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Abstract

In many applications it is important to be able to sample paths of SDEs conditional
on observations of various kinds. This paper studies SPDEs which solve such sam-
pling problems. The SPDE may be viewed as an infinite dimensional analogue of the
Langevin SDE used in finite dimensional sampling. Here the theory is developed for
conditioned Gaussian processes for which the resulting SPDE is linear. Applications
include the Kalman-Bucy filter/smoother. A companion paper studies the nonlinear
case, building on the linear analysis provided here.

1 Introduction

An important basic concept in sampling is Langevin dynamics: suppose a target den-
sity p on R has the form p(z) = cexp(—V(z)). Then the stochastic differential
equation (SDE)

dz

dw
E:—VV(x)Jr\/iE (1.1)

has p as its invariant density. Thus, assuming that (1.1) is ergodic, x(¢) produces sam-
ples from the target density p as t — oo. (For details see, for example, [RC99].)

In [SVWO04] we give an heuristic approach to generalising the Langevin method
to an infinite dimensional setting. We derive stochastic partial differential equations
(SPDESs) which are the infinite dimensional analogue of (1.1). These SPDEs sample
from paths of stochastic differential equations, conditional on observations. Observa-
tions which can be incorporated into this framework include knowledge of the solution
at two points (bridges) and a set-up which includes the Kalman-Bucy filter/smoother.
For bridge sampling the SPDEs are also derived in [RVEO5].

In the current paper we give a rigorous treatment of this SPDE based sampling
method when the processes to be sampled are Gaussian. The resulting SPDEs for the
sampling are also linear in this case. For Gaussian processes, the SPDEs studied here
will not usually constitute the optimal way to sample, because of the time correlation
inherent in the SPDE; better methods can be developed to generate independent sam-
ples by diagonalising the covariance operator. However, for nonlinear problems the
SPDE based samplers can be quite competitive. A companion article [HSV] will build
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on the analysis in this paper to analyse SPDEs which sample paths from nonlinear
SDEs, conditional on observations.

In section 2 of this article we will develop a general MCMC method to sample
from a given Gaussian process. It transpires that the distribution of a centred Gaussian
process coincides with the invariant distribution of the L?-valued SDE

dx dw
— =L 2— vt € (0 1.2
o = Lr+ V2 € (0,00), (1.2)
where L is the inverse of the covariance operator and w is a cylindrical Wiener process.
General Gaussian processes can be handled by subtracting the mean.

The first sampling problems we consider are governed by paths of the R?-valued

linear SDE IX dW
—(u) = AX(u) + B——(u) Yu € [0,1] (1.3)
du du

subject to observations of the initial point X (0), as well as possibly the end-point X (1).
Here we have A, B € R%*? and W is a standard d-dimensional Brownian motion.
Since the SDE is linear, the solution X is a Gaussian process. Section 3 identifies
the operator £ in the case where we sample solutions of (1.3), subject to end-point
conditions. In fact, £ is a second order differential operator with boundary conditions
reflecting the nature of the observations and thus we can write (1.2) as an SPDE.

In section 4 we study the situation where two processes X and Y solve the linear
system of SDEs

dX AW,
—(w) = A1 X (w) + B11 (u)
du du

dy aw,
—(u) = Ao1 X (u) + Bog —2(u)
du du

on [0, 1] and we want to sample paths from the distribution of X (the signal) con-
ditioned on Y (the observation). Again, we identify the operator £ in (1.2) as a
second order differential operator and derive an SPDE with this distribution as its
invariant distribution. We also give a separate proof that the mean of the invariant
measure coincides with the standard algorithmic implementation of the Kalman-Bucy
filter/smoother through forward/backward sweeps.

To avoid confusion we use the following naming convention. Solutions to SDEs
like (1.3) which give our target distributions are denoted by upper case letters. So-
lutions to infinite dimensional Langevin equations like (1.2) which we use to sample
from these target distributions are denoted by lower case letters.

2 Gaussian Processes

In this section we will derive a Hilbert space valued SDE to sample from arbitrary
Gaussian processes.

Recall that a random variable X taking values in a separable Hilbert space H is
said to be Gaussian if the law of (y, X) is Gaussian for every y € H (Dirac measures
are considered as Gaussian for this purpose). It is called centred if E(y, X) = 0 for
every y € H. Gaussian random variables are determined by their mean m = EX € H
and their covariance operator C: H — H defined by

<y,C£L‘> = E(<y7X - m><X - m>$>)
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For details see e.g. [DPZ92, section 2.3.2]. The following lemma (see [DPZ92, propo-
sition 2.15]) characterises the covariance operators of Gaussian measures.

