problem
of homogenization for equation (1.2) has been studied extensively over the last
three decades for periodic [BLP78, Bat85, Par99] as well as random [CX97, KOO1,
LOY98] drifts. For the case whetgz) is a smooth, periodic field which is centered
with respect to the invariant measure of the process, it is not hard to prove [BLP78,
Ch 3] that the rescaled procesg(t/<2) converges, as tends to0, to a Brownian
motion with a positive definite covariance mattix The proof of this functional
central limit theorem is based on the proof of a spectral gap for the generator of the
process:(t).

The long time behavior of particles with non—negligible inertia, whose evolu-
tion is governed by equation (1.1) has been investigated by Freidlin and coworkers
in a series of papers [FW98, Fre01, FW01, FW99]. Among other things, Hamilto-
nian systems under weak deterministic and random perturbations were studied in
these papers:

Ti = —=VV(2) + e(—rki +7) + vVeo b, (1.3)

with x, v € R. It was shown that, under appropriate assumptions on the potential
V(x), the rescaled proceds:(t/¢), y(t/c)} converges weakly to a diffusion pro-
cess on a graph corresponding to the Hamiltonian of the syHtem%m‘c2 +V(z).

On the other hand, the problem of homogenization for (1.1) has been investi-
gated less. This is not surprising since the hypoellipticity of the generator of the
process (1.1) renders the derivation of the necessary spectral gap estimates more
difficult. Homogenization results for the solutiaiit) of (1.1) have been obtained,
to our knowledge, only for the case where the drift) is the gradient of a po-
tential. In this case the invariant measure of the pro¢e$s, «(¢)} is explicitly
known and this fact simplifies considerably the analysis. This problem was ana-
lyzed for periodic [Rod89] as well as random potentials [PV85]. In both cases it
was shown that the particle position converges, under the diffusive rescaling, to a
Brownian motion with a positive covariance matkix The proofs of these homog-
enization theorems are based on the techniques developed for the study of central

limit theorems for additive functionals of Markov processes [KV86], together with
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a regularization procedure for appopriate degenerate Poisson equations. Related
guestions for subelliptic diffusions have also been investigated [Nor94, Nor97,
BBJR9S.

The purpose of this paper is to prove a central limit theorem for the solution
of the Langevin equation (1.1) with a general periodic smooth d¢if} and, fur-
ther, to obtain bounds on the convergence rate. The proof of our homogenization
theorem relies on the strong ergodic properties of hypoelliptic diffusions. The tech-
niques developed in [EPR99, EHOO] enable us to prove the existence of a unique,
smooth invariant measure for (1.1) and to obtain precise estimates on the solution
of the Poisson equatiorLf = g, whereL is the generator of the process (1.1)
and the functiory is smooth and centered with respect to the invariant measure.
Based on these estimates it is rather straightforward to show that the rescaled par-
ticle positionez(t/?) convergences to a Brownian motion, using the techniques
developed in [KV86]. Obtaining bounds on the rate of convergence requires more
work. For this, we need to identify the limiting Brownian motion and to introduce
an additional Poisson equation. Furthermore, we need to control\tesserstein
distance between two probability measures by the distance between their charac-
teristic functions. This is accomplished using ideas from [GTW95, TV99].

The sequel of this paper is organized as follows. In section 2 we introduce the
notation that we will be using throughout the paper and we present our main result,
Theorem 2.1. In section 3 we prove various estimates on the invariant measure of
(1.1) and the solution of the cell problem, and we also derive estimates on moments
of the particle velocity. The proof of Theorem 2.1 is presented in section 4. Finally,

section 5 is reserved for a few concluding remarks.
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2 Notation and Results
Consider the following Langevin equationii*:
Ti(t) = v(z@t)) — i(t) + o B(t) (2.1)

with initial conditionsz(0) = =, #(0) = (v/7)~'y. We assume throughout this
paper thaw € C°°(T"). Introducingy(t) = /7x(t), we rewrite (2.1) as a first

order stochastic differential equation:

1
dz(t) = — d
(t) \fy(t) t, 1 02
dy(t) = el dt — —y(Od + %dﬂ(t) .
We denote by the generator of the proce§s(t), y(¢)}:
0.2
Ez\%(y-vx—i-v(xyvy)—l—j_(—y-vy—l—2Ay>. (2.3)

