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Abstract
We consider differential equations driven by rough paths and study the regularity of
the laws and their long time behaviour. In particular, we focus on the case when the
driving noise is a rough path valued fractional Brownian motion with Hurst parameter
H ∈ ( 1

3
, 1
2

). Our contribution in this work is twofold.
First, when the driving vector fields satisfy Hörmander’s celebrated “Lie bracket

condition”, we derive explicit quantitative bounds on the inverse of the Malliavin matrix.
En route to this, we provide a novel “deterministic” version of Norris’s lemma for
differential equations driven by rough paths. This result, with the added assumption
that the linearised equation has moments, will then yield that the transition laws have a
smooth density with respect to Lebesgue measure.

Our second main result states that under Hörmander’s condition, the solutions to
rough differential equations driven by fractional Brownian motion with H ∈ ( 1

3
, 1
2

)
enjoy a suitable version of the strong Feller property. Under a standard controllability
condition, this implies that they admit a unique stationary solution that is physical in
the sense that it does not “look into the future”.

1 Introduction

In this article, we consider stochastic differential equations of the form

dZt = V0(Zt) dt+

d∑
i=1

Vi(Zt) dXi
t , Z0 = z ∈ Rn , (1.1)

where Xt is a d-dimensional random rough path [Lyo98, LCL07, FV10b] and V0, Vi ∈
Rn are smooth vector fields. While a large part of our work is deterministic and applies
to a large class of rough differential equations driven by rough paths that are Hölder
continuous with index greater than 1

3 , our probabilistic results focus on the case when
Xt is a two-sided d-dimensional fractional Brownian motion with Hurst parameter
H ∈ ( 1

3 ,
1
2 ). Recall that the fractional Brownian motion with Hurst parameter H is the

centred Gaussian process such that X0 = 0 and

E|Xt −Xs|2 = |t− s|2H .
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Differential equations driven by rough paths have been studied intensely in the past
decade and this theory has now reached a certain level of maturity; we refer to the
monographs [LQ02, LCL07, FV10b] for an overview of the theory. For driving signals
that are rougher than Brownian motion, the theory of rough paths has provided a
systematic way of constructing solutions to differential equations of the type (1.1) in
a way that is “natural”, in the sense that solutions are limits of approximate solutions
where X is replaced by a smoothened version.

When the noise Xt is a replaced by a standard Brownian motion Bt, it has been
well-known since the groundbreaking work of Hörmander [Hör67] that, for the laws of
the Markov process Zt to have a smooth transition density, it is sufficient that the Lie
algebra formed by {∂t + V0, V1, . . . , Vd} spans Rn+1 at every point (see Assumption
5.1 for a precise formulation). The formalism of Malliavin calculus was invented to give
a probabilistic proof of this result [Mal78, Mal97, Nua06, KS84, KS85, KS87]. The
smoothness of transition densities coupled with some mild controllability assumptions
will then yield that the system (1.1) has a unique invariant measure.

When the driving noise X is a fractional Brownian motion with H 6= 1
2 , solutions

to (1.1) are neither a Markov process nor a semimartingale, so standard tools from
stochastic calculus break down. Inspired by the results in the case of Brownian motion,
two natural questions in this context are to identify conditions under which

1. the “transition densities” of (1.1) are smooth,

2. the system (1.1) has a “unique invariant measure”.

Since Z is not Markov in general, it does not really make sense to speak of transition
probabilities, but the first question still makes sense by, for example, considering the
law of the solution at some time t > 0, given an initial condition Z0, conditional
on the realisation of {Xs : s ≤ 0}. Similarly, the notion of an “invariant measure”
does not make immediate sense for non-Markovian processes. This problem has been
discussed extensively in [Hai05, Hai09], where a notion of an invariant measure adapted
to systems of the type (1.1) is introduced. Essentially, these are stationary solutions to
(1.1) that are “physical” in the sense that they are independent of the innovation of X .

In recent years, the SDE (1.1) was studied when the driving noise X is a fractional
Brownian motion with Hurst parameter H > 1

2 . In this case, the answers to both of the
above questions are completely settled in a series of papers [Hai05, BH07, HO07, NS09,
HP11]. In particular, it was shown in [BH07, HP11] that the solutions to (1.1) have
smooth “transition densities” when the vector fields satisfy Hörmander’s condition. It
was also shown that if furthermore the control system associated to (1.1) is approximately
controllable then, under suitable dissipativity and boundedness conditions on the vector
fields Vi, (1.1) also admits a unique invariant measure. However, the question of
smoothness of laws in the case of the driving noise X being a fractional Brownian
motion with Hurst parameter H < 1

2 was completely open until now, despite substantial
recent progress in particular cases [Dri10, HT11]. The only general result in the context
of rough paths theory was obtained in [CF10], where the authors obtained the existence
of densities with respect to Lebesgue measure under Hörmander’s condition for a large
class of driving noises.

