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Abstract
We demonstrate that stochastic differential equations (SDEs) driven by fractional
Brownian motion with Hurst parameter H > 1

2
have similar ergodic properties as

SDEs driven by standard Brownian motion. The focus in this article is on hypoelliptic
systems satisfying Hörmander’s condition. We show that such systems enjoy a suitable
version of the strong Feller property and we conclude that under a standard control-
lability condition they admit a unique stationary solution that is physical in the sense
that it does not “look into the future”.

The main technical result required for the analysis is a bound on the moments of the
inverse of the Malliavin covariance matrix, conditional on the past of the driving noise.

Résumé
Nous démontrons que les équations différentielles stochastiques (EDS) conduites par
des mouvements Browniens fractionnaires à paramètre de Hurst H > 1

2
ont des pro-

priétés ergodiques similaires aux EDS usuelles conduites par des mouvements Brown-
iens. L’intérêt principal du présent article est de pouvoir traı̂ter également des systèmes
hypoelliptiques satisfaisant la condition de Hörmander. Nous montrons qu’une ver-
sion adéquate de la propriété de Feller forte est vérifiée par de tels systèmes et nous en
déduisons que, sous une propriété de controllabilité usuelle, ils admettent une unique
solution stationnaire qui ait un sens physique.

L’ingrédient principal de notre analyse est une borne supérieure sur les moments
inverses de la matrice de Malliavin associée, conditionnée au passé du bruit.
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1 Introduction

In this paper we study the ergodic properties of stochastic differential equations (SDEs)
of the type

dXt = V0(Xt) dt+

d∑
i=1

Vi(Xt) ◦ dBit , X0 ∈ Rn , (1.1)



INTRODUCTION 2

driven by independent fractional Brownian motions (fBm) Bi with fixed Hurst index
H ∈ (1/2, 1). Recall that fBm is the centred Gaussian process with Bi0 = 0 and

E|Bit −Bis|2 = |t− s|2H .

Although the basic theory of SDEs driven by fBm (for H ∈ (1/4, 1)) is now well es-
tablished (see for example [Nua06, Mis08, CQ02, Fri10]), the ergodicity of such SDEs
has only been studied recently. The main difficulty is that non-overlapping increments
of fBm are not independent, so that we are dealing with processes that do not have
the Markov property. As a consequence, the traditional ergodic theory for Markov
processes as in [MT93] does not apply to this situation.

To our knowledge, the first result on the ergodicity of (1.1) was given in [Hai05],
where the author considers the case where the vector fields Vi for i > 0 are constant
and non-degenerate in the sense that the corresponding matrix is of rank n. In this case,
an explicit coupling argument allows to show that any solution converges to the unique
stationary solution at speed bounded above by approximately t−1/8. The argument
however relies in an essential way on the additivity of the noise.

A more general construction was given in [HO07, Hai09], where the authors built a
general framework of stochastic dynamical systems (SDSs) very similar to that of ran-
dom dynamical systems (RDSs) [Arn98]. In this framework, the notion of an “invariant
measure” can be defined for an autonomous equation driven by an ergodic process with
stationary but not necessarily independent increments. Besides technical questions of
continuity, the main difference between the framework of SDSs and that of RDSs is one
of viewpoint. An RDS is considered as a dynamical system on the state space times the
space of all ‘futures’ of the driving process, endowed with a cocycle structure. An SDS
on the other hand is considered as a Markov process on the state space times the space
of all ‘pasts’ of the driving process, endowed with a cocycle structure. This shift of
viewpoint has two important advantages when studying the ergodic properties of such
systems:
• Since the ‘future’ of the driving noise is not part of the augmented phase space,

we do not have to deal with ‘unphysical’ stationary solutions, where the value
of the process at a given time is a function of the future realisation of the driving
noise.

• It allows to build our intuition based on the theory of Markov processes, rather
than the theory of dynamical systems. There, many criteria for the uniqueness
of an invariant measure are known to exist.

Inspired by the celebrated Doob-Khasminskii theorem (see for example [DPZ96]),
[HO07, Hai09] introduced a notion of a strong Feller property for SDSs that is a nat-
ural generalisation of the same notion for Markov semigroups. It turns out that for a
large class of ‘quasi-Markovian’ SDSs (this includes SDEs of the type (1.1), but also
many other examples), uniqueness of the invariant measure then follows like in the
Markovian case from the strong Feller property, combined with some type of topolog-
ical irreducibility. To illustrate these results, denote by At,x the closure of the set of all
points that are accessible at time t for solutions to (1.1) starting at x for some smooth
control B. Then, one has

Theorem 1.1 If there exists t > 0 such that (1.1) is strong Feller at time t and such
that

⋂
x∈Rn At,x 6= φ, then (1.1) can have at most one invariant measure.
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Remark 1.2 Since (1.1) does not determine a Markov process, it is not clear a priori
what is the correct notion of an invariant measure. The notion retained here is the one
introduced in [HO07, Hai09]. Essentially, an invariant measure for (1.1) is the law of a
stationary solution which does not ‘look into the future’. Similarly, it is not clear what
is the correct notion of a ‘strong Feller property’ for such a system. Precise definitions
can be found in Section 2.1 below.

Furthermore, it was shown in [HO07] that if (1.1) is ‘elliptic’ in the sense that
the matrix determined by {Vi(x)}i>0 is of full rank at every x ∈ Rn, then it does
indeed satisfy the strong Feller property. In the case of SDEs driven by white noise, it
is known on the other hand that the strong Feller property holds whenever the vector
fields Vi satisfy Hörmander’s bracket condition, namely that the Lie algebra generated
by {∂t + V0, V1, . . . , Vd} spans Rn+1 (the additional coordinate corresponds to the ∂t
direction) at every point. See also Assumption 4.1 below for a precise formulation.

Note at this stage that the strong Feller property of (1.1) is closely related to the
existence of densities for the laws of its solutions, but cannot be deduced from it di-
rectly. The existence of smooth densities under an ellipticity assumption was shown in
[HN07, NS06], while it was shown under the assumption of Hörmander’s bracket con-
dition in [BH07]. In this paper, we are going to address the question of showing that
the strong Feller property (in the sense given in [HO07, Hai09], see also Definition 2.1
below) holds for (1.1) under Hörmander’s bracket condition.

Our main result is:

Theorem 1.3 Assume that the vector fields {Vi} have bounded derivatives of all orders
for i ≥ 0 and furthermore are bounded for i ≥ 1. Then, if Hörmander’s bracket
condition holds at every point, (1.1) is strong Feller. In particular, if there exists t > 0
such that

⋂
x∈Rn At,x 6= φ and if there exist constants M1,M2 > 0 such that

〈x, V0(x)〉 ≤M1 −M2|x|2 , (1.2)

then (1.1) admits exactly one invariant measure.

Remark 1.4 Since we would like to satisfy (1.2) in order to guarantee the existence of
an invariant measure by [HO07, Prop 4.6], we do not impose that V0 is bounded. This
creates some technical difficulties in obtaining a priori bounds on the solutions which
are not present in [BH07].

Remark 1.5 The notion of an ‘invariant measure’ studied in [BC07] is much more
restrictive than the one studied here, since they considered the situation where the initial
condition of the equations is independent of the driving noise, whereas we consider the
case where interdependence with the past of the driving noise is allowed. In particular,
even the case n = d = 1 with V0(x) = −x and V1(x) = 1 admits no invariant measure
in the sense of [BC07].

On the other hand, our definition of an invariant measure is more restrictive than
that of a random invariant measure in [Arn98]. Since it generalises the notion of an
invariant measure for a Markov process, this is to be expected. Indeed, there are sim-
ple examples of elliptic diffusions on the circle whose Markov semigroup admits a
unique invariant measure, but that admit more than one random invariant measure when
viewed as RDS’s.
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The remainder of the article is structured as follows. In Section 2, we set up our
notations and recall the relevant results from [Hai05] and [HO07]. In Section 3, we
derive the necessary moment estimates for the solutions of the SDE (1.1). In Section 4,
we then obtain an invertibility result on the conditioned Malliavin covariance matrix of
the process (1.1), provided that Hörmander’s condition holds. Similarly to [BH07], this
allows us to show the smoothness of the laws of solutions to (1.1), conditional on the
past of the driving noise. In Section 5, we finally show that the strong Feller property
is satisfied for (1.1) under Hörmander’s condition, thereby concluding the proof of
Theorem 1.3.
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2 Preliminaries

In this section, we describe the general framework in which we view solutions to (1.1)
and we recall some of the basic results from [Hai05, HO07, Hai09].

2.1 General framework
Let C∞0 (R−;Rd) be the set of smooth compactly supported functions on R− which
take the value 0 at the origin. For γ, δ ∈ (0, 1) define W(γ,δ) to be the completion of
C∞0 (R−;Rd) with respect to the norm

‖ω‖(γ,δ) ≡ sup
s,t∈R−
s6=t

|ω(t)− ω(s)|
|t− s|γ(1 + |t|+ |s|)δ

. (2.1)

We write W̃(γ,δ) for the corresponding space containing functions on R+ instead of
R−. Note that when restricted to a compact time interval, the norm (2.1) is equivalent
to the usual Hölder norm with exponent γ. Moreover, W(γ,δ) is a separable Banach
space.

ForH ∈ (1/2, 1), γ ∈ (1/2, H) and γ+δ ∈ (H, 1), it can be shown that there exists
a Borel probability measure PH on Ω =W(γ,δ)×W̃(γ,δ) such that the canonical process
associated to PH is a two-sided fractional Brownian motion with Hurst parameter H
[Hai05, HO07]. We fix such values γ, δ, and H once and for all and we drop the
subscripts (γ, δ) from the spaces W and W̃ from now on. Note that PH is a product
measure if and only if H = 1/2, but in general we can disintegrate it into a projected
measure (denoted again by PH ) on W and regular conditional probabilities P(ω, ·)
on W̃ . Since PH is Gaussian, there is a unique choice of P(ω, ·) which is weakly
continuous in ω.

We denote by ϕ : Rn×W̃ → C(R+,Rn) the solution map to (1.1). It is well-known
[You36, HN07] that if the vector fields Vi have bounded derivatives, then this solution is
well-defined in a pathwise sense (integrals are simply Riemann-Stieltjes integrals) for
all times. We also define the shift map θt : W×W̃ → W×W̃ by identifying elements
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(ω, ω̃) ∈ W × W̃ with the corresponding ‘concatenated’ function (ω t ω̃) : R → Rd
and setting

θt(ω, ω̃) ∼ (ω t ω̃)(t+ ·)− (ω t ω̃)(·) .