By Theorem 3.1 below, the proce§s(t), y(t)} admits a unique, smooth invariant
measure, denoted y(dzx, dy).
Consider now the Poisson equation

1
LDy .
N (2.4)

This equation is posed di* x R"™. In accordance to the terminology of periodic
homogenization, we will be referring to equation (2.4) asdbk problem even
though its solutions are periodic only with respecttd his equation has a unique,
smooth solution in the appropriate function space by Theorem 3.3, provided that

[ v(z) p(dzx, dy) = 0. We define the symmetric, positivex n matrix K such that
02
K% = T/vycb ® V,®du . (2.5)

The main result of this paper is that the particle position, under the standard dif-

fusive rescaling, converges weakly to a Brownian motion with covari&ifcéNe

furthermore give upper bounds on the rate of convergence in the following metrics.
Let # denote a separable Banach space #idoe its dual space. Given two

measureg:; andus on %4, we also denote b¥'(u1, 1) the set of all measures
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on %? with marginalsy; and . With these notations, we define the following
metric on the space of probability measures#@nvith finite p-moment:
. Uz) — Ly)IP
— wo|l? = su inf / [6z) — Ly)I” dz, dy) . 2.6
Iy = pally = sup cnf e M) (2.6)
This distance is close in spirit to theWasserstein distance

— 2|’y =  inf / x —y||? w(dz, dy) ,
T A I L

so we will refer to it as the weak-Wasserstein distance. Note that the distance

(2.6) gives a locally uniform bound on the distance between characteristic functions
Xu(0) = [ @) p(da):

Xp1 (0) = Xpua O < (1] a2 = 2l - (2.7)

In particular one hau; — s \Hp = 0ifand only if u1 = puo.

In order to simplify notations, we define the fast procesges: y(¢~2t) and
r$ = x(e7%t). We will also from now on use the notatio# = C([0,7],R"™),
for a valueT' > 0 that remains fixed throughout this paper. Moreover, we define
by 7, : 8 — C([0,T],R) the projection given byr,z)(t) = (k,z(t)). Given a
measurg: on a spaceM and a measurable functigh: M — N, we denote by
f*u the measure o)V given by (f*u)(A4) = u(f~1(4)).

Now we are ready to state the homogenization theorem.

Theorem 2.1 Let x(t) be the solution of(2.1), in which the velocity field €

C*°(T™) satisfies[ v(z) u(dz, dy) = 0. For T > 0 fixed, denote by. the measure
on % given by the law of the rescaled proces$ and by the law of a Brownian
motion onR™ with covariancek? as defined in (2.5). Them. converges weakly

to » and one has the following bounds on the convergence rate.

e Foreveryp > 1 anda € (0, 1), there exists a constarit such that
e — pll, < Ce, (2.8)

for everye € (0, 1).
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e Foreveryp > 1l anda € (0, %) there exists a constant such that

Imepe — mepll, w < Ce, (2.9)

for everyk € R™ with ||k|| < 1 and every € (0, 1).

e Foreveryg < there exists a constant such that

1
20(n+3)2?

e — Mml,w < Céf, (2.10)
for everye € (0, 1).

Remark 2.2 The condition| v(x) u(dz, dy) = 0 ensures that there is no ballistic
motion involved. In the general case, one can wiite= [ v(x) u(dz, dy) and

defineex; = ex(c~2t) — e~lot. Then, Theorem 2.1 holds fers.

Remark 2.3 If n = 1, the bound (2.9) is much stronger than the bounds (2.8) and
(2.10). Ifn > 1 however, this bound does not imply any form of convergence
e = p. Itis indeed possible to construct two Gaussian stochastic proce@ses
andy(t) with values inR? such that the law of differs from the law ofy and
such that, for every € R2, the law of(k, x) is identical to the law ofk,y). As

an example, choose three i.i.d. Gaussian centered random variahlgsas and

define

z1(t1) = a1 x2(t1) = a2 z1(t2) = a3 x2(t2) = a1

yi(t1) = a1 y2(t1) = as y1(t2) = a9 yo(t2) = as .

It is an easy exercise to check that these two processes possess the required prop-

erties.