Lemma 2.1 Let X be a Gaussian random variable on a separable Hilbert space. Then
the covariance operator C of X is self-adjoint, positive and trace class.

A Gaussian random variable is said to be non-degenerate if (y,Cy) > 0 for every
y € H \ {0}. An equivalent characterisation is that the law of (y, X) is a proper
Gaussian measure (i.e. not a Dirac measure) for every y € H \ {0}. Here we will
always consider non-degenerate Gaussian measures. Then C is strictly positive definite
and we can define £ to be the inverse of —C. Since C is trace class, it is also bounded
and thus the spectrum of £ is bounded away from 0.

We now construct an infinite dimensional process which, in equilibrium, samples
from a prescribed Gaussian measure. Denote by w the cylindrical Wiener process
on H. Then one has formally

wt) =Y BuBpn Yt € (0,00), @1

n=1

where for n € N the (3, are i.i.d. standard Brownian motions and ¢,, are the (orthonor-
mal) eigenvectors of C. Note that the sum (2.1) does not converge in H but that one
can make sense of it by embedding H into a larger Hilbert space in such a way that the
embedding is Hilbert-Schmidt. The choice of this larger space does not affect any of
the subsequent expressions (see also [DPZ92] for further details).
Given C and L as above, consider the H-valued SDE given by
dx

dw
E_cm—chrﬂE, (2.2)

which should be interpreted in the following way:
t
z(t) = m + e“H(x(0) — m) + V2 / =9 du(s). (2.3)
0

If x € C([0,T1, H) satisfies (2.3) it is called a mild solution of the SDE (2.2). We have
the following result.

Lemma 2.2 Let C be the covariance operator and m the mean of a non-degenerate
Gaussian random variable X on a separable Hilbert space 'H. Then the corresponding
evolution equation (2.2) with L = —C~' has continuous H-valued mild solutions.
Furthermore, it has a unique invariant measure (s on H which is Gaussian with mean m
and covariance C and there exists a constant K such that for every initial condition
ro € H one has

[aww (2(8)) = pelly < K (1+ [lzo — mll2) exp(=[IClI7L 5t),
where || - ||Tv denotes the total variation distance between measures.

Proof. The existence of a continuous H-valued solution of the SDE (2.2) is established
in [IMM™90]. The uniqueness of the invariant measure and the convergence rate in the
total variation distance follow by combining Theorems 6.3.3 and 7.1.1 from [DPZ96].
The characterisation of the invariant measure is established in [DPZ96, Thm 6.2.1].

[l
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Using the Karhunen-Lo¢ve expansion we can give an heuristic argument which
illustrates why Lemma 2.2 holds in the case m = 0: denote by (¢,,),en an orthonormal
basis of eigenvectors of C and by (A,).en the corresponding eigenvalues. If X is
centred it is possible to expand X as

X =3 o, @4
n=1

for some real-valued random variables «,,. (In contrast to the situation in (2.1) the con-
vergence in (2.4) actually holds in L?(Q, P, H), where (2, P) is the underlying prob-
ability space.) A simple calculation shows that the coefficients a, are i.i.d. N'(0,1)
distributed random variables. The expansion (2.4) is called the Karhunen-Log¢ve ex-
pansion. Details about this construction can be found in [ATOS].

Now express the solution = of (2.2) in the basis (¢,,) as

o0
o) =Y YnB)pn-
n=1
Then a formal calculation using (2.1) and (2.2) leads to the SDE

dyn 1 dfn

Zm_ = il
dt An V2 dt

for the time evolution of the coefficients ~,, and hence ~,, is ergodic with stationary

distribution A/(0, \,,) for every n € N. Thus the stationary distribution of (2.2) has the

same Karhunen-Loeve expansion as the distribution of X and the two distributions are

the same.

In this article, the Hilbert space H will always be the space L?([0, 1], R?) of square
integrable R%-valued functions and the Gaussian measures we consider will be distribu-
tions of Gaussian processes. In this case the operator C has a kernel C': [0, 1]? — R4*
such that

1
Cx)(u) = / C(u,v) x(v) dv. (2.5)
0

If the covariance function C' is Holder continuous, then the Kolmogorov continuity
criterion (see e.g. [DPZ92, Thm 3.3]) ensures that X is almost surely a continuous
function from [0, 1] to R?. In this case C'is given by the formula

C(u,v) = E((X(u) —m(u))(X @) — m(v))*)
and the convergence of the expansion (2.4) is uniform with probability one.