In this paper we largely settle the above two questions when X is a fractional
Brownian motion with H ∈ ( 1

3 ,
1
2 ). An important component underlying the probabilis-

tic proofs of the smoothness of transition densities is Norris’s lemma [KS85, Nor86],
which roughly speaking states that if a semimartingale is small and if one has a priori
bounds on the regularity of its components, then its bounded variation part and the
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local martingale part are also small. In this regard this lemma can be considered as a
quantitative version of the classical Doob-Meyer decomposition theorem. A version
of Norris’s lemma for fractional Brownian motion with H > 1

2 was proved in [BH07].
The recent work [HT11], which appeared as the present article was nearing completion,
contains a version of Norris’s lemma for H ∈ ( 1

3 ,
1
2 ) that is similar in spirit to the one in

[BH07].
Our contribution in this work is twofold. First, we prove a deterministic version of

Norris’s lemma for general integrals against rough paths. This may sound strange at first
since Norris’s seems to be the prototype of a probabilistic statement and the whole point
of rough path theory is to get rid of stochastic calculus and replace it by a deterministic
theory. We reconcile these conflicting perspectives by first showing an estimate strongly
resembling that of Norris’s lemma for processes of the formZt =

∫ t
0
As dXs+

∫ t
0
Bs ds,

where X is a rough path and A is a rough path “controlled by X” (see Section 2 below
for precise definitions). This estimate makes use of a quantity that we call the “modulus
of Hölder roughness” of X , Lθ(X). See Definition 3.1 below for the precise definition
of Lθ. In a second step, we then show that if X is fractional Brownian motion with
H < 1

2 , then Lθ(X) is almost surely positive for θ > H and has inverse moments of
all orders. A loose formulation of our main result is as follows (see Theorem 3.4 and
Lemma 3.9 below for precise formulations that include the exact dependency of M on
X , A, and B):

Theorem 1.1 Let X be a γ-Hölder continuous rough path in Rn with γ > 1
3 , let A be

a rough path in Rn controlled by X , let B be a γ-Hölder continuous function, and set

Zt =

∫ t

0

As dXs +

∫ t

0

Bs ds . (1.2)

Then, if X is θ-Hölder rough for some θ < 2γ, there exist constants r > 0 and q > 0
such that one has the bound

‖A‖∞ + ‖B‖∞ ≤MLθ(X)−q ‖Z‖r∞ ,

for a constant M depending polynomially on the γ-Hölder “norms” of X , A, and B.
Here, ‖ · ‖∞ denotes the supremum norm over the interval [0, 1].

Furthermore, if X is the rough path canonically associated to fractional Brownian
motion with H < 1

2 , then EL−pθ (X) <∞ for every θ > H and every p > 0.

Remark 1.2 Note that this immediately tells us that ifX is Hölder rough, then it admits
a kind of Doob-Meyer decomposition in the sense that the processesA andB in (1.2) are
uniquely determined by Z. An interesting fact is that Hölder roughness is a deterministic
property. In principle, one could imagine being able to check that this property holds
almost surely for a number of driving noises, not even necessarily Gaussian ones.

Combined with standard arguments, this result yields quantitative bounds on the in-
verse of the Malliavin matrix, thus obtaining a quantitative version of the result obtained
in [CF10], where the authors showed via a 0-1 law argument that the Malliavin matrix
is almost surely invertible. If we use the additional assumption that the linearisation of
the SDE (1.1) has moments of all orders, our results also yield that (1.1) has smooth
densities thus extending the work pioneered by Malliavin to the case in which the driving
noise is a rough path. When this work was nearing completion, we were notified of
an independent work [HT11] showing smoothness of densities to solutions to (1.1) in
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the case when the driving vector fields exhibit a “nilpotent” structure, which allows to
obtain a priori bounds on the Malliavin derivatives of the solutions. The work [HT11]
also contains a version of Norris’s lemma in the context of SDEs driven by fractional
Brownian motion with Hurst parameter H ∈ ( 1

3 ,
1
2 ).

In the second half of the paper, we show that under an additional controllability
assumption, the SDE (1.1) has a unique invariant measure, which follows from the
strong Feller property defined in [HO07]. Our main technical problem in this part is
that we do not assume that the linearised equation has bounded moments. This leads
us to use a cutoff argument similar to the one already used in [HO07]. If we denote by
At,z the closure of the set of all points that are accessible at time t for solutions to the
control problem associated to (1.1) starting at z, the second major result of this paper is
the following:

Theorem 1.3 Assume that the vector fields {Vi} have derivatives with at most polyno-
mial growth and that (1.1) has global solutions. Then, if Hörmander’s bracket condition
holds at every point, (1.1) is strong Feller.

In particular, if there exists t > 0 such that
⋂
z∈Rn At,z 6= φ, then (1.1) admits at

most one invariant measure in the sense of [Hai05].