Remark 2.4 Convergence in the weakWasserstein distance alone doesdim-
ply weak convergence, as the space of probability measurégsismot complete
underf| - ||,,. This can be seen by taking = 2 and choosing foy,, the Gaussian

measure with covariance

Qn =diag(l,3,...,1,0,...).
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It is straightforward to check that this forms a Cauchy sequence with respect to
II-1l,, but does not converge to any measure supported.in(lt does however

converge weakly to a limiting measure in a weaker topology, and this is always
the case.) In our situation, the additional control we have on the regularity of the

processes involved allows to overcome this problem.

Remark 2.5 The covariance, oeffective diffusivity/C? of the limiting Brownian
motion depends on the andr. It is shown in [PS03] that as tends to0 the
covarianceC? converges to the one obtained from the homogenization of equation
1.2. We refer to [PSO03] for further properties of the effective diffusivity, together

with numerical experiments for various field&e).

Remark 2.6 For simplicity, we choose the molecular diffusierto be a constant
scalar. Taking for a positive definite matrix would only require a slight change in
our notations. We could even allawto depend om: in a smooth way, as long as it
remains strictly positive definite for all € T™. The results from [EPR99, EHOO]
then still apply and one can check that all the bounds obtained in section 3 still
hold. Since the proof of Theorem 2.1 itself never uses the facitlimtonstant,

all of our results immediately carry over to this case.

Remark 2.7 For simplicity, we assumed the initial conditian, /) to be determin-
istic. However, it is easy to check that all our arguments work for randomly dis-
tributed initial conditions provided that they are independent of the driving noise

and thatE exp 1[jo 1y < oc.

Remark 2.8 One may wonder if it is possible to show convergence.ofo p in

a stronger topology, like the one given by the total variation distance. Since the
sample paths of the Brownian motion are almost surely not differentiable, whereas
t — exf almost surely is, the measurgs and p are actually mutually singular

for everye > 0. Concerning the distributions for a fixed tinie one expects
from a formal expansion that the density of the laweof is given byul(z) =

pt(x)p(e1x) + O(e), wherep is the periodic continuation of the density of the
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marginal (on the first component) of the invariant measure for the diffusion (2.2).
It is straightforward to check that, unlegss constant, the total variation distance
(i.e.the L! distance between densities in this case) betweéen p(c ~'x) andu!(x)

does not converge asc — 0.
The proof of Theorem 2.1 will be presented in section 4.

3 Preliminary Estimates

In this section we collect various estimates which are necessary for the proof of
the homogenization theorem. In section 3.1 we study the structure of the invariant
measure for (2.1). We show that it possesses a smooth density with respect to the
Lebesgue measure and we derive sharp bounds for it. Further, we investigate the

solvability of the Poisson equation
—Lf =h, (3.2)

whereh is a smooth function of andy which is centered with respect to We
prove that equation (3.1) has a smooth solution which is unique in the class of
functions which do not grow too fast at infinity.

In section 3.2 we derive estimates on exponential moments of the particle ve-
locity. Roughly speaking, these estimates imply that the particle velocity grows

very slowly with time.

3.1 Bounds on the invariant measure and on the solution of the Poisson equa-
tion

. . . _lyl? .
If v = 0, the invariant measure for (2.1) is given py= ¢ = d dy. This is

“almost” true also in the case# 0, as can be seen by the following result.

Theorem 3.1 Let 1 be the invariant measure for (2.1) and denotedfy, v) its
density with respect to the Lebesgue measure. Then, for éverf0, 20~2) one

can write
|12
plr,y) =e 2 g(z,y), gesS, (3.2)

whereS denotes the Schwartz space of smooth functions with fast decay.
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Proof. The proof follows the lines of [EPR99, EHO0O0]. Denote dyythe (random)
flow generated by the solutions to (2.1) andythe semigroup defined on finite
measures by

(Pep)(A) = E(po ¢y H)(A) .