Remark 2.3 The solution of (2.2) may be viewed as an MCMC method for sampling
from a given Gaussian process. The key to exploiting this fact is the identification of
the operator £ for a given Gaussian process. In the next section we show that, for
a variety of linear SDEs, L is a second order differential operator and hence (2.2) is
a stochastic partial differential equation. If C has a Holder continuous kernel C), it
follows from (2.5) and the relation C = (—£)~! that it suffices to find a differential
operator L such that C'(u, v) is the Green’s function of —L.
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3 Conditioned Linear SDEs

In this section we apply our sampling technique from section 2 to Gaussian measures
which are given as the distributions of a number of conditioned linear SDEs. We con-
dition on, in turn, a single known point (subsection 3.1), a single point with Gaussian
distribution (subsection 3.2) and finally a bridge between two points (subsection 3.3).

Throughout we consider the R?-valued SDE
dX aw
— (W) = AX () + B ——(u), Vu € [0,1], (3.1)
du du

where A, B € R%*? and W is the standard d-dimensional Brownian motion. We
assume that the matrix BB™ is invertible. We associate to (3.1) the second order dif-
ferential operator L formally given by

L = (8, + A)BB" (9, — A). (3.2)

When equipped with homogeneous boundary conditions through its domain of def-
inition, we will denote the operator (3.2) by £. We will always consider boundary
conditions of the general form Dyxz(0) = 0 and D12(1) = 0, where D; = A;0, + b;
are first-order differential operators.

Remark 3.1 We will repeatedly write R%-valued SPDEs with inhomogeneous bound-
ary conditions of the type

atw(ta U) = L.’L'(t, u) + g(u) + \/ﬁatw(t7 U) V(t, U) S (07 OO) X [07 1]7
Dox(t,0) =a, Dyx(t,1)=5> vVt € (0, ), (3.3)
z(0,u) = xo(u) Yu € [0,1]
where g: [0,1] — R? is a function, O;w is space-time white noise, and a, b € R%. We
call a process x a solution of this SPDE if it solves (2.2) with (0) = z¢ where L is L
equipped with the boundary conditions Dy f(0) = 0 and D, f(1) = 0, and m: [0, 1] —
R? is the solution of the boundary value problem —Lm = g with boundary conditions
Dom(0) = a and Dym(1) = b.
To understand the connection between (3.3) and (2.3) note that, if w is a smooth
function, then the solutions of both equations coincide.

3.1 Fixed Left End-Point
Consider the problem of sampling paths of (3.1) subject only to the initial condition

X(0) =2~ e RL (3.4)
The solution of this SDE is a Gaussian process with mean
m(u) = E(X(u)) = "4z~ (3.5)
and covariance function
uNv
Co(u,v) = e ( / e "ABB*e A dr) ev A (3.6)
0

(see e.g. [KS91, section 5.6] for reference). Let £ denote the differential operator L
from (3.2) with the domain of definition

d
D(L) = {f € H*([0,1],R%) | f(0) =0, Zof) = Af} (3.7)
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Lemma 3.2 With L given by (3.2) and (3.7) the function Cy is the Green’s function
for —L. That is
LCy(u,v) = —6(u — v)I

and
Co(0,v) =0, 0,C(,v)=ACy1,v) Yv € (0,1).

Proof. From (3.6) we can see that for u # v the kernel is differentiable with derivative

ACy(u,v) + BB*e "4 e foru < v, and

(3.8)
ACy(u,v) for u > v.

8uC(O(uy U) = {
Thus the kernel Cj satisfies the boundary conditions Cy(0,v) = 0 for all v € (0, 1] and
0,Co(1,v) = AC(1,v) forall v € [0, 1).
Equation (3.8) shows

—uA"evA” " for u < v, and

(BB*)™1 (0, — A)Co(u,v) = {0 (3.9)

foru > wv
and thus we get
LCo(u,v) = (0 + A*)(BB*) (0, — A)Co(u,v) =0  Vu #v.
Now let v € (0,1). Then we get
5%}1 (BB*)™' (0, — A)Co(u,v) = T

and
li{n (BB*)™1 (0, — A)Co(u,v) = 0

This shows LCy(u,v) = —§(u — v)I for all v € (0, 1). O

Now that we have identified the operator £L = (—C)~! we are in the situation
of Lemma 2.2 and can derive an SPDE to sample paths of (3.1), subject to the initial
condition (3.4). We formulate this result precisely in the following theorem.