The above result gives us the uniqueness of the invariant measure for the system
(1.1). Theorem 1.3, combined with the assumption of the existence of an invariant
measure, will yield that the system (1.1) is ergodic.

The remainder of the article is structured as follows. In Section 2 we review the
framework of controlled rough paths from [Gub04], set up the notation and derive some
preliminary estimates. In Section 3, we then prove a general deterministic version
of Norris’s lemma for SDEs driven by rough paths. Furthermore we show that our
assumptions are almost surely satisfied by the sample paths of fractional Brownian
motion. Section 4 is a rather technical section in which we show that solutions to (1.1) are
smooth in the sense of Malliavin calculus and obtain a priori bounds on their Malliavin
derivatives. We then obtain quantitative bounds on the lowest eigenvalue of the Malliavin
matrix in Section 5. Using the results in that section, we show that the existence of
moments of the derivative of the flow implies the smoothness of the transition densities.
In Section 6, we show the ergodicity of SDEs driven by fractional Brownian motion
under Hörmander’s condition and a standard controllability assumption. In Section 7,
we finally give a few examples where our results are applicable.
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2 Preliminaries

2.1 Notations
Throughout this article, we will make use of the following notations. For quantities
E and R, we write E ≤ K (R) as a shorthand to mean that there exists a continuous
increasing function b : R+ 7→ R+ such that the bound E ≤ b(R) holds. Note that the
function b in question is unspecified and may change from one line to the next. We also
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use the letter M to denote an arbitrary (possibly problem-dependent) constant whose
precise value might vary from one line to the next.

2.2 Introduction to the theory of rough paths
In this work, we adopt the framework of [Gub04] which offers a slightly different
perspective on the pioneering work of Terry Lyons [Lyo98].

Denote by ΩC the set of continuous functions from R2 to R which are 0 on the
diagonal and define the “increment” operator δ : C 7→ ΩC by:

δAst
def
= At −As . (2.1)

For a fixed final time T > 0 and a continuous function f : [0, T ] 7→ Rn, set

‖f‖∞ = sup
t∈[0,T ]

|f (t)| , ‖f‖γ = sup
s,t∈[0,T ]

|δfst|
|t− s|γ

. (2.2)

We also define the norm

‖f‖Cγ = ‖f‖∞ + ‖f‖γ .

With these notations, a rough path on the interval [0, T ] consists of two parts, a
continuous function X : [0, T ] 7→ Rd and a continuous “area process” X : [0, T ]2 7→
Rd×d, X ∈ ΩC satisfying the algebraic identity:

Xijst − Xijut − Xijsu = δXi
suδX

j
ut (2.3)

for all {s, u, t} ∈ [0, T ] and 1 ≤ i, j ≤ d. For X ∈ ΩC, define

‖X‖2γ
def
= sup
s,t∈[0,T ]
s6=t

|Xst|
|t− s|2γ

. (2.4)

For γ ∈ ( 1
3 ,

1
2 ], we denote by Dγ([0, T ],Rd) the space of rough paths, consisting of

those pairs (X,X) satisfying (2.3) and such that

‖(X,X)‖γ
def
= ‖X‖γ + ‖X‖2γ <∞ .

Notice that ‖(X,X)‖γ is only a semi-norm and that Dγ actually isn’t a vector space,
due to the nonlinear constraint (2.3).

For every smooth function X : [0, T ]→ Rd, there exists a canonical representative
in Dγ by choosing

Xs,t =

∫ t

s

δXsr ⊗ dXr .

We then denote by Dγg the closure of the set of smooth functions in Dγ . (Here, g stands
for “geometric”.) The space Dγg has the nice feature of being a Polish space, which will
be useful in the sequel.

2.3 Controlled rough paths
For defining integrals with respect to rough paths, a useful notion introduced first in
[Gub04] is that of “controlled” paths:
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Definition 2.1 Let (X,X) ∈ Dγ([0, T ],Rd) for some γ ∈ ( 1
3 ,

1
2 ]. A pair (Z,Z ′) is

said to be controlled by X if Z ∈ Cγ([0, T ],Rn), Z ′ ∈ Cγ([0, T ],Rn×d), and the
“remainder” term RZ ∈ ΩC implicitly defined by

δZst = Z ′sδXst +RZst , (2.5)

satisfies ‖RZ‖2γ <∞.

Denoting by CγX the set of paths controlled by X , we endow it with the norm

‖(Z,Z ′)‖X,γ = |Z(0)|+ ‖Z ′‖Cγ + ‖RZ‖2γ .