Sinced; + L is hypoelliptic,P; maps every measure into a measure with a smooth
density with respect to the Lebesgue measure. It can therefore be restricted to a
positivity preserving contraction semigroup of{T” x R”, dz dy). The generator
L of P, is given by the formal adjoint of defined in (2.3).
We now define an operatdt on L2(T™ x R", dz dy) by closing the operator
defined orCg® by
K = —esllvl? fo—3llul® (3.3)

The operatois is then given by
o? 4] So? 9 1,5 n
K= =gt 2 (1= I+ 26* =) (y- 9, + 5)
1 n

Note at this point thaf < 202 is required to make the coefficient [pf||? in this

—+

expression strictly positive. This can be written idrishander’s “sum of squares

form as )
K=Y X/X;+Xo,
i=1
with
g .
Xzzﬁayl |fZ:1...n,
) do? o
1l n 1 n
Xo =~ (30 —1)(y.vy+§) bl Ve @) V) - o

Sincev is C*° on the torus, it can be checked in a very straightforward way that the

assumptions of [EHOO, Thm. 5.5] are satisfied with= 1 — A, — A, + [|y||*.
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Combining this with [EHO0, Lem. 5.6], we see that there exists 0 such that,

for everyy > 0, there exista a positive constafitsuch that
[A“fI < CUAEfIL + 1A ) (3.4)

holds for everyf in the Schwartz space. Looking at (3.4) with= 0, we see that
K has compact resolvent. Sineg2 VI’ is an eigenfunction with eigenvaldefor
K*, it follows that K has also an eigenfunction with eigenvalelet us call it
g. It follows from (3.4) and a simple approximation argument thatg|| < oo
for every~ > 0, and thereforg belongs to the Schwartz space. Furthermore, an
argument given for example in [EPR99, Prop 3.6] shows ghaust be positive.
Since one has furthermore
&;%Hy\lzg -0,

the functionp given by (3.2) is the density of the invariant measure of (2.1). This
concludes the proof of Theorem 3.1. O

Before we give bounds on (2.4), we show the following little lemma.

Lemma 3.2 Lets € (0,202) and letK be as in (3.3). Then, the kernel Af is

one-dimensional.

Proof. Let § € ker K. Then, by the same arguments as abeve, ¥’ j is the
density of an invariant signed measure fr The ergodicity ofP, immediately

impliesg « g. O
Now we are ready to prove estimates on the solution of the Poisson equation (3.1).

Theorem 3.3 Leth € C*(T" x R") with Dg ,h € LA(T" x R™; eIVl dwdy) for
every multiindexx and everye > 0. Assume further thaf h(z, y) u(dz dy) = 0,
wherey is the invariant measure for (2.1). Then, there exists a functisach that

(3.1) holds. Moreover, for every> 0, the functionf satisfies

fa,y) =2V iy, fes. (3.5)
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Furthermore, for every < (0,202), f is unique (up to an additive constant) in

L2(T" x R™, e=0I9I* dzdy).

Proof. By hypoellipticity, if there exists a distributiofi such that (2.4) holds, then
f is actually aC*° function.
We start with the proof of existence. Fixe (0,20 2), consider the operator

K* which is the adjoint of the operatdf defined in (3.3), and define the function
u(w, y) = bz, y)e 2117

It is clear that if there exist§ such thatk* f = u, thenf = e2!¥I° f is a solu-
tion to (3.1). Consider the operatéf* K. By the considerations in the proof of
Theorem 3.1, K*K has compact resolvent. Furthermore, the kernek6f< is
equal to the kernel ofC, which in turn by Lemma 3.2 is equal to the spangof
DefineH = (g)* and define/ to be the restriction o * K to H. SinceK* K has
compact resolvent, it has a spectral gap and/sis invertible. Furthermore, since
Ly = 7 Y2u(z) — 71y, one checks easily thgt € H, thereforef = KM 1u
solvesK™* f = u and thus leads to a solution to (3.1).

Since K* satisfies a similar bound to (3.4) and sifg&u|| < oo for every
~ > 0, the bound (3.5) follows as in Theorem 3.1. The uniquenessmthe class

of functions under consideration follows immediately from Lemma 3.2. O

Remark 3.4 Note that the solutiorf of (3.1) is probably not unique if we allow

for functions that grow faster thasg "~ II¥II”.

