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Abstract

We study the long time behavior of an Ornstein–Uhlenbeck process under the
influence of a periodic drift. We prove that, under the standard diffusive rescaling,
the law of the particle position converges weakly to the law of a Brownian motion
whose covariance can be expressed in terms of the solution of a Poisson equation.
We also derive upper bounds on the convergence rate in several metrics.

1 Introduction

In this paper we study the long time behavior of solutions of the following Langevin

equation:

τ ẍ(t) = v(x(t))− ẋ(t) + σβ̇(t) , x(t) ∈ Rn , (1.1)

whereβ(t) is a standard Brownian motion andσ, τ > 0. The parameterτ can be

thought of as a nondimensional particle relaxation time, which measures the inertia

of the particle. The drift termv is taken to be smooth, periodic with period1 in all

directions; further, it is assumed that it satisfies an appropriate centering condition.

It is well known that asτ tends to0, and provided thatv(x) is Lipschitz con-

tinuous, the solution of (1.1) converges with probability1 to the solution of the

Smoluchowski equation

ż(t) = v(z(t)) + σβ̇(t) , x(t) ∈ Rn , (1.2)
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uniformly over every finite time interval, see e.g. [Nel67, Ch 10]. The problem

of homogenization for equation (1.2) has been studied extensively over the last

three decades for periodic [BLP78, Bat85, Par99] as well as random [CX97, KO01,

LOY98] drifts. For the case wherev(z) is a smooth, periodic field which is centered

with respect to the invariant measure of the process, it is not hard to prove [BLP78,

Ch 3] that the rescaled processεz(t/ε2) converges, asε tends to0, to a Brownian

motion with a positive definite covariance matrixK. The proof of this functional

central limit theorem is based on the proof of a spectral gap for the generator of the

processz(t).

The long time behavior of particles with non–negligible inertia, whose evolu-

tion is governed by equation (1.1) has been investigated by Freidlin and coworkers

in a series of papers [FW98, Fre01, FW01, FW99]. Among other things, Hamilto-

nian systems under weak deterministic and random perturbations were studied in

these papers:

τ ẍ = −∇V (x) + ε(−κẋ+ γ) +
√
εσβ̇, (1.3)

with κ, γ ∈ R. It was shown that, under appropriate assumptions on the potential

V (x), the rescaled process{x(t/ε), y(t/ε)} converges weakly to a diffusion pro-

cess on a graph corresponding to the Hamiltonian of the systemH = 1
2τ ẋ

2+V (x).

On the other hand, the problem of homogenization for (1.1) has been investi-

gated less. This is not surprising since the hypoellipticity of the generator of the

process (1.1) renders the derivation of the necessary spectral gap estimates more

difficult. Homogenization results for the solutionx(t) of (1.1) have been obtained,

to our knowledge, only for the case where the driftv(x) is the gradient of a po-

tential. In this case the invariant measure of the process{x(t), ẋ(t)} is explicitly

known and this fact simplifies considerably the analysis. This problem was ana-

lyzed for periodic [Rod89] as well as random potentials [PV85]. In both cases it

was shown that the particle position converges, under the diffusive rescaling, to a

Brownian motion with a positive covariance matrixK. The proofs of these homog-

enization theorems are based on the techniques developed for the study of central

limit theorems for additive functionals of Markov processes [KV86], together with
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a regularization procedure for appopriate degenerate Poisson equations. Related

questions for subelliptic diffusions have also been investigated [Nor94, Nor97,

BBJR95].

The purpose of this paper is to prove a central limit theorem for the solution

of the Langevin equation (1.1) with a general periodic smooth driftv(x) and, fur-

ther, to obtain bounds on the convergence rate. The proof of our homogenization

theorem relies on the strong ergodic properties of hypoelliptic diffusions. The tech-

niques developed in [EPR99, EH00] enable us to prove the existence of a unique,

smooth invariant measure for (1.1) and to obtain precise estimates on the solution

of the Poisson equation−Lf = g, whereL is the generator of the process (1.1)

and the functiong is smooth and centered with respect to the invariant measure.

Based on these estimates it is rather straightforward to show that the rescaled par-

ticle positionεx(t/ε2) convergences to a Brownian motion, using the techniques

developed in [KV86]. Obtaining bounds on the rate of convergence requires more

work. For this, we need to identify the limiting Brownian motion and to introduce

an additional Poisson equation. Furthermore, we need to control the1-Wasserstein

distance between two probability measures by the distance between their charac-

teristic functions. This is accomplished using ideas from [GTW95, TV99].