Denote ϕt(x, ω̃) = ϕ(x, ω̃)(t) and denote by Φt : Rn × W × W̃ → Rn × W the
augmented solution map given by

Φt(x, ω, ω̃) = (ϕt(x, ω̃),ΠWθt(ω, ω̃)) ,

where ΠW is the projection onto the W-component. For a measurable function f :
X 7→ Y between two measurable space X ,Y and a measure µ on X we define the
push forward measure f∗µ = µ ◦ f−1. With this notation, we can view the solutions
to (1.1) as a Markov process on Rn ×W with transition probabilities given by

Qt(x, ω; · ) = Φt(x, ω, · )∗P(ω, · ) .

These transition probabilities can actually be shown to be Feller [HO07], but they are
certainly not strong Feller in the usual sense, since transition probabilities starting from
different instances of ω remain mutually singular for all times. Instead, we will use a
notion of strong Feller property that is better suited for the particular structure of the
problem at hand, see Definition 2.1 below.

However, the question of uniqueness of the invariant measure for (1.1) should not
be interpreted as the question of uniqueness of the invariant measure for Qt. This is
because one might imagine that the augmented phase space Rn × W contains some
‘redundant’ randomness that is not used to describe the stationary solutions to (1.1).
(This would be the case for example if the Vi’s are not always linearly independent.)
One would like therefore to have a concept of uniqueness for the invariant measure that
is independent of the particular description of the driving noise.

To this end, we introduce the Markov transition kernel Q̄ from Rn×W to C(R+,Rn)
given by

Q̄(x, ω; · ) = ϕ(x, ·)∗P(ω, ·) .

This is the conditional law of the solution to (1.1) given a realisation ω of the past of
the driving noise. The action of the Markov transition kernel Q̄ on a measure µ on
Rn ×W is given by

Q̄µ (A) =

∫
Rn×W

Q̄(x, ω;A)µ(dx, dω) .

With this notation, we have a natural equivalence relation between measures on Rn×W
given by

µ ∼ ν ⇔ Q̄µ = Q̄ν .

With these definitions at hand, the statement ‘the invariant measure for (1.1) is unique’
should be interpreted as ‘the Markov semigroup Qt has a unique invariant measure,
modulo the equivalence relation ∼’.

2.2 Ergodicity of SDEs driven by fBm
We now summarise some of the relevant results from [Hai05, HO07, Hai09] giving
conditions for the uniqueness of the invariant measure for (1.1). This requires a notion
of ‘strong Feller’ property for (1.1). We stress again that the definition given here has
nothing to do with the strong Feller property of Qt. It rather generalises the notion of



PRELIMINARIES 6

the strong Feller property for the Markov process associated to (1.1) in the case where
the driving noise is white in time.

LetRt : C(R+,X ) 7→ C([t,∞),X ) denote the natural restriction map and let ‖·‖TV
denote the total variation norm. We then say that:

Definition 2.1 The solutions to (1.1) are said to be strong Feller at time t if there exists
a jointly continuous function ` : (Rn)2 ×W → R+ such that

‖R∗t Q̄(x, ω; ·)−R∗t Q̄(y, ω; · )‖TV ≤ `(x, y, ω) , (2.2)

and `(x, x, ω) = 0 for every x ∈ Rn and every ω ∈ W .

We also introduce the following notion of irreducibility:

Definition 2.2 The solutions to (1.1) are said to be topologically irreducible at time
t if, for every x ∈ Rn, ω ∈ W and every non-empty open set U ⊂ Rn, one has
Qt(x, ω;U ×W) > 0.

The following result from [HO07, Thm 3.10] is the main abstract uniqueness result
on which this article is based:

Theorem 2.3 If there exist times s > 0 and t > 0 such that the solutions to (1.1)
are strong Feller at time t and irreducible at time s, then (1.1) can have at most one
invariant measure.

Therefore, in order to prove Theorem 1.3, the only missing ingredient that we need to
establish is the strong Feller property for (1.1) under Hörmander’s bracket condition.

2.3 Notations and definitions
For T > 0 and measurable f : [0, T ] 7→ Rn, set

‖f‖0,T,∞ = sup
t∈[0,T ]

|f (t)| , ‖f‖0,T,γ = sup
s,t∈[0,T ]

|f (t)− f (s)|
|t− s|γ

. (2.3)

For α ∈ (0, 1), we also define the fractional integration operator Iα and the corre-
sponding fractional differentiation operator Dα by

Iαf (t) ≡ 1

Γ(α)

∫ t

0

(t− s)α−1f (s) ds ,

Dαf (t) ≡ 1

Γ(1− α)
d

dt

∫ t

0

(t− s)−αf (s) ds .
(2.4)

Remark 2.4 The operators Iα and Dα are inverses of each other, see [SKM93] for a
survey of fractional integral operators.

The reason why these operators are crucial for our analysis is that the Markov
transition kernel P appearing in Section 2.1 is given by translates of the image of
Wiener measure under IH−1/2, see also Lemma 2.7 below.

Indeed, by the celebrated Mandelbrot-Van Ness representation of the fBm [MVN68],
we may express the two-sided fBm B with Hurst parameter H ∈ (0, 1) in terms of a
two-sided standard Brownian motion W as

Bt = αH

∫ 0

−∞
(−r)H−1/2(dWr+t − dWr) (2.5)
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for some αH > 0. The advantage of this representation is that it is invariant under
time-shifts, so that it is natural for the study of ergodic properties, see [ST94] for more
details.

Define now the operator G : W → W̃ by:

Gω(t) ≡ γH
∫ ∞

0

1

r
g
( t
r

)
ω(−r) dr , (2.6)

where the kernel g is given by

g(x) ≡ xH−1/2 + (H − 3/2)x
∫ 1

0

(u+ x)H−5/2

(1− u)H−1/2
du , (2.7)

and the constant γH is given by γH = (H − 1/2)αHα1−H . Here, αH is the constant
appearing in (2.5). It was shown in [HO07, Prop A.2] that G is indeed a bounded linear
operator fromW into W̃ . Furthermore, we can quantify its behaviour near t = 0 in the
following way:

Lemma 2.5 On any time interval bounded away from 0, the map t 7→ Gω(t) is C∞.
Furthermore, if we set fω(t) = t ddtGω(t), then we have fω(0) = 0 and for every T > 0,
there exists a constant MT such that ‖fω‖0,T,γ < MT ‖ω‖(γ,δ).

The proof of this result is postponed to the appendix.

Remark 2.6 Since PH is Gaussian, it follows in particular that both ‖Gω‖0,T,γ and
‖fω‖0,T,γ have exponential moments under PH by Fernique’s theorem [Bog98].

Let τh : w 7→ w+ h denote the translation map on W̃ . We cite the following result
from [HO07, Lemma 4.2]:

Lemma 2.7 The regular conditional probabilities P(ω, ·) of PH given ω ∈ W are

P(w, · ) = (τGw ◦ IH−
1
2 )
∗W ,

where W is the standard d-dimensional Wiener measure over R+ and Iα is as defined
in (2.4).

We will henceforth interpret the above lemma in the following way. The driving
fractional Brownian motionB can be written as the sum of two independent processes:

Bt
d
= B̃t + (Gω)(t) = B̃t +mt , B̃t = αH

∫ t

0

(t− s)H−1/2 dW (s) , (2.8)

where W is a standard Wiener process independent of the ‘past’ ω ∈ W . This notation
will be used repeatedly in the sequel.

Remark 2.8 In the notation of Section 2.1, we will repeatedly use the notations Ẽ (and
P̃) for conditional expectations (and probabilities) over ω̃ with ω fixed. In the notation
(2.8), this is the same as fixing ω and taking expectations with respect to B̃.
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3 Estimates on the solutions

In this section, we derive moment estimates for the solutions to equations of the form:

dXt = V0(Xt) dt+

d∑
i=1

Vi(Xt) ◦ dBit , t ≥ 0 , (3.1)

where x = X0 ∈ Rn and Vi, i = 1, 2, · · · , d are bounded, C∞ vector fields in Rn with
bounded derivatives, and V0 is a possibly unbounded C∞ vector field with bounded
derivatives. Our bounds will be purely pathwise bounds, so the fact that the Bi’s are
sample paths of fractional Brownian motion is irrelevant, except to get a bound on their
Hölder regularity.

All that we will assume is that the driving process is γ-Hölder continuous for some
γ > 1/2. The main result in this section are a priori bounds not only on (3.1), but also
on its Jacobian and its second variation with respect to the initial condition. This will
be a slight generalisation of the results in [HN07], which required the drift term V0 to
be bounded.

Let ϕt(x, ω) ≡ Xt denote the flow map solving (3.1) with initial condition X0 = x
and define its Jacobian by

J0,t ≡
∂ϕt(x, ω)

∂x
.

For notational convenience, set V = (V1, V2, · · · , Vd). Then, we can write (3.1) in
compact form:

dXt = V0(Xt) dt+ V (Xt) ◦ dBt , (3.2a)
dJ0,t = V ′0 (Xt)J0,tdt+ V ′(Xt)J0,t ◦ dBt , (3.2b)
dJ−1

0,t = −J−1
0,t V

′
0 (Xt) dt− J−1

0,t V
′(Xt) ◦ dBt . (3.2c)

Here, both J and J−1 are n×n matrices, and J0,0 = J−1
0,0 = 1. One crucial ingredient

in order to obtain the bounds on the Malliavin matrix required to show the strong Feller
property is control on the moments of both the solution and its Jacobian. These bounds
do not quite follow from standard results since most of them require that V0 is also
bounded. However we cannot assume this since we need condition (1.2) for showing
ergodicity.

3.1 Moments estimates
Let Lk(X1, . . . ,Xk;Y) denote the set of k-multilinear maps from X1 × . . . × Xk to
Y . As usual, L1 is denoted by L. In this section, we consider a system of differential
equations of the form

xt = x0 +

∫ t

0

f0(xr) dr +

∫ t

0

f (xr) dBr , (3.3a)

yt = y0 +

∫ t

0

g(xr)(yr, dBr) , (3.3b)

where xt ∈ Rn, yt ∈ Rm, B : [0,∞) 7→ Rd is a Hölder function of order γ > 1/2
and f0 : Rn → Rn, f : Rn 7→ L(Rd;Rn), g : Rn 7→ L2(Rm,Rd;Rm) are given C1

functions. Note that (3.2) is indeed of this form with m = 2n2.
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Remark 3.1 The reason why we do not include a ‘dr’ term in (3.3b) is because this
is already covered by the present result by setting B1(r) = r for example. Treating
this term separately like in (3.3a) might allow to slightly improve our results, but the
present formulation is sufficient for our purpose.