Remark 3.5 The identityyLp = 0, whereZ is the formal adjoint ofZ, immedi-

ately yields that[ y u(dz, dy) = /7 [ v(z) p(dx, dy). In particular, the assump-

tion that the drift is centered implies thatis also centered. Moreovey,clearly
satisfies the smoothness and fast decay assumptions of Theorem 3.3. Hence, the
theorem applies to each component of equation (2.4) and we can conclude that
there exists a unique smooth vector valued funcomwhich solves the cell prob-

lem and whose components satisfy estimate (3.5).
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3.2 Estimates on the particle velocity

One has the following bound
Lemma 3.6 There exists a constant> 0 such that
Eexp (5l y)I?) < exp(Glo "yl +1)
Een(g- [ ol ds) < e (fllo 17+ 31)
holds for any initial condition; and everyt > 0.
Proof. Itds formula yields immediately the existence of a constasuich that
lo™ yll? +

—ito_ls2sitc;’_ls S
- [ e P+ — [ o). as0)

1, -
Sl @) <

The first bound follows by exponentiating both sides and taking expectations. The

second bound follows in a similar way after dividing both side2by O
This yields the following:
Theorem 3.7 Lety : T" x R™ — R be such that

sup

1, -
dlay)exp (1l yl?) | < oo
zeTn yeR™

Then, there exist constant§ § > 0 such that

E(((t), y(1))) — / (e, ) plde, dy) < Cexpl(loy|? — 6t) . (3.6)

T xR™

Proof. From the smoothing properties of the transition semigroup associated to
(2.2), combined with its controllability and the fact tHat|? is a Lyapunov func-

tion, one gets the existence of constafitands’ such that

1Pz, y;-) — pllrv < CA + |lyl2e " .
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(Seee.g.[MT93] for further details.). Herdjy. — v||tv denotes the total variation
distance between the measureandv. Cauchy-Schwarz furthermore yields the

generic inequality

[ran- [ 1ar] < \/HM—VHTv/fQ(dqudu) (3.7)

The bound (3.6) immediately follows by combining Lemma 3.6 with (3.7). O

We also have a much stronger bound on the supremum in time of the solution:

Lemma 3.8 For everyx > 0 and everyl’ > 0, there exist constants C' > 0 such
that

E sup exp(d]y(s)|?) < Ccerellvl® |
te[0,Te~2]

holds for every € [0, 1].

Proof. Let g be the Ornstein-Uhlenbeck process defined by

oy L t_t—Ts
y(t)—ﬁ/oe o dB(s) .

Then (see.g.[AdI90]), there exists constants andc, such that
P( sup [|[g(8)] > >\> < e
te[s,s+T7]
for everys > 0. This immediately yields
P( sup  |lg@)| > )\) < 018_26_62)\2 ,
te[0,Te—2]
which in turn implies that there exist constantsandc, such that
E( s expl(es[FO]Y)) < cas™?
te[0,Te~2]

The claim follows immediately by choosirg= (c3x)/2 and by noticing that there
exists a constanty such that|y(s)|| < ||g(s)|| + ||y|| + ¢4 for all s > 0 almost

surely. O
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4 Proof of Theorem 2.1

Proof. By Theorem 3.3 we havé(y, z) € C*°(T™ x R™, R™), so we can apply the

Itd formula to the functior(y;, z5) to obtain:

1 [t 1o [t
Bofa) — o) = 5 [ L0053 ds+ 2% [ V,005.00) 57
11 [t 1o [
=—=5—F ds+=—= [ Vy,®(ys, %) dB(s) ,
82\/’77' 0 ys S+€\/7>'/0 ) (ysaxs) 5(5)

where we defined®(t) = ¢8(c~2t) and we used (2.4) to get the second line. We

also interprev, ® as a linear map froR™ into R". Thus we have:

1 1 1 ¢ 1>
ex; :5x+g—ﬁ ye ds
0
t
g
— co (Bl o) - ) + T [ V(050 A
(20, 5) v
=:ex +elf(t) + M°(t) . (4.2)

It follows from (3.5) and Lemma 3.8 that, for every> 0 there exists a constant
C' such that

E sup |I{(t)P <Ce 2 .
t€[0,T]

It is therefore sufficient to show that (2.8) and (2.9) hold withreplaced by the
law of the martingale termd/¢. We first show that (2.8) holds. This is equivalent
to showing that, for every € %* one can construct a random variali3g such
that

E|B; — ((MF)|P < CeP (4.2)

holds uniformly ovet|¢|| < 1, and such the law aB, is given by/* ;.. We therefore
fix £ € %* with ||¢|| < 1, which we interpret as aR"-valued measure with total
mass {;e. the sum of the masses of each of its components) smallei th&e also
use the notatiod; = ¢([t, T).