As noticed in [Gub04], now we may define the integral of a weakly controlled path
(Z,Z ′) ∈ CγX with respect to a rough path (X,X) by taking a limit of modified Riemann
sums: ∫ T

0

Zt ⊗ dXt = lim
|P|→0

∑
[s,t]∈P

(
Zs ⊗ δXst + Z ′s Xst

)
, (2.6)

where P is a finite partition of the interval [0, T ] into subintervals and |P| denotes the
length of the largest subinterval. The following result, adapted from [Gub04, Proposition
1], gives the continuity of the integral with respect to its integrand:

Theorem 2.2 Let (X,X) ∈ Dγ([0, T ],Rd) for some γ > 1
3 and (Y, Y ′) ∈ CγX be a

weakly controlled rough path. Then the map

(Y, Y ′) 7→ (Z,Z ′) def
=
(∫ ·

0

Yt ⊗ dXt, Y ⊗ I
)

,

where the integral is as defined in (2.6), is continuous from CγX to CγX and furthermore
we have the bound,

‖RZ‖2γ ≤M
(
‖X‖γ‖RY ‖2γ + ‖X‖2γ‖Y ′‖Cγ

)
. (2.7)

Remark 2.3 Notice that from (2.7) we deduce that

‖(Z,Z ′)‖X,γ ≤M
(
‖X‖γ(‖RY ‖2γ + ‖Y ‖Cγ ) + ‖X‖2γ‖Y ′‖Cγ

)
. (2.8)

For (Y, Y ′) ∈ CγX and a C2 function ψ : Rn 7→ Rm, we may define a new weakly
controlled rough path (ψ(Y ), ψ(Y )′) ∈ CγX as

ψ(Y )t = ψ(Yt), ψ(Y )′t = Dψ(Yt)Y ′t . (2.9)

Then we have the following bound from [Hai10, Lemma 2.2] :

Lemma 2.4 Let (Y, Y ′) ∈ CγX and (ψ(Y ), ψ(Y )′) be as defined in (2.9). Then we have

‖(ψ(Y ), ψ(Y )′)‖X,γ ≤M (1 + ‖ψ‖∞ + ‖D2ψ‖∞) (1 + ‖(X,X)‖γ) (1 + ‖(Y, Y ′)‖X,γ)2 ,

where the supremum norms of ψ and D2ψ are taken over the ball of radius ‖Y ‖∞.
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2.4 Notion of solution
With all of these notations at hand, we give the following definition of a solution to
(1.1):

Definition 2.5 Let γ > 1
3 and let (X,X) ∈ Dγ . Then, Z ∈ Cγ is a solution to

(1.1) if (Z,Z ′) = (Z, V (Z)) ∈ CγX and the integral version of (1.1) holds, where the
composition of a controlled rough path with a nonlinear function is interpreted as in
(2.9) and the integral of a controlled rough path against X is defined by (2.6). Here, we
denoted by V the collection (V1, . . . , Vd).

A standard fixed point argument, as given for example in [Lyo98, Gub04], then
yields:

Theorem 2.6 For V ∈ C3, there exists a unique local solution to (1.1).

From now on, we will always refer to this notion of a solution to (1.1), without
further specifying it.

3 A version of Norris’s lemma

One of the main ingredients of the proof of Hörmander’s theorem using Malliavin
calculus is Norris’s lemma, which is essentially a quantitative version of the Doob-
Meyer decomposition theorem. Loosely speaking, it states that under certain additional
regularity assumptions, if a semimartingale is “small”, then both its bounded variation
part and its martingale part have to be “small” separately. In other terms, if we have
some a priori knowledge of the regularity of a semimartingale, then there is a limit to
the amount of cancellations that can occur between the two terms in its Doob-Meyer
decomposition. The intuitive reason for this is that a continuous martingale is nothing
but a time-changed Brownian motion and so it has to be very rough at every single scale.

Results of this type are usually considered to be the archetype of a probabilistic
result. The aim of this section is to argue that while the probabilistic intuition described
above is certainly correct, one can have a much more pathwise perspective on Norris’s
lemma. This was already apparent in [HM09], where the authors obtain a result that is
similar in flavour to Norris’s lemma, but where this lack of cancellations is formulated
as a deterministic property that occurs on a universal “large” subset of Wiener space.
Here, we take this viewpoint one step further by exhibiting a universal set on which a
quantitative version of Norris’s lemma holds as a deterministic property.

The main ingredient in our pathwise perspective is the following definition that
makes precise what we mean by a path that is “rough at every scale”:

Definition 3.1 A path Xt with values in Rn is said to be θ-Hölder rough in the interval
[0, T ] for θ ∈ (0, 1), if there exists a constant Lθ(X) such that for every s ∈ [0, T ],
every ε ∈ (0, T/2], and every ϕ ∈ Rn with ‖ϕ‖ = 1, there exists t ∈ [0, T ] such that

ε

2
≤ |t− s| ≤ ε , and |〈ϕ, δXs,t〉| > Lθ(X) εθ . (3.1)

We denote the largest such Lθ the “modulus of θ-Hölder roughness of X”.

Remark 3.2 We emphasise that the choice of quantifiers in the above definition ensures
that such Hölder rough paths actually do exist. In particular, as soon as n ≥ 2, it is
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essential to allow the precise location of t such that (3.1) holds to depend on the vector
ϕ.

