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We develop a general method to prove the existence of spectral gaps for
Markov semigroups on Banach spaces. Unlike most previous work, the type
of norm we consider for this analysis is neither a weighted supremum norm
nor an Lp-type norm, but involves the derivative of the observable as well
and hence can be seen as a type of 1–Wasserstein distance. This turns out to
be a suitable approach for infinite-dimensional spaces where the usual Harris
or Doeblin conditions, which are geared towards total variation convergence,
often fail to hold. In the first part of this paper, we consider semigroups that
have uniform behavior which one can view as the analog of Doeblin’s con-
dition. We then proceed to study situations where the behavior is not so uni-
form, but the system has a suitable Lyapunov structure, leading to a type
of Harris condition. We finally show that the latter condition is satisfied by
the two-dimensional stochastic Navier-Stokers equations, even in situations
where the forcing is extremely degenerate. Using the convergence result, we
show shat the stochastic Navier-Stokes equations’ invariant measures depend
continuously on the viscosity and the structure of the forcing.

1. Introduction. This work is motivated by the study of the two-dimensional
stochastic Navier-Stokes equations on the torus. However, the results and tech-
niques are more general. The main abstract result of the paper gives a criteria
guaranteeing that a Markov semigroup on a Banach space has a spectral gap in a
particular 1–Wasserstein distance. (In the sequel, we will simple write Wasserstein
for 1–Wasserstein.) To the best of our knowledge, these results are the first results
providing a spectral gap in this, or any similar, setting. In turn, the existence of a
spectral gap implies that the Markov semigroup possesses a unique, exponentially
mixing invariant measure.

The results of this article rely on the existence of a “gradient estimate” intro-
duced in [21] in the study of the degenerately forced Navier-Stokes equations on
the two-dimensional torus. This estimate was used there in order to show that the
corresponding Markov semigroup satisfies the “asymptotic strong Feller” property,
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2 M. HAIRER AND J. MATTINGLY

also introduced in [21]. In this work, we show that gradient estimates of this form
are useful not only to show uniqueness of the invariant measure, but are an essential
ingredient to obtain the existence of a spectral gap for a large class of systems. In
this introductory section, we concentrate on the two-dimensional stochastic Navier-
Stokes equations on a torus to show how the main results can be applied. At the
end of this section, we give an overview of the paper.

Recall that the Navier-Stokes equations describing the evolution of the velocity
field v(x, t) (with x ∈ T2) of a fluid under the influence of a body force F̄ (x) +
F (x, t) are given by:

∂tv = ν∆v − (v · ∇)v −∇p+ F̄ + F , div v = 0 , (SNS)

where the pressure p(x, t) is determined by the algebraic condition div v = 0. We
consider for F a Gaussian stochastic forcing that is centered, white in time, colored
in space and such that

∫
F̄ (x) dx =

∫
F (x) dx = 0. Since the gradient part of the

forcing is cancelled by the pressure term, we assume without loss of generality that
div F̄ = divF = 0. More precisely, we assume that for i, j ∈ {1, 2}

EFi(x, t)Fj(x′, t′) = δ(t−t′)Qij(x−x′) ,
2∑

i,j=1

∂2
ijQij = 0 ,

∫
Qij(x) dx = 0 .

Although we are confident that our results are valid for Q sufficiently smooth, we
restrict ourselves to the case whereQ is a trigonometric polynomial, so that we can
make use of the bounds obtained in [39, 21].

Instead of considering the velocity equation (SNS) directly, we will consider the
equation for the vorticity w = ∇ ∧ v = ∂1v2 − ∂2v1. Note that v is uniquely
determined from w (we will write v = Kw) through the conditions

w = ∇∧ v , div v = 0 ,
∫
v(x) dx = 0 .

When written in terms of w, (SNS) is equivalent to

∂tw = ν∆w − (Kw) · ∇w + f̄ + f , (1)

where we have defined f = ∇∧F and f̄ = ∇∧ F̄ . Note that since f is translation
invariant, one can write it as

f(x, t) = Re
∑

k∈Z2\{0}

qke
ikxξk(t) ,

where the ξk are independent white noises and where qk = q−k. We can therefore
identify the correlation functionQwith a vector q in `2+, the set of square integrable
sequences with positive entries. Denoting by Z the set of indices k for which qk 6=
0, we will make throughout this article the following assumptions:
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SPECTRAL GAPS IN WASSERSTEIN DISTANCES 3

Assumption 1 Only finitely many of the qk’s are non-zero and f̄ lies in the span
of {eikx | qk 6= 0}. Furthermore, Z generates Z2 and there exist k, ` ∈ Z with
|k| 6= |`|.

Remark 1.1 The assumption that only a finite number of qk are non-zero is only
a technical assumption reflecting a deficiency in [39]. All of the results of this
article certainly hold if the first part of Assumption 1 is replaced by an appropriate
decay property for the qk. Note for example that in [21] section 4.5, it is shown
that there exists an N∗ such that if the range of Q contains {eikx||k| < N∗}, f̄ is
as in Assumption 1, and

∑
q2
k < ∞, then all of the results of this paper hold. In

particular, this allows infinitely many qk to be non-zero.

Remark 1.2 Using the results in [3] one can remove the restriction that the forcing
need consist of Fourier modes and replace it with the requirement that the forced
functions span the Fourier modes required above. Since this is not the main point
of this article, we do not elaborate further here.

Remark 1.3 It is clear that the assumption that f̄ ∈ span{eikx | qk 6= 0} is far from
optimal. The correct result likely places no restriction on f̄ other that it be suffi-
ciently smooth. This more delicate result requires an improved understanding of
the control problem obtained by replacing the noise by controls. Some steps in this
direction have been made [1, 47, 2], but the current results are not sufficient for our
needs. Nonetheless, the present assumption on f̄ seems reasonable from a model-
ing perspective where one would likely have some noise in all of the directions on
which the body forces act.

We will consider (SNS) as an evolution equation in the subspace H of H1 that
consists of velocity fields v with div v = 0 in the sense of distributions. Note
that this is equivalent to w ∈ L2. We make a slight abuse of notations and denote
by Pt the transition probabilities for (SNS), as well as the corresponding Markov
semigroup onH, i.e.

Pt(v,A) = P
(
v(t, ·) ∈ A | v(0, ·) = v

)
,

for every Borel set A ⊂ H, and

(
Ptϕ

)
(v) =

∫
H
ϕ(v′)Pt(v, dv′) ,

(
P∗t µ

)
(A) =

∫
H
Pt(v,A)µ(dv)

for every ϕ : H → R and probability measure on ν on H. Analogously we define
the projection µϕ =

∫
ϕ(x)µ(dx). It was shown in [21] that Assumption 1 implies

that (SNS) admits a unique invariant measure µ?, i.e. µ? is a probability measure
onH such that P∗t µ? = µ? for every t ≥ 0.
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4 M. HAIRER AND J. MATTINGLY

This article is concerned with whether, for an arbitrary probability measure µ,
P∗t µ → µ? (as t → ∞) and in what sense this convergence takes place. Note that
(SNS) is not expected to have the strong Feller property, so that it is a fortiori not
expected that P∗t µ → µ? in the total variation topology if µ and µ? are mutually
singular. (see [9] for a general discussions of the strong Feller property in infinite
dimensions and [21] for a discussion of its limitations in the present setting.)

In order to state the main result of the present article, we introduce the following
norm on the space of smooth observables ϕ : H → R:

‖ϕ‖η = sup
v∈H

e−η‖v‖
2(|ϕ(v)|+ ‖Dϕ(v)‖

)
.

Here, we denoted by Dϕ the Fréchet derivative of ϕ. With this notation, we will
show that the operator Pt has a spectral gap in the norm ‖ · ‖η in the following
sense:

Theorem 1.4 Consider (SNS) in the range of parameters allowed by Assump-
tion 1. For every η small enough there exist constants C and γ such that

‖Ptϕ− µ?ϕ‖η ≤ Ce−γt‖ϕ‖η ,

for every Fréchet differentiable function ϕ : H → R and every t ≥ 0.

In [19] a similar operator-norm estimate on Pt was obtained in a weighted total
variation norm (‖ · ‖η without the ‖Dϕ‖ term) when the forcing was spatially rough
and non-degenerate. Our setting is quite different. The spatially rough and non-
degenerate forcing makes the analysis much closer the finite dimensional setting. It
is not expected that such estimates hold in the total variation norm in the setting of
this article. We should also remark that previous estimates, such as [37, 20, 28, 38],
giving simply exponential convergence to equilibrium are weaker and the results
in this article represent a significant and new extension of those results.

It is sometimes of interest to know that the structure functions of the solution to
(SNS) converge to the structure functions determined by µ?. This is not an imme-
diate consequence of Theorem 1.4 because point evaluations of the velocity field
are not continuous functions on H. The smoothing properties of (SNS) neverthe-
less allow us to show the following result, which is an immediate consequence of
Theorem 1.4 and Proposition 5.12 below.

Theorem 1.5 Consider (SNS) in the range of parameters allowed by Assump-
tion 1. Let n ≥ 1 and define the n-point structure functions by

Sn(x1, . . . , xn) =
∫
v(x1) · . . . · v(xn)µ?(dv) .
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SPECTRAL GAPS IN WASSERSTEIN DISTANCES 5

Then, for every η > 0, there exist constants C and γ > 0 such that, for every
v0 ∈ H, one has the bound

sup
x1,...,xn

∣∣∣E n∏
i=1

v(xi, t)− Sn(x1, . . . , xn)
∣∣∣ ≤ Ceη‖v0‖2−γt ,

for every t > 1. Here, v(x, t) is the solution of (SNS) with initial condition v0.

The remainder of this article is structured as follows. In section 2, we begin
with an abstract discussion of our ideas in a setting with uniform estimates. In sec-
tion 3, we give the main theoretical results of the paper which combine the ideas
from the first section with estimates stemming from an assumed Lyapunov struc-
ture. The convergence is measured in a distance in which paths are weighted by
the Lyapunov function. We then turn in section 5 to the specifics of the stochastic
Navier-Stokes equation and show that it satisfies the general theorems from sec-
tion 3. In section 5.3, we show that the Markov semigroup generated by (SNS) is
strongly continuous on a suitable Banach space and that its generator has a spectral
gap there. Then in section 5.5, we demonstrate the power of the spectral gap esti-
mates by giving a short proof that (SNS)’s invariant measures depend continuously
on all the parameters of the equation.

Acknowledgements. We would like to thank H. Bray, D. Dolgopyat, G. Friesecke,
X.-M. Li, C. Odasso, A.-S. Sznitman, J. York and L.-S. Young for useful discussions and
comments. We would like to thank A. Majda and X. Wang for pushing the authors to ex-
plicitly include forcing with non-zero mean. We also thank Z. Brzeźniak and an anonymous
referee for useful and pertinent comments on the first circulated version of this article.

2. A simplified, uniform setting. In this section, we illustrate many of the
main ideas used through out this article in a simplified setting. We consider the
analogue of one of the simplest (and yet powerful) conditions for a Markov chain
with transition probabilities P to have a unique invariant measure, namely Doe-
blin’s condition1:

Theorem 2.1 (Doeblin) Assume that there exists δ > 0 and a probability measure
ν such that P(x, · ) ≥ δν for every x. Then, there exists a unique probability
measure µ? such that P∗µ? = µ?. Furthermore, one has ‖Pϕ − µ?ϕ‖∞ ≤ (1 −
δ)‖ϕ− µ?ϕ‖∞ for every bounded measurable function ϕ.

1Doeblin’s original condition was the existence of a probability measure ν and a constant ε > 0
such that P(x,A) ≥ ε whenever ν(A) > 1 − ε, see [11, 12]. It turns out that, provided that the
Markov chain is aperiodic and ψ-irreducible, this is equivalent to the (in general stronger) condition
given here, see [40, Thm 16.0.2].
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6 M. HAIRER AND J. MATTINGLY

A typical example of a semigroup for which Theorem 2.1 can be applied is
given by a non-degenerate diffusion on a smooth compact manifold. Theorem 2.1
shows the fundamental mechanism for convergence to equilibrium in total variation
norm. It is simple because the assumed estimates are extremely uniform. In this
section we give a theorem guaranteeing convergence in a Wasserstein distance with
assumptions analogous to Doeblin’s condition.