Regularity of solutions to equations of this kind has been well studied, pioneered
by the technique of Young ([You36]) and more recently using the theory of rough
paths (see for example [LQ02, Fri10] and the references therein). Using fractional
derivatives, it was shown in [HN07, Thm 3] that

sup
0≤t≤T

|yt| ≤ 21+M‖B‖1/γ0,T,γ |y0| , (3.4)

where ‖B‖0,T,γ is the Hölder norm defined in (2.3) and M is a constant depending
on the supremum norms of f0, f , g and their first derivatives. As mentioned earlier,
these estimates are not sufficient to obtain moment bounds on the Jacobian J0,t and
its inverse, since we wish to consider situations where f0 is unbounded, so that its
supremum norm is not finite.

However it turns out that an estimate of the type (3.4) holds even if only the deriva-
tive of f0 is bounded, thanks to the fact that the corresponding “driving noise” (t) is
actually a differentiable function. This is the content of the following result:

Lemma 3.2 For the processes xt and yt defined in (3.3), we have the pathwise bounds:

‖x‖0,T,γ ≤M (1 + |x0|) (1 + ‖B‖0,T,γ)
1/γ , (3.5a)

‖y‖0,T,γ ≤M (1 + |x0|) |y0| eM‖B‖
1/γ
0,T,γ , (3.5b)

whereM is an absolute constant which depends only on ‖f‖∞, ‖f ′‖∞, ‖f ′0‖∞, ‖g‖∞,
‖g′‖∞ and T .

Proof. The proof is almost identical to that of [HN07], so we only try to highlight the
main differences. For s, t ∈ [0, T ], we have the apriori bound (see [HN07, p. 403]),∣∣∣∣∫ t

s

f (xr) dBr

∣∣∣∣ ≤M‖B‖0,T,γ((t− s)γ + ‖x‖s,t,γ(t− s)2γ
)

,

where the constant M is indepedent of ‖B‖0,T,γ , but depends on f . Since f0 grows at
most linearly, we also have∣∣∣∣∫ t

s

f0(xr) dr
∣∣∣∣ ≤M((t− s) + |xs|(t− s) + ‖x‖s,t,γ(t− s)γ+1

)
,

and therefore

sup
s≤m,n≤t

∣∣∣∣∫ n

m

f0(xr) dr
∣∣∣∣ ≤M((t− s) + |xs|(t− s) + 2‖x‖s,t,γ(t− s)γ+1

)
. (3.6)

Thus we have

‖x‖s,t,γ ≤M1

(
1 + ‖B‖0,T,γ + |xs|(t− s)1−γ + (‖B‖0,T,γ + 1)‖x‖s,t,γ(t− s)γ

)
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for a constantM1 depending on f and the terminal time T . Set ∆ = (2M1(‖B‖0,T,γ+

1))−1/γ . Then for |t− s| < ∆,

‖x‖s,t,γ ≤ 2M1

(
1 + ‖B‖0,T,γ + |xs|∆1−γ

)
. (3.7)

Since by definition we have:

‖x‖s,t,∞ ≤ |xs|+ ‖x‖s,t,γ |t− s|γ ,

for |t− s| < ∆, from (3.7) it follows that

‖x‖s,t,∞ ≤ |xs|(1 + 2M1∆) + 1 . (3.8)

Iterating the above estimate for N = T/∆, it follows that

‖x‖0,T,∞ ≤ |x0|(1 + 2M1∆)N +

N−1∑
k=1

(1 + 2M1∆)k ≤ (1 + |x0|) (1 + 2M1∆)NN

= (1 + |x0|) (1 + 2M1∆)T/∆T/∆ .

Using the fact that (1 + x
∆ )∆ ≤ ex for ∆ > 0, this finally yields

‖x‖0,T,∞ ≤ (1 + |x0|) e2M1T T (2M1(‖B‖0,T,γ + 1))1/γ
. (3.9)

Note that in the last step of the above argument we bounded (1 + 2M1∆)T/∆

from above by e2M1T and thus obtained a constant which is exponential in T , but
independent of ∆ = O(‖B‖−1/γ

0,T,γ ). If the noise corresponding to the vector field f0

were not differentiable but only Hölder continuous, then instead of (3.8), the exponent
would include a power of the Hölder constant of the driving noise, thus yielding an
estimate comparable to those obtained in [HN07].

Thus substituting the bound (3.9) in (3.7) yields that, for t− s < ∆,

‖x‖s,t,γ ≤M (1 + |x0|)(1 + ‖B‖0,T,γ) . (3.10)

Using the fact the function f (x) = xγ is concave for γ < 1, it is shown in Lemma A.2
(proof given in the Appendix) that for 0 = u0 < u1 < u2 < · · · < uN−1 < uN = T ,
we have the bound

‖x‖0,T,γ ≤ N1−γ max
0≤i≤N−1

‖x‖ui,ui+1,γ . (3.11)

Thus from (3.10) and (3.11) we deduce that

‖x‖0,T,γ ≤M (1 + |x0|)(1 + ‖B‖0,T,γ)N1−γ = M (1 + |x0|)(1 + ‖B‖0,T,γ)
1/γ ,

proving the claim made in (3.5a).
Now we come to the second part of Lemma 3.2. Once again, for s, t ∈ [0, T ] we

have the apriori bound (see [HN07, p. 406])∣∣∣∣∫ t

s

g(xr)yrdBr

∣∣∣∣ ≤ M̃ (1 + ‖B‖0,T,γ)
(
‖g‖∞‖y‖s,t,∞(t− s)γ (3.12)

+ (‖g‖∞‖y‖s,t,γ + ‖g′‖∞‖y‖s,t,∞‖x‖s,t,γ)(t− s)2γ
)
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for a constant M̃ independent of B. Thus, setting as before ∆ = (2M1(‖B‖0,T,γ +

1))−1/γ , we deduce from (3.7) and (3.12) that,

‖y‖s,t,γ ≤M2(1+‖B‖0,T,γ)
(
‖y‖s,t,∞+ (1+‖B‖0,T,γ)‖y‖s,t,∞∆γ +‖y‖s,t,γ∆γ

)
,

(3.13)
for a large enough constant M2 ≥ M̃ (1 + |x0|TeM1T + ‖g‖∞ + ‖g′‖∞). From the
estimate (3.13), a straightforward calculation (for instance, see [HN07, p. 407]) yields

‖y‖0,T,∞ ≤M2MT (1+‖B‖0,T,γ )1/γ |y0| ,

‖y‖0,T,γ ≤M (1 + ‖B‖0,T,γ)2/γ2MT (1+‖B‖0,T,γ )1/γ |y0| ,

for a large constant M , thus concluding the proof.

In the next sections, we will also require bounds on the second derivative of the so-
lution flow with respect to its initial condition. Given an equation of the type (3.3), the
second variation zt ∈ Rp of x with respect to its initial condition satisfies an equation
of the type

zt = z0 +

∫ t

0

h(xr)(zr, dBr) +

∫ t

0

ĥ(xr)(yr, yr, dBr) . (3.14)

Here, the maps h : Rn → L2(Rp,Rd;Rp) and ĥ : Rn → L3(Rm,Rm,Rd;Rp) are
bounded with bounded derivatives. Bounds on z are covered by the following corollary
to Lemma 3.2:

Corollary 3.3 For the process zt defined in (3.14), we have the pathwise bounds:

‖z‖0,T,γ ≤M((1 + |x0|5)(1 + |y0|2) + |z0|(1 + |x0|)) exp (M‖B‖1/γ0,T,γ) ,

whereM is an absolute constant which depends only on ‖f‖∞, ‖f ′‖∞, ‖f ′0‖∞, ‖g‖∞,
‖g′‖∞ and T .

Proof. Denote by Zt the Rp·p-valued solution to the homogeneous equation

Ztξ = ξ +

∫ t

0

h(xr)(Zrξ, dBr) , ξ ∈ Rp .

Note that the inverse matrix Z−1
t then satisfies a similar equation, namely

Z−1
t ξ = ξ −

∫ t

0

Z−1
r h(xr)(ξ, dBr) , ξ ∈ Rp .

It follows from Lemma 3.2 that both Z and Z−1 satisfy the bound (3.5b), just like y
did. On the other hand, z can be solved by the variation of constants formula:

zt = Ztz0 + Zt

∫ t

0

Z−1
s ĥ(xs)(ys, ys, dBs) . (3.15)

We now use the fact that if f and g are two functions that are γ-Hölder continuous for
some γ > 1

2 , then there exists a constant M such that∥∥∥∫ ·
0

f (t) dg(t)
∥∥∥

0,T,γ
≤M (‖f‖0,T,γ + |f (0)|) ‖g‖0,T,γ . (3.16)
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(See [You36] or for example [MN08, Eqn 2.1] for a formulation that is closer to (3.16).)
Furthermore,

‖fg‖0,T,γ ≤M(|f (0)|+ ‖f‖0,T,γ)(|g(0)|+ ‖g‖0,T,γ) ,

so that, from (3.15),

‖z‖0,T,γ ≤ |z0|‖Z‖0,T,γ + C(1 + ‖Z‖0,T,γ)(1 + ‖Z−1‖0,T,γ)

× ‖ĥ′‖∞(|x0|+ ‖x‖0,T,γ)(|y0|+ ‖y‖0,T,γ)
2‖B‖0,T,γ .

The claim now follows by a simple application of Lemma 3.2.

The above two lemmas immediately give us the required conditional moment esti-
mates for the Jacobian J0,T .

Lemma 3.4 Let Xt, J0,t,mt be as defined in (3.2a), (3.2b) and (2.8) respectively.
Then for any T > 0, p ≥ 1 and γ ∈ (1/2, H) we have

Ẽ(‖J0,·‖p0,T,γ) < MeM (1+‖m‖0,T,γ )1/γ ,

Ẽ(‖J−1
0,· ‖

p
0,T,γ) < MeM (1+‖m‖0,T,γ )1/γ .

(Recall that Ẽ was defined in Remark 2.8.)

Proof. We first write Bt = B̃t +mt as in (2.8). Thus (3.2b) can be written as:

dJ0,t = V ′0 (Xt)J0,tdt+ V ′(Xt)J0,t ◦ (dB̃t + dmt) .

By applying Lemma 3.2 to the SDE in (3.2b) with with yt = (t, B̃t + mt), f0 = V0,
f = (0, V1, . . . , Vd), g = (V ′0 , . . . , V

′
d) and using the fact that 1/γ > 1 we obtain:

‖J‖p0,T,γ ≤M eM (1+‖B̃‖1/γ0,T,γ+‖m‖1/γ0,T,γ ) . (3.17)

The fact that γ > 1
2 is crucial. Since B̃ is a Gaussian process, it follows by Fernique’s

theorem [Bog98] that the Hölder norm of B̃ has Gaussian tails, thus proving our first
claim. An identical argument for J−1

0,t finishes the proof.