The sequel of this paper is organized as follows. In section 2 we introduce the

notation that we will be using throughout the paper and we present our main result,

Theorem 2.1. In section 3 we prove various estimates on the invariant measure of

(1.1) and the solution of the cell problem, and we also derive estimates on moments

of the particle velocity. The proof of Theorem 2.1 is presented in section 4. Finally,

section 5 is reserved for a few concluding remarks.
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2 Notation and Results

Consider the following Langevin equation inRn:

τ ẍ(t) = v(x(t))− ẋ(t) + σβ̇(t) , (2.1)

with initial conditionsx(0) = x, ẋ(0) = (
√
τ )−1y. We assume throughout this

paper thatv ∈ C∞(Tn). Introducingy(t) =
√
τ ẋ(t), we rewrite (2.1) as a first

order stochastic differential equation:

dx(t) =
1√
τ
y(t) dt ,

dy(t) =
1√
τ
v(x(t)) dt− 1

τ
y(t) dt+

σ√
τ
dβ(t) .

(2.2)

We denote byL the generator of the process{x(t), y(t)}:

L =
1√
τ

(y · ∇x + v(x) · ∇y) +
1
τ

(
−y · ∇y +

σ2

2
∆y

)
. (2.3)

By Theorem 3.1 below, the process{x(t), y(t)} admits a unique, smooth invariant

measure, denoted byµ(dx, dy).

Consider now the Poisson equation

−LΦ =
1√
τ
y . (2.4)

This equation is posed onTn × Rn. In accordance to the terminology of periodic

homogenization, we will be referring to equation (2.4) as thecell problem, even

though its solutions are periodic only with respect tox. This equation has a unique,

smooth solution in the appropriate function space by Theorem 3.3 , provided that∫
v(x)µ(dx, dy) = 0. We define the symmetric, positiven× n matrixK such that

K2 =
σ2

τ

∫
∇yΦ⊗∇yΦ dµ . (2.5)

The main result of this paper is that the particle position, under the standard dif-

fusive rescaling, converges weakly to a Brownian motion with covarianceK2. We

furthermore give upper bounds on the rate of convergence in the following metrics.

Let B denote a separable Banach space andB∗ be its dual space. Given two

measuresµ1 andµ2 on B, we also denote byC (µ1, µ2) the set of all measures
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on B2 with marginalsµ1 andµ2. With these notations, we define the following

metric on the space of probability measures onB with finite p-moment:

|||µ1 − µ2|||pp = sup
`∈B∗

inf
µ∈C (µ1,µ2)

∫
B2

|`(x)− `(y)|p

‖`‖p
µ(dx, dy) . (2.6)

This distance is close in spirit to thep-Wasserstein distance

|||µ1 − µ2|||pp,W = inf
µ∈C (µ1,µ2)

∫
B2

‖x− y‖p µ(dx, dy) ,

so we will refer to it as the weakp-Wasserstein distance. Note that the distance

(2.6) gives a locally uniform bound on the distance between characteristic functions

χµ(`) =
∫
ei`(x) µ(dx):

|χµ1(`)− χµ2(`)| ≤ ‖`‖ |||µ1 − µ2|||p . (2.7)

In particular one has|||µ1 − µ2|||p = 0 if and only if µ1 = µ2.

In order to simplify notations, we define the fast processesyε
t = y(ε−2t) and

xε
t = x(ε−2t). We will also from now on use the notationB = C([0, T ],Rn),

for a valueT > 0 that remains fixed throughout this paper. Moreover, we define

by πk : B → C([0, T ],R) the projection given by(πkx)(t) = 〈k, x(t)〉. Given a

measureµ on a spaceM and a measurable functionf : M → N , we denote by

f∗µ the measure onN given by(f∗µ)(A) = µ(f−1(A)).

Now we are ready to state the homogenization theorem.

Theorem 2.1 Let x(t) be the solution of(2.1), in which the velocity fieldv ∈

C∞(Tn) satisfies
∫
v(x)µ(dx, dy) = 0. For T > 0 fixed, denote byµε the measure

onB given by the law of the rescaled processεxε
t and byµ the law of a Brownian

motion onRn with covarianceK2 as defined in (2.5). Thenµε converges weakly

to µ and one has the following bounds on the convergence rate.

• For everyp ≥ 1 andα ∈
(
0, 1

2

)
, there exists a constantC such that

|||µε − µ|||p ≤ Cεα , (2.8)

for everyε ∈ (0, 1).
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• For everyp ≥ 1 andα ∈
(
0, 1

2

)
, there exists a constantC such that

|||π∗kµε − π∗kµ|||p,W ≤ Cεα , (2.9)

for everyk ∈ Rn with ‖k‖ ≤ 1 and everyε ∈ (0, 1).