A classical generalization of Doeblin’s condition was made by Harris [22] who
showed how to combine the existence of a Lyapunov function and a Doeblin-like
estimate localized to a sufficiently large compact set to prove convergence to equi-
librium. We will give a ‘Harris like’ version of our results in section 3.

2.1. Spectral gap under uniform estimates. The aim of this section is to present
a very simple condition that ensures that a Markov semigroupPt on a Banach space
H yields a contraction operator on the space of probability measures endowed with
a Wasserstein distance. One can view it as a version of Doeblin’s condition for the
Wasserstein distance instead of the total variation distance. The main motivation
for using a distance that metrises the topology of weak convergence is that proba-
bility measures on infinite-dimensional spaces tend to be mutually singular, so that
strong convergence is not expected to hold in general, even for ergodic systems.

The first assumption captures the regularizing effect of the Markov semigroup.
While it does not imply that one function space is mapped into a more regular one
as often occurs, it does say that at least gradients are decreased.

Assumption 2 There exist constants α1 ∈ (0, 1), C > 0 and T1 > 0 such that

‖DPtϕ‖∞ ≤ C‖ϕ‖∞ + α1‖Dϕ‖∞ , (2)

for every t ≥ T1 and every Fréchet differentiable function ϕ : H → R.

Remark 2.2 A typical way of checking (2) is to first show that for every t ≥ 0, Pt
is bounded as an operator on the space with norm ‖ϕ‖∞+‖Dϕ‖∞. It then suffices
to check that (2) holds with α1 < 1 for one particular time t to deduce from the
semigroup property that

‖DPtϕ‖∞ ≤ C
(
‖ϕ‖∞ + e−γt‖Dϕ‖∞

)
,

is valid with some γ > 0 for every t ≥ 0.

Remark 2.3 If the space H is actually a compact manifold, (2) together with the
Arzelà-Ascoli theorem imply that the essential spectral radius of Pt (as an op-
erator on the space with norm ‖ϕ‖∞ + ‖Dϕ‖∞) is strictly smaller than 1. This
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SPECTRAL GAPS IN WASSERSTEIN DISTANCES 7

is a well-known and often exploited fact2 in the theory of dynamical systems. A
bound like (2) is usually referred to as the Lasota-Yorke inequality [30, 31] or the
Ionescu-Tulcea-Marinescu inequality [26] and is used to show the existence of ab-
solutely continuous invariant measures when Pt is the transfer operator acting on
densities. Usually, it is used with two different Hölder norm on the right-hand side.
The present application with a Lipschitz norm and an infinity norm has a different
flavor.

This bound alone is of course not enough in general to guarantee the uniqueness
of the invariant measure. (Counterexamples withH = S1, the unit circle, can easily
be constructed.) Furthermore, we are mainly interested in the case where H is not
even locally compact.

In order to formulate our second assumption, we use the notation C(µ1µ2)
for the set of all measures Γ on H × H such that Γ(A × H) = µ1(A) and
Γ(H× A) = µ2(A) for every Borel set A ⊂ H. Such a measure Γ on the product
space is referred to as a coupling of µ1 and µ2. We also denote by P∗t the semi-
group acting on probability measures which is dual to Pt. With these notations, our
second assumption, which is a form of uniform topological irreducibility, reads:

Assumption 3 For every δ > 0, there exists a T2 = T2(δ) so that for any t ≥ T2

there exists an a > 0 so that

sup
Γ∈C(P∗t δx,P∗t δy)

Γ{(x′, y′) ∈ H ×H : ‖x′ − y′‖ ≤ δ} ≥ a ,

for every x, y ∈ H.

Remark 2.4 Recall that the total variation distance between probability measures
can be characterized as one minus the supremum over all couplings of the mass
of the diagonal. Therefore, if we set δ = 0 in Assumption 3, we get ‖Pt(x, · ) −
Pt(y, · )‖TV ≤ 1− a for every x and y. By [40, Thm 16.0.2], this is equivalent to
the assumption of Theorem 2.1, so that the results in this section can be viewed as
an analog of Doeblin’s theorem.

To measure the convergence to equilibrium, we will use the following distance
function onH:

d(x, y) = min{1, δ−1‖x− y‖} , (3)

2It can be obtained as a corollary of the fact that the essential spectral radius of an operator T can
be characterised as the supremum over all λ > 0 such that there exists a singular sequence {fn}n≥0

with ‖fn‖ = 1 and ‖Tfn‖ ≥ λ for every n. A slightly different proof can be found in [23] and
is directly based on the study of the essential spectral radius by Nussbaum [42]. It is however very
close in spirit to the much earlier paper [26].
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8 M. HAIRER AND J. MATTINGLY

where δ is a small parameter to be adjusted later on. The distance (3) extends in a
natural way to a Wasserstein distance between probability measures by

d(µ1, µ2) = sup
Lipd(ϕ)≤1

∣∣∣∫ ϕ(x)µ1(dx)−
∫
ϕ(x)µ2(dx)

∣∣∣ , (4)

where Lipd(ϕ) denotes the Lipschitz constant of ϕ in the metric d. By the Monge-
Kantorovich duality [44, 49], the right hand side of (4) is equivalent to

d(µ1, µ2) = inf
µ∈C(µ1,µ2)

∫ ∫
d(x, y)µ(dx, dy) . (5)

(Note that the infimum is actually achieved, see [50, Thm 4.1].) With these nota-
tions, one has the following convergence result:

Theorem 2.5 Let (Pt)t≥0 be a Markov semigroup over a Banach spaceH satisfy-
ing Assumptions 2 and 3. Then, there exist constants δ > 0, α < 1 and T > 0 such
that

d(P∗Tµ1,P∗Tµ2) ≤ αd(µ1, µ2) , (6)

for every pair of probability measures µ1, µ2 on H. In particular, (Pt)t≥0 has a
unique invariant measure µ? and its transition probabilities converge exponentially
fast to µ?.

Proof. We will prove the general result by first proving it for delta measures,
namely

(7) d(P∗t δx,P∗t δy) ≤ αd(x, y)

for all (x, y) ∈ H×H. Once this estimate is proven, we can finish the proof of the
general case by the following argument.

The Monge-Kantorovich duality yields Q ∈ C(µ1, µ2) so that d(µ1, µ2) =∫
d(x, y)Q(dx, dy). To complete the proof observe that

d(P∗t µ1,P∗t µ2) ≤
∫
d(P∗t δx,P∗t δy)Q(dx, dy)

≤ α
∫
d(x, y)Q(dx, dy) = αd(µ1, µ2) .

Let us first show that (7) holds when ‖x−y‖ ≤ δ for some appropriately chosen
δ. Note that by (4) this is equivalent to showing that

|Ptϕ(x)− Ptϕ(y)| ≤ αd(x, y) def= αδ−1‖x− y‖ , (8)

for all smooth ϕ with Lipd(ϕ) ≤ 1. Note that we can assume ϕ(0) = 0, so that
this implies that ‖Dϕ‖∞ ≤ δ−1 and ‖ϕ‖∞ ≤ 1. It follows from Assumption 2
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SPECTRAL GAPS IN WASSERSTEIN DISTANCES 9

that ‖DPtϕ‖∞ ≤ C +α1δ
−1 for every t ≥ T1. Choosing δ = (1−α1)/(2C) and

substituting in for C, we get ‖DPtϕ‖∞ ≤ δ−1(1 + α1)/2, so that (8) holds for
t ≥ T1 and α ≥ (1 + α1)/2.

Let us now turn to the case ‖x− y‖ > δ. It follows from Assumption 3 that for
every t > T2(δ) there exists a positive constant a so that for any (x, y) ∈ H2 there
exists Γ ∈ C(P∗t δx,P∗t δy) such that Γ(∆δ) > a > 0, where

∆δ =
{

(x′, y′) : ‖x′ − y′‖ ≤ 1
2
δ
}
.

Since d(x′, y′) ≤ 1
2 on ∆δ and d(x′, y′) ≤ 1 on the complement, one has∫

d(x′, y′) Γ(dx′, dy′) ≤ 1
2

Γ(∆δ) + 1− Γ(∆δ) = 1− 1
2

Γ(∆δ) ≤ 1− a

2
.

Since we are in the setting d(x, y) = 1, this implies that when ‖x− y‖ > δ,

|Ptϕ(x)− Ptϕ(y)| ≤ αd(x, y)

holds for α ≥ 1− a
2 and t ≥ T2(δ).

Setting α = max{1 − a
2 ,

1
2(1 + α1)} and T = max{T1, T2(δ)} completes the

proof.

Corollary 2.6 Let Pt be as in Theorem 2.5. Then, there exist constants α < 1 and
T > 0 such that

‖PTϕ− µ?ϕ‖1,∞ ≤ α‖ϕ‖1,∞ , ‖ϕ‖1,∞ = sup
x∈H

(
|ϕ(x)|+ ‖Dϕ(x)‖

)
, (9)

for every Fréchet differentiable function ϕ : H → R.

Proof. Define d1(x, y) = 1∧‖x−y‖. Since d is equivalent to d1, (6) still holds for
arbitrary α (but with a different value for T ) with d replaced by d1. The claim then
follows from the Monge-Kantorovich duality, noting that Lipd1(ϕ) ≤ 2‖ϕ‖1,∞
and, for functions ϕ with

∫
ϕ(x)µ?(dx) = 0, ‖ϕ‖1,∞ ≤ Lipd1(ϕ).

2.2. A more pathwise perspective. In [37, 20, 38], the authors advocated a
pathwise point of view which explicitly constructed coupled versions of the pro-
cess starting from two different initial conditions in such a way that the two coupled
processes converged together exponentially fast. This point of view is very appeal-
ing as it conveys a lot of intuition; however, writing down the details can become a
bit byzantine. Hence the authors prefer the arguments given in the preceding sec-
tion for their succinctness and ease of verification. Nonetheless, the calculations
of the present section provided the intuition which guided the previous section;
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10 M. HAIRER AND J. MATTINGLY

and hence, we find it instructive to present them. As none of the rest of the paper
uses any of the calculations from this section, we do not provide all of the details.
Our goal is to show how the estimates from the previous section can be used to
construct an explicit coupling in which the expectation of the distance between the
trajectories starting from x0 and y0 converges to zero exponentially in time.

Fix a t ≥ max(T1, T2) where T1 and T2 are the constants in Assumptions 2 and
3. Fix δ ≥ 0 we did in the proof of Theorem 2.5. Now for k = 0, 1, · · · define the
following sequence of stopping times

rk = inf{m ≥ sk−1 : m ∈ N, ‖xmt − ymt‖ ≤ (1− α1)δ} ,

sk = inf{m ≥ rk : m ∈ N, ‖xmt − ymt‖ > δ}

where s−1 = 0 by definition.
If n ∈ [rk, sk), let the distribution of (xt(n+1), yt(n+1)) be given by a coupling

which minimizes the Ed(xt(n+1), yt(n+1)). Hence choosing δ = (1−α1)/(2C) and
α ∈ ((1 + α1)/2, 1) as in the paragraph below equation (8), Monge-Kantorovich
duality gives that

E
(
d(xt(n+1), yt(n+1))

∣∣ (xtn, ytn)
)
≤ αδ−1‖xtn − ytn‖ (10)

provided n ∈ [rk, sk). Given a random variable X and events A and B, for nota-
tional convenience, we define E(X ; A) = E(X1A) and P(A ; B) = E(1A1B)
where 1A is the indicator function on the event A. Observe that if ‖x0 − y0‖ ≤
(1− α1)δ, then

E
(
‖xt(n+1) − yt(n+1)‖ ; s1 > n+ 1

∣∣ (xtn, ytn)
)
≤ α‖xtn − ytn‖1s1>n ,(11)

which implies that

E
(
‖xt(n+1) − yt(n+1)‖ ; s1 > n+ 1

)
≤ αn+1‖x0 − y0‖ .

From this we see that as long as x and y stay in a δ ball of each other, they will
converge towards each other exponentially in expectation.