Theorem 3.3 For every o € H the R%-valued SPDE

Opx(t,u) = La(t,u) + \/iatw(t, ) V(t,u) € (0,00) x (0,1) (3.10a)
z(t,0) =z, Oux(t,1) = Ax(t,1) Vvt € (0, 00) (3.10b)
(0, u) = xo(u) Yu € [0,1] (3.10¢)

where Oyw is space-time white noise has a unique mild solution. The SPDE is ergodic
and in equilibrium samples paths of the SDE (3.1) with initial condition X (0) = x~.

Proof. The solution of SDE (3.1) with initial condition (3.4) is a Gaussian process
where the mean m is given by (3.5). The mean m solves the boundary value prob-
lem Lm(u) = 0 for all u € (0,1), m(0) = z~ and m/(1) = Am(1). From Remark 3.1
we find that z is a solution of the Hilbert space valued SDE (2.2) for this function m.
Lemma 3.2 shows that £, given by (3.2) with the boundary conditions from (3.10b),
is the inverse of —C where C is the covariance operator of the distribution we want
to sample from. Lemma 2.2 shows then that the SPDE (3.10) is ergodic and that its
stationary distribution coincides with the distribution of solutions of the SDE (3.1) with
initial condition X (0) = z~. |
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3.2 Gaussian Left End-Point

An argument similar to the one in section 3.1 deals with sampling paths of (3.1) where
X (0) is a Gaussian random variable distributed as

X(0) ~ N(=z™,X%) (3.11)

with an invertible covariance matrix ¥ € R%*? and independent of the Brownian mo-
tion W.

Theorem 3.4 For every xy € ‘H the R%-valued SPDE

Oix(t,u) = Lx(t,u) + ﬂ@tw(t, ) V(t,u) € (0,00) x (0,1) (3.12a)

Dux(t,0) = Ax(t,0) + BB*S " Na —x7), Oua(t,1) = Ax(t, 1) YVt € (0, 00)
(3.12b)

2(0,u) = zo(u)  Yu € [0,1] (3.12¢)

where Oyw is space-time white noise has a unique mild solution. The SPDE is er-
godic and in equilibrium samples paths of the SDE (3.1) with Gaussian initial condi-
tion (3.11).

Proof. The solution X of SDE (3.1) with initial condition (3.11) is a Gaussian process
with mean (3.5) and covariance function

Clu,v) = e*“%e " + Cy(u,v), (3.13)

where () is the covariance function from (3.6) for the case X (0) = 0 (see e.g. [KS91]
for reference). The mean m from (3.5) solves the boundary value problem Lm(u) = 0
for all u € (0, 1) with boundary conditions m/(0) = Am(0) + BB*X~1(m(0) — z7)
and m/(1) = Am(1).

In order to identify the inverse of the covariance operator C we can use (3.8) to find

AC(u,v) + BB*e “A"e"4" | foru < v, and

0,C(u,v) =
(, ) {AC(U,U) foru > v

and, since C(0,v) = Y e¥4", we get the boundary conditions
9,C(0,v) = AC(0,v) + BB*S71C(0,v)
and
0.C(1,v) = AC(0,v).
From (9, — A)e*4 e = 0 we also get
LC(0,v) = Le"*%e" + LCo(u,v) =0
for all u # v and LC(u,v) = LCy(u,v) = —0(u,v)I for all u,v € (0,1). Thus

C is again the Green’s function for —£ and the claim follows from Remark 2.3 and
Lemma 2.2. O

Remark 3.5 If A is negative-definite symmetric, then the solution X of SDE (3.1) has
a stationary distribution which is a centred Gaussian measure with covariance ¥ =
—%Ail BB*. Choosing this distribution in (3.11), the boundary condition (3.12b)
becomes

Our(t,0) = —Ax(t,0), Ouz(t,1) = Ax(t,1)  Vt € (0,00).
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3.3 Bridge Sampling
In this section we apply our sampling method to sample from solutions of the linear
SDE (3.1) with fixed end-points, i.e. we sample from the distribution of X conditioned

on
XO0) =2, X1) =z (3.14)

The conditional distribution transpires to be absolutely continuous with respect to the
Brownian bridge measure satisfying (3.14).