Integrating by parts, we can write

T
_ o / (0), V, @ (5, 25) dBE(R)) -

T
(M) = /0 e,y = - |
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We now define on the intervad [T] the R-valued martingalé/; by

o t
M) = 7 /0 (0(5), V@ (55, 25) dF(s)

According to the Dambis—Dubins—Schwartz theorem [RY99, Thm 1.6] there exists

a Brownian motionB such thath/; () can be written as

ME© = BUME M) = B(Z [ (69, (9,05 V,8)05.59 1)) ds)

On the other hand, the measuie: is a centered Gaussian measure with vari-

ance fOT<€(s), K2((s)) ds, so we can choosB; to be given by

t
B,=BY, Bi= B( / (U(s), K2(s)) ds) .
0
We will actually show a stronger bound than (4.2), namely we will show that
JP:=E sup |Bl— M{(t)|P < Ce*?. (4.3)
t€[0,T]

We use the ldlder continuity of the Brownian motioB, together with the Cauchy—

Schwarz inequality to derive the estimate

JP < E(Hblg(B) sup ]/ e(s) v O © V, ) (yF, 25) IC2> €(3)> ds’ )

0<t<T

< (E HOIQP(B)) sup \ / (), H (i, x S)E(s)>d8‘ p)é

0<t<T

< C sup ’/ (0(s), H(ys, x%) £(s)) ds‘ p>§ , (4.4)

0<t<T

where we introduced the x n-matrix valued function
2

H(z,y) = (Y, © V,2)(y.7) -
In deriving the above estimate, we have used the fact that f=or1 thea-Holder
constant of a Brownian motion is uniformly bounded on every bounded interval
[RY99, Thm 2.1].
Note now that sincé(t) is of bounded variatiory(t) ® £(¢) is also of bounded
variation, so there existsrax n-matrix valued measuréon [0, 7] such that/(t) @

o(t) = ¢([t, T)). Therefore, we can integrate by parts in (4.4) to obtain

JP<C sup )Tr/ / H(ys, xt drE(ds)’ )

0<t<T
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o

|| [ 108,09
0<t<T

Consider now the Poisson equation
—LF=H. (4.5)

By the definition ofK?, we have[ H(z,y) u(dz, dy) = 0 (for each component),
and we furthermore havexp(—6||y||>)H € S for everys > 0. Therefore, using
the same reasoning as in the proof of Theorem 3.3, equation (4.5) has a unique

smooth solution satisfying
F(x,y) = egHyHQJ:"(w,y) , FesS (4.6)
for everyd > 0. We can apply b formula to deduce as before that
[ 0z ds = 007 D) - )+ = [V R o)

Therefore:

‘Zap

¢
|J§’|2 < PE sup HF(yf,xi)HQo‘p + Ce?*PE sup H/ V., F(ys, z%) dB(s)
te[0,T7] te[o, 771" Jo

Combining Lemma 3.8 with (4.6), the first term can be bounded by
1PE sup ||F(yf, a5)|2P < Ce2P
te[0,T]
In order to control the second term, we use the Burkholder—Davis—Gundy inequal-
ity followed by Holder’s inequality, assuming that> é:

01 H/ Vil )dﬂ(S)HQQPSCE(/OT\vyﬂy:,xi)\%s)ap

te[o T)

< T’ 1 sup EHVyF(ytEaxi)HQap .
t€[0,7]

This is bounded independently ety (4.6) and Lemma 3.6, and s < Ce°?,
forp > é Whenp < é one can bound? using the higher order moments. This
completes the proof of bound (4.2) and thus of the first part of Theorem 2.1.

The proof of the second part of Theorem 2.1 is obtained in a straightforward

way as a particular case of (4.3) if one makes the choicekdr.
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We now turn to the proof of the third part of Theorem 2.1. For this, we start
with some background material from [GTW95, TV99]. L@y(R") denote the set
of all probability measures adR™ with finite pth momentm,,(1) for somep > 2 to

be fixed later, and such that
mp(p) < M .