Observe furthermore that

δP(s1 = n) = δP
(
‖xtn − ytn

∥∥ > δ ; s1 > n− 1
)

≤ δE
(
d(xtn, ytn) ; s1 > n− 1

)
= δE

(
E
(
d(xtn, ytn) | (xt(n−1), yt(n−1))

)
; s1 > n− 1

)
≤ αE

(
‖xt(n−1) − yt(n−1)‖ ; s1 > n− 1

)
≤ αn‖x0 − y0‖ ,

where we used (10) to go to from the third to the last line. Hence, assuming that
‖x0 − y0‖ ≤ (1− α)δ,

P(s1 > n) = 1−
n−1∑
k=1

P(s1 = k) > 1− α ,(12)
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SPECTRAL GAPS IN WASSERSTEIN DISTANCES 11

so that P(s1 < ∞) ≤ α < 1. This shows that there is a positive chance that the
two paths will indeed stay at distance less than δ from each other for all time.

All of the above calculations were predicated on the fact that x0 and y0 were ini-
tially less than (1−α)δ apart. On the other hand, for n ∈ [sk−1, rk), Assumption 3
guarantees that there exists a coupling for (xt(n+1), yt(n+1)) so that

P
(
‖xt(n+1) − yt(n+1)‖ ≤ (1− α)δ

∣∣ (xtn, ytn)
)
≥ a ,

for some fixed a > 0. This shows that P(r1 > n) ≤ (1−a)n, so that the two paths
will enter a (1−α)δ ball of each other at a random time which has an exponentially
decaying tail. We now sketch how to put these observations together more formally.

Let d1(x, y) = 1 ∧ ‖x − y‖ and define τ = inf{k : sk+1 = ∞}. We now
combine the above estimates to sketch to proof of the exponential convergence to
0 of Ed1(xnt, ynt). There are a few subtle issues arising from the fact that τ is not
adapted to the natural filtration of the process, and we refer the interested reader to
[20, 38, 43] for examples on how to circumvent these technicalities by a specific
construction of (xnt, ynt). Since our goal is only to sketch the argument, we do not
concern ourselves with these issues here.

Observe that for any β ∈ (0, 1)

Ed1(xnt, ynt) ≤ E
(
d1(xnt, ynt) ; rτ ≤ n/2

)
+ P(τ > βn)

+ P(τ < βn ; rτ > n/2) .

The first term decays exponentially fast in n by (11), since the paths are guaran-
teed to be at distance less then δ on the time interval [n/2, n]. The second term is
bounded by αβn from the estimate P(s1 <∞) ≤ α. Recall that the parameter β is
still free. Using the estimates from the preceding paragraph, it can be show that for
β small enough the probability P(τ < βn ; rτ > n/2) has exponentially decaying
tails since the random variable rk+1 − rk has exponentially decaying tails when
restricted to the set where sk <∞.

3. Spectral gap under a Lyapunov structure. There are situations (the stochas-
tic Navier-Stokes equations being a prime example), where it is not possible to ver-
ify Assumptions 2 and 3 in such a uniform way. The present section is an attempt
to circumvent this by assuming that the system possesses a type of Lyapunov struc-
ture that compensates for the lack of uniformity of these estimates. The relationship
between the results of the previous section and those of this section is analogous to
the relationship between Doeblin’s condition mentioned in the last section and Har-
ris’ conditions [22, 16, 40]. While the assumptions given in this section are heavily
influenced by the known a priori bounds on the dynamics of the two-dimensional
Navier-Stokes equations, we suspect the result will be useful more widely.
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12 M. HAIRER AND J. MATTINGLY

Throughout this section and the remainder of this article, we assume that we
are given a random flow Φt on a Banach space H. We will assume that the map
x 7→ Φt(ω, x) is C1 for almost every element ω of the underlying probability space.
We will denote by DΦt the Fréchet derivative of Φt(ω, x) with respect to x.

Our first assumption is a strong type of Lyapunov structure on the flow:

Assumption 4 There exists a continuous function V : H → [1,∞) with the fol-
lowing properties:

1. There exist two strictly increasing continuous functions V ∗ and V∗ from
[0,∞)→ [1,∞) so that

(13) V∗(‖x‖) ≤ V (x) ≤ V ∗(‖x‖)

for all x ∈ H and such that lima→∞ V∗(a) =∞.
2. There exist constants C and κ ≥ 1 such that

aV ∗(a) ≤ CV κ
∗ (a) , (14)

for every a > 0.
3. There exist a positive constant C, r0 < 1, a decreasing function ξ : [0, 1]→

[0, 1] with ξ(1) < 1 such that for every h ∈ H with ‖h‖ = 1

EV r(Φt(x)
)(

1 + ‖DΦt(x)h‖
)
≤ CV rξ(t)(x) , (15)

for every x ∈ H, every r ∈ [r0, 2κ], and every t ∈ [0, 1].

Remark 3.1 It follows from (15) and Jensen’s inequality that there exists a con-
stant C̃ such that

EV r(Φt(x)
)
≤ C̃V rξ(1)[t]ξ(t−[t])(x) def= C̃V rξ(t)(x) , (16)

for every t > 0 and every r ∈ [0, 2κ], where [t] is the greatest integer smaller than
t. In the last equality, we have extended the definition of ξ to values of t in [0,∞).

For r ∈ (0, 1], we introduce a family of distances ρr onH by

ρr(x, y) = inf
γ

∫ 1

0
V r(γ(t)

)
‖γ̇(t)‖ dt ,

where the infimum runs over all paths γ such that γ(0) = x and γ(1) = y.
In the interest of brevity, we will write ρ for ρ1. The main consequence of As-

sumption 4 used in this paper is that, via the distance function ρr, it also induces a
kind of Lyapunov structure on the two-point dynamics:

imsart-aap ver. 2007/12/10 file: gap.tex date: October 15, 2008



SPECTRAL GAPS IN WASSERSTEIN DISTANCES 13

Lemma 3.2 Assume that Φt is as above and that Assumption 4 holds. Then, for
every r ∈ [r0, 1], there exist constants α ∈ (0, 1) and C,K > 0 such that

Eρr(Φt(x),Φt(y)) ≤ Cρr(x, y) ,

Eρr(Φn(x),Φn(y)) ≤ αnρr(x, y) +K ,
(17)

for every n ∈ N, every t ∈ [0, 1], and every pair (x, y) ∈ H2.

Proof. It suffices to show the second inequality in (17) for n = 1, since the other
cases follow by iteration. Fix any ε > 0 and fix a curve γ connecting x to y such
that

(18) ρr(x, y) ≤
∫ 1

0
V r(γ(t)

)
‖γ̇(t)‖ dt ≤ ρr(x, y) + ε

and denote γ̃(s) = Φt(γ(s)) for some t ∈ [0, 1]. We then have

Eρr(Φt(x),Φt(y)) ≤ E
∫ 1

0
V r(γ̃(s))‖ ˙̃γ(s)‖ ds

≤ E
∫ 1

0
V r(γ̃(s))‖DΦt(γ(s))γ̇(s)‖ ds

≤ C
∫ 1

0
V rξ(t)(γ(s))‖γ̇(s)‖ ds ≤ Cρr(x, y) + Cε

where the last inequality uses the fact that ξ(t) ≤ 1 by assumption. Since ε was
arbitrary and C independent of ε this yields the first bound in (17). Let now R be
sufficiently large so that CV rξ(1)(x) ≤ αV r(x) for every x with |x| ≥ R. Such an
R exists since V? tends to infinity. This yields

Eρr(Φ1(x),Φ1(y)) ≤ αρr(x, y)+CV ∗(R)
∫ 1

0
1B(R)(γ(s))‖γ̇(s)‖ ds+ε , (19)

where we denoted by B(R) the ball of radius R in H centered at the origin. Note
now that ∫ 1

0
1B(R)(γ(s))‖γ̇(s)‖ ds ≤ 2R

(V ∗(R)
V∗(0)

)r
+ ε ,

since one could otherwise replace the corresponding piece of curve by a straight
line and obtain a value which differed from ρr(x, y) by more then ε. Plugging this
into (19) and again recalling the ε was arbitrary concludes the proof.

Our next assumption is a type of gradient inequality for the Markov semigroup
Pt on H generated by the flow Φt. In practice, this inequality can be verified if
the system is hypoelliptic, in the sense of Hörmander, (or effectively elliptic) and
has suitable dissipative properties, but this is a hard task in general. (see [21] for
a discussion of hypoellipticity and effectively ellipticity in the setting of the 2D
Navier Stokes equations.)
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14 M. HAIRER AND J. MATTINGLY

Assumption 5 There exists a C1 > 0 and p ∈ [0, 1) so that for every α ∈ (0, 1)
there exists positive T (α) and C(α) with

‖DPtϕ(x)‖ ≤ C1V
p(x)

(
C(α)

√(
Pt|ϕ|2

)
(x) + α

√(
Pt‖Dϕ‖2

)
(x)
)

, (20)

for every x ∈ H and t ≥ T (α).

Remark 3.3 While (20) is reminiscent of gradient estimates of the type considered
in [4], there does not seem to be an obvious link between the two approaches. The
main reason is that (20) is really a statement about the long-time behavior of Pt
whereas the bounds in [4] are statements about the short time behavior of Pt.

Our final assumption is a relatively weak form of irreducibility:

Assumption 6 Given any C > 0, r ∈ (0, 1) and δ > 0, there exists a T0 so that
for any T ≥ T0 there exists an a > 0 so that

inf
|x|,|y|≤C

sup
Γ∈C(P∗T δx,P

∗
T δy)

Γ{(x′, y′) ∈ H ×H : ρr(x′, y′) < δ} ≥ a .

The main result of the present article is that under these conditions, one has
uniform exponential convergence of the transition probabilities Pt(x, · ) to the
(unique) invariant measure of the system:

Theorem 3.4 Let Φt be a stochastic flow on a Banach space H which is almost
surely C1 and satisfies Assumption 4. Denote by Pt the corresponding Markov
semigroup and assume that it satisfies Assumptions 5 and 6. Then, there exist pos-
itive constants C and γ such that

ρ(P∗t µ1,P∗t µ2) ≤ Ce−γtρ(µ1, µ2) , (21)

for every t ≥ 0 and any two probability measures µ1 and µ2 onH.

Since the space of probability measures µ on H such that ρ(µ, δ0) < ∞ is
complete for the topology induced by ρ (see for example [49]), (21) immediately
yields

Corollary 3.5 Under the assumptions of Theorem 3.4, there exists a unique invari-
ant probability measure µ? for Pt.

Before we turn to the proof of Theorem 3.4, we give a statement that is equiv-
alent, but involves the semigroup acting on observables instead of the semigroup
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acting on measures. Since in this setting the semigroup Pt possesses an invariant
measure µ?, we can define the norm

‖ϕ‖ρ = sup
x 6=y

|ϕ(x)− ϕ(y)|
ρ(x, y)

+
∣∣∣∫
H
ϕ(x)µ?(dx)

∣∣∣ . (22)

An alternative definition of this norm is given in Lemma 4.2 in the next section.
Recall that we also make an abuse of notation by defining the projection oper-

ator µ? by µ?ϕ =
∫
H ϕ(y)µ?(dy). With these notations, we have the following

statement, which is the dual statement of Theorem 3.4:

Theorem 3.6 Let Pt be as in Theorem 3.4. Then, there exist constants γ > 0 and
C > 0 such that

‖Ptϕ− µ?ϕ‖ρ ≤ Ce−γt‖ϕ− µ?ϕ‖ρ ,

for every Fréchet differentiable function ϕ : H → R and every t > 0.

Remark 3.7 This implies that the spectrum of Pt−µ? as an operator on the space
of Fréchet differentiable functions with finite ‖ · ‖ρ-norm is contained in the disk
of radius e−γt around 0. Alternatively, µ? is an eigenvector for P∗t with eigenvalue
1. All other eigenvectors have real part whose magnitude is at most e−γt. This is
the gap referred to in the title of the article.

Proof. Since ‖Ptϕ − µ?ϕ‖ρ = ‖Pt(ϕ − µ?ϕ)‖ρ, we can assume without loss of
generality that µ?ϕ = 0. The claim then follows immediately from the fact that

|PTϕ(x)− PTϕ(y)| ≤ ‖ϕ‖ρρ(P∗T δx,P∗T δy) ≤ C‖ϕ‖ρe−γtρ(x, y) ,

where the last inequality follows from Theorem 3.4. dividing both sides by ρ(x, y)
and taking the supremum over x and y concludes the proof.