Let m and Cj be the mean and covariance of the unconditioned solution X of
the SDE (3.1) with initial condition X(0) = x~. As we will show in Lemma 4.4
below, the solution conditioned on X (1) = ™ is again a Gaussian process. The mean
and covariance of the conditioned process can be found by conditioning the random
variable (X (u), X(v), X (1)) for v < v < 1 on the value of X(1). Since this is a
finite dimensional Gaussian random variable, mean and covariance of the conditional
distribution can be explicitly calculated. The result for the mean is

m(u) = m(u) + Co(u, NCo(1, )™ (zT — m(1)) (3.15)
and for the covariance function we get
C(u,v) = Colu,v) — Co(u, )Co(1, 1) Co(1, v). (3.16)

Theorem 3.6 For every xy € H the R%-valued SPDE

O = Lz + V20w V(t,u) € (0,00) x (0,1) (3.17a)
zt,0) =2, xzt 1) =z Vit € (0, 00) (3.17b)
z(0,u) = xo(w) Yu € [0,1] (3.17¢)

where Oyw is white noise has a unique mild solution. The SPDE is ergodic and in
equilibrium samples paths of the SDE (3.1) subject to the bridge conditions (3.14).

Proof. The solution of the SDE (3.1) with boundary conditions (3.14) is a Gaussian
process where the mean m is given by (3.15) and the covariance function C is given
by (3.16). From formula (3.9) we know LCy(u,1) = 0 and thus m satisfies Lm =
Lm = 0. Since 7(0) = 2~ and m(t) = m(1)+Co(1, DCo(1, D™zt —m(1)) = 2,
the mean m solves the boundary value problem Lm(u) = 0 for all v € (0,1) with
boundary conditions 7(0) = x~ and (1) = zT.

It remains to show that C' is the Green’s function for the operator L with homoge-
neous Dirichlet boundary conditions: we have C’(O, v) =0,

C(1,v) = Co(1,v) — Co(1, 1)Co(1, 1) Co(1,v) = 0
and using LCy(u, 1) = 0 we find
LC(u,v) = LCy(u,v) = —6(u — v)I.

This completes the proof. O
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4 The Kalman-Bucy Filter/Smoother

Consider (3.1) with X replaced by the R™ x R™-valued process (X,Y) and A, B €
Rm+mX(m+7) chosen so as to obtain the linear SDE

d (X(w)\ (A 0) [X(w) B 0 d (Wi
du <Y(U)> B <A21 0> (Y(u)) T ( 0 322> du (Wy(u)> . (4.1a)

We impose the conditions
Xo~N(@—,A), Yy=0 (4.1b)

and try to sample from paths of X given paths of Y. We derive an SPDE whose invari-
ant measure is the conditional distribution of X given Y. Formally this SPDE is found
by writing the SPDE for sampling from the solution (X, Y') of (4.1) and considering the
equation for the evolution of z, viewing y = Y as known. This leads to the following
result.

Theorem 4.1 Given a path'Y sampled from (4.1) consider the SPDE
8tI = ((au + Aikl)(BllBikl)il(au - All) — A;l(B22B52)71A21)I
ay
+ A5, (B2 Bsy) ™! Ju + V20w, (4.2a)

equipped with the inhomogeneous boundary conditions

Dux(t,0) = Ay12(t,0) + B11 Biy A (x(t,0) — z7),
Opx(t,1) = A1zt 1) (4.2b)

and initial condition

(0, u) = zo(u) Yu € [0, 1]. 4.2¢)

Then for every xy € H the SPDE has a unique mild solution and is ergodic. Its
stationary distribution coincides with the conditional distribution of X given' Y for
X,Y solving (4.1).

The proof of this theorem is based on the following three lemmas concerning con-
ditioned Gaussian processes. After deriving these three lemmas we give the proof of
Theorem 4.1. The section finishes with a direct proof that the mean of the invariant
measure coincides with the standard algorithmic implementation of the Kalman-Bucy
filter/smoother through forward/backward sweeps (this fact is implicit in Theorem 4.1).

Lemma 4.2 Let H = H1®Hs be a separable Hilbert space with projectors 11;: H —
H;. Let C: H — 'H be a positive definite, bounded, linear, self-adjoint operator and
denote C;; = HiCHj. Then C11 — 6126521021 is positive definite and if C1; is trace

class then the operator 0521/ 2C21 is Hilbert-Schmidt.
Proof. Since C is positive definite, one has

2[{Ca12,y)| < (z,Ci17) + (Y, C22y),
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for every (z,y) € H. It follows that

[(Corz, )| < (z,Cr1z)(y, Cazy), 4.3)

and so o
(Carz, Co )2 < (, Crae) [y 2 (4.4)

for every y # 0 in the range of (3214 2, Equation (4.3) implies that C3; 2 is orthogonal to
ker Cys for every x € Hy. Therefore the operator C;QI/ 2C21 can be defined on all of H;
and thus is bounded. Taking y = C2_21/2C21:v in (4.4) gives HCQ_21/2C21$H2 < (z,Ci1z)
and thus (z, (C11 — 6126521621)96) > 0 for every x € H;. This completes the proof.