• For everyβ < 1
20(n+3)2 , there exists a constantC such that

|||µε − µ|||1,W ≤ Cεβ , (2.10)

for everyε ∈ (0, 1).

Remark 2.2 The condition
∫
v(x)µ(dx, dy) = 0 ensures that there is no ballistic

motion involved. In the general case, one can writev̄ =
∫
v(x)µ(dx, dy) and

defineεxε
t = εx(ε−2t)− ε−1v̄t. Then, Theorem 2.1 holds forεxε

t .

Remark 2.3 If n = 1, the bound (2.9) is much stronger than the bounds (2.8) and

(2.10). If n > 1 however, this bound does not imply any form of convergence

µε ⇒ µ. It is indeed possible to construct two Gaussian stochastic processesx(t)

andy(t) with values inR2 such that the law ofx differs from the law ofy and

such that, for everyk ∈ R2, the law of〈k, x〉 is identical to the law of〈k, y〉. As

an example, choose three i.i.d. Gaussian centered random variablesa1, a2, a3 and

define

x1(t1) = a1 x2(t1) = a2 x1(t2) = a3 x2(t2) = a1

y1(t1) = a1 y2(t1) = a2 y1(t2) = a2 y2(t2) = a3 .

It is an easy exercise to check that these two processes possess the required prop-

erties.

Remark 2.4 Convergence in the weakp-Wasserstein distance alone doesnot im-

ply weak convergence, as the space of probability measures onB is not complete

under||| · |||p. This can be seen by takingB = `2 and choosing forµn the Gaussian

measure with covariance

Qn = diag(1, 1
2 , . . . ,

1
n , 0, . . .) .
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It is straightforward to check that this forms a Cauchy sequence with respect to

||| · |||p, but does not converge to any measure supported in`2. (It does however

converge weakly to a limiting measure in a weaker topology, and this is always

the case.) In our situation, the additional control we have on the regularity of the

processes involved allows to overcome this problem.

Remark 2.5 The covariance, oreffective diffusivity, K2 of the limiting Brownian

motion depends on theσ and τ . It is shown in [PS03] that asτ tends to0 the

covarianceK2 converges to the one obtained from the homogenization of equation

1.2. We refer to [PS03] for further properties of the effective diffusivity, together

with numerical experiments for various fieldsv(x).

Remark 2.6 For simplicity, we choose the molecular diffusionσ to be a constant

scalar. Taking forσ a positive definite matrix would only require a slight change in

our notations. We could even allowσ to depend onx in a smooth way, as long as it

remains strictly positive definite for allx ∈ Tn. The results from [EPR99, EH00]

then still apply and one can check that all the bounds obtained in section 3 still

hold. Since the proof of Theorem 2.1 itself never uses the fact thatσ is constant,

all of our results immediately carry over to this case.

Remark 2.7 For simplicity, we assumed the initial condition (x, y) to be determin-

istic. However, it is easy to check that all our arguments work for randomly dis-

tributed initial conditions provided that they are independent of the driving noise

and thatE exp 1
2‖σ

−1y‖2 <∞.

Remark 2.8 One may wonder if it is possible to show convergence ofµε to µ in

a stronger topology, like the one given by the total variation distance. Since the

sample paths of the Brownian motion are almost surely not differentiable, whereas

t 7→ εxε
t almost surely is, the measuresµε andµ are actually mutually singular

for every ε > 0. Concerning the distributions for a fixed timet, one expects

from a formal expansion that the density of the law ofεxε
t is given byµt

ε(x) =

µt(x)ρ(ε−1x) + O(ε), whereρ is the periodic continuation of the density of the
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marginal (on the first component) of the invariant measure for the diffusion (2.2).

It is straightforward to check that, unlessρ is constant, the total variation distance

(i.e. the L1 distance between densities in this case) betweenµt(x)ρ(ε−1x) andµt(x)

does not converge to0 asε→ 0.

The proof of Theorem 2.1 will be presented in section 4.

3 Preliminary Estimates

In this section we collect various estimates which are necessary for the proof of

the homogenization theorem. In section 3.1 we study the structure of the invariant

measureµ for (2.1). We show that it possesses a smooth density with respect to the

Lebesgue measure and we derive sharp bounds for it. Further, we investigate the

solvability of the Poisson equation

−Lf = h, (3.1)

whereh is a smooth function ofx andy which is centered with respect toµ. We

prove that equation (3.1) has a smooth solution which is unique in the class of

functions which do not grow too fast at infinity.

In section 3.2 we derive estimates on exponential moments of the particle ve-

locity. Roughly speaking, these estimates imply that the particle velocity grows

very slowly with time.