3.1. Proof of Theorem 3.4. The proof of Theorem 3.4 is technically very sim-
ple but relies on a trick, which consists in considering instead of ρ a distance d
which is equivalent to ρ but behaves like a large constant times ρr for nearby points
and like a small constant times ρ for points that are far apart.

More precisely, given three constants δ > 0, r ∈ [r0, 1) and β ∈ (0, 1) to be
determined later, we define

d(x, y) =
(
1 ∧ ρr(x, y)

δ

)
+ βρ(x, y) .

Note that d is indeed equivalent to ρ since ρr ≤ ρ and therefore

βρ(x, y) ≤ d(x, y) ≤
(
δ−1 + β

)
ρ(x, y) .
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16 M. HAIRER AND J. MATTINGLY

However, d is much better than ρ in capturing the geometry of the bounds available
to us. This will allow us to proceed in a way similar to Section 2. This time, we will
consider separately three cases. The first case, ρ ≥ K?, ρr ≥ δ, will be treated by
using the Lyapunov structure given by Lemma 3.2. The second case, ρr < δ, will
be treated by using the gradient estimate of Assumption 5. Finally, the last case,
ρ < K?, ρr ≥ δ, will be treated using the irreducibility of Assumption 6. Lemma
3.9 is like the first part of the proof of Theorem 2.5 and Lemma 3.10 is like the
second part. The first makes use of the local contraction guaranteed by Assumption
5. The second covers intermediate scales and uses Assumption 6 to ensure that the
two points move close together some of the time to obtain a contraction estimate.
Lemma 3.8 covers points far from the center of the space. Because of the weighting
of the distance function by the Lyapunov function, there is contraction if the distant
points simply move towards the center of the space.

The following three lemmas provide rigorous formulations of these claims.

Lemma 3.8 In the setting of Theorem 3.4, there exists a constant K? such that
for every δ > 0, every β ∈ (0, 1), and every r ∈ [r0, 1) there exists a constant
α1 ∈ (0, 1) such that

ρ(x, y) ≥ K?

ρr(x, y) ≥ δ

}
=⇒ E d(P∗nδx,P∗nδy) ≤ α1 d(x, y)

for all n ∈ N.

Lemma 3.9 In the setting of Theorem 3.4, for any α2 ∈ (0, 1) there exists a n0 >
0, r ∈ [r0, 1) and δ > 0 so that

ρr(x, y) < δ =⇒ E d(P∗nδx,P∗nδy) ≤ α2 d(x, y)

for all n ≥ n0 and β ∈ (0, 1).

Lemma 3.10 In the setting of Theorem 3.4, for any K?, δ > 0, r ∈ [r0, 1) there
exists a n1 so that for any n > n1 there is a β ∈ (0, 1) and a α3 ∈ (0, 1) so the
following implication holds:

ρ(x, y) < K?

ρr(x, y) ≥ δ

}
=⇒ E d(P∗nδx,P∗nδy) ≤ α3 d(x, y) .

It now suffices to show that the conditions of all three statement can be satisfied
simultaneously in order to complete the proof of Theorem 3.4:

imsart-aap ver. 2007/12/10 file: gap.tex date: October 15, 2008



SPECTRAL GAPS IN WASSERSTEIN DISTANCES 17

Proof of Theorem 3.4. By the same argument as in the proof of Theorem 2.5, it
suffices to prove that

(23) d(P∗t δx,P∗t δy) ≤ αd(x, y)

for all (x, y) ∈ H ×H.
We begin by fixingK? as in Lemma 3.8. We then choose an arbitrary α2 ∈ (0, 1)

and apply Lemma 3.9 which fixes a n0 ≥ 1, r ∈ [r0, 1) and δ > 0. With these in
hand, we turn to Lemma 3.10 and fix an N with N ≥ max{n0, n1}. This in turn
fixes β ∈ (0, 1) and α3 ∈ (0, 1). Fixing β sets the value of α1 in Lemma 3.8.
Setting α = max{α1, α2, α3} < 1 completes the proof.

We now turn to the proof of Lemmas 3.8–3.10.

Proof of Lemma 3.8. It follows from Lemma 3.2 that there exist constants α? ∈
(0, 1) and K? > 0 such that

E ρ(Φn(x),Φn(y)) ≤ α?ρ(x, y) ,

for every (x, y) such that ρ(x, y) ≥ K?. Since d(P∗nδx,P∗nδy) ≤ E d(Φn(x),Φn(y))
we thus get the bound

d(P∗nδx,P∗nδy) ≤ 1 + α?βρ(x, y) .

On the other hand, ρr(x, y) > δ by assumption, so that

1 + α?βρ(x, y) = 1− α? + α?d(x, y) .

Since d(x, y) ≥ 1 + βK?, this implies the claim with

α1 =
1 + α?βK?

1 + βK?
,

which is smaller than 1 (but close to it when β is small) by construction.

Proof of Lemma 3.9. This lemma is the most delicate of the three in the sense that
it does not follow from “soft” a priori estimates on the dynamic but requires to
make use of the “hard,” quantitative bound given by Assumption 5.

For the proof of this result, we use representation (4) for the distance d. No-
tice that we can assume without loss of generality that the test functions ϕ satisfy
ϕ(0) = 0 and are Fréchet differentiable, so that the condition Lipd(ϕ) ≤ 1 together
with (14) imply that

‖Dϕ(x)‖ ≤ (δ−1 + β)V (x) ,

|ϕ(x)| ≤ 1 + β‖x‖V ∗(‖x‖) ≤ 1 + βCV κ
∗ (‖x‖) .

(24)
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18 M. HAIRER AND J. MATTINGLY

Combining Assumption 5 with (24) and (16), we see that there exists a constant C
such that, for every α > 0 there exists C(α) and T1(α) such that

‖DPtϕ(x)‖ ≤ CV κξ(t)+p(x)
(
C(α) + αδ−1) ,

for every x ∈ H, every t > T1(α) and every choice for δ and β in (0, 1]. Now fix
an arbitrary value for α3 ∈ (0, 1) and pick α so that αC ≤ α3/2. By (15) there
exists a T (α) ≥ T1(α) so that κξ(t) + p < 1 for all t ≥ T (α). At this point, we
choose r = max{r0, κξ(T (α)) + p} < 1. Using the above estimates produces

‖DPtϕ(x)‖ ≤ δ−1V r(x)
(
δC(α) +

α3

2

)
≤ α3δ

−1V r(x) ,

where we choose δ sufficiently small in order to obtain the last inequality. Fixing
any ε > 0, let γ : [0, 1] → H be a curve connecting x and y as in (18) with r = 1.
We have

|Ptϕ(x)− Ptϕ(y)| =
∣∣∣∫ 1

0
〈DPtϕ(γ(s)), γ̇(s)〉 ds

∣∣∣ ≤ α3δ
−1
∫ 1

0
V r(γ(s)

)
‖γ̇(s)‖ ds

= α3δ
−1ρr(x, y) + εα3δ

−1 ≤ α3d(x, y) + εα3δ
−1 ,

where the last inequality uses the fact that we are in the case ρr(x, y) ≤ δ. Since ε
was arbitrary, the proof is complete.

In order to be able to prove Lemma 3.10 and thus conclude the proof of Theo-
rem 3.4, it is essential to know that the region corresponding to the third case is a
bounded subset ofH×H. This is given by the following result:

Lemma 3.11 Suppose that V is as above and define, for some constants δ > 0
and K > 0, the set

C = {(x, y) : ρr(x, y) ≥ δ and ρ(x, y) < K} .

Then, there exists an R > 0 such that |x| ∨ |y| ≤ R for every (x, y) ∈ C.

Proof. Note first that if δ/K > V r−1
∗ (0), the set C is empty and there is nothing to

prove.
We now show the contrapositive of the statement, i.e. there exists R > 0 such

that if |x| > R and ρ(x, y) < K, then ρr(x, y) < δ. Fixing any ε > 0, let γ denote
a curve connecting x to y as in (18) with r = 1. Since ρ(x, y) < K and V ≥ 1, γ
never leaves the ball of radius K + ε around x. We thus have the bound

ρr(x, y) ≤
∫ 1

0
V r(γ(s)) ‖γ̇(s)‖ ds ≤

(
sup

z : |z−x|≤K+ε

V r−1(z)
)(
ρ(x, y) + ε

)
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=
(

inf
z : |x−z|≤K+ε

V (z)
)r−1(

K + ε
)
.

Since ε was arbitrary and V is continuous, the bound holds for ε = 0. It follows
from (13) that if one chooses R = K + V −1

∗ ((δ/K)1/(r−1)), one has(
inf

z : |x−z|≤K
V (z)

)r−1
≤ δ

K
,

for every x with |x| > R, which concludes the proof of the statement.

With this fact secured, we are in the position to give the proof of Lemma 3.10.

Proof of Lemma 3.10. Given K?, δ and r ∈ (0, 1), it follows from Lemma 3.11
that there exists a C∗(K?, δ, r) so that

C def=
{
(x, y) : ρr(x, y) > δ, ρ(x, y) ≤ K?

}
⊂
{
(x, y) : ‖x‖, ‖y‖ ≤ C∗

}
.

Hence by assumption 6 for every T large enough there exists a positive constant a
so that for any (x0, y0) ∈ C there exists a coupling (xT , yT ) of (ΦT (x0),ΦT (y0))
such that

P
(
ρr(xT , yT ) ≤ 1

2
δ
)
> a > 0 .

Clearly a is independent of the choice of β. Note now that there exists a constant
C such that, for every z ∈ H,

ρ(z, 0) ≤
∫ 1

0
V (sz)‖z‖ ds ≤ ‖z‖V ∗(‖z‖) ≤ CV κ(z) .

Hence it follows from (15) that there exists a constant C∗ (also independent of β)
such that Eρ(xT , yT ) ≤ Eρ(xT , 0) + Eρ(yT , 0) ≤ C∗ for all (x0, y0) ∈ C.

As before given a random variable X and an event A, we define E[X ; A] =
E[X1A]. Now

Ed(xT , yT ) = E
(
1 ∧ ρr(xT , yT )

δ
; ρr(xT , yT ) <

1
2
δ
)

+ E
(
1 ∧ ρr(xT , yT )

δ
; ρr(xT , yT ) ≥ 1

2
δ
)

+ βEρ(xT , yT )

≤ 1
2

(
1−P

(
ρr(xT , yT ) ≥ δ

2

))
+ P

(
ρr(xT , yT ) ≥ δ

2

)
+ βEρ(xT , yT )

≤ 1
2

+
1
2
P
(
ρr(xT , yT ) ≥ 1

2
δ
)

+ βC∗

≤ 1
2

+
1
2

(1− a) + βC∗ = 1− 1
2
a+ βC∗ .
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20 M. HAIRER AND J. MATTINGLY

By making β small enough we can ensure that the right-hand side is less then one.
We denote this number by α3. Since ρr(x, y) ≥ δ we know that d(x, y) ≥ 1 and
hence

Ed(xT , yT ) ≤ α3d(x, y) ,

which is the quoted result.

4. Quasi-equivalence of norms. In the finite-dimensional setting where a Lya-
punov function exists, it is natural to consider the norm on functions given by

sup
x

|ϕ(x)|
V (x)

. (25)

(See for example [40].) The norm on measures associated to it by duality is a
weighted total variation norm. This norm can still be used in the infinite-dimensional
setting provided that the driving noise is sufficiently non-degenerate, see for exam-
ple [9] for a general theory and [19] for a recent ergodicity result on the stochastic
two-dimensional Navier-Stokes equation.

In the present article, we are however interested in the situation where the driv-
ing noise is very degenerate. Indeed we assumed, for our main example of interest,
that the driving noise is finite-dimensional, whereas the state space of our system
is of course infinite-dimensional. In this setting, although it is possible to show
that topological irreducibility holds, we do not expect the corresponding Markov
process to be ψ-irreducible for any measure ψ. This is because, even though the
system is formally hypoelliptic, we consider it very unlikely that it has the strong
Feller property. It is indeed very simple to construct infinite-dimensional Ornstein-
Uhlenbeck processes where the noise acts on every degree of freedom (so that
the system is formally elliptic), but the system nevertheless lacks ψ-irreducibility.
Therefore, the results from [40] are not applicable to the present situation and we
do not expect to be able to get convergence results in the total variation norm. It is
therefore natural to look for a modification of (25) to the Wasserstein setting.