A first rather straightforward consequence of this definition is that if a rough path
(X,X) happens to be Hölder rough, then the “derivative process” Z ′ in the decomposi-
tion (2.5) of a controlled rough path is uniquely determined by Z. This can be made
quantitative in the following way:

Proposition 3.3 Let (X,X) ∈ Dγ([0, T ],Rn) be such that X is a θ-Hölder rough path.
Then there exists a constant M depending only on n and m such that the bound

‖Z ′‖∞ ≤
M‖Z‖∞
Lθ(X)

(
‖RZ‖

θ
2γ

2γ ‖Z‖
− θ

2γ
∞ ∨ T−θ

)
,

holds for every controlled rough path (Z,Z ′) ∈ CγX([0, T ],Rm).

Proof. Fix s ∈ [0, T ] and ε ∈ (0, T/2], From the definition of the remainder RZ in
(2.5), it then follows that

sup
|t−s|≤ε

|Z ′sδXs,t| ≤ sup
|t−s|≤ε

(|δZs,t|+ |RZs,t|) ≤ 2 ‖Z‖∞ + ‖RZ‖2γ ε2γ . (3.2)

Let now Z ′s(j) denote the jth row of the matrix Z ′s. Since X is θ-Hölder rough by
assumption, for every j ≤ d, there exists v = v(j) with ε/2 ≤ |v − s| ≤ ε such that

|〈Z ′s(j), δXs,v〉| > Lθ(X) εθ|Z ′s(j)| . (3.3)

Combining both (3.2) and (3.3), we thus obtain that

Lθ(X) εθ |Z ′s(j)| ≤ 2‖Z‖∞ + ‖RZ‖2γ ε2γ .

Summing over the rows of Z ′s yields a universal constant C such that

Lθ(X) εθ |Z ′s| ≤ C(‖Z‖∞ + ‖RZ‖2γ ε2γ) .

Optimising over ε, we choose ε = ‖Z‖1/2γ∞ ‖RZ‖−1/2γ
2γ ∧ (T/2), thus deducing that

|Z ′s| ≤
M‖Z‖∞
Lθ(X)

(
‖RZ‖

θ
2γ

2γ ‖Z‖
− θ

2γ
∞ ∨ T−θ

)
.

Since s was arbitrary, the stated bound follows at once.

One way of reading Proposition 3.3 is to say that if ‖Z‖∞ is small, then ‖Z ′‖∞
must also be small, provided that (Z,Z ′) ∈ CγX ([0, T ],Rm) and that X is Hölder rough.
In the following theorem, we apply Proposition 3.3 to obtain a quantitative version of a
“Doob-Meyer type decomposition” for SDEs driven by a rough path X . This is the main
new technical result of this article.

Theorem 3.4 Let (X,X) ∈ Dγ([0, T ],Rn) with γ > 1
3 be such that X is θ-Hölder

rough with 2γ > θ. Let (A,A′) ∈ CγX ([0, T ],Rmn) and B ∈ Cγ([0, T ],Rm), and set

Zt =

∫ t

0

As dXs +

∫ t

0

Bs ds . (3.4)
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Then, there exist constants r > 0 and q > 0 such that, setting

R def
= 1 + Lθ(X)−1 + ‖(X,X)‖γ + ‖(A,A′)‖X,γ + ‖B‖Cγ ,

one has the bound

‖A‖∞ + ‖B‖∞ ≤MRq ‖Z‖r∞ ,

for a constant M depending only on T , m and n.

Remark 3.5 The proof provides the explicit value q = 6 and shows that r can be taken
arbitrarily close to (2γ − θ)2(3γ − 1)/(4γ2(1 + γ)), but these values are certainly not
optimal.

Proof. Note first that the definition of Z does not change if we add a constant to X .
We will therefore assume without loss of generality that X0 = 0, so that ‖X‖∞ ≤
T γ‖X‖γ ≤ T γR. By Theorem 2.2 we deduce that the pair (Z,A) is a weakly controlled
rough path, (Z,A) ∈ CγX ([0, T ],Rm), with

δZ = AδX +RZ (3.5)

and
‖RZ‖2γ ≤M(‖X‖γ‖RA‖2γ + ‖X‖2γ‖A‖Cγ + ‖B‖Cγ ) ≤MR2 .

We deduce from the above that in particular, we have the a priori bound ‖Z‖∞ ≤MR2.
It then follows from Proposition 3.3 that

‖A‖∞ ≤MLθ(X)−1 ‖Z‖1−
θ
2γ

∞ (‖RZ‖
θ
2γ

2γ + ‖Z‖
θ
2γ
∞ ) ≤MR3‖Z‖1−

θ
2γ

∞ . (3.6)

This is already the requested bound on A. The bound on B is slightly more difficult to
obtain.