[l

Remark 4.3 Note that C being strictly positive definite is not sufficient to imply that
Ci1—C 1262_21 C2, is also strictly positive definite. A counter-example can be constructed
by considering the Wiener measure on H = L?([0, 1]) with H; being the linear space
spanned by the constant function 1.

Lemma 4.4 Let H = H1©Ho be a separable Hilbert space with projectors 11;: H —
H;. Let (X1, X2) be an H-valued Gaussian random variable with mean m = (my, ms)
and positive definite covariance operator C and define C;; = 11;CIL;. Then the condi-
tional distribution of X1 given Xo is Gaussian with mean

myjg = My + 012C2_21 (XQ - m2) 4.5)

and covariance operator
Ci2 =Cn — C12C55'Con. (4.6)

Proof. Note that by Lemma 2.1 the operator C is trace class. Thus Cy1 and Cy are also

trace class. Let u be the law of X5 and let Hg be the range of C212/ 2 equipped with the
inner product

(2, y)0 = (Con*2,C3,Py).

If we embed Hy — Ho via the trivial injection ¢(f) = f, then we find i*(f) = Cos f.
Since i o i* = (b9 is the covariance operator of p, the space Hy is its reproducing

kernel Hilbert space. From Lemma 4.2 we know that 0120521/ 2 is Hilbert-Schmidt
from H5 to H1 and hence bounded. Thus we can define

A = C15C55 "7 C % = C12C3)

as a bounded operator from H to H.
Let (¢,,),, be an orthonormal basis of Hs. Then v, = 0212/ 2<;Sn defines an orthonor-
mal basis on H and we get

ST A3, = Y 11C12C5! C8%0ull3, = D 1C12C5 2 6nll3, <

neN neN neN

where the last inequality comes from Lemma 4.2. This shows that the operator A is
Hilbert-Schmidt on the reproducing kernel Hilbert space H. Theorem I1.3.3 of [DF91]
shows that A can be extended in a measurable way to a subset of o which has full
measure, so that (4.5) is well-defined.
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Now consider the process Y defined by

i\ _ (In, —A\ (X1
Y2)  \On, In,) \X2)'

This process is also Gaussian, but with mean

Y IH1 —A miq my — Amg
m- = =
OHz IHQ ma ma

and covariance operator

oY — <IH1 —A) <C11 C12> (IH1 07-{2) _ (Cu —C12C55'Co1 0 ) .
01, In,) \Co1 Coz) \—A" Iy, 0 Cao
This shows that Y; = X; — C12C;21X2 and Y5 = X5 are uncorrelated and thus inde-
pendent. So we get

E(X) | Xo) = E(X1 — C12C55' Xo | Xa) + E(C12C05 Xo | Xo)
= E(Xl — 01262_21)(2) + 01202_21)(2
=mi — 012627217712 + Clgcing.

This proves (4.5) and a similar calculation gives equality (4.6). 0

Remark 4.5 If we define as above £ = (—C)~! and formally define Li; = HiEH;-
(note that without additional information on the domain of £ these operators may not
be densely defined), then a simple formal calculation shows that m; 5 and Cy|, are
expected to be given by

m1|2 =mi — ﬁl_llﬁlg(Xg — mg), Cl|2 = —L‘,l_ll. (47)

We now justify these relations in a particular situation which is adapted to the case that
will be considered in the remaining part of this section.

Lemma 4.6 Consider the setup of Lemma 4.4 and Remark 4.5 and assume furthermore
that the following properties are satisfied:

a. The operator L can be extended to a closed operator L on II,D(L) & 11, D(L).

b. Define the operators L;; = HZ-EH;. Then, the operator L1; is self-adjoint and
one has ker L1; = {0}.

c. The operator —El_llﬁlz can be extended to a bounded operator from Hs into

Hi.
Then C12C§21 can be extended to a bounded operator from Ho into Hy and one has
C12C2_21 = —£1_11L'12. Furthermore, Co1 maps H; into the range of Cao and one has

,Cl_lll' = (Cll — 01262_21(:’21)1‘,
for every x € H;.