Motivated by these considerations, we introduce the following family of norms

‖ϕ‖V r = sup
x∈H

|ϕ(x)|+ ‖Dϕ(x)‖
V r(x)

.

When we take r = 1, we will simply write ‖ϕ‖V . The remainder of this section is
devoted to showing that, modulo the semigroup Pt, these norms can be considered
to be equivalent to the norms ‖ · ‖ρr introduced in (22). Once this has been shown,
we will have that Theorem 3.6 holds with the ‖ · ‖ρ norm replaced by the ‖ · ‖V
norm defined above. This result is contained in Corollary 4.4. We begin by showing
that the norm ‖ · ‖ρr is bounded from above and from below by the ‖ · ‖V r′ norm
for a choice of r′ not necessarily equal to r.
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Proposition 4.1 There exist a constant C such that

C−1‖ϕ‖V κr ≤ ‖ϕ‖ρr ≤ C‖ϕ‖V r ,

for every r ∈ [0, 1] and every Fréchet differentiable function ϕ.

Note first that

Lemma 4.2 Recall the definition of ‖ · ‖ρr from (22) and let ϕ : H → R be Fréchet
differentiable. Then one also has

‖ϕ‖ρr = sup
x∈H

‖Dϕ(x)‖
V r(x)

+
∫
H
ϕ(x)µ?(dx) . (26)

Proof. Since

lim
ε→0

sup
y : ‖y−x‖≤ε

|ϕ(x)− ϕ(y)|
ρr(x, y)

=
‖Dϕ(x)‖
V r(x)

,

‖ϕ‖ρr is greater or equal to the right hand side in (26). In order to prove the reverse
inequality, we can assume without loss of generality that

∫
ϕ(x)µ?(dx) = 0 and

‖Dϕ(x)‖ ≤ V r(x) for all x. One then has

|ϕ(x)− ϕ(y)| =
∫ 1

0
〈Dϕ(γ(s)), γ̇(s)〉 ds ≤

∫ 1

0
V r(γ(s))‖γ̇(s)‖ ds ,

for any smooth path γ connecting x to y. Taking the infimum over all such γ proves
the claim.

Proof of Proposition 4.1. We start with the second inequality. It follows from Lemma 4.2
that it suffices to show that there exists C > 0 such that∫

ϕ(x)µ?(dx) ≤ C‖ϕ‖V .

This follows immediately from the fact that V is integrable against µ? by (15).
In order to show that the first inequality holds, fix ϕ with ‖ϕ‖ρr = 1. One then

has
|ϕ(x)− ϕ(0)| ≤ ρr(x, 0) ≤ CV κr(x) ,

where the second inequality follows from (14). Furthermore,
∫
ρr(x, 0)µ?(dx) ≤∫

ρ(x, 0)µ?(dx) = C. This yields∣∣∣∫ ϕ(x)µ?(dx)− ϕ(0)
∣∣∣ ≤ ∫ |ϕ(x)− ϕ(0)|µ?(dx) ≤ C ,

so that |ϕ(0)| ≤ C + ‖ϕ‖ρr ≤ C + 1. Combining these bounds, we get

|ϕ(x)| ≤ |ϕ(0)|+ |ϕ(x)− ϕ(0)| ≤ C̃V κr(x) ,

for some C̃ > 0, which completes the proof.
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We now show that the semigroup Pt has the following contraction properties:

Theorem 4.3 There exist constants C and γ such that, for every r ∈ [r0, κ], every
Fréchet differentiable function ϕ, and every t ≥ 0, one has the bounds

‖Ptϕ‖V r(t) ≤ Ce
γt‖ϕ‖V r , ‖Ptϕ‖ρr(t) ≤ Ce

γt‖ϕ‖ρr ,

where r(t) = max{ξ(t)r, r0}.

Proof. It suffices to show the claims for t ∈ [0, 1] since the other cases follow by
iteration. To begin with, we get bounds on the common term in both norms.

‖DPtϕ(x)‖ ≤ E‖Dϕ(Φt(x))‖‖DΦt(x)‖

≤
(

sup
y∈H

‖Dϕ(y)‖
V r(y)

)
CV rξ(t)(x) ,

where we made use of (15) in the last inequality. On the other hand, we have

‖Ptϕ(x)‖ ≤
(

sup
y∈H

‖ϕ(y)‖
V r(y)

)
CV rξ(t)(x) ,

and, from the invariance of µ?,∫
Ptϕ(x)µ?(dx) =

∫
ϕ(x)µ?(dx) .

Combining these estimates proves the quoted results.

Corollary 4.4 There exists a time T and a constant C such that

‖PTϕ‖V r ≤ C‖ϕ‖ρr ,

for every Fréchet differentiable function ϕ and every r ∈ (ε/(1− ξ(1)), 1].

Proof. Let rn = ξ(1)nκr + ε(1− ξ(1)n)/(1− ξ(1)) as above. Then, we get from
Theorem 4.3 and Proposition 4.1 that

‖Pnϕ‖V rn ≤ Cn‖ϕ‖V κr ≤ KCn‖ϕ‖ρr ,

for some constants C and K. Since we assume that r > ε/(1 − ξ(1)) = limn rn,
there exists m such that rm ≤ r. The fact that ‖ϕ‖V r ≤ ‖ϕ‖V rm completes the
proof.

An immediate consequence of Corollary 4.4 is the following result which states
that Theorem 3.6 holds with ‖ · ‖ρ replaced by ‖ · ‖V .

Theorem 4.5 Let Pt be as in Theorem 3.4. Then, there exist constants γ > 0 and
C > 0 such that

‖Ptϕ− µ?ϕ‖V ≤ Ce−γt‖ϕ− µ?ϕ‖V ,

for every ϕ ∈ B and every t > 0.
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5. Application to the 2D stochastic Navier-Stokes equations. We now apply
the results of the previous sections to the two-dimensional Navier-Stokes equations
on the torus T2, which is our main motivation for the present work. Recall that, in
the vorticity formulation (1), these equations are given by:

dw = ν∆w dt+B(Kw,w) dt+ f̄ dt+QdW (t) , w0 ∈ L2(T2) def= H , (27)

where B(u, v) = −(u · ∇)v is the usual Navier-Stokes nonlinearity, W is a cylin-
drical Wiener process on H, and Q : H → H is positive selfadjoint finite rank
operator commuting with translations. The viscosity ν > 0 is arbitrary. We use the
notations laid out in the introduction. In particular, we denote by ek, k ∈ Z2 the
eigenfunctions of ∆ and by qk the corresponding eigenvalues of Q. Unless indi-
cated otherwise, we will assume that the constant component f̄ of the body force
and the coefficients qk satisfy Assumption 1.

It is well known (see for example [8, 17]) that (27) has a unique solution under
much weaker assumptions on the covariance operator Q. It is also well known that
under similar conditions, (27) has an invariant measure µ?. The uniqueness of this
invariant measure is a much harder problem and has been a field of intense research
over the past decade. Early results can be found in [17, 9, 36]. Until recently, the
consensus that emerged in [14, 5, 29, 34, 6, 37, 20, 38] was that the uniqueness of
the invariant measure can be obtained, provided that all the qk with |k|2 ≤ N are
non-zero, for some valueN ≈

∑
q2
k/ν

3. To the best of the author’s knowledge, the
only exception to this were the results of [15], that indicated that the invariant mea-
sure µ? should be unique provided that there existsR > 0 and α large enough such
that all the qk with |k| ≥ R are bounded from above and from below by multiples
of |k|−α. The uniqueness problem was eventually solved under Assumption 1 by
the authors in the recent article [21]. This assumption is close to optimal since it
only fails in situations where there exists a closed subspace H̃ ⊂ H that is invariant
for (27). It can then be shown that there always exists a unique ergodic invariant
measure µ? for (27) such that µ?(H̃) = 1.

We will show in this section that under Assumption 1, the random flow gener-
ated by the solutions of (27) satisfies the assumptions of Theorem 3.4 with V (w) =
exp(η‖w‖2) for a positive η sufficiently small. We will then exhibit a Banach space
of observables B which is such that the semigroup Pt generated by (27) extends to
a strongly continuous semigroup of operators on B. The results from Theorem 3.4
will then be shown to imply that the operator norm of Pt converges to 0, so that
in particular its generator L has a spectral gap in the sense that there exists a con-
stant g > 0 such that the spectrum of L is contained in {0} ∪ {Reλ ≤ −g}. We
conclude by showing first that L acts on cylindrical function as a second-order dif-
ferential operator as one would expect and then that all the structure functions for
(27) converge exponentially fast to their limit values.
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5.1. General Lyapunov Structure. We start with a result that we have found to
be very useful when trying to check that (15) holds for a particular system.

Lemma 5.1 Let U be a real-valued semimartingale

dU(t, ω) = F (t, ω) dt+G(t, ω) dB(t, ω) ,

where B is a standard Brownian motion. Assume that there exists a process Z and
positive constants b1, b2, b3, with b2 > b3, such that F (t, ω) ≤ b1 − b2Z(t, ω),
U(t, ω) ≤ Z(t, ω), and G(t, ω)2 ≤ b3Z(t, ω) almost surely. Then, the bound

E exp
(
U(t) +

b2e
−b2t/4

4

∫ t

0
Z(s) ds

)
≤
b2 exp

(2b1
b2

)
b2 − b3

exp
(
U(0)e−

b2
2
t
)
.

holds for any t ≥ 0.

Proof. Fixing a time t > 0 and a > 0, set

Y (s) = exp
(b2

4
(s− t)

)
U(s) +

b2
4

∫ s

0
exp
(b2

4
(r − t)

)
Z(r) dr ,

and M(s) =
∫ s
0 exp

( b2
4 (r − t)

)
G(r, ω)dB(r, ω). Then

dY (s) = exp
(b2

4
(s− t)

)(
F (s, ω) +

b2
4
(
U(s) + Z(s)

))
ds+ dM(s) .

If we restrict to s ∈ [0, t] then we have that

Y (s) ≤ Y (0) +
4b1
b2
− b2

2

∫ s

0
exp

(b2
4

(r − t)
)
Z(r) dr +M(s) .

Next observe that Y (0) = exp(− b2
4 t)U(0), Y (t) ≥ U(t) + b2e−b2t/4

4

∫ t
0 Z(s) ds,

and

M(s)− b2
2

∫ s

0
exp

(b2
4

(r − t)
)
Z(r)dr ≤M(s)− 1

2
b2
b3
〈M〉(s)

because exp
( b2

2 (r − t)
)
G(r)2 ≤ exp

( b2
4 (r − t)

)
Z(r) almost surely for r ∈ [0, t].

Since for continuous local Martingales M(t), one has the exponential martingale
inequality

P
(

sup
s
M(s)− α

2
〈M〉(s) > β

)
≤ exp(−αβ) ,

we have that

P
(
U(t) +

b2e
−b2t/4

4

∫ t

0
Z(s) ds− U(0)e−

b2
2
t − 2b1

b2
> K

)
≤ exp

(
− b2
b3
K
)
.

In order to conclude, it now suffices to use the fact that if X is an arbitrary random
variable and a > 1 is a constant such that P(X > K) ≤ exp(−aK) for every
K ≥ 0, then E exp(X) ≤ a/(a− 1).
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5.2. Verification of the assumptions of Theorem 3.4. We first show that Lemma 5.1
indeed implies that

Proposition 5.2 There exists η0 such that, for every η ∈ (0, η0], the solutions to
(27) satisfy Assumption 4 with V (w) = exp(η‖w‖2).

Proof. It is clear that V satisfies (13) and (14) so that it remains to show that (15)
holds. Note that if we set U(t) = η‖w‖2, we have from Itô’s formula

dU(t) = η
(
trQ2 + 2〈w(t), f̄〉 − 2ν‖w(t)‖21

)
dt+ 2η‖Qw(t)‖ dB(t) ,

for some Brownian motion B. Here and in the sequel, we denote by ‖w‖ the L2-
norm of w and by ‖w‖1 = ‖∇w‖ its H1-norm. Since ‖w‖1 ≥ ‖w‖ and 2〈w, f̄〉 ≤
ν−1‖f̄‖2 + ν‖w‖2, this shows that we are in the situation of Lemma 5.1 if we set
Z(t) = η‖w(t)‖21 and

b1 = η trQ2 +
‖f̄‖2

ν
, b2 = ν , b3 = 4η‖Q‖ .