3.1 Bounds on the invariant measure and on the solution of the Poisson equa-
tion

If v = 0, the invariant measure for (2.1) is given byµ = e−
‖y‖2

σ2 dx dy. This is

“almost” true also in the casev 6= 0, as can be seen by the following result.

Theorem 3.1 Let µ be the invariant measure for (2.1) and denote byρ(x, y) its

density with respect to the Lebesgue measure. Then, for everyδ ∈ (0, 2σ−2) one

can write

ρ(x, y) = e−
δ
2
‖y‖2g(x, y) , g ∈ S , (3.2)

whereS denotes the Schwartz space of smooth functions with fast decay.
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Proof. The proof follows the lines of [EPR99, EH00]. Denote byφt the (random)

flow generated by the solutions to (2.1) and byPt the semigroup defined on finite

measures by

(Ptµ)(A) = E(µ ◦ φ−1
t )(A) .

Since∂t +L is hypoelliptic,Pt maps every measure into a measure with a smooth

density with respect to the Lebesgue measure. It can therefore be restricted to a

positivity preserving contraction semigroup on L1(Tn×Rn, dx dy). The generator

L̃ of Pt is given by the formal adjoint ofL defined in (2.3).

We now define an operatorK on L2(Tn × Rn, dx dy) by closing the operator

defined onC∞0 by

K = −e
δ
2
‖y‖2L̃e−

δ
2
‖y‖2 . (3.3)

The operatorK is then given by

K = −σ
2

2τ
∆y +

δ

τ

(
1− δσ2

2

)
‖y‖2 +

1
τ
(δσ2 − 1)

(
y · ∇y +

n

2

)
+

1√
τ
(y · ∇x + v(x) · ∇y)−

n

2τ
.

Note at this point thatδ < 2σ−2 is required to make the coefficient of‖y‖2 in this

expression strictly positive. This can be written in Hörmander’s “sum of squares”

form as

K =
2n∑
i=1

X∗
i Xi +X0 ,

with

Xi =
σ√
2τ
∂yi if i = 1 . . . n,

Xi =

√
δ

τ

(
1− δσ2

2

)
yi−n if i = (n+ 1) . . . 2n,

X0 =
1
τ
(δσ2 − 1)

(
y · ∇y +

n

2

)
+

1√
τ
(y · ∇x + v(x) · ∇y)−

n

2τ
.

Sincev is C∞ on the torus, it can be checked in a very straightforward way that the

assumptions of [EH00, Thm. 5.5] are satisfied withΛ2 = 1 − ∆x − ∆y + ‖y‖2.
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Combining this with [EH00, Lem. 5.6], we see that there existsα > 0 such that,

for everyγ > 0, there exista a positive constantC such that

‖Λα+γf‖ ≤ C(‖ΛγKf‖+ ‖Λγf‖) , (3.4)

holds for everyf in the Schwartz space. Looking at (3.4) withγ = 0, we see that

K has compact resolvent. Sincee−
δ
2
‖y‖2 is an eigenfunction with eigenvalue0 for

K∗, it follows thatK has also an eigenfunction with eigenvalue0, let us call it

g. It follows from (3.4) and a simple approximation argument that‖Λγg‖ < ∞

for everyγ > 0, and thereforeg belongs to the Schwartz space. Furthermore, an

argument given for example in [EPR99, Prop 3.6] shows thatg must be positive.

Since one has furthermore

L̃e−
δ
2
‖y‖2g = 0 ,

the functionρ given by (3.2) is the density of the invariant measure of (2.1). This

concludes the proof of Theorem 3.1.

Before we give bounds on (2.4), we show the following little lemma.

Lemma 3.2 Let δ ∈ (0, 2σ−2) and letK be as in (3.3). Then, the kernel ofK is

one-dimensional.

Proof. Let g̃ ∈ kerK. Then, by the same arguments as above,e−
δ
2
‖y‖2 g̃ is the

density of an invariant signed measure forPt. The ergodicity ofPt immediately

implies g̃ ∝ g.

Now we are ready to prove estimates on the solution of the Poisson equation (3.1).

Theorem 3.3 Leth ∈ C∞(Tn×Rn) withDα
x,yh ∈ L2(Tn×Rn; e−ε‖y‖2dxdy) for

every multiindexα and everyε > 0. Assume further that
∫
h(x, y)µ(dx dy) = 0,

whereµ is the invariant measure for (2.1). Then, there exists a functionf such that

(3.1) holds. Moreover, for everyδ > 0, the functionf satisfies

f (x, y) = e
δ
2
‖y‖2 f̃ (x, y) , f̃ ∈ S . (3.5)
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Furthermore, for everyδ ∈ (0, 2σ−2), f is unique (up to an additive constant) in

L2(Tn × Rn, e−δ‖y‖2dxdy).