At this stage, we would like to make use of the information that ‖A‖∞ is “small”
to get a bound on the integral of A against X . In order to do so, it turns out to be
convenient to choose a β ∈ ( 1

3 , γ) with 2β > θ, so that we can interpret (X,X) as
an element of Dβ([0, T ],Rn) with ‖(X,X)‖β ≤ M‖(X,X)‖γ . This will allow us to
make use of interpolation inequalities to combine our a priori knowledge about the
boundedness of (A,A′) in CγX norm with (3.6) to conclude that (A,A′) is small in CβX .

We first obtain a bound on A′. Since (A,A′) ∈ CγX ([0, T ],Rmn), we infer from
(3.6) and Proposition 3.3 that

‖A′‖∞ ≤MLθ(X)−1 ‖RA‖
θ
2γ

2β ‖A‖
1− θ

2γ
∞ ≤MR4 ‖Z‖(1− θ

2γ )2

∞ .

Using the inequality

‖A′‖β ≤ 2‖A′‖
β
γ
γ ‖A′‖

1− βγ
∞ , (3.7)

which follows immediately from the definition of the Hölder norm, we obtain the bound

‖A′‖β ≤M‖A′‖
1− βγ
∞ ‖A′‖

β
γ
γ ≤MR4‖Z‖(1− θ

2γ )2(1− βγ )
∞ ,

where we used the fact that β < γ. Similarly, we would like to obtain a bound on
‖RA‖2β . Combining the definition of RA with (3.6), we deduce that

‖RA‖∞ ≤ 2(‖A‖∞ + ‖A′‖∞‖X‖∞) ≤MR5‖Z‖(1− θ
2γ )2

∞ .
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Using the obvious equivalent to (3.7), we conclude that

‖RA‖2β ≤M‖RA‖
β
γ

2γ‖RA‖
1− βγ
∞ ≤MR5‖Z‖(1− θ

2γ )2(1− βγ )
∞ .

We are now in a position to use Theorem 2.2 to bound the integral
∫ ·

0
AsdXs. Indeed,

we obtain from (2.7) the bound∥∥∥ ∫ ·
0

AsdXs

∥∥∥
∞
≤M (|A0|‖X‖∞ + ‖X‖β‖RA‖2β + ‖X‖2β‖A′‖β) .

Inserting into this bound all of the above estimates, we conclude that∥∥∥ ∫ ·
0

AsdXs

∥∥∥
∞
≤MR6‖Z‖(1− θ

2γ )2(1− βγ )
∞ . (3.8)

This estimate, together with the definition (3.4) of Z immediately implies that we also
have the bound ∥∥∥∫ ·

0

Bs ds
∥∥∥
∞
≤MR6‖Z‖(1− θ

2γ )2(1− βγ )
∞ .

Once again we use an interpolation inequality to strengthen this bound. Applying the
interpolation inequality

‖∂tf‖∞ ≤M‖f‖∞ max
( 1

T
, ‖f‖−

1
γ+1
∞ ‖∂tf‖

1
γ+1
γ

)
(see [HM09, Lemma 6.14]) with f (t) =

∫ t
0
Bs ds, it follows that

‖B‖∞ ≤MR6‖Z‖(1− θ
2γ )2(1− βγ ) γ

1+γ
∞ . (3.9)

The claim now follows from (3.6) and (3.9), and the remark following the statement
follows by choosing β ≈ 1

3 .

3.1 Hölder roughness of sample paths of fBm
Our aim now is to show that the sample paths of fractional Brownian motion are indeed
almost surely Hölder rough and to provide quantitative bounds on the tail behaviour
of Lθ(X) for a suitable θ. Let {FXs , s ∈ R} be the natural filtration generated by the
fBm {Xs}s∈R. We start with the following lemma on the small ball probability of the
conditioned fBm:

Lemma 3.6 Let ϕ ∈ Rn with ‖ϕ‖ = 1 and δ < 1. Then, there exist constants M and c
such that the bound

P
(

inf
‖ϕ‖=1

sup
s,t∈[0,δ]

|〈ϕ, δXst〉| ≤ ε
∣∣∣FX0 ) ≤Me−cδ

2Hε−2

(3.10)

holds for every 0 < ε ≤ 1.

Proof. For the moment, let us fix an arbitrary ϕ with ‖ϕ‖ = 1. Since X0 = 0, we
obtain

P
(

sup
s,t∈[0,δ]

|〈ϕ, δXst〉| ≤ ε| FX0
)
≤ P

(
sup
t∈[0,δ]

|〈ϕ,Xt〉| ≤ ε| FX0
)
.
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At this stage, we note that there exists a one-dimensional Wiener process W (depending
on ϕ) independent of FX0 , a stochastic process Y such that Yt is FX0 -measurable for
every t ≥ 0, and a constant c such that

〈ϕ,Xt〉 = Yt + c

∫ t

0

(t− s)H− 1
2 dW (s) def

= Yt + X̂t . (3.11)

(See for example [MVN68, Hai05], as well as (4.2) below.) For the rest of the proof, we
use c for a generic universal constant that will change from expression to expression.