In particular, this shows that, for every η < ν/(4‖Q‖), there exists a constant C
such that, for every t ∈ [0, 1],

E exp
(
η‖w(t)‖2 +

νηe−ν/2

2

∫ t

0
‖w(s)‖21 ds

)
≤ C exp

(
η‖w(0)‖2e−

νt
2

)
. (28)

On the other hand, we know from Lemma A.1 that, for every κ > 0, there exists a
constant C such that

‖DΦt(w0)‖ ≤ C exp
(
κ

∫ t

0
‖w(s)‖21 ds

)
, ∀t ∈ [0, 1] ,

holds almost surely for every w ∈ H. Combining this with (28) shows that (15)
holds with ξ(t) = e−

νt
2 for arbitrarily small values of r0.

Recall now that the following “gradient estimate” is the main technical result of
[21]:

Proposition 5.3 For every η > 0 and every α > 0, there exist constants Cη,α such
that, for every Fréchet differentiable function ϕ fromH to R, one has the bound

‖DPnϕ(w)‖ ≤ exp(η‖w‖2)
(
Cη,α

√(
Pn|ϕ|2

)
(w) + αn

√(
Pn‖Dϕ‖2

)
(w)

)
,

for every w ∈ H and n ∈ N.
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Remark 5.4 The works [39, 21] made the assumption f̄ = 0. However, the ar-
guments presented there work without any modification under the assumption that
f̄ ∈ rangeQ. Note for example that Girsanov’s formula implies that the transition
probabilities for (SNS) with f̄ = 0 are equivalent to the transition probabilities
with f̄ ∈ rangeQ. In particular, this means that the proof of weak irreducibility
from [21] carries over to the setting of this paper.

Proposition 5.3 immediately implies that Assumption 5 is satisfied for every
choice of η, so that it remains to verify Assumption 6. This however follows im-
mediately from [13, Lemma 3.1] and Remark 5.4 above. As a consequence, we
have just shown that

Theorem 5.5 If Assumption 1 holds, there exists η0 > 0 such that, for every η ≤
η0, the stochastic flow solving (27) satisfies the assumptions of Theorem 3.4 with
V (w) = exp(η‖w‖2). Hence, the conclusions of Theorems 3.4, 3.6 and 4.5 hold.

5.3. Spectral gap for the generator. In this section, we show that it is possible
to extend the Markov semigroup Pt generated by solutions to (27) to some Banach
space of observables B in such a way that:

1. The semigroup Pt is strongly continuous on B.
2. There exists g > 0 such that σ(Pt) \ {1} is included in the disk of radius
e−gt for every t > 0. Here, σ(Pt) denotes the spectrum of Pt viewed as a
bounded operator on B.

Remark 5.6 It follows from standard semigroup theory that the above statements
imply that Pt possesses a generator L densely defined on B (see e.g. [10, The-
orem 1.7]) and that there exists g > 0 such that Re(λ) ≤ −g for every λ ∈
σ(L) \ {0} (see e.g. [10, Theorem 2.16]).

Before we give the precise statement of our results, let us turn to the construction
of the Banach space B. Given a Hilbert spaceH, we define C∞0 (H) by

C∞0 (H) =
{
ϕ ◦Π

∣∣Π: H → Rn linear , ϕ ∈ C∞0 (Rn)
}
.

Note in particular that elements of C∞0 (H) are Fréchet differentiable of all orders.
Given η > 0, define Bη as the closure of C∞0 (H) under the norm

‖ϕ‖η = sup
w∈H

exp(−η‖w‖2)
(
|ϕ(w)|+ ‖Dϕ(w)‖

)
. (29)

We also denote by B̃η the closure under this norm of the space of all Fréchet dif-
ferentiable functions ϕ such that ‖ϕ‖η is finite.
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Remark 5.7 The space Bη is much smaller than B̃η. In particular, elements of Bη
are continuous when H is equipped with the topology of weak convergence, so
that w 7→ ‖w‖2 does not belong to Bη, even though it obviously belongs to B̃η.
However, w 7→ ‖Kw‖2 does belong to Bη, provided that K : H → H is a compact
operator.

Remark 5.8 The fact that the vorticity belongs to H = L2 does not ensure that
the corresponding velocity field is continuous. Therefore, point evaluations of the
velocity field do not belong to Bη. This fact can however be dealt with and we will
do so in Section 5.4.

Remark 5.9 Given an orthonormal basis {en} of H, one could have restricted
oneself to the set of all functions of the type w 7→ ϕ(〈w, e1〉, . . . , 〈w, en〉) with
ϕ ∈ C∞0 (Rn). It is easy to check that the closure of this set under the norm (29) is
again equal to Bη, independently of the choice of basis.

As a consequence of this, it is a straightforward exercise to check that polyno-
mials in 〈w, en〉 with rational coefficients form a dense subset of Bη, so that it is a
separable Banach space.

The first result of this section is the following:

Theorem 5.10 For η sufficiently small, Pt extends to a C0-semigroup on Bη.

Proof. Define Πn as the orthogonal projection inH onto the first n Fourier modes.
The proof of this result is broken into two distinct steps as follows:

1. The semigroup Pt extends to a semigroup of bounded operators on Bη that
is uniformly bounded as t→ 0.

2. One has ‖Ptϕ− ϕ‖η → 0 as t→ 0 for a dense subset of elements of Bη.
Note first that it follows from the a priori bounds of Lemma A.1 that if ϕ : H →

R is a Fréchet differentiable function such that ‖ϕ‖η < ∞, then Ptϕ is again
Fréchet differentiable and there exist constants Ct that remain bounded as t → 0
such that

‖Ptϕ‖η ≤ Ct‖ϕ‖η ,

provided that η is sufficiently small. This shows that Pt can be extended to a semi-
group on B̃η which is uniformly bounded as t→ 0.

Since the norm on B̃η is the same as on Bη, the first claim follows if we can
show that Pt maps B̃η into itself. For an arbitrary function ϕ ∈ C∞0 (H), we will
show that

lim
n→∞

∥∥Ptϕ− (Ptϕ) ◦Πn

∥∥
η

= 0 , (30)
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where Πn denotes the orthogonal projection in H onto the Fourier modes with
|k| ≤ n. This is sufficient since it follows from the a priori bounds (46), (43),
(40) and (42) that the function

(
Ptϕ

)
◦Πn is twice Fréchet differentiable and that,

together with its derivative, it grows slower than exp(η‖x‖2) at infinity, so that it
belongs to Bη.

Fix a generic element w ∈ H and a natural number n > 0, and write w̃ = Πnw.
We denote by Φt the random flow solving (27) and set wt = Φt(w), w̃t = Φt(w̃),
ρt = wt − w̃t. We also use the notations

Jt =
(
DΦt

)
(w) , J̃t =

(
DΦt

)
(w̃) , Jρ,t = Jt − J̃t .

Since the derivatives of ϕ are bounded, the expression inside the limit in (30) is
bounded by

C sup
w∈H

e−η‖w‖
2
(
E‖ρt‖+

√
E‖ρt‖2E‖Jt‖2 + E‖Jρ,t‖

)
,

The claim the follows immediately from Theorem A.3 and from the a priori bounds
of Lemma A.1.

In order to show that the second claim holds, fix a function ϕ ∈ C∞0 (H) which is
of the form ϕ = ϕ̃ ◦Πn for a C∞0 function ϕ̃ and some n > 0. It is straightforward
to check that there exists a constant C (depending on ϕ̃) such that

‖Ptϕ− ϕ‖η ≤ C sup
w∈H

e−η‖w‖
2(

E‖Πnwt −Πnw‖+ E‖ΠnJt −Πn‖
)

def= C sup
w∈H

e−η‖w‖
2(
G1(t) +G2(t)

)
.

Since n is fixed, both terms are relatively easy to control in the limit t→ 0.
Let us first bound G1(t). It follows from the variation of constants formula (or

the mild formulation of a solution) and (37) from the Appendix that

G1(t) ≤‖(1−Πne
ν∆t)‖w‖+ E‖

∫ t

0
Πne

ν∆(t−s)B(Kws, ws)ds‖

≤
(
1− e−νn2t)‖w‖+ Cn3

∫ t

0
E‖ΠnB(Kws, ws)‖−3 ds

≤
(
1− e−νn2t)‖w‖+ Cn3

∫ t

0
E‖ws‖2ds .

Since n is fixed, it is obvious that the first term converges to 0 as t → 0. By (41),
E‖ws‖2 is uniformly bounded in time by C exp(η‖w‖2). Hence the second term is
bounded by C exp(η‖w‖2)t and thus converges to 0 as t→ 0.
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The term G2(s) is bounded in much the same way. Again it follows from the
variation of constants formula that

ΠnJtξ = Πne
ν∆tξ +

∫ t

0
eν∆(t−s)Πn

(
B(KJsξ, ws) +B(Kws, Jsξ)

)
ds .

It follows from (37) that one has the almost sure bound

‖ΠnJt −Πn‖ ≤ 1− e−νn2t + Cn3
∫ t

0
‖ws‖‖Js‖ ds .

Taking expectations, the needed bound showing that G2(t) → 0 as t → 0 follows
from Lemma A.1 and the same reasoning as used for G1(t).

Since the semigroup Pt is strongly continuous on Bη, it has an infinitesimal
generatorL. Itô’s formula allows us to show thatL is an extension of some concrete
second-order differential operator:

Lemma 5.11 Let L be the generator of Pt on Bη and let ϕ ∈ Bη be of the form
ϕ(w) = ϕ̃ ◦Πn for some n and some function ϕ̃ ∈ C∞0 (Rn). Then ϕ ∈ D(L) and(

Lϕ
)
(w) = ν〈∆Dϕ(w), w〉 − 〈B(Kw,Dϕ(w)), w〉

+ 〈f̄ , Dϕ(w)〉+ 1
2 tr
(
QD2ϕ(w)

)
,

(31)

for every w ∈ H.

Proof. Fix a function ϕ as in the statement of the Lemma. Note first thatDϕ(w) ∈
D(∆) so that (31) does indeed make sense for every w ∈ H.

One has

Πnwt = ν

∫ t

0
∆Πnws ds+

∫ t

0
ΠnB(Kws, ws) ds+QW (t) ,

so that Itô’s formula immediately implies that

Ptϕ(w)− ϕ(w) =
∫ t

0
PsLϕ(w) ds , (32)

where Lϕ is given by (31). Let us show that Lϕ ∈ Bη. The only term in (31)
for which this is not immediate is the one involving the nonlinearity B. Since
Dϕ(w) = Dϕ(Πmw) for m ≥ n, one has the bound

|〈B(Kw,Dϕ(w)), w〉 − 〈B(KΠmw,Dϕ(Πmw)),Πmw〉|
≤ |〈B(Kw −KΠmw,Dϕ(w)), w〉|+ |〈B(KΠmw,Dϕ(w)), w −Πmw〉|
≤ C‖K(w −Πmw)‖‖w‖‖Dϕ(w)‖1 + C‖w‖‖Dϕ(w)‖3‖w −Πmw‖−1
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≤ C

n
‖w‖2 ,

and similarly for its derivative. The penultimate inequality in this equation is ob-
tained by making use of the bound ‖B(Kw, w̃)‖1 ≤ C‖w‖‖w̃‖3. The result then
follows from (32) and the fact that Pt is strongly continuous.

5.4. Convergence of structure functions. In this section, we show that ifϕ : H1 →
R is a smooth function with at most polynomial growth, then there exist constants
C, η and γ (with only C depending on ϕ) such that∣∣∣(Ptϕ)(w)−

∫
H1
ϕ(w)µ?(dw)

∣∣∣ ≤ Ceη‖w‖2−γt . (33)

In particular, since w ∈ H1 implies that v ∈ H2 ⊂ C(T2,R2), polynomials of
point evaluations of the velocity field fall into this class of observables.

It follows from the results of the previous section that (33) is an immediate
consequence of the following result:

Proposition 5.12 Let N > 0 and let ϕ : H1 → R be a smooth function with

|||ϕ|||N = sup
w∈H1

|ϕ(w)|+ |Dϕ(w)|
1 + ‖w‖N1

<∞ .

Then, for every t > 0 and every η > 0 one has Ptϕ ∈ B̃η. In particular there exist
constants CN,t such that ‖Ptϕ‖η ≤ CN,t|||ϕ|||N .