Let p(u1, p2) denote the Prokhorov metric; we introduce the metrics

0) — [
di(p1, p2) = sup X () = X (O]
(eRn ||

and

Hm—ﬂﬂazwpﬂ/¢wﬂm@rwma)@ecmwwms1}

where|| - ||, denotes the natural norm @ff*(R™). Now, a trivial modification of

[TV99, Thm. 2] gives

_2
1 — pellpye < CM)dy(p1, p2) ™+

wheren is the dimension of the underlying space. Further, [GTW95, Cor. 5.5] and
[TV99, Thm 2] imply that

1
plpn; p2) < em ([lpn — pall7,) ™+
for everym > 0 and

p—2
I = p2lls v < COM) plpa, p2) # -

Let 15 and i denote the laws ofx; and the limiting Brownian motion at time
t respectivelyj.e. the images of.. andy under the map — x(t). With these

notations, the considerations above yield

Lemma 4.1 Let the assumptions of Theorem 2.1 hold. Then, for evegy(0, %)

and everyt € [0, 7], we have:
s = pelly e < Cezonsa

Here, the constant’ depends only oF exp 1 |lo~1y]2.
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Proof. From Theorem 2.1 and (2.7) we havg(yi1, p2) < |lpf — pell; < Ce.
Further, our bounds on the moments of the particle velocity implytha bounded
independenly ot for everyp > 0. The parametes given byl — § = %, can
thus be chosen arbitrarily small. Thus, fsufficiently small and > 0, arbitrarily
small we have:

I — il < CplE™)' = < O (IF = pillsa) =55

1-§ a(l1-94)
< Cdy(pf — p)n+3? < Cem+3)? )

from which the estimate follows upon applying Cauchy—Schwarz inequality. The
claim about the constaidt is obtained by inspecting the bounds from Section 3.

O

Fix now an integetN > 0, definet; = j7'/N, and define the mafy : % —

(R™MN by (IIyx); = =(t;). We first show that, for every < there exists

1
A(n+3)2’
a constant” such that

I3 e = Wvpelly gy < CETN? (4.7)

for everyN > 0. Lemma 4.1 indeed implies that#; denotes the transition prob-
abilities for the process {7, y;), m2 denotes the projection on the first component,
and’P,; denotes the transition probabilities for a Brownian motion with covariance

KC, one has for every € [0, T
|||7r>2k,PtE(x7 Y ) - Pt(i[f, )|||17W < C(y) g7 5

whereC(y) is such thaEC'(y;) is bounded uniformily fot € [0, 7. This implies

that one can construct a Brownian motiBawith covarianceC such that
Ellex;, — By, || < Ce” + Ellexy, | — By, | -

In particular, one has

N
Esup |lexf, — By, || <Y Elexf, — By || < Ce"N?,
j =0
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which implies (4.7) by definition.

Furthermore, the generalized Kolmogorov criteria [RY99, Thm 2.1] immedi-
ately implies that thex-Holder constants ofz; and of the limiting Brownian mo-
tion B, are bounded independently ofor everya < 1/2. Therefore,

C
e =l < CEN2+ 12

Optimizing for N concludes the proof of Theorem 2.1. O

5 Conclusions

The problem of homogenization for periodic hypoelliptic diffusions was studied in
this paper. It was proved that the rescaled particle position converges to a Brownian
motion with a covariance matrix which can be computed in terms of the solution
of the Poisson equation (2.4). Further, upper bounds on the convergence rate in
several norms were obtained. Our analysis is purely probabilistic and this enables
us to obtain more detailed information than what one could obtain from studying
the problem at the level of the Kolmogorov equation. The convergence rate in the
1-Wasserstein metric, estimate (2.10), is almost certainly not sharp, it is however
optimal in the sense that theWasserstein metric is the strongest “natural” metric
in which convergence is expected to hold, see Remark 2.8.

A very interesting question is whether a homogenization theorem of the form
of Theorem 2.1 holds for random driftgx, t) and, if yes, under what conditions

onuw(z,t). We plan to come back to this issue in a future publication.
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