Proof. By hypoellipticity, if there exists a distributionf such that (2.4) holds, then

f is actually aC∞ function.

We start with the proof of existence. Fixδ ∈ (0, 2σ−2), consider the operator

K∗ which is the adjoint of the operatorK defined in (3.3), and define the function

u(x, y) = h(x, y) e−
δ
2
‖y‖2 .

It is clear that if there exists̃f such thatK∗f̃ = u, thenf = e
δ
2
‖y‖2 f̃ is a solu-

tion to (3.1). Consider the operatorK∗K. By the considerations in the proof of

Theorem 3.1,K∗K has compact resolvent. Furthermore, the kernel ofK∗K is

equal to the kernel ofK, which in turn by Lemma 3.2 is equal to the span ofg.

DefineH = 〈g〉⊥ and defineM to be the restriction ofK∗K toH. SinceK∗K has

compact resolvent, it has a spectral gap and soM is invertible. Furthermore, since

Ly = τ−1/2v(x) − τ−1y, one checks easily thatf ∈ H, thereforef̃ = KM−1u

solvesK∗f̃ = u and thus leads to a solution to (3.1).

SinceK∗ satisfies a similar bound to (3.4) and since‖Λγu‖ < ∞ for every

γ > 0, the bound (3.5) follows as in Theorem 3.1. The uniqueness ofu in the class

of functions under consideration follows immediately from Lemma 3.2.

Remark 3.4 Note that the solutionf of (3.1) is probably not unique if we allow

for functions that grow faster thaneσ
−2‖y‖2 .

Remark 3.5 The identityyL̃ρ = 0, whereL̃ is the formal adjoint ofL, immedi-

ately yields that
∫
y µ(dx, dy) =

√
τ

∫
v(x)µ(dx, dy). In particular, the assump-

tion that the drift is centered implies thaty is also centered. Moreover,y clearly

satisfies the smoothness and fast decay assumptions of Theorem 3.3. Hence, the

theorem applies to each component of equation (2.4) and we can conclude that

there exists a unique smooth vector valued functionΦ which solves the cell prob-

lem and whose components satisfy estimate (3.5).
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3.2 Estimates on the particle velocity

One has the following bound

Lemma 3.6 There exists a constantγ > 0 such that

E exp
(1

2
‖σ−1y(t)‖2

)
≤ exp

(1
2
‖σ−1y‖2 + γt

)
,

E exp
( 1

8τ

∫ t

0
‖σ−1y(s)‖2 ds

)
≤ exp

(1
4
‖σ−1y‖2 +

γ

2
t
)
.

holds for any initial conditiony and everyt > 0.

Proof. Itôs formula yields immediately the existence of a constantγ such that

1
2
‖σ−1y(t)‖2 ≤ 1

2
‖σ−1y‖2 + γt

− 1
2τ

∫ t

0
‖σ−1y(s)‖2 ds+

1√
τ

∫ t

0
〈σ−1y(s), dβ(s)〉 .

The first bound follows by exponentiating both sides and taking expectations. The

second bound follows in a similar way after dividing both sides by2.

This yields the following:

Theorem 3.7 Letψ : Tn × Rn → R be such that

sup
x∈Tn,y∈Rn

∣∣∣ψ(x, y) exp
(
−1

4
‖σ−1y‖2

)∣∣∣ <∞ .

Then, there exist constantsC, δ > 0 such that

E(ψ(x(t), y(t)))−
∫

Tn×Rn

ψ(x, y)µ(dx, dy) ≤ C exp(‖σ−1y‖2 − δt) . (3.6)

Proof. From the smoothing properties of the transition semigroup associated to

(2.2), combined with its controllability and the fact that‖y‖2 is a Lyapunov func-

tion, one gets the existence of constantsC andδ′ such that

‖Pt(x, y; · )− µ‖TV ≤ C(1 + ‖y‖2)e−δ′t .
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(Seee.g.[MT93] for further details.). Here‖µ − ν‖TV denotes the total variation

distance between the measuresµ andν. Cauchy-Schwarz furthermore yields the

generic inequality

∣∣∣∫ f dµ−
∫
f dν

∣∣∣ ≤ √
‖µ− ν‖TV

∫
f2 (dµ+ dν) (3.7)

The bound (3.6) immediately follows by combining Lemma 3.6 with (3.7).

We also have a much stronger bound on the supremum in time of the solution:

Lemma 3.8 For everyκ > 0 and everyT > 0, there exist constantsδ, C > 0 such

that

E sup
t∈[0,T ε−2]

exp(δ‖y(s)‖2) ≤ Cε−κeδ‖y‖
2
,

holds for everyε ∈ [0, 1].