Proof. Fix arbitrary values for t > 0 and η > 0. Let w ∈ H and let wt denote the
solution to (SNS) starting at w. One then has

|Ptϕ(w)| ≤ |||ϕ|||NE(1 + ‖wt‖N1 ) ≤ C exp(η‖w‖2)|||ϕ|||N ,

where the second inequality follows from (41). One furthermore has, for an arbi-
trary vector ξ ∈ H,

|DPtϕ(w)ξ| = |EDϕ(wt)J0,tξ| ≤ |||ϕ|||N
(
E(1 + ‖wt‖1)2NE‖J0,tξ‖21

)1/2
≤ C exp(η‖w‖2)|||ϕ|||N ,

where the last bound was obtained by combining (41), (44) and (40). The claim
follows immediately from these two estimates.
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5.5. Regular dependence on the parameters. In this section, we present one
possible application of the results obtained in this article. It was shown in [21] that,
for a large class of parameters ν, Q, and f̄ , (SNS) has a unique invariant measure
µ?. One question which was not addressed was the nature of the dependence of µ?
on these parameters. The results obtained in this article enable us to give a rela-
tively simple argument that shows that µ? depends in a continuous way on all the
parameters involved. In [32], Majda and Wang proved that in the setting where the
dissipation dominates the dynamics, the invariant measure depends continuously
on the viscosity. This is a reflection of the fact in this context the random attrac-
tor consists of a single point (see [36, 38, 32]). Hence the continuous dependence
of the invariant measure follows from the continuous dependence of the random
attractor. This can be found in [45] in an abstract setting and [32] in this setting.
In the setting of this article, the random attractor is not necessarily a single point,
hence results for the attractor to not translate to results for the invariant measure.
Nonetheless we show that the long term statistics of the equations with nearby
parameters are near to each other. In particular, our results hold even when the
viscosity is not large relative to the typical scale of the energy of the forcing.

In order to keep the notations at a bearable level, we introduce the parameter
space Λ = R+ × `2+ ×H and we denote its elements by

α = (ν,Q, f̄) .

We equip Λ with the natural distance given by

d(α, α̃)2 = |ν − ν̃|2 + ‖Q− Q̃‖2 + ‖f̄ − ˜̄f‖2 .

We denote by Λ0 the subset of Λ that satisfies Assumption 1. For every α ∈ Λ0, we
denote by µα? the unique invariant measure for (SNS) with parameters α and by Pαt
the corresponding semigroup. For α̃ ∈ Λ, µα̃? will simply denote any probability
measure invariant, not necessarily unique, for (P α̃t )∗. One then has the following
regularity result:

Theorem 5.13 For every α ∈ Λ0, there exist η > 0, ε > 0, and Cα > 0 such that

dη(µα? , µ
α̃
? ) ≤ Cαd(α, α̃) ,

for every α̃ ∈ Λ with d(α, α̃) ≤ ε.

Remark 5.14 Going carefully through the proofs of the results in this article and
keeping track of the dependence of all a priori estimates on the parameters, we
believe that one can show that it is possible to choose for η, ε, and Cα continuous
functions of α. The main obstacle to this program is to recover the bounds of [39]
under weaker assumptions on Q.
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Remark 5.15 Even though Λ0 is dense in Λ, this result does not allow to conclude
anything about the set of invariant measures for α 6∈ Λ0. One would expect that
there exist values of α such that (SNS) with parameters α has more than one invari-
ant measure. This would then necessarily imply that Cβ & 1/d(α, β) for β ∈ Λ0

close to α.

Theorem 5.13 is the result of the following meta theorem. Given two Markov
semigroup, if one is uniformly ergodic and the other is close to the first on O(1)
time intervals then any invariant measure of the second is close to the unique in-
variant measure of the first. Theorem 1.4 gives the needed ergodicity for α ∈ Λ0.
The closeness of the time t transition densities is given by Corollary 5.17 below.
It follows from the following bound on the difference between solutions to (SNS)
with different sets of parameters:

Proposition 5.16 Let w0 ∈ H and, for any two sets of parameters α and α̃, let us
denote by wt the solution to (SNS) starting at w0 with parameters α and by w̃t the
solution starting at w0 with parameters α̃.

Then, for every α ∈ Λ, there exist η0 > 0 and ε > 0 such that, for every η ≤ η0

there exist γ > 0, and C > 0 so that

E‖wt − w̃t‖2 ≤ Ceγt+η‖w0‖2d(α, α̃)2 ,

for every α̃ ∈ Λ with d(α, α̃) ≤ ε.

We now use this result to prove the needed estimate on the closeness of the time t
dynamics.

Corollary 5.17 For any α ∈ Λ there exists a η0 > 0 so that for any η ≤ η0 there
exists γ > 0, ε > 0, t0 > 0 and C > 0 so that one has

dη
(
(Pαt )∗µ, (P α̃t )∗µ

)
≤ Ceγtd(α, α̃)

∫
H
eη‖w‖

2
µ(dw)

for any measure µ onH, t ≥ t0 and α̃ ∈ Λ with d(α, α̃) < ε.

For brevity in the sequel, we will write simply write Pα∗t for (Pαt )∗.

Proof of Corollary 5.17. First note that, for every pair (w, w̃) in H and for every
η > 0, one has the upper bound

dη(w, w̃) ≤ ‖w − w̃‖
(
eη‖w‖

2
+ eη‖w̃‖

2)
. (34)

Fix now α > 0, let ε be as given by Proposition 5.16, and choose an arbitrary
α̃ ∈ Λ with d(α, α̃) ≤ ε. Using the notations of Proposition 5.16, we have for η
sufficiently small

dη
(
Pα∗t δw0 ,P α̃∗t δw0

)
≤ Edη(wt, w̃t) ≤

(
E‖wt − w̃t‖2E

(
e2η‖wt‖2 + e2η‖w̃t‖2))1/2
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≤ Cd(α, α̃) exp
(
γt+

η

2
‖w0‖2 + ηe

−(ν−ε)t
2 ‖w0‖2

)
.

This shows that there exist constants t0, γ and C such that

dη
(
Pα∗t µ,P α̃∗t µ

)
≤ Cd(α, α̃)eγt

∫
H
eη‖w‖

2
µ(dw) ,

for every t ≥ t0. By remark A.2 we can chose the constants uniform over all α̃
with d(α, α̃) ≤ ε.

With Corollary 5.17 in hand, we return to the proof of Theorem 5.13.

Proof of Theorem 5.13. We know from Theorem 5.5 that there exists t1 such that

dη
(
Pα∗t µ,Pα∗t ν

)
≤ 1

2
dη(µ, ν) ,

for every t ≥ t1. Letting t0 be as in Corollary 5.17. Choosing t = max{t0, t1}, we
have

dη(µα? , µ
α̃
? ) = dη(Pαt µα? ,P α̃t µα̃? ) ≤ dη(Pα∗t µα? ,Pα∗t µα̃? ) + dη(Pα∗t µα̃? ,P α̃∗t µα̃∗? )

≤ 1
2
d(µα? , µ

α̃
? ) + d(α, α̃)eγt

∫
H
eη‖w‖

2
µα̃? (dw) .

Notice that in (28) the constants on the right hand side of the estimate depend con-
tiguously on the parameters for α ∈ Λ. Hence it follows from (28) that, for η suffi-
ciently small,

∫
H e

η‖w‖2 µα̃? (dw) is bounded uniformly for all α̃ with d(α, α̃) ≤ ε,
so that the claim follows.

We close this section with the proof of Proposition 5.16, which amounts to the
continuous dependence on the parameters in Λ of the solution operator of (SNS).

Proof of Proposition 5.16. Define ρt = wt − w̃t, δν = ν − ν̃, δf = f̄ − ˜̄f , and
δQ = Q− Q̃. One then has

dρt =
(
ν∆ρt + δν∆w̃t +B(Kwt, ρt) +B(Kρt, w̃t) + δf

)
dt+ δQ dW .

At this point, we introduce the stochastic convolution

Ψt =
∫ t

0
eν∆(t−s)δQ dW (s) ,

and we set ρ̄t = ρt −Ψt. This yields for ρ̄

1
2
∂t‖ρ̄t‖2 = −ν‖ρ̄t‖21 − δν〈∇ρ̄t,∇w̃t〉+ 〈B(Kρ̄t, w̃t), ρ̄t〉

+ 〈B(Kwt,Ψt), ρ̄t〉+ 〈B(KΨt, w̃t), ρ̄t〉+ 〈δf , ρ̄t〉 .
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Fix now η > 0. Making use of (36), we see that there exists a universal constant C
such that

∂t‖ρ̄t‖2 ≤ −ν‖ρ̄t‖21 +
δ2
ν

ν
‖w̃t‖21 + C‖w̃t‖1‖ρ̄t‖1/2‖ρ̄t‖

+
ην

2
(
‖wt‖21 + ‖w̃t‖21

)
‖ρ̄t‖2 +

C

ην
‖Ψt‖21 + 〈δf , ρ̄t〉 .

Note now that it follows from Hölder and Young’s inequalities that there exists a
universal constant C ′ such that

C‖w̃t‖1‖ρ̄t‖1/2‖ρ̄t‖ ≤ ν‖ρ̄t‖21 +
ην

2
‖w̃t‖21‖ρ̄t‖2 +

C ′

η2ν3
‖ρ̄t‖2 .

Combining these bounds yields

∂t‖ρ̄t‖2 ≤
(
1+

C ′

η2ν3
+ην

(
‖wt‖21+‖w̃t‖21

))
‖ρ̄t‖2+‖δf‖2+

C

ην
‖Ψt‖21+

δ2
ν

ν
‖w̃t‖21 .

We can now apply Gronwall’s inequality to get the bound

‖ρ̄t‖2 ≤ exp
((

1 +
C ′

η2ν3

)
t+ ην

∫ t

0

(
‖ws‖21 + ‖w̃s‖21

)
ds
)

×
(
‖δf‖2t+

C

ην

∫ t

0
‖Ψs‖21 ds+

δ2
ν

ν

∫ t

0
‖w̃s‖21 ds

)
Using the bound x ≤ a−1eax, applying Cauchy-Schwartz and using the fact that
there exists a universal constant C such that, for every Gaussian random variable
taking values in a separable Hilbert space, one has

E‖X‖4 ≤ C
(
E‖X‖2

)2 ,

we eventually get that there exist constants C and γ
depending continuously on η and on the parameters α and α̃ such that, for every

η sufficiently small, one has the bound

E‖ρ̄t‖2 ≤ Ceγt+η‖w0‖2
(
δ2
ν + ‖δf‖2 +

∫ t

0
E‖Ψs‖21 ds

)
.

The claim then follows immediately from the fact that

E‖Ψt‖21 ≤
‖δQ‖2

2ν
,

for every t ≥ 0.
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6. Discussion. We have proven a spectral gap in a Wasserstein distance for a
class of Markov processes satisfying a gradient estimate and a weak (topological)
irreducibility assumption. Measuring convergence in a Wasserstein metric allows
one to incorporate information about the pathwise contraction properties of the
system. When the system is completely pathwise contracting, the story is relatively
straightforward, see [36, 38] or [25] for the finite-dimensional setting. However
when the system in not pathways contracting one must introduce a change of mea-
sure to make it contracting. This was one of the central ideas used in [14, 37].
The term in the gradient estimate which does not have a derivative reflects the
probabilistic cost of this change of measure while the term with a gradient but a
coefficient less then one reflects the contraction property obtained via the change
of measure.

When the gradient estimate is not uniform, the existence of a Lyapunov function
is required. The convergence is then measured in a Wasserstein distance weighted
by the Lyapunov function. In this “Harris-like” setting, the contraction properties
of the system arise from two sources. Points close to the center of the phase space,
as measured by the value of the Lyapunov function, contract due to the combination
of deterministic contraction and probabilistic mixing captured by the gradient esti-
mate. Points far out in the space move closer to each other in the distance weighted
by the Lyapunov function simply because the linear instability of the flow is com-
pensated by the decrease of the values of the Lyapunov function as the solution
moves points towards the center of the phase space.