Proof. We first show that C12C2_21 = *,61_11,612. By property a. and the definition of £,
we have the equality R R
LIGILCx + LITZTToCx = —x (4.8)
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for every x € H, and thus £11C100 = —L15Cosx for every x € Ha. It follows
immediately that £116126521$ = — Loz for every x € R(Ca2). Since R(Ca2) is dense
in Ho, the statement follows from assumptions b. and c.

Let us now turn to the second equality. By property a. the operator Co; maps Hy
into the domain of L1 so that

=2 — L1201 + L1202 = L11C117 + L1201 7, 4.9)

for every x € H; (the second equality follows from an argument similar to the one
that yields (4.8)). Since the operator C;zl is self-adjoint, we know from [Yos95, p. 195]
that (C12C2_21)* = C2_21C21. Since the left hand side operator is densely defined and
bounded, its adjoint is defined on all of H1, so that Co; maps H; into the range of Cas.
It follows from (4.9) that

r=LnCnx+ 51262202_21021%

for every z € H;. Using (4.8), this yields + = £411C112 — £11C126§21621x, so that
El_ll is an extension of C11 — C12C2_21 C51. Since both of these operators are self-adjoint,
they must agree. O

Corollary 4.7 Let (X,Y) be Gaussian with covariance C and mean m on a separable
Hilbert space H = Hy @ Ho. Assume furthermore that C satisfies the assumptions of
Lemmas 4.4 and 4.6. Then, the conditional law of X given Y is given by the invariant
measure of the ergodic SPDE

dx

d
E :£11$—£11H1m+£12(Y—H2m)+\/§d71:, (4.10)

where w is a cylindrical Wiener process on Hy and the operators L;; are defined as
in Lemma 4.6. SPDE (4.10) is again interpreted in the mild sense (2.3).

Proof. Note that 121_11512 can be extended to a bounded operator by assumption and
the mild interpretation of (4.10) is

t
xy = M+ X (zg — M) + \/i/ L1109 duy(s), 4.11)
0

with M = IIym — Eﬁlﬁlg(Y — IIym). The result follows by combining Lemma 4.4
and Lemma 4.6 with Lemma 2.2. O

These abstract results enable us to prove the main result of this section.

Proof of Theorem 4.1. Consider a solution (X, Y) to the SDE (4.1). Introducing the
shorthand notations

Y = (BuBi) ™, Yy = (BaaB3y) ™1,

it follows by the techniques used in the proof of Theorem 3.4 that the operator £ cor-
responding to its covariance is formally given by

—1
L1 Lo o Ouw+ A7, A3 BBy, 0 Ou—A11 O
Loy Lag) - 0 Ou 0 Boy B3, —A Ou
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(O +ATDE(Oy — Ar1) — A5 X0A0 A5,320,
- 7au22A21 8u228u ’

In order to identify its domain, we consider (3.12b) with

A O
>0 1)
and we take the limit I' — 0. This leads to the boundary conditions

By(0) = Apz(0) + (AX) ' (@(0) —27), duz(l) = Ana(D),

(4.12a)
y(0) =0, Ouy(1) = Agz(1).

The domain of £ is the homogeneous version of these boundary conditions.
We now check that the conditions of Lemma 4.6 hold. Condition a. is readily
verified, the operator £ being equipped with the boundary conditions

Bux(0) = A1z(0) + (AX) '), dua(l) = Apa(l),

(4.12b)
y(0) =0, [o,y(1) = 0,

where I1 is the projection on the orthogonal complement of the range of As;. Note that
the operator L is closed, but no longer self-adjoint (unless As; = 0). The operator L1
is therefore given by

Li1 = (O + A11)E1(0u — A11) — A3 X2 A0,
equipped with the boundary condition
Bu(0) = A112(0) + (AX1) " '2(0),  duw(1) = Apyaz(l).

It is clear that this operator is self-adjoint. The fact that its spectrum is bounded away
from O follows from the fact that the form domain of £ contains IT711;D(L) and that
there is a ¢ > 0 with (a, La) < —c||a||? for all @ € D(L). Thus condition b. holds.

The operator L12 is given by the first-order differential operator A%, 320, whose
domain is given by functions with square-integrable second derivative that vanish at
0. Since the kernel of Eﬁl has a square-integrable derivative, it is easy to check that
L7 £15 extends to a bounded operator on H, so that condition c. is also verified.