Remark 3.5 In an identical way, one can obtain similar bounds on the conditional
moments of the solution and of its second variation with respect to its initial condition.

4 Smoothness of conditional densities

In this section, we consider again our main object of study, namely the SDE

dXt = V0(Xt)dt+

d∑
i=1

Vi(Xt) ◦ dBit , X0 = x0 ∈ Rn ,

where Bt is a two-sided fBM. Our aim is to show that, if the vector fields V satisfy
Hörmander’s celebrated Lie bracket condition (see below), then the conditional distri-
bution of Xt given {Bs : s ≤ 0} almost surely has a smooth density with respect to
Lebesgue measure on Rn for every t > 0.
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In [BH07], the authors studied the same equation and showed that the law ofXt has
a smooth density, but with the key difference that the driving noise Bt was a one-sided
fBm and no conditioning was involved. Being able to treat the conditioned process will
be crucial for the proof of the strong Feller property later on, this is why we consider it
here. As explained in (2.8), we can rewrite Bt as Bt = B̃t +mt and thus obtain

dXt = V0(Xt) dt+ V (Xt) dmt + V (Xt) ◦ dB̃t . (4.1)

While the distribution of the conditioned process B̃t is different from that of the one-
sided fBm, its covariance satisfies very similar bounds so that the results from [BH07]
would apply. (See Proposition 4.4 below.)

However, the difficulty comes from the time derivative of the conditional mean mt,
which diverges at t = 0 like O(tH−1). To use the results from [BH07] directly, we
would need the boundedness of the driving vector fields, uniformly in time, so that
they are not applicable to our case. Our treatment of this singularity is inspired by
[HM09], where a related situation appears due to the infinite-dimensionality of the
system considered. Using an iterative argument, we will show the invertibility of a
slightly modified reduced Malliavin matrix which will then, by standard arguments,
yield the smoothness of laws of the SDE given in (4.1).

Before we state Hörmander’s condition, let us introduce a shorthand notation. For
any multiindex I = (i1, i2, · · · , ik) ∈ {0, 1, 2, · · · , d}k, we define the commutator:

VI ≡ [Vi1 , [Vi2 , · · · , [Vik−1
, Vik ] · · · ]] .

We also define recursively the families of vector fields

Vn = {VI , I ∈ {0, · · · , d}n−1 × {1, · · · , d}} , V̄n =

n⋃
k=1

Vk . (4.2)

With these notations at hand, we now formulate Hörmander’s bracket condition [Hör67]:

Assumption 4.1 For every x0 ∈ Rn, there exists N ∈ N such that the identity

span{U (x0) : U ∈ V̄N} = Rn (4.3)

holds.

4.1 Invertibility of the Malliavin Matrix
It is well-known from the works of Malliavin, Bismut, Kusuoka, Stroock and others
[Mal78, Bis81, KS84, KS85, KS87, Nor86, Mal97, Nua06] that one way of proving
the smoothness of the law of XT (at least when driven by Brownian motion) is to first
show the invertibility of the ‘reduced Malliavin matrix’ 1:

ĈT
def
= ATA∗T =

∫ T

0

J−1
0,sV (Xs)V (Xs)∗(J−1

0,s )∗ ds , (4.4)

where we defined the (random) operator: AT : L2([0, T ],Rd) 7→ Rn by

AT v =

∫ T

0

J−1
0,s V (Xs) v(s) ds . (4.5)

1This is a slight misnomer since our SDE is driven by fractional Brownian motion, rather than Brownian
motion. One can actually rewrite the solution as a function of an underlying Brownian motion by making
use of the representation 2.8, but the associated Malliavin matrix has a slightly more complicated relation to
CT than usual. This will be done in Theorem 4.11 below.
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Unfortunately, for the stochastic control argument used in Section 5 below for the proof
of the strong Feller property, the invertibility of ĈT turns out not to be sufficient. We
now define a family of smooth functions hT : [0, T ]→ [0, 1] :

hT (s) =

{
1 if s ≤ T/2,
0 if s ≥ 3T/4. (4.6)

and consider the (random) matrix CT given by

CT
def
= AT hTA∗T . (4.7)

(See Remark 5.5 below for the reason behind introducing the function hT and the
matrix CT .) Obviously, CT ≤ ĈT as positive definite matrices, so that invertibility of
CT will in particular imply inertibility of ĈT , but the converse is of course not true in
general. Define the matrix norm:

‖CT ‖ = sup
|ϕ|=1

〈v, CT v〉, ϕ ∈ Rn .

Since CT is a symmetric matrix, by the spectral theorem we have

‖C−1
T ‖ =

1

inf|ϕ|=1〈v, CT v〉
, ϕ ∈ Rn .

The aim of this section is to show that CT is invertible, and to obtain moment estimates
for ‖C−1

T ‖. The main result of this section can be formulated in the following way:

Theorem 4.2 Assume that the vector fields {Vi} have bounded derivatives of all orders
for i ≥ 0 and are bounded for i > 0. Assume furthermore that Assumption 4.1 holds,
fix T > 0 and let CT be as in (4.7). Then, for any R > 0 and any p ≥ 1, there exists a
constant M such that the bound

P̃
(

inf
‖ϕ‖=1

〈ϕ,CTϕ〉 ≤ ε
)
≤Mεp , ϕ ∈ Rn ,

holds for all ε ∈ (0, 1] and for all x0 and ω such that |x0|+ ‖ω‖(γ,δ) ≤ R. Here, x0 is
the initial condition of the SDE (4.1).

Corollary 4.3 The matrix CT is almost surely invertible and, for any R > 0 and any
p ≥ 1, there exists a constant M such that

Ẽ‖C−pT ‖ < M ,

uniformly over all x0 and ω such that |x0|+ ‖ω‖(γ,δ) ≤ R.

Proof. Notice that for p ≥ 1, we have ‖C−pT ‖ = ‖C−1
T ‖p since CT is symmetric an

positive definite. Thus

Ẽ‖C−pT ‖ = p

∫ ∞
0

xp−1P(‖C−1
T ‖ ≥ x) dx

= p

∫ ∞
0

xp−1P̃
(

inf
‖ϕ‖=1

〈ϕ,C−1
T ϕ〉 ≤ 1

x

)
dx <∞ ,

where the last inequality follows from Theorem 4.2, since for x > 1 there exists a
constantM (depending only onR) such that P̃( inf‖ϕ‖=1〈ϕ,C−1

T ϕ〉 ≤ 1
x ) ≤Mx−1−p

and we are done.
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Before proceeding further, we need the following version of Norris’ lemma [KS85,
Nor86] adapted from [BH07] which will be the key technical estimate needed for show-
ing the invertibility ofCT . In the case of white driving noise, Norris’ lemma essentially
states that if a semimartingale is small and if one has some a priori bounds on its com-
ponents, then both the bounded variation part and the martingale part have to be small.
In this sense, it can be viewed as a quantitative version of the Doob-Meyer semimartin-
gale decomposition theorem. One version of this result for fractional driving noise is
given by:

Proposition 4.4 Let H ∈ ( 1
2 , 1) and γ ∈ ( 1

2 , H) and let B̃ be as in (2.8). Then there
exist exponents q > 0 and η > 0 such that the following statement holds.

Consider any two families aε, bε of processes taking values in R and Rd respec-
tively such that E(‖aε‖p0,T,γ + ‖bε‖p0,T,γ) < Mpε

−ηp, uniformly in ε ∈ (0, 1], for some
Mp > 0 and for every p ≥ 1. Let yε be the process defined by

yεt =

∫ t

0

aεs ds+

∫ t

0

bεs ◦ dB̃s , t ∈ [0, T ] .

Then, the estimate

P
(
‖y‖0,T,∞ < ε and ‖a‖0,T,∞ + ‖b‖0,T,∞ > εq

)
< Cp ε

p

holds for every p > 0, uniformly for ε ∈ (0, 1].

Proof. Setting f (s, t) = E|B̃(t)− B̃(s)|2 as in [BH07], we have

f (s, t) =
t2H

2H − 1
+

s2H

2H − 1
− 2

∫ s

0

(t− r)H−
1
2 (s− r)H−

1
2 dr .

(We use the convention s < t.) A somewhat lengthy but straightforward calculation
shows that this can be rewritten as

f (s, t) = |t− s|2H
( 1

2H − 1
+

∫ s/|t−s|

0

((1 + x)H−
1
2 − xH− 1

2 )
2
dx
)
.

Similarly, one has

∂s∂tf (s, t) = −2(H − 1
2 )

2|t− s|2H−2

∫ s/|t−s|

0

(1 + x)H−
3
2xH−

3
2 dx .

Since the integrands of both of the integrals appearing in these expressions decay like
x2H−3, they are integrable so that B̃ is indeed a Gaussian process of ‘type H’, see
[BH07, Eqn 3.5].

The proof is now a slight modification of that of [BH07, Prop 3.4]. It follows from
[BH07, Equ 3.18] and the last displayed equation in the proof of [BH07, Prop 3.4] that
there exist exponents q and β such that the bound

P
(
‖y‖0,T,∞ < ε and ‖a‖0,T,∞ + ‖b‖0,T,∞ > εq

)
≤ Cpεp + P(‖b‖2γ + ‖a‖2γ > ε−β)

holds. The claim now follows from a simple application of Chebychev’s inequality,
provided that we ensure that η is such that 2η < β.
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For making further calculations easier, we now introduce some definitions that are
inspired by the proofs in [HM09].

Definition 4.5 A family of events A ≡ {Aε}ε≤1 of a probability space is called a
“family of negligible events” if, for every p ≥ 1 there exists a constant Cp such that
P(Aε) ≤ Cpεp for every ε ≤ 1.

Definition 4.6 Given a statement Φε, we will say that “ Φε holds modulo negligible
events”, if there exists a family {Aε} of negligible events such that, for every ε ≤ 1,
the statement Φε holds on the complement of Aε.

With the above definitions, Theorem 4.2 can be restated as:

Theorem 4.7 Fix R > 0. Then, modulo negligible events, the bound

inf
‖ϕ‖=1

〈ϕ,CTϕ〉 ≥ ε

holds for all x0 and ω such that |x0|+ ‖ω‖(γ,δ) ≤ R.

Remark 4.8 The family of events in question can (and will in general) depend on R,
but once R is fixed the bounds are uniform over |x0| + ‖ω‖(γ,δ) ≤ R. While this
uniformity is not really required in this section, it will be crucial in Section 5.