Proof. Let ỹ be the Ornstein-Uhlenbeck process defined by

ỹ(t) =
1√
τ

∫ t

0
e−

t−s
τ σ dβ(s) .

Then (seee.g.[Adl90]), there exists constantsc1 andc2 such that

P
(

sup
t∈[s,s+T ]

‖ỹ(t)‖ > λ
)
≤ c1e

−c2λ2
,

for everys > 0. This immediately yields

P
(

sup
t∈[0,T ε−2]

‖ỹ(t)‖ > λ
)
≤ c1ε

−2e−c2λ2
,

which in turn implies that there exist constantsc3 andc4 such that

E
(

sup
t∈[0,T ε−2]

exp(c3‖ỹ(t)‖2)
)
≤ c4ε

−2 .

The claim follows immediately by choosingδ = (c3κ)/2 and by noticing that there

exists a constantc4 such that‖y(s)‖ ≤ ‖ỹ(s)‖ + ‖y‖ + c4 for all s > 0 almost

surely.
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4 Proof of Theorem 2.1

Proof. By Theorem 3.3 we haveΦ(y, z) ∈ C∞(Tn×Rn,Rn), so we can apply the

Itô formula to the functionΦ(yε
t , x

ε
t ) to obtain:

Φ(yε
t , x

ε
t )− Φ(y, x) =

1
ε2

∫ t

0
LΦ(yε

s, x
ε
s) ds+

1
ε

σ√
τ

∫ t

0
∇yΦ(yε

s, x
ε
s) dβ

ε(s)

= − 1
ε2

1√
τ

∫ t

0
yε

s ds+
1
ε

σ√
τ

∫ t

0
∇yΦ(yε

s, x
ε
s) dβ

ε(s) ,

where we definedβε(t) = εβ(ε−2t) and we used (2.4) to get the second line. We

also interpret∇yΦ as a linear map fromRn into Rn. Thus we have:

εxε
t = εx+

1
ε

1√
τ

∫ t

0
yε

s ds

= εx− ε(Φ(yε
t , x

ε
t )− Φ(y, x)) +

σ√
τ

∫ t

0
∇yΦ(yε

s, x
ε
s) dβ

ε(s)

=: εx+ εIε
1(t) +M ε(t) . (4.1)

It follows from (3.5) and Lemma 3.8 that, for everyp > 0 there exists a constant

C such that

E sup
t∈[0,T ]

|Iε
1(t)|p ≤ Cε−

p
2 .

It is therefore sufficient to show that (2.8) and (2.9) hold withµε replaced by the

law of the martingale termM ε. We first show that (2.8) holds. This is equivalent

to showing that, for everỳ ∈ B∗ one can construct a random variableB` such

that

E|B` − `(M ε)|p ≤ Cεαp , (4.2)

holds uniformly over‖`‖ ≤ 1, and such the law ofB` is given bỳ ∗µ. We therefore

fix ` ∈ B∗ with ‖`‖ ≤ 1, which we interpret as anRn-valued measure with total

mass (i.e. the sum of the masses of each of its components) smaller than1. We also

use the notatioǹt = `([t, T ]).

Integrating by parts, we can write

`(M ε) =
∫ T

0
〈M ε(t), `(dt)〉 =

σ√
τ

∫ T

0
〈`(t),∇yΦ(yε

t , x
ε
t ) dβ

ε(t)〉 .
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We now define on the interval [0, T ] theR-valued martingaleM ε
` by

M ε
` (t) =

σ√
τ

∫ t

0
〈`(s),∇yΦ(yε

s, x
ε
s) dβ

ε(s)〉 .

According to the Dambis–Dubins–Schwartz theorem [RY99, Thm 1.6] there exists

a Brownian motionB such thatM ε
` (t) can be written as

M ε
` (t) = B(〈M ε

` ,M
ε
` 〉t) = B

(σ2

τ

∫ t

0

〈
`(s), (∇yΦ⊗∇yΦ)(yε

s, x
ε
s) `(s)

〉
ds

)
.

On the other hand, the measure`∗µ is a centered Gaussian measure with vari-

ance
∫ T
0 〈`(s),K

2`(s)〉 ds, so we can chooseB` to be given by

B` = BT
` , Bt

` = B
(∫ t

0
〈`(s),K2`(s)〉 ds

)
.