We can therefore apply Lemma 4.6 and Lemma 2.2. The formulation of the equa-
tion with inhomogeneous boundary conditions is an immediate consequence of Re-
mark 3.1: a short calculation to remove the inhomogeneity in the boundary condi-
tions (4.2b) and change the inhomogeneity in the PDE (4.2a) shows that (4.2) can be
written in the form (4.10) or (4.11) with the desired value for M, the conditional mean.
Since L4 is indeed the conditional covariance operator, the proof is complete. O

Remark 4.8 For Y solving (4.1) the derivative % only exists in a distributional sense
(it is in the Sobolov space H —1/2=¢ for every € > (). But the definition (2.3) of a
mild solution which we use here applies the inverse of the second order differential
operator L£11 to %, resulting in an element of H3/2~¢ in the solution.

Remark 4.9 Denote by x(t,u) a solution of the SPDE (4.2) and write the mean as
Z(t,u) = Ex(t,u). Then, as t — oo, Z(t,u) converges to its limit Z(u) strongly in
L?([0,1],R™) and Z(u) must coincide with the Kalman-Bucy filter/smoother. This
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follows from the fact that & equals E(X | Y). It is instructive to demonstrate this result
directly and so we do so.

The mean Z(u) of the invariant measure of (4.2) satisfies the linear two point bound-
ary value problem

d d
(o= + AT DB BT (- — A1)i(u)
du dd;‘ (4.132)
+ A5, (B2 B3y) ! (% - A21>§3(u) =0 Yu € (0,1),
d
@:ﬁ(O) = A117(0) + B B A7 (E(0) — 27), (4.13b)
d
@5:(1) = Ap1z2(1). (4.13¢)

The standard implementation of the Kalman filter is to calculate the conditional
expectation X (u) = E(X(u) | Y(v),0 < v < u) by solving the initial value problem

d
@S(u) = A11S(u) + S(u)A%, — S(u)A%,(BaaBiy) 1 As1 S(u) + By B,

S0)=A 4.14)
and
d 4 * * \—1 % * * \—1 dy
@X(U) = (All - S(U)A21(BZ2BQQ) AZl)X + S(U)A21(B22Bzz) %
X0)=z". (4.15)

The Kalman smoother X, designed to find X (u) = E(X(w) | Y(v),0 < v < 1),is
then given by the backward sweep

d -~ - - N
%X(u) = A X(u)+ BB Sw) N (X(w) — X(uw)  Vu € (0,1)

X(1) = X(1). (4.16)

See [@ks98, section 6.3 and exercise 6.6] for a reference. We wish to demonstrate that
ZF(u) = X(u).

Equation (4.16) evaluated for u = 1 gives equation (4.13c). When evaluating (4.16)
at v = 0 we can use the boundary conditions from (4.14) and (4.15) to get equa-
tion (4.13b). Thus it remains to show that X (u) satisfies equation (4.13a). We proceed
as follows: equation (4.16) gives

d a1, d ¢
(oo +ADBUB) T (- — Ak
. .
= (@ + A;)(B11By) 'BuiBjSTHX - X)

d ~ .
= (@ + ADSTHX - X)
d

d - .
_ * —1 —1 o —1 _
- (AMS + 2= )(X X)+ 571 (X - %),
Using equation (4.14) we get

d -1 _ 4@ -1
duS = duS
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= —S71A; — A} ST+ A5 (ByeBiy) Tt Ay — STIBy By ST

and subtracting (4.15) from (4.16) leads to

d  ~ . - . - .
5—1%(_}( ~X)=85"1A(X - X)+ S !'B; B STHX ~ X)
dy .
_A* * =127
AQI(B22322) (du AQIX).

By collecting all the terms we find

d
(—

* * \— d v * * \— ay v
e ATDBL BT (o — AKX = — A5, (BaBsy) (T — AnX)

which is equation (4.13a).

We note in passing that equations (4.14) to (4.16) constitute a factorisation of the
two-point boundary value problem (4.13) reminiscent of a continuous LU-factorisation
of El 1.

Conclusion

In this text we derived and exploited a method to construct linear SPDEs which have a
prescribed Gaussian measure as their stationary distribution. The fundamental relation
between the diffusion operator £ in the SPDE and the covariance operator C of the
Gaussian measure transpires to be £ = (—C)~'. We illustrated this technique by
constructing SPDEs which sample from the distributions of linear SDEs conditioned
on several different types of observations.

In the companion article [HSV] we build on the present analysis to extend this
technique beyond the linear case. There we consider conditioned SDEs where the drift
is a gradient (or more generally a linear function plus a gradient). The resulting SPDEs
can be derived from the SPDEs in the present text by the addition of an extra drift term
to account for the additional gradient; the stationary distributions of the new nonlinear
SPDE:s are identified by calculating their densities with respect to the corresponding
stationary distributions of the linear equations as identified in the present article.
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