Proof of Theorem 4.7. It suffices to show that for any fixed ϕ with ‖ϕ‖ = 1, the bound
〈ϕ,CTϕ〉 ≥ ε holds modulo a family of negligible events. The conclusion then fol-
lows by a standard covering argument, see for example [Nor86, p. 127]. Furthermore,
throughout all of this proof, we will denote by M a constant that can change from one
expression to the next and only depends on R and on the vector fields V defining the
problem.

Fix now such a ϕ and assume “by contradiction” that 〈ϕ,CTϕ〉 < ε. We will show
that this assumption leads to the conclusion that

sup
U∈V̄N

|〈ϕ,U (x0)〉| < εq
′

, for some q′ > 0,

modulo negligible events. However, if Hörmander’s condition is satisfied, the conclu-
sion above cannot hold since {U (x0), U ∈ V̄N} span Rn so that there exists a constant
c such that supU∈V̄N |〈ϕ,U (x0)〉| ≥ c almost surely, thus leading to a contradiction
and concluding the proof. For any smooth vector field U , let us introduce the process
ZU (t) = J−1

0,t U (Xt). With this notation, we have

Lemma 4.9 There exists r > 0 such that, modulo negligible events, the implication

〈ϕ,CTϕ〉 < ε ⇒ ‖〈ϕ,ZU (·)〉‖0,T/2,∞ < εr

holds for all U ∈ V1.

Proof. By the definition of h, we have the bound

〈ϕ,CTϕ〉 =

d∑
i=1

∫ T

0

〈ϕ, J−1
0,sVi(Xs)〉2 hT (s) ds ≥

d∑
i=1

∫ T/2

0

〈ϕ, J−1
0,sVi(Xs)〉2ds .

(4.8)
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We now wish to turn this into a lower bound of order εr (for some r > 0) on the
supremum of the integrand. Our main tool for this is the bound

‖f‖0,T,∞ ≤ 2 max
(
T−1/2‖f‖L2[0,T ], ‖f‖

2γ
2γ+1

L2[0,T ] ‖f‖
1

2γ+1

0,T,γ

)
,

which holds for every γ-Hölder continuous function f : [0, T ] 7→ R. The proof of this
is given in the appendix as Lemma A.3.

By Lemma 3.4 and Chebyshev’s inequality it follows that ‖〈ϕ, J−1
0,· V (X·)〉‖0,T,γ <

ε−1/2 modulo negligible events. Thus if 〈ϕ,CTϕ〉 < ε, from Lemma A.3 and (4.8) we
deduce that, for each 1 ≤ j ≤ d

‖〈ϕ, J−1
0,· Vj(X·)〉‖0,T/2,∞ < Mε

4γ−1
2(2γ+1) , (4.9)

modulo negligible events. The claim follows by choosing r < 4γ−1
2(2γ+1) .

We will now use an induction argument to show that a similar bound holds with Vj
replaced by any vector field obtained by taking finitely many Lie brackets between the
Vj’s. Whilst the gist of the argument is standard, see [KS85, Nor86, BH07], a technical
difficulty arises from the divergence of the derivative ofm(t) at t = 0. To surmount this
difficulty, we take inspiration from [HM09] and introduce a (small) parameter α > 0
to be specified at the end of the iteration. Then, by Lemma 2.5, we have∥∥∥dm·

dt

∥∥∥
εα,T/2,∞

≤Mεα(H−1) . (4.10)

Instead of considering supremums over the time interval [0, T/2], we will now consider
supremums over [εα, T/2] instead, thus avoiding the singularity at zero.

In order to formalise this, for r > 0 and i ≥ 1, define the events

K ε
i (α, r) = {‖〈ϕ,ZU (·)〉‖εα,T/2,∞ < εr , ∀ U ∈ Vi} .

With this notation at hand, the recursion step in our argument can be formulated as
follows:

Lemma 4.10 There exists q̄ > 0 such that, for every α > 0 and every i ≥ 1, the
implication

K ε
i (α, r) ⇒ K ε

i+1(α, q̄r + α(H − 1)) ,

holds modulo negligible events.

Proof. Assume that K ε
i (α, r) holds. For any t ≤ T/2, it then follows from the chain

rule that

〈ϕ,ZU (t)− ZU (εα)〉 =

∫ t

εα
〈ϕ, J−1

0,s [V0, U ](Xs)〉 ds (4.11)

+

d∑
i=1

∫ t

εα
〈ϕ, J−1

0,s [Vi, U ](Xs)〉 dmi
s +

d∑
i=1

∫ t

εα
〈ϕ, J−1

0,s [Vi, U ](Xs)〉 ◦ dB̃is ,

where B̃· is as in (2.8).
Now by the hypothesis, Proposition 4.4 and (4.11), it follows that for any U ∈ Vi,∥∥∥〈ϕ, d∑

i=1

J−1
0,· [Vi, U ](X·)

〉∥∥∥
εα,T/2,∞

< Mεrq , (4.12a)
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∥∥∥〈ϕ, J−1
0,· [V0, U ](X·) +

d∑
i=1

dmi
·

ds
J−1

0,· [Vi, U ](X·)
〉∥∥∥

εα,T/2,∞
< Mεrq , (4.12b)

modulo negligible events, with q as given by Proposition 4.4. Plugging (4.10) and
(4.12a) into (4.12b), it follows that for every U ∈ Vi,

‖〈ϕ, J−1
0,· [V0, U ](X·)〉‖εα,T/2,∞ < Mεrq+α(H−1)

modulo negligible events. Choosing any q̄ < q, the claim then follows from the fact
that for every exponent δ > 0, one has Mεδ < 1 modulo negligible events. (Recall
that H < 1, so that (4.12a) is actually slightly better than the claimed bound.)

Now we iterate the previous argument. Let N ∈ N be such that

inf
|x|≤R

inf
|ξ|=1

∑
U∈V̄N

|〈ξ, U (x)〉|2 > 0 . (4.13)

It follows from the Hörmander condition and the fact that the vector fields are smooth
that such an N exists. From Lemmas 4.9 & 4.10, we obtain that for every U ∈ V̄N ,
modulo negligible events,

‖〈ϕ, J−1
0,· U (X·)〉‖εα,T/2,∞ < εq1 , (4.14)

where q1 = rq̄N +α(H − 1) (1−(rq̄)N )
1−rq̄ . Since q̄ and r are fixed, we can choose α small

enough such that q1 > 0.
Now we make use of the Hölder continuity of J−1

0,· and X . Indeed, it follows from
Lemma 3.4 that

‖J−1
0,· U (X·)− U (x0)‖0,εα,∞ < εq2 , (4.15)

modulo negligible events, for any q2 < αγ. Combining (4.14) and (4.15), we conclude
that

sup
U∈V̄N

|〈ϕ,U (x0)〉| < εq1 + εq2 ,

modulo negligible events. This is in direct contradiction with (4.13), thus concluding
the proof of Theorem 4.7.

We conclude that the matrix C̃T defined in (4.4) is almost surely invertible and
Ẽ(‖C̃T ‖−p) < M for p ≥ 1. As a consequence of Theorem 4.2, we obtain the smooth-
ness of the laws of Xt conditional on a given past ω ∈ W:

Theorem 4.11 Let ϕt(x, ω̃) be the solution to (1.1) with notations as in Section 2.1,
and assume that Assumption 4.1 holds. Then, for every ω ∈ W , the distribution of
ϕt(x, ω̃) under P(ω, · ) has a smooth density with respect to Lebesgue measure.

Proof. In order to obtain the smoothness of the densities, it suffices by [Nua06, Mal97,
BH07, NS09] to show that the Malliavin matrix MT of the map W 7→ Xx

T , where
W is the standard Wiener process describing the solution as in (2.8), is invertible with
negative moments of all orders. As we will see in Section 5 below (see equation 5.3),
MT is given by

〈ξ,MT ξ〉 = ‖(IH− 1
2 )
∗A∗J∗0,T ξ‖

2
L2 ,
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where the L2-adjoint of the fractional integral operator IH− 1
2 is given by

((IH− 1
2 )
∗
g)(t) =

∫ T

t

(s− t)H− 3
2 g(s) ds .

We already know from Theorem 4.2 that ‖A∗J∗0,T ξ‖2L2 ≥ ε modulo negligible events
and we would like to make use of this information in order to obtain a lower bound on
MT .

Since IH− 1
2 and DH− 1

2 are inverses of each other, for any measurable f we have,

‖f‖2L2 = 〈f, IH− 1
2DH− 1

2 f〉L2 ≤ ‖(IH− 1
2 )
∗
f‖L2‖DH−

1
2 f‖L2

≤M‖(IH− 1
2 )
∗
f‖L2‖f‖0,T,γ .

Thus we obtain,

‖(IH− 1
2 )
∗A∗J∗0,T ξ‖L2 ≥M‖A∗J∗0,T ξ‖2L2‖A∗J∗0,T ξ‖−1

0,T,γ .

Since we know from the results in Section 3 that ‖A∗J0,T ξ‖0,T,γ ≤ ε−1 modulo
negligible events, we conclude that

‖(IH− 1
2 )
∗A∗J∗0,T ξ‖L2 ≥ ε‖A∗J∗0,T ξ‖2L2 ,

holds modulo negligible events. The proof now follows from Theorem 4.2.

5 Strong Feller Property

Recall from the arguments in Section 2.2 that the strong Feller property (2.2) is the
only ingredient required for the proof of Theorem 1.3. We will actually show some-
thing slightly stronger than just (2.2). Fix some arbitrary final time T > 1, a Fréchet
differentiable bounded map ψ : C([1, T ],Rn) → R with bounded derivative2, denote
by R1,T : C(R+,Rn)→ C([1, T ],Rn) the restriction operator, and set as before

Q̄ψ(x, ω) def
=

∫
C(R+,Rd)

ψ(R1,T z)Q̄(x, ω; dz) .

With these notations, the main result of this article is:

Theorem 5.1 Assume that the vector fields {Vi}i≥0 have bounded derivatives of all or-
ders and that furthermore the vector fields {Vi}i≥1 are bounded. Then, if Hörmander’s
bracket condition (Assumption 4.1) holds, there exists a continuous functionK : Rn →
R+ and a constant M > 0 such that for ω ∈ Wγ,δ and x ∈ Rn, the bound

|DxQ̄ψ(x, ω)| ≤ K(x) eM‖Gω‖
1/γ
0,T,γ , (5.1)

holds uniformly over all test functions ψ as above with ‖ψ‖∞ ≤ 1. Here, G was defined
in (2.6) and bothK andM are independent of T and of ψ. In particular, (1.1) is strong
Feller.