We will actually show a stronger bound than (4.2), namely we will show that

Jp
ε := E sup

t∈[0,T ]
|Bt

` −M ε
` (t)|p ≤ Cεαp . (4.3)

We use the Ḧolder continuity of the Brownian motionB, together with the Cauchy–

Schwarz inequality to derive the estimate

Jp
ε ≤ E

(
Hölpα(B) sup

0≤t≤T

∣∣∣∫ t

0

〈
`(s),

(σ2

τ
(∇yΦ⊗∇yΦ)(yε

s, x
ε
s)−K2

)
`(s)

〉
ds

∣∣∣αp)
≤ (E Höl2p

α (B))
1
2

(
E sup

0≤t≤T

∣∣∣∫ t

0
〈`(s),H(yε

s, x
ε
s) `(s)〉 ds

∣∣∣2αp) 1
2

≤ C
(

E sup
0≤t≤T

∣∣∣∫ t

0
〈`(s),H(yε

s, x
ε
s) `(s)〉 ds

∣∣∣2αp) 1
2
, (4.4)

where we introduced then× n-matrix valued function

H(x, y) =
σ2

τ
(∇yΦ⊗∇yΦ)(y, x)−K2 .

In deriving the above estimate, we have used the fact that forα < 1
2 , theα-Hölder

constant of a Brownian motion is uniformly bounded on every bounded interval

[RY99, Thm 2.1].

Note now that sincè(t) is of bounded variation,̀(t)⊗ `(t) is also of bounded

variation, so there exists an×n-matrix valued measurè̃on [0, T ] such that̀ (t)⊗

`(t) = ˜̀([t, T ]). Therefore, we can integrate by parts in (4.4) to obtain

Jp
ε ≤ C

(
E sup

0≤t≤T

∣∣∣Tr
∫ t

0

∫ s

0
H(yε

r , x
ε
r) dr ˜̀(ds)

∣∣∣2αp) 1
2
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≤ C
(

E sup
0≤t≤T

∥∥∥∫ t

0
H(yε

s, x
ε
s) ds

∥∥∥2αp) 1
2

Consider now the Poisson equation

−LF = H . (4.5)

By the definition ofK2, we have
∫
H(x, y)µ(dx, dy) = 0 (for each component),

and we furthermore haveexp(−δ‖y‖2)H ∈ S for everyδ > 0. Therefore, using

the same reasoning as in the proof of Theorem 3.3, equation (4.5) has a unique

smooth solution satisfying

F (x, y) = e
δ
2
‖y‖2F̃(x, y) , F̃ ∈ S (4.6)

for everyδ > 0. We can apply It̂o formula to deduce as before that∫ t

0
H(yε

s, x
ε
s) ds = −ε2(F (yε

t , x
ε
t )− F (y, x)) +

ε√
τ

∫ t

0
∇yF (yε

s, x
ε
s)σdβ(s) .

Therefore:

|Jp
ε |2 ≤ ε4αpE sup

t∈[0,T ]
‖F (yε

t , x
ε
t )‖2αp + Cε2αpE sup

t∈[0,T ]

∥∥∥∫ t

0
∇yF (yε

s, x
ε
s) dβ(s)

∥∥∥2αp
.

Combining Lemma 3.8 with (4.6), the first term can be bounded by

ε4αpE sup
t∈[0,T ]

‖F (yε
t , x

ε
t )‖2αp ≤ Cε−2αp .

In order to control the second term, we use the Burkholder–Davis–Gundy inequal-

ity followed by Hölder’s inequality, assuming thatp > 1
α :

E sup
t∈[0,T ]

∥∥∥∫ t

0
∇yF (yε

s, x
ε
s) dβ(s)

∥∥∥2αp
≤ CE

(∫ T

0
‖∇yF (yε

s, x
ε
s)‖2 ds

)αp

≤ CTαp−1 sup
t∈[0,T ]

E‖∇yF (yε
t , x

ε
t )‖2αp .

This is bounded independently ofε by (4.6) and Lemma 3.6, and soJp
ε ≤ Cεαp,

for p > 1
α . Whenp < 1

α , one can boundJp
ε using the higher order moments. This

completes the proof of bound (4.2) and thus of the first part of Theorem 2.1.

The proof of the second part of Theorem 2.1 is obtained in a straightforward

way as a particular case of (4.3) if one makes the choice` = kδT .
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We now turn to the proof of the third part of Theorem 2.1. For this, we start

with some background material from [GTW95, TV99]. LetPM
p (Rn) denote the set

of all probability measures onRn with finite pth momentmp(µ) for somep > 2 to

be fixed later, and such that

mp(µ) ≤M .