It then follows from Anderson’s inequality ([And55]) that we have the bound

P
(

sup
t∈[0,δ]

|〈ϕ,Xt〉| ≤ ε| FX0
)

= P
(

sup
t∈[0,δ]

|X̂t + Yt| ≤ ε
∣∣∣ FX0 )

≤ P
(

sup
t∈[0,δ]

|X̂t| ≤ ε
)
.

On the other hand, we can invert the expression (3.11) for X̂ , yielding

Wt = c

∫ t

0

(t− s) 1
2−H dX̂s = c

∫ t

0

(t− s)− 1
2−H X̂s ds .

In particular, provided that H < 1
2 , we have the bound

sup
t∈[0,δ]

|Wt| ≤ c δ
1
2−H sup

t∈[0,δ]
|X̂t| ,

so that

P
(

sup
t∈[0,δ]

|〈ϕ,Xt〉| ≤ ε| FX0
)
≤ P

(
sup
t∈[0,δ]

|Wt| ≤ cδ
1
2−Hε

)
≤Me−cδ

2Hε−2

,

where the last inequality is the well known small ball probability for the standard
Brownian motion [LS01].

Up to now, the calculation was performed with a fixed instance of ϕ. The conclusion
then follows by a standard covering argument, see for example [Nor86, p. 127].

We have the following corollary of Lemma 3.6:

Corollary 3.7 For any interval Iδ
def
= [u`, u` + δ] ⊂ R of length δ and any u ≤ u`,

there exist constants M and c such that the bound

P
(

inf
‖ϕ‖=1

sup
s,t∈Iδ

|〈ϕ, δXst〉| ≤ ε| FXu
)
≤Me−cδ

2Hε−2

holds for every 0 < ε ≤ 1.

Proof. Define the event G def
= {inf‖ϕ‖=1 sups,t∈Iδ |〈ϕ, δXst〉| ≤ ε}. Since the incre-

ments of the fBm are stationary, by Lemma 3.6 we obtain the bound

E
(

1G| FXu`
)
≤Me−cδ

2Hε−2

. (3.12)

Now notice that for any G ∈ FXu` and u ≤ u`, E(G|FXu ) = E
(
E(G|FXu`)|F

X
u

)
. Since

the right hand side of Equation (3.12) does not depend on u`, it immediately follows
that

P
(

inf
‖ϕ‖=1

sup
s,t∈Iδ

|〈ϕ, δXst〉| ≤ ε| FXu
)

= E
(

1G| FXu
)
≤Me−cδ

2Hε−2

(3.13)

and the corollary follows.
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Remark 3.8 Although the above proof requires that H < 1
2 , one would expect that a

result similar to that of Lemma 3.6 holds for all Gaussian processes with covariance
function C(·, ·) satisfying the bounds

M2
` |t− s|2H ≤ C(s, t) ≤M2

u |t− s|2H s, t ∈ [0, T ]

for some constants M`,Mu, even if H > 1
2 . For instance, a result similar to Lemma 3.6

can be shown to hold in the case of fBm with index H > 1
2 ; see for example [BH07,

Proposition 3.4].

Using this estimate we are now in the position to obtain bounds on the modulus of
Hölder roughness for fractional Brownian motion with H < 1

2 by a type of chaining
argument.

Lemma 3.9 Let X be a fBm with Hurst parameter H < 1
2 . Then, for every θ > H , the

sample paths of X are almost surely θ-Hölder rough. Moreover, there exists constants
M and c such that

P(Lθ(X) ≤ ε | FX0 ) ≤M exp(−cε−2) ,

for all ε ∈ (0, 1). In particular, E(L−pθ (X) | FX0 ) <∞ for every p > 0.

Proof. A different way of formulating Definition 3.1 is given by

Lθ(X) = inf
‖ϕ‖=1

inf
t∈[0,T ]

inf
r∈[0,T/2]

sup
r/2≤|t−s|≤r

|〈ϕ, δXst〉|
rθ

.

We then define the “discrete analog” Dθ(X) of Lθ(X) to be

Dθ(X) def
= inf
‖ϕ‖=1

inf
n≥1

inf
k≤2n

sup
s,t∈Ik,n

|〈ϕ, δXst〉|
(2−nT )θ

,

where Ik,n = [k−1
2n T,

k
2nT ]. We first claim that

Lθ(X) ≥ 1

2 · 8θ
Dθ(X) . (3.14)

Indeed, given t ∈ [0, T ] and r ∈ [0, T/2], pick n ∈ N such that r/8 ≤ 2−nT < r/4.
It follows that there exists some k such that Ik,n is included in the set {s : r/2 ≤
|t − s| ≤ r}. Then, by definition of Dθ, for any unit vector ϕ there exist two points
t1, t2 ∈ In such that

|〈ϕ, δXt2t1〉| ≥ 2−nθDθ(X) .