2The space C([1, T ],Rn) is endowed with the usual supremum norm
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The remainder of this section is devoted to the proof of this result. For conciseness,
from now onwards we will use the shorthand notation

|Ψ(x, ω)| < E (x, ω) ,

to indicate that there exist a continuous function K on Rn and a constant M such that
the expression Ψ(x, ω) is bounded by the right hand side of (5.1).

To obtain the bound for DQ̄ψ(·, ω), we use a ‘stochastic control’ argument which
is inspired by [HM06, HM09] and is similar in spirit to the arguments based on the
Bismut-Elworthy-Li formula [EL94, DPEZ95]. We will explain this argument in more
detail in Section 5.1 below, but before that let us introduce the elements of Malliavin
calculus required for the construction.

Let Xx
t and J0,t be the solution and its Jacobian, as defined in equations (3.2a) and

(3.2b) respectively with initial condition Xx
0 = x. Let ϕt(x, ω̃) = Xx

t denote the flow
map as in Section 2.1. Henceforth we will use ϕt(x, ω̃) and Xx

t interchangeably, with
a preference for the first notation when we want to emphasise the dependence of the
solution either on the realisation of the noise or on its initial condition.

By the variation of constants formula, the Fréchet derivative of the flow map with
respect to the driving noise ω̃ in the direction of

∫ ·
0
v(s) ds is then given by

DvX
x
t = Dvϕt(x, ω̃) = J0,tAtv , (5.2)

where At is as defined in (4.5).

Remark 5.2 Notice that the operator D defined above is a standard Fréchet deriva-
tive unlike in the case H = 1

2 where it would have to be interpreted as a Malliavin
derivative. This is because the integration with respect to the fBM for H > 1

2 is just
the Reimann-Stieltjes integral, whereas for H = 1

2 the stochastic integral is not even
a continuous (let alone differentiable) map of the noise in the case of multiplicative
noise.

As already mentioned in Remark 2.4, the operatorDH− 1
2 and its inverse IH− 1

2 provide
an isometry between the Cameron-Martin space of the Gaussian measure P(ω, · ) and
that of Wiener measure.

As a consequence, if v is such that ṽ = DH− 1
2 v ∈ L2(R+,Rd), then we have the

identity
DṽXx

t = Dvϕt(x, ω̃) = J0,tAtv = J0,tAt IH−
1
2 ṽ , (5.3)

where D is the Malliavin derivative of Xx
t when interpreted as a function on Wiener

space via the representation (2.8).
Before we continue, let us make a short digression on the definition of the Malli-

avin derivative that appears in the above expression. In general, if Z : W̃ → R is any
Fréchet differentiable function, then its Malliavin derivative with respect to the under-
lying Wiener process is given by

DṽZ
def
= DvZ , (5.4)

where DvZ denotes the Fréchet derivative of Z in the direction
∫ ·

0
v(t) dt and where ṽ

and v are related by ṽ = DH− 1
2 v as before.

Since, for every T > 0, the mapDH− 1
2 restricted to functions on [0, T ] is bounded

from W̃ to C([0, T ],Rd) and since the dual of the latter space consists of finite signed
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measures, we conclude from (5.4) that if Z is Fréchet differentiable, then there exists
a function s 7→ DsZ which is locally of bounded variation and such that the Malliavin
derivative of Z can be represented as

DṽZ =

∫ ∞
0

〈DsZ, ṽ(s)〉 ds .

(The scalar product is that of Rd here.) The quantity DsZ should be interpreted as
the variation of Z with respect to the infinitesimal increment of the underlying Wiener
process W at time s.

With this convention, it follows from (5.3) and the definition of IH− 1
2 that for some

constant cH one has the identity

DsXx
t = cH

∫ t

s

Jr,s V (Xx
r ) (r − t)H− 3

2 dr , (5.5)

for s ≤ t. Here, V denotes the matrix (V1, . . . , Vd) as before. Note also that DsXx
t = 0

for s > t since X is an adapted process. Of course, the whole point of Malliavin
calculus is to also be able to deal with functions that are not Fréchet differentiable, but
for our purposes the framework discussed here will suffice.

5.1 Stochastic control argument
At the intuitive level, the central idea of the stochastic control argument is as follows.
In a nutshell, the strong Feller property states that for two nearby initial conditions x0

and y0 and an arbitrary realisation ω of the past of the driving noise, it is possible to
construct a coupling between the solutions xt and yt such that with high probability
(tending to 1 as y → x), one has xt = yt for t ≥ 1. One way of achieving such a
coupling is to perform a change of measure on the driving process for one of the two
solutions (say y) in such a way, that the noise ω̃y driving y is related to the noise ω̃x
driving x by

dω̃y(t) = dω̃x(t) + vx,y(t) dt ,

where v is a ‘control’ process that aims at steering the solution y towards the solution
x. If one takes y = x + εξ and looks for controls of the form vx,y = εv, then in the
limit ε→ 0, the effect of the control v onto the solution x after time t is given by (5.3),
while the effect of shifting the initial condition by ξ is given by J0,tξ. It is therefore not
surprising that in order to prove the strong Feller property, our main task will be to find
a control v such that J0,1A1v = J0,1ξ, or equivalently A1v = ξ. This is the content of
the following proposition:

Proposition 5.3 Assume that, for every x ∈ Rn and ω ∈ W , there exists a stochastic
processes v ∈ Cγ(R+,Rd) such that the identity

Av = ξ ,

holds almost surely, where A def
= A1 defined in (4.5). Assume furthermore that the map

w̃ 7→ v is Fréchet differentiable from W̃ to Cγ(R+,Rd). Finally, we assume that the
Malliavin derivative of the process ṽ def

= DH− 1
2 v satisfies the bounds

M1 = Ẽ
∫ ∞

0

|ṽ(s)|2 ds <∞ , M2 = Ẽ
∫ ∞

0

∫ ∞
0

|Dtṽ(s)|2 ds dt <∞ . (5.6)
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Then, the bound
|〈DxQ̄ψ(x, ω), ξ〉| ≤ ‖ψ‖∞

√
M1 +M2 ,

holds uniformly over all test functions ψ as in Theorem 5.1, all T > 1, and all ξ ∈ Rn.
In particular, if v is such that M1 + M2 < E (x, ω), then the conclusions of Theo-

rem 5.1 hold.

Remark 5.4 SinceDH− 1
2 is bounded from Cγ(R+,Rd) into C(R+,Rd), the Malliavin

derivative of ṽ exists, so that the expression in (5.6) makes sense.

Proof. Given an initial displacement ξ ∈ Rn, we seek for a ‘control’ v on the time
interval [0, 1] that solves the equation Av = ξ, where we use the shorthand notation
A = A1. If this can be achieved, then we extend v to all of R+ by setting v(s) = 0 for
s ≥ 1 and we define ṽ = DH− 1

2 v. Note that since v(s) = 0 for s > 1, it follows from
the definition of At that we have Atv = Av = ξ for t ≥ 1. If v is sufficiently regular
in time so that this definition makes sense, we thus have the identity

DṽXx
T = J0,T ξ , (5.7)

for every T ≥ 1. In particular, for a C1 test function ψ as above and for ξ ∈ Rn,

〈DxQ̄ψ(x, ω), ξ〉 = Ẽ
(

(Dψ)(ϕ(x, ω̃))J0,·ξ
)

= Ẽ
(

(Dψ)(ϕ(x, ω̃)) DṽX·
)

= Ẽ(Dṽ(ψ(ϕ(x, ω̃)))) .

It then follows from the integration by parts formula of Malliavin calculus [Nua06] that
this quantity is equal to

. . . = Ẽ
(
ψ(ϕT (x, ω̃))

∫ T

0

〈ṽ(s), dWs〉
)
≤ ‖ψ‖∞Ẽ

∣∣∣ ∫ T

0

〈ṽ(s), dWs〉
∣∣∣ .

The stochastic integral appearing in this expression is in general not an Itô integral,
but a Skorohod integral, since its integrand is in general not adapted to the filtration
generated by W .

For Skorohod integrals one has the following extension of Itô’s isometry [Nua06]:

Ẽ
(∫ ∞

0

〈ṽ(s), dWs〉
)2

= Ẽ
(∫ ∞

0

|ṽ(s)|2ds
)

+ Ẽ
∫ ∞

0

∫ ∞
0

tr(Dtṽ(s)T Dsṽ(t)) ds dt

≤M1 +M2 , (5.8)

where as before D denotes Malliavin derivative with respect to the underlying Wiener
process. The claim then follows at once.

In order to have the identity (5.1), it therefore remains to find a control v satisfying
Av = ξ and such that

M1 +M2 < E (x, ω) , (5.9)

where the quantities M1 and M2 are defined by (5.6) in terms of ṽ = DH− 1
2 v. A nat-

ural candidate for such a control v can be identified by a simple least squares formula.
Indeed, note that the adjoint A∗ : Rn 7→ L2(R+,Rd) of A is given by:

(A∗ξ)(s) = V (Xs)∗(J−1
0,s )∗ξ , ξ ∈ Rn . (5.10)
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Let h = h1 where h1 : [0, 1] → R+ is as defined in (4.6). Assuming that AhA∗ is
invertible, one possible solution to the equation Av = ξ is given by

v(s) ≡ h(s) (A∗(AhA∗)−1ξ)(s) . (5.11)

Note that AhA∗ is precisely equal to the ‘modified Malliavin matrix’ C1 defined in
(4.7). By the results from the previous section the matrix C1 is almost surely invertible
and therefore the expression (5.11) does make sense.

The aim of the next section is to show that the choice (5.11) does indeed satisfy the
assumptions of Proposition 5.3.

Remark 5.5 For the identity (5.3) to hold, the stochastic control v(·) needs to belong
to the Cameron-Martin space of P(0, ·), and the function h(·) is introduced just for this
purpose. Indeed, since we extend the control v(·) to vanish outside the interval [0, 1],
one needs to be careful about the regularity of v(s) at s = 1. It can be shown using the
fractional integrals that, in order for v(·) to have the required regularity, the function
h(s) should be O((1− s)H ) for s ≈ 1. The specific h1(·) we chose in (4.6), of course,
satisfies this.

5.2 Proof of the main result, Theorem 5.1
In view of Proposition 5.3, the proof of Theorem 5.1 is complete if we can show that
the stochastic process v defined by (5.11) satisfies the bounds (5.9). This will be the
content of Propositions 5.8 and 5.11 below.