Let ρ(µ1, µ2) denote the Prokhorov metric; we introduce the metrics

d1(µ1, µ2) = sup
`∈Rn

|χµ1(`)− χµ1(`)|
|`|

and

‖µ1 − µ2‖∗m = sup
{∣∣∣∣∫ φ(z)d(µ1(z)− µ2(z))

∣∣∣∣ , φ ∈ C∞, ‖φ‖m ≤ 1
}
,

where‖ · ‖m denotes the natural norm onCm(Rn). Now, a trivial modification of

[TV99, Thm. 2] gives

‖µ1 − µ2‖∗n+2 ≤ C(M ) d1(µ1, µ2)
2

n+3 ,

wheren is the dimension of the underlying space. Further, [GTW95, Cor. 5.5] and

[TV99, Thm 2] imply that

ρ(µ1, µ2) ≤ cm (‖µ1 − µ2‖∗m)
1

m+1

for everym > 0 and

|||µ1 − µ2|||22,W ≤ C(M ) ρ(µ1, µ2)
p−2

p .

Let µε
t andµt denote the laws ofεxε

t and the limiting Brownian motion at time

t respectively,i.e. the images ofµε andµ under the mapx 7→ x(t). With these

notations, the considerations above yield

Lemma 4.1 Let the assumptions of Theorem 2.1 hold. Then, for everyα ∈ (0, 1
2 )

and everyt ∈ [0, T ], we have:

|||µε
t − µt|||1,W ≤ Cε

α
2(n+3)2 .

Here, the constantC depends only onE exp 1
2‖σ

−1y‖2.
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Proof. From Theorem 2.1 and (2.7) we haved1(µ1, µ2) ≤ |||µε
t − µt|||1 ≤ Cεα.

Further, our bounds on the moments of the particle velocity imply thatM is bounded

independenly ofε for everyp > 0. The parameterδ given by1 − δ = p−2
p , can

thus be chosen arbitrarily small. Thus, forε sufficiently small andδ > 0, arbitrarily

small we have:

|||µε − µ|||22,W ≤ Cρ(µε,µ)1−δ ≤ C (‖µε − µ‖n+2)
1−δ
n+3

≤ Cd1(µε − µ)
1−δ

(n+3)2 ≤ Cε
α(1−δ)
(n+3)2 ,

from which the estimate follows upon applying Cauchy–Schwarz inequality. The

claim about the constantC is obtained by inspecting the bounds from Section 3.

Fix now an integerN > 0, definetj = jT/N , and define the mapΠN : B →

(Rn)N by (ΠNx)j = x(tj). We first show that, for everyγ < 1
4(n+3)2 , there exists

a constantC such that

|||Π∗
Nµε −Π∗

Nµ|||1,W ≤ CεγN2 , (4.7)

for everyN > 0. Lemma 4.1 indeed implies that ifPε
t denotes the transition prob-

abilities for the process (εxε
t , y

ε
t ), π2 denotes the projection on the first component,

andPt denotes the transition probabilities for a Brownian motion with covariance

K, one has for everyt ∈ [0, T ]

|||π∗2Pε
t (x, y; ·)− Pt(x, ·)|||1,W ≤ C(y) εγ ,

whereC(y) is such thatEC(yε
t ) is bounded uniformily fort ∈ [0, T ]. This implies

that one can construct a Brownian motionBt with covarianceK such that

E‖εxε
tj −Btj‖ ≤ Cεγ + E‖εxε

tj−1
−Btj−1‖ .

In particular, one has

E sup
j
‖εxε

tj −Btj‖ ≤
N∑

j=0

E‖εxε
tj −Btj‖ ≤ CεγN2 ,
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which implies (4.7) by definition.

Furthermore, the generalized Kolmogorov criteria [RY99, Thm 2.1] immedi-

ately implies that theα-Hölder constants ofεxε
t and of the limiting Brownian mo-

tionBt are bounded independently ofε for everyα < 1/2. Therefore,

|||µε − µ|||1,W ≤ CεγN2 +
C

Nα
.

Optimizing forN concludes the proof of Theorem 2.1.

5 Conclusions

The problem of homogenization for periodic hypoelliptic diffusions was studied in

this paper. It was proved that the rescaled particle position converges to a Brownian

motion with a covariance matrix which can be computed in terms of the solution

of the Poisson equation (2.4). Further, upper bounds on the convergence rate in

several norms were obtained. Our analysis is purely probabilistic and this enables

us to obtain more detailed information than what one could obtain from studying

the problem at the level of the Kolmogorov equation. The convergence rate in the

1-Wasserstein metric, estimate (2.10), is almost certainly not sharp, it is however

optimal in the sense that thep-Wasserstein metric is the strongest “natural” metric

in which convergence is expected to hold, see Remark 2.8.

A very interesting question is whether a homogenization theorem of the form

of Theorem 2.1 holds for random driftsv(x, t) and, if yes, under what conditions

onv(x, t). We plan to come back to this issue in a future publication.
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