While we have applied our general theory to the single example of the stochastic
Navier-Stokes equations with degenerate forcing, we believe that these results will
be useful in many contexts. The gradient estimate allows to capture the combina-
tion of mixing due to the presence of noise and due to the contractive nature of
the dynamic in one simple estimate. In the context of degenerately forced dissipa-
tive SPDEs, control of the gradient term on the right hand side of Assumption 5
combines an argument strongly inspired by the probabilistic proofs of Hörmander’s
theorem [24] based on Malliavin’s calculus [33, 48, 41], together with the infinites-
imal equivalent of the Foias-Prodi-type estimate, namely the fact that the linearized
flow contracts all but finitely many directions.

This work has its intellectual roots in many papers. In finite dimensions, spec-
tral gaps in weighted total variation norms like (25) have been obtained for some
time [40], but these estimates are of course not uniform when (SNS) is approxi-
mated by a sequence of finite-dimensional systems (say by spectral Galerkin ap-
proximations). In [46], spaces of observables weighted by Lyapunov functions are
used to prove the existence of solutions to infinite dimensional Kolmogorov equa-
tions. The convergence of observables dominated by Lyapunov functions was also
given in [27, 38] in the ‘essentially elliptic’ case. The results obtained there were
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however far from what is needed to prove a spectral gap. The convergence re-
sults are direct descendants of those developed by many authors in, among others,
[14, 29, 34, 6, 37, 20, 38, 43]. All of these works make use of a version of the
Foias-Prodi-type estimate [18], introduced in the stochastic context in [35]. The
later papers also use a coupling construction to prove convergence. In particular,
[37, 20, 38] developed a coupling construction to prove exponential convergence.
Though in a less explicit way then its predecessors, the present work makes use of
both ideas.

APPENDIX A: A PRIORI BOUNDS ON THE DYNAMICS

This appendix is devoted to the proof of the technical estimates used throughout
the last two sections of this article. The techniques used to derive these estimates
are standard. Even though most of these bounds are probably known to the experts
in this field, we have not always been able to find references that state them in the
form required here. In particular, we need precise bounds on the difference between
the solutions (and their Jacobians) for two nearby initial conditions.

We define for α ∈ R and for w a smooth function on [0, 2π]2 with mean 0 the
norm ‖w‖α by

‖w‖2α =
∑

k∈Z2\{0,0}

|k|2αw2
k ,

where of course wk denotes the Fourier mode with wavenumber k. Define further-
more (Kw)k = −iwkk⊥/‖k‖2. If v, u1 and u2 are as w and u = (u1, u2) then
B(u, v) = (u · ∇)v. Setting S = {s = (s1, s2, s3) ∈ R3

+ :
∑
si ≥ 1, s 6=

(1, 0, 0), (0, 1, 0), (0, 0, 1)} and keeping u, v, and w as above, then the following
relations are useful (cf. [7]):

〈B(u, v), w〉 = −〈B(u,w), v〉 if ∇ · u = 0 (35)

|〈B(u, v), w〉| ≤ C‖u‖s1‖v‖1+s2‖w‖s3 (s1, s2, s3) ∈ S (36)

‖B(u, v)‖α ≤ Cα‖u‖‖v‖ if α < −2 and ∇ · u = 0 (37)

‖Kv‖α = ‖v‖α−1 (38)

‖v‖2β ≤ ε‖v‖2α + ε
−2 γ−β

β−α ‖v‖2γ if 0 ≤ α < β < γ and ε > 0. (39)

We start with the following set of a priori bounds, most of which were taken from
[21] and [39].

Lemma A.1 The solution wt of the 2D stochastic Navier-Stokes equations in the
vorticity formulation satisfies the following bounds:

1. There exist constants C, η?, γ > 0, such that

E exp
(
ν

∫ t

s
η‖wr‖21 dr − γ(t− s)

)
≤ C exp

(
η‖w0‖2

)
, (40)
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for every t ≥ s ≥ 0 and for every η ≤ η?.
2. For every N > 0, every t > 0 and every η > 0, there exists a constant C

such that one has
E‖wt‖N1 ≤ C exp

(
η‖w0‖2

)
, (41)

for every initial condition w0 ∈ H.
3. There exist constants η? > 0 and C > 0 such that for every t > 0 and every
η ≤ η?, the bound

E exp(η‖wt‖2) ≤ C exp(ηe
−νt
2 ‖w0‖2) (42)

holds.
4. For every η > 0, there exists a constant C > 0 such that the Jacobian J0,t

satisfies almost surely

‖J0,t‖ ≤ exp
(
η

∫ t

0
‖ws‖21 ds+ Ct

)
, (43)

for every t > 0.
5. For every η > 0 and every T > 0, there exists a constant C such that∫ t

0
‖J0,sξ‖21 ds ≤ C‖ξ‖2 exp

(
η

∫ t

0
‖ws‖21 ds

)
, (44)

for every ξ ∈ H and every t ∈ [0, T ].
6. For every η > 0 there exists a constant C such that

‖J0,tξ‖21 ≤ C‖ξ‖2 exp
(
η

∫ t

0
‖ws‖21 ds+ Ct

)
, (45)

almost surely, for every t > 0 and for every ξ ∈ H.
7. For every η > 0 and every p > 0, there exists C > 0 such that the Hessian
K0,t satisfies

E‖K0,t‖p ≤ C exp
(
η‖w0‖2

)
, (46)

for every t ∈ [0, 1].

Remark A.2 It is straight forward to verify that if one fixes a K1 > 0 and K2 >
0, the constants C, η? and γ from the statements in Lemma A.1 can be chosen
uniformly over all ν > K1 and ‖Q‖, ‖f̄‖ ≤ K2.

Proof of Lemma A.1. Points 1, 4, and 7 are taken from Lemma 4.10 in [21]. Point 2
follows from Lemma A.4 in [39] and point 6 follows from Lemma B.1 in [39].
Point 3 follows immediately from (28).
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It remains to show Point 5. It follows from the linearization of the Navier-Stokes
equations that

‖J0,tξ‖2 − ‖ξ‖2 = −2ν
∫ t

0
‖J0,sξ‖21 ds+

∫ t

0
〈J0,sξ,B(KJ0,sξ, ws)〉 ds .

Using (36), this in turn implies that∫ t

0
‖J0,sξ‖21 ds ≤

‖ξ‖2

2ν
+

1
2ν

∫ t

0
‖ws‖1‖J0,sξ‖‖J0,sξ‖1 ds

≤ ‖ξ‖
2

2ν
+

1
8ν2

∫ t

0
‖ws‖21‖J0,sξ‖2 ds+

1
2

∫ t

0
‖J0,sξ‖21 ds .

It thus follows from (43) that∫ t

0
‖J0,sξ‖21 ds ≤

‖ξ‖2

ν
+ C‖ξ‖2 exp

(
η

∫ t

0
‖ws‖21 ds+ Ct

) ∫ t

0
‖ws‖21 ds ,

and the result follows immediately.

In the remainder of this section, we use the following notation, which is the same
as in the proof of Theorem 5.10. We fix an element w ∈ H and a natural number
n > 0. We denote by Πn the orthogonal projection in H onto the Fourier modes
with |k| ≤ n and we write w̃ = Πnw. We denote by Φt the random flow solving
(27) and set wt = Φt(w), w̃t = Φt(w̃), ρt = wt − w̃t. We also use the notations

Jt =
(
DΦt

)
(w) , J̃t =

(
DΦt

)
(w̃) , Jρ,t = Jt − J̃t .

The aim of this section is to show that, given t > 0 and provided n is large
enough, it is possible to make ρt and Jρ,t arbitrarily small. More precisely, the
main result of this section is:

Theorem A.3 For every γ > 0, every T > 0, and every η > 0 there exists n > 0
such that

E‖ρT ‖2 ≤ γ exp(η‖w‖2) , E‖Jρ,T ‖2 ≤ γ exp(η‖w‖2) ,

for every w ∈ H.

We define the family of increasing stochastic processes F pη (t) by

F pη (t) = exp
(
2η
∫ t

0

(
‖ws‖21 + ‖w̃s‖21

)
ds
)(

1 + sup
s∈[0,t]

(‖ws‖+ ‖w̃s‖)p
)
.

Note that one has the following result, the proof of which is a trivial application of
the a priori bounds from Lemma A.1:
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Lemma A.4 For every η > 0, every t > 0, and every p > 0 there exist η0 > 0 and
C such that

E
(
F pζ (t)

)
≤ C exp(η‖w‖2) ,

uniformly for every n ≥ 0, every w ∈ H and every ζ ∈ [0, η0].

Proof of Theorem A.3. We fix a terminal time T > 0 and start with the bound for
‖ρT ‖, which is almost identical to the proof of [21, Lemma 4.17]. Note first that ρ
solves the equation

∂tρt = ν∆ρt + B̃(ρt, wt + w̃t) ,

where we set B̃(w, w̃) = B(Kw, w̃) + B(Kw̃, w). Define ρ`t = Πnρt and ρht =
ρt − ρ`t , so that

∂t‖ρ`t‖2 = −2ν‖ρ`t‖21 + 〈B(Kρ`t, wt + w̃t), ρ`t〉
− 〈B(Kρht , ρ`t), wt + w̃t〉 − 〈B(Kwt +Kw̃t, ρ`t), ρt〉 ,

∂t‖ρht ‖2 = −ν‖ρht ‖21 − 〈B(Kρt, ρht ), wt + w̃t〉 − 〈B(Kwt +Kw̃t, ρht ), ρt〉 .

The initial conditions for these equations are given by

ρ`0 = 0 , ρh0 = Πnw .

The equations satisfied by ρ`t and ρht are the same as the ones appearing in the proof
of [21, Lemma 4.17], so that we get the bounds:

‖ρht ‖2 ≤ ‖w‖2
(
e−νn

2t +
Cη
n
F 1
η (t)

)
‖ρ`t‖2 ≤ Cη

∫ t

0
exp
(
η

∫ t

s
‖wr + w̃r‖21

)
‖ws + w̃s‖21/2‖ρ

h
s‖2 ds

≤ CηF 4
η (t)

∫ t

0
‖ws + w̃s‖1‖ρhs‖ ds .

These bounds are valid for every η > 0. It follows from the first bound that∫ T

0
‖ρhs‖2 ds ≤

C

n
F 3
η (T ) ,

so that the second bound yields

sup
t∈[0,T ]

‖ρt‖2 ≤
Cη√
n
F 6

2η(T ) . (47)

The bound on E‖ρT ‖2 then follows from Lemma A.4.
In order to bound Jρ,T , note first that Jρ,0 = 0 and

∂tJρ,t = ν∆Jρ,t + B̃(Jρ,t, wt + w̃t) + B̃(Jt + J̃t, ρt) .
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Fix now a tangent vector ξ ∈ H. It follows from (36) that

∂t‖Jρ,tξ‖2 ≤ −2ν‖Jρ,tξ‖21 + C‖Jρ,tξ‖1/4‖Jρ,tξ‖‖wt + w̃t‖1
+ C‖Jρ,tξ‖1‖ρt‖‖Jtξ + J̃tξ‖1/4

≤
(
Cη + η‖wt + w̃t‖2

)
‖Jρ,tξ‖2 + ‖ρt‖2‖Jtξ + J̃tξ‖21/4 .

This bound is valid (with different values for the constant Cη) for any value of
η > 0. It immediately implies that

‖Jρ,T ξ‖2 ≤ F 0
η (T )

∫ T

0
‖ρt‖2‖Jtξ + J̃tξ‖1/2‖Jtξ + J̃tξ‖ dt

≤ CF 2
3η(T )‖ξ‖

∫ T

0
‖ρt‖‖Jtξ + J̃tξ‖1/2 dt

≤ CF 2
4η(T )‖ξ‖3/2

∫ T

0
‖ρt‖‖Jtξ + J̃tξ‖1/21 dt ,

where we made use of (43). It follows that there exists a constant C such that, for
every α > 0, one has the bound

‖Jρ,T ξ‖2 ≤
( 1
α

∫ T

0
‖ρt‖2 dt+ αCF 8

3η(T )
)
‖ξ‖2 + α

∫ T

0

(
‖Jtξ‖21 + ‖J̃tξ‖21

)
dt .

It follows from (44) that

‖Jρ,T ‖2 ≤
( 1
α

∫ T

0
‖ρt‖2 dt+ αCF 8

3η(T )
)

,

so that the claim follows by combining Lemma A.4 with the bound (47).
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