We start with an estimate on the Hölder norm of v which will be used repeatedly.
Here and in the rest of this section, we will make use of the notation

‖v‖γ
def
= ‖v‖0,1,γ + ‖v‖0,1,∞

for the Hölder norm of v. This has the advantage of being a norm rather than just a
seminorm and, for any two Hölder continuous functions u and v, we have the bound

‖uv‖γ ≤M‖u‖γ‖v‖γ ,

for some fixed constant M > 0. With this notation, our bound is:

Lemma 5.6 The stochastic control v defined in (5.11) is continuous and satisfies the
bound

Ẽ‖v‖2γ < E (x, ω) .

Proof. Setting v(s) = h(s)u(s), we obtain from (5.11) the bound

‖u‖2γ ≤ ‖A∗η‖2γ , (5.12)

where η = (AhA∗)−1ξ. From (5.10) and the fact that V has bounded derivatives it
follows that

‖A∗η‖γ ≤M‖V (X·)‖γ‖J−1
0,· ‖γ |η| ≤M‖X·‖γ‖J

−1
0,· ‖γ |η| ,

and therefore by Cauchy-Schwarz(
Ẽ‖A∗η‖2γ

)2

≤M Ẽ(‖X·‖4γ‖J−1
0,· ‖4γ) Ẽ|η|4 .
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From Lemma 3.4 we deduce that Ẽ(‖X·‖4γ‖J−1
0,· ‖4γ) < E (x, ω). Also from Theorem

4.2, we have Ẽ|(AhA∗)−1ξ|p < E (x, ω) for any p ≥ 1. Thus we obtain

Ẽ‖u‖2γ ≤ E (x, ω) .

The claim then follows immediately from v = hu.

Remark 5.7 Had we not introduced the control h, we could still obtain continuity of
v on [0, 1], but we would have a discontinuity at t = 1.

As a consequence, we show that ṽ = DH− 1
2 v is square integrable:

Proposition 5.8 For the stochastic control v(·) defined in (5.11) and the operator D
defined in (2.4), the following estimate holds:

Ẽ
(∫ ∞

0

|ṽ(s)|2ds
)
< E (x, ω) .

Before we turn to the proof of Proposition 5.8, we state the following useful result:

Lemma 5.9 For any s ≥ 0, α > 0 and f ∈ Cγ with γ > α ,

Γ(1− α)Dαf (s) =
d

ds

∫ s

0

(s− r)−αf (r) dr

= s−αf (s)− α
∫ s

0

(s− r)−α−1(f (r)− f (s)) dr . (5.13)

Proof. See [SKM93, Thm 13.1], as well as Lemma 13.1 in the same monograph.

Remark 5.10 The right hand side of equation (5.13) is called the Marchaud fractional
derivative. Lemma 5.9 actually holds true for a larger class of functions f , namely
those such that f = Iαg for some g ∈ L1([0, 1],R).

Proof of Proposition 5.8. The main idea behind this proof, and a recurrent theme in
this section is the following. Although the stochastic control v(·) vanishes outside
[0, 1], the integrand ṽ(s) in non-zero for all s ∈ [0,∞). Thus the square integrability
of ṽ(s) on the interval [0,∞) is shown by dealing with the singularities of the integrand
differently at s = 0, and s =∞. At s = 0, we use the fact that v is Hölder continuous
whereas at s =∞, we use the fact that v is bounded.

By definition,

ṽ(s) =
d

ds

∫ s

0

(s− r)
1
2−Hv(r) dr .

Applying Lemma 5.9 with α = H − 1
2 , we obtain the bound

|ṽ(s)| ≤Ms
1
2−H |v(s)|+M

∫ s

0

(s− r)−
1
2−H |v(r)− v(s)| dr ,

for some constant M > 0. Noting that the control v(·) vanishes outside the interval
[0, 1], we have

Ẽ
(∫ ∞

0

|ṽ(s)|2ds
)
≤M Ẽ‖v‖2γ

∫ 1

0

s1−2H ds (5.14)
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+M Ẽ
∫ ∞

0

(∫ s

0

(s− r)−
1
2−H |v(r)− v(s)| dr

)2

ds .

The first integral
∫ 1

0
s1−2H ds in equation (5.14) is clearly finite since H < 1, so that

this term is bounded by E (x, ω) by Lemma 5.6. Now we show that the second term
has a similar bound. To this end, set

ζ(s) ≡
∫ s

0

(s− r)−
1
2−H |v(r)− v(s)| dr .

For s < 1, we obtain

|ζ(s)| =
∫ s

0

(s− r)−
1
2−H |v(r)− v(s)| dr ≤M‖v‖γ

∫ s

0

s−
1
2−H+γds

≤M‖v‖γ s
1
2−H+γ ,

so that the required bound follows again from Lemma 5.6. For s ≥ 1, we observe that
ζ(s) has a square integrable singularity, and thus the boundedness of the control v(·)
will be sufficient. Indeed it follows from the definition of h (4.6) that

|ζ(s)| ≤
∫ 3/4

0

(s− 3/4)−
1
2−H |v(r)− v(s)| dr ≤M‖v‖γ(s− 3/4)−

1
2−H .

Since this expression is square integrable, it follows that Ẽ
∫∞

0
|ζ2(s)|ds < E (x, ω),

and the claim follows from (5.14).

We conclude with the corresponding bound on the Malliavin derivatives of the con-
trol v:

Proposition 5.11 Let v be as defined in (5.11), the operator D as defined in (2.4) and
D be the Malliavin derivative. Then following estimate holds:

Ẽ
(∫ ∞

0

∫ ∞
0

‖Dtṽ(s)‖2 ds dt
)
< E (x, ω) . (5.15)

Proof. The main difficulty here is to obtain control over the modulus of continuity of
the quantity Dsv(t) for all s, t ∈ [0, 1]. On route to establishing the Hölder continuity
of the Malliavin derivative applied to the stochastic control, we need to perform several
careful estimates using the fractional derivatives.

First notice that, since ṽ(s) ∈ F1 for every s > 0 (Ft, t ≥ 0 denotes the filtration
generated by the increments of W ), we have Dtṽ(s)) = 0 for t > 1, so that the inte-
grand in (5.15) vanishes outside the set [0, 1]×[0, 1]. Furthermore, it is straightforward
to check that Dt and DH− 1

2 commute, so that

Ẽ
(∫ ∞

0

∫ ∞
0

‖Dtṽ(s)‖2 ds dt
)
≤ Ẽ

(∫ 1

0

∫ 1

0

‖(DH− 1
2 Dtv)(s)‖2 dt ds

)
.

By Lemma 5.9, the claim follows if we can show that

Ẽ
(∫ 1

0

∫ 1

0

∣∣∣ ∫ s

0

(s− r)−
1
2−H(Dtv(s)− Dtv(r)) dr

∣∣∣2 dtds) < E (x, ω) . (5.16)
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Expanding the integrand, we obtain∣∣∣Dt(∫ s

0

(s− r)−
1
2−H(v(s)− v(r)) dr

)∣∣∣ ≤ ∫ t

0

(s− r)−
1
2−H |Dtv(s)| dr

+
∣∣∣Dt(∫ s

t

(s− r)−
1
2−H(v(s)− v(r)) dr

)∣∣∣
≤ |s 1

2−H − (s− t) 1
2−H | ‖Dtv‖0,1,∞

+
∣∣∣ ∫ s

t

(s− r)−
1
2−HDt(v(s)− v(r)) dr

∣∣∣ . (5.17)

Since the double integral of |s 1
2−H − (s − t)

1
2−H |2 is finite, the first term will be

bounded by E (x, ω) if we can show that Ẽ supt∈[0,1] ‖Dtv‖20,1,∞ < E (x, ω). Since this
bound will be a byproduct of the analysis of the second term, we postpone it to (5.23)
below.

The second term of equation (5.17) needs more delicate calculations. We will show
that there exists a random variable K and an exponent α < 1 + γ − H such that the
following bounds hold:

|Dtv(s)− Dtv(r)| ≤ K|s− r|γ |r − t|−α , with ẼK2 < E (x, ω) . (5.18)

Assuming these bounds, we proceed similarly to the proof of Proposition 5.8:

Ẽ
(∫ 1

0

∫ 1

0

∣∣∣ ∫ s

t

(s− r)−
1
2−HDt(v(s)− v(r)) dr

∣∣∣2 dt ds)
≤ Ẽ

(
K2

∫ 1

0

∫ 1

0

∣∣∣ ∫ s

t

(s− r)−
1
2−H+γ(r − t)−αdr

∣∣∣2 dt ds)
≤ Ẽ

(
K2

∫ 1

0

∫ 1

0

(s− t)1+2γ−2H−2α dt ds
)
< E (x, ω) ,

where we used the bound on α to obtain the last inequality. It therefore remains to
show (5.18).

The Malliavin derivative of v is given by

Dtv(s) = h(s) Dt
(
V (Xs)∗(J−1

0,s )∗(AhA∗)−1ξ
)
.

Applying the product rule, we break this into a sum of three terms:

Dtv(s) = h(s)
[

Dt
(
V (Xs)∗

)
(J−1

0,s )∗(AhA∗)−1ξ + V (Xs)∗Dt
(

(J−1
0,s )∗

)
(AhA∗)−1ξ

+ V (Xs)∗(J−1
0,s )∗Dt((AhA∗)−1ξ)

]
def
= I1 + I2 + I3 . (5.19)

To make the proof compact, we introduce the stochastic process Ys given by col-
lecting the various objects appearing in this expression:

Ys = (Xs, V (Xs), (J−1
0,s )∗) . (5.20)

It the follows from (1.1) and the expression (3.2b) for the Jacobian J0,t that the compo-
nents of Ys solve equations of the form (3.5). One can check that both the JacobianJ0,s
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for Y and its inverse J−1
0,s then satisfy equations of the type (3.14). So by Corollary

3.3, we obtain

‖Y ‖γ + ‖J0,·‖γ + ‖J−1
0,· ‖γ ≤ K(x0) exp(M‖B̃ + Gω‖1/γγ ) , (5.21)

for some constant M and some continuous function K.
Furthermore, just as in (5.5), the Malliavin derivative of Y is given by

DtYs = cH

∫ s

t

Ja,s U (Ya) (a− t)H−3/2 da 1t≤s , (5.22)

for some smooth function U which grows linearly at infinity.
We now tackle the bounds on the two very similar terms I1, I2. Since tH−

3
2 is

integrable at 0 and since U grows linearly at infinity, it follows immediately that

sup
s,t∈[0,1]

|DtYs| ≤M‖J0,·‖γ‖J−1
0,· ‖γ‖Y·‖γ . (5.23)

Thus by (5.21) we have Ẽ supt∈[0,1] ‖Dtv‖20,1,∞ < E (x, ω). Regarding its modulus of
continuity, note that

DtYs−DtYr =

∫ s

r

Ja,sU (Ya)(a−t)H− 3
2 da+

∫ r

t

(Ja,s−Ja,r)U (Ya)(a−t)H− 3
2 da .

The first term is bounded by

M |r − t|H− 3
2 |r − s|‖J0,·‖γ‖J−1

0,· ‖γ‖Y·‖γ ,

and the second term is bounded by

M |r − s|γ‖J0,·‖γ‖J−1
0,· ‖γ‖Y·‖γ ,

so that there does exist a constant M such that

|DtYs − DtYr| ≤M |r − t|H−
3
2 |r − s|‖J0,·‖γ‖J−1

0,· ‖γ‖Y·‖γ ,

uniformly over t ≤ r ≤ s ≤ 1. Since γ > 1
2 , we do indeed have 3

2 −H < 1 + γ −H ,
so that this bound is of the type (5.18) with ẼKp < E (x, ω) for every p > 0.

Notice furthemore that by Theorem 4.2, the matrix C1 = AhA∗ ∈ Rn2

is almost
surely invertible and Ẽ|AhA∗|−p < E (x, ω) for all p ≥ 1. Combining this with (5.21)
and the expressions for I1 and I2, we conclude that (5.18) does indeed hold for these
terms.

Let us now turn to the term I3. Recall that the Fréchet derivative of the inverse an
n×nmatrixA in the directionH is given byDHA−1 = −A−1HA−1. It thus follows
from the chain rule that

Dt((AhA∗)−1ξ) = −(AhA∗)−1 (Dt(AhA∗)) (AhA∗)−1ξ

Thus by Cauchy-Schwartz we have,(
Ẽ
∥∥Dt((AhA∗)−1ξ)

∥∥p
0,1,∞

)2

≤ Ẽ|(AhA∗)−1|4p Ẽ ‖Dt (AhA∗)‖2p0,1,∞|ξ|2 .
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By the product rule and the definition of A,

Dt(AhA∗) =

∫ 1

0

(DtJ−1
0,s )V (Xs)h(s)V ∗(Xs) (J−1

0,s )∗ ds+ . . . , (5.24)

where “. . .” stands for the remaining three terms that are very similar. Thus from (5.23)
it follows that

Ẽ
∣∣∣ ∫ 1

0

(DtJ−1
0,s )V (Xs)h(s)V ∗(Xs) (J−1

0,s )∗ ds
∣∣∣p

≤M Ẽ‖J0,·‖pγ ‖J−1
0,· ‖pγ ‖Y·‖2pγ ‖V (X·)‖2pγ < E (x, ω).

Since J−1 and V (X) play indistinguishable roles in (5.20) and (5.21), the bounds on
the remaining three terms follow in an identical fashion, so that

E sup
t∈[0,1]

|Dt((AhA∗)−1ξ)|p < E (x, ω) .

Combining this with (5.21) and the definition of I3, we finally conclude that (5.18)
also holds for the term I3 (this time with α = 0), thus concluding the proof.

Appendix A Some technical lemmas

We give the proofs of some technical lemmas in this appendix. First, we show that
Lemma 2.5 holds, which we reformulate here:

Lemma A.1 Let ω ∈ W . Then, on any time interval bounded away from 0, the map
t 7→ Gω(t) is C∞. Furthermore, if we set fω(t) = t ddtGω(t), then we have fω(0) = 0
and for every T > 0, there exists a constant MT such that ‖fω‖0,T,γ < MT ‖ω‖(γ,δ).

Proof. The proof follows from the calculations done in [HO07]. Since the function
g(·) defined in (2.7) is smooth everywhere except at 0, it follows from (2.6) that mt is
smooth on any interval bounded away from 0. Now a simple change of variables in
(2.6) yields

t
dmt

dt
= γH

∫ ∞
0

1

r
t g′(t)ω

(
− t
r

)
dr . (A.1)

Since g′(t) is smooth everywhere except at 0, for the map t 7→ t dmdt (t) to have finite
γ-Hölder norm on [0, T ], by (A.1) we need to only check the regularity of t g′(t) at 0
and at infinity. Indeed, if we show that the function t g′(t) behaves like O(t) for t� 1,
and O(tH−1/2) for t � 1, the conclusion follows from Lemma A.1 and Proposition
A.2 of [HO07]. We have,

t g′(t) = tH−1/2 + (H − 3/2) t
∫ 1

0

(u+ t)H−5/2

(1− u)H−1/2
du+M t2

∫ 1

0

(u+ t)H−7/2

(1− u)H−1/2
du

= g(t) +M t2
∫ 1

0

(u+ t)H−7/2

(1− u)H−1/2
du

(A.2)

for a constant M . Notice that by Lemma A.1 of [HO07] we have that g(t) behaves like
O(t) for t� 1 and O(tH−1/2) for t� 1. It can be seen easily that for t� 1, the term
t2
∫ 1

0
(u+t)H−7/2

(1−u)H−1/2 du behaves like O(tH−3/2). For t� 1, we have

t2
∫ 1

0

(u+ t)H−7/2

(1− u)H−1/2
du < t

∫ 1

0

(u+ t)H−5/2

(1− u)H−1/2
du
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< t

∫ 1

0

uH−5/2
(

1− (1− u)1/2−H
)
du+M (t) (A.3)

where M (t) is O(t) for t � 1. Now since (1 − (1 − u)1/2−H ) is O(u) for u ≈ 0,
and diverges like O((1− u)1/2−H ) for u ≈ 1, the integral in (A.3) is finite. Thus from
(A.2) it follows that tg′(t) is O(t) for t� 1 and we are done.

Our next technical results yields a bound on the Hölder constant of a function de-
fined on a large interval as a function of the Hölder constants of its restriction to smaller
subintervals:

Lemma A.2 For any N ≥ 1 and any sequence of times 0 = u0 < u1 < u2 < · · · <
uN−1 < uN = T , the bound

‖x‖0,T,γ ≤ N1−γ max
0≤i≤N−1

‖x‖ui,ui+1,γ (A.4)

holds.

Proof. We proceed by induction. For N = 1, the bound (A.4) holds trivially. Now
assume (A.4) holds for some N ∈ N and consider the sequence 0 = u0 < u1 < u2 <

· · · < uN−1 < uN < uN+1 = T . If the supremum S
def
= sups6=t∈[0,T ]

|x(t)−x(s)|
|t−s|γ is

attained either for 0 ≤ s < t < uN or for u1 ≤ s < t < uN+1 then we can use the
induction hypothesis to conclude that

‖x‖0,T,γ = ‖x‖0,uN ,γ ∨ ‖x‖u1,uN+1,γ

≤ N1−γ max
0≤i≤N

‖x‖ui,ui+1,γ ≤ (N + 1)1−γ max
0≤i≤N

‖x‖ui,ui+1,γ ,

and we are done. It remains to consider the case where the supremum S is attained for
some s ∈ [0, u1] and t ∈ [uN , T ]. We then have

S ≤ |x(u1)− x(s)|+ |x(u2)− x(u1)|+ · · ·+ |x(t)− x(uN )|
|t− s|γ

≤ |u1 − s|γ‖x‖0,u1,γ

|t− s|γ
+
|u2 − u1|γ‖x‖u1,u2,γ

|t− s|γ
+ · · ·+

|t− uN |γ‖x‖uN ,uN+1,γ

|t− s|γ

≤
( |u1 − s|γ

|t− s|γ
+
|u2 − u1|γ

|t− s|γ
+ · · · |t− uN |

γ

|t− s|γ
)

max
0≤i≤N

‖x‖ui,ui+1,γ . (A.5)

Since the function x 7→ xγ is concave for γ < 1 and since |u1 − s|+ . . .+ |t− uN | =
|t− s|, we have

1

N + 1

( |u1 − s|γ

|t− s|γ
+
|u2 − u1|γ

|t− s|γ
+ · · · |t− uN |

γ

|t− s|γ
)
≤( 1

N + 1

|u1 − s|
|t− s|

+
1

N + 1

|u2 − u1|
|t− s|

+ · · · 1

N + 1

|t− uN |
|t− s|

)γ
=

1

(N + 1)γ
.

Combining this with (A.5), we obtain

S ≤ (N + 1)1−γ max
0≤i≤N

‖x‖ui,ui+1,γ ,

thus concluding the proof.
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Finally, we provide the following interpolation result:

Lemma A.3 The bound

‖f‖0,T,∞ ≤ 2 max
(
T−1/2‖f‖L2[0,T ], ‖f‖

2γ
2γ+1

L2[0,T ] ‖f‖
1

2γ+1

0,T,γ

)
,

holds for every γ ∈ (0, 1] and every γ-Hölder continuous function f : [0, T ] 7→ R.

Proof. Let fmin = inft∈[0,T ] |f (t)|, so that fmin ≤
‖f‖L2 [0,T ]√

T
. Therefore it follows from

the definition of Hölder continuity that

‖f‖0,T,∞ ≤ fmin + ‖f‖0,T,γ T γ ≤
‖f‖L2[0,T ]√

T
+ ‖f‖0,T,γ T γ . (A.6)

For a > 0 define the set

Laf = {x ∈ [0, T ]; |f (x)| > a}.

By Chebyschev’s inequality we have, for any a > 0, λ(Laf ) ≤
‖f‖2

L2 [0,T ]
a2 where λ

denotes the Lebesgue measure. Thus for any a > fmin and x ∈ Laf , we have

|f (x)| ≤ a+ ‖f‖0,T,γ |λ(Laf )|γ ,

so that
‖f‖0,T,∞ ≤ a+ a−2γ‖f‖0,T,γ‖f‖2γL2[0,T ] . (A.7)

Now we combine the estimates obtained in (A.6) and (A.7). Making the choice a =

‖f‖
1

2γ+1

0,T,γ‖f‖
2γ

2γ+1

L2[0,T ] in (A.7) yields the bound

‖f‖0,T,∞ ≤ 2‖f‖
1

2γ+1

0,T,γ‖f‖
2γ

2γ+1

L2[0,T ] , (A.8)

provided that we have ‖f‖
1

2γ+1

0,T,γ‖f‖
2γ

2γ+1

L2[0,T ] ≥
‖f‖L2 [0,T ]√

T
≥ fmin. This is the case when

‖f‖0,T,γ ≥ ‖f‖L2[0,T ]T
−γ− 1

2 . When ‖f‖0,T,γ ≤ ‖f‖L2[0,T ]T
−γ− 1

2 , from (A.6) we
obtain

‖f‖0,T,∞ ≤ 2‖f‖L2[0,T ]T
−1/2 , (A.9)

thus completing the proof.
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[You36] L. C. YOUNG. An inequality of the Hölder type, connected with Stieltjes integration.
Acta Math. 67, no. 1, (1936), 251–282.