Therefore by the triangle inequality, we conclude that the magnitude of the difference
between 〈ϕ,Xt〉 and one of the two terms 〈ϕ,Xti〉, i = 1, 2 (say t1) is at least

|〈ϕ, δXt1t〉| ≥
1

2
· (2−nT )θDθ(X)

and therefore

|〈ϕ, δXt1t〉|
rθ

≥ 1

2
· 2−nθ

rθ
Dθ(X) ≥ 1

2 · 8θ
Dθ(X) .
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Since t, r and ϕ were chosen arbitrarily, the claim (3.14) follows.
It follows that it is sufficient to obtain the requested bound on P(Dθ(X) ≤ ε | FX0 ).

We have the straightforward bound

P(Dθ(X) ≤ ε | FX0 ) ≤ P
(

inf
‖ϕ‖=1

inf
n≥1

inf
k≤2n

sup
s,t∈Ik,n

|〈ϕ, δXst〉|
2−nθ

≤ ε | FX0
)

≤
∞∑
n=1

2n∑
k=1

P
(

inf
‖ϕ‖=1

sup
s,t∈Ik,n

|〈ϕ, δXst〉|
2−nθ

≤ ε | FX0
)
.

Applying Lemma 3.6 and noting that the bound obtained in this way is independent of
k, we conclude that

P(Dθ(X) ≤ ε | FX0 ) ≤M
∞∑
n=1

2n exp(−c22n(θ−H)ε−2) ≤ M̃
∞∑
n=1

exp(−c̃nε−2) .

Here, we used the fact that we can find constants K and c̃ such that

n log 2− c22n(θ−H)ε−2 ≤ K − c̃nε−2 ,

uniformly over all ε ≤ 1 and all n ≥ 1. We deduce from this the bound

P(Dθ(X) ≤ ε | FX0 ) ≤M
(
e−c̃ε

−2

+

∫ ∞
1

exp(−c̃ε−2x) dx
)

,

which immediately implies the result.

4 Malliavin derivatives

In this section, we derive formulae for the Malliavin derivatives of solutions to (1.1),
when conditioned on the past of the driving noise. In order to clarify the meaning of
this statement, we will reduce this conditioned solution to a functional of an underlying
Wiener process. With this notation, the Malliavin derivative will simply be the “usual”
Malliavin derivative of a random variable on Wiener space.

Before proceeding further, let us make a digression that clarifies this construction.
For α ∈ (0, 1), we define the fractional integration operator Iα and the corresponding
fractional differentiation operator Dα by

Iαf (t) ≡ 1

Γ(α)

∫ t

0

(t− s)α−1f (s) ds ,

Dαf (t) ≡ 1

Γ(1− α)
d

dt

∫ t

0

(t− s)−αf (s) ds .
(4.1)

These operators are inverses of each other, see for example [SKM93] for a survey of
fractional integral operators.

It turns out that the operator I 1
2−H is an isometry between the Cameron-Martin

space of the conditioned fBm and that of the underlying Wiener process mentioned at
the beginning of this section. More precisely, given a typical instance w− ∈ C(R−,Rd)
of the “past” of the fBm, it follows from the Mandelbrot-van Nesse representation
of the fractional Brownian motion [MVN68, Hai05] that there exists a constant αH
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and a (one-sided) Wiener process W on R+ independent of w− such that the future
w+ ∈ C(R+,Rd) of the fBm conditioned on the past w− may be expressed as

w+ = Gw− + αHD
1
2−HW , (4.2)

where D 1
2−H is as defined in (4.1) and the operator G : C(R−,Rd) 7→ C(R+,Rd) is

given by:

(Gw−)(t) def
= γH

∫ ∞
0

1

r
g
( t
r

)
w−(−r) dr . (4.3)

Here, the kernel g is given by

g(v) def
= vH−

1
2 + (H − 3/2) v

∫ 1

0

(u+ v)H−
5
2

(1− u)H−
1
2

du , (4.4)

and the constant γH is given by γH = (H − 1
2 )αHα1−H , where αH is the constant

appearing in (4.2). The interpretation of the operator G is that (Gw−)(t) is the conditional
expectation at time t of a two-sided fractional Brownian motion with Hurst parameter
H , conditioned on coinciding with w− for negative times.

Henceforth we will use the notation (4.2), namely we denote the past of the fBm by
w− ∈ C(R−,Rd) and the future by w+ ∈ C(R,Rd). At this stage, we will use a slight
abuse of notation, and we will also sometimes interpret w+ as an element in the space
Cγg (R+,Rd) of geometric rough paths that are γ-Hölder continuous, although we then
usually denote it by (X,X).

In view of (4.2), it will be useful to clarify how to interpret this identity when the
future is considered as an element in the space Cγg (R+,Rd), and for which instances
of w− the decomposition (4.2) makes sense. Recall that, for (X,X) ∈ Cγg ([0, T ],Rd)
and h ∈ C([0, T ],Rd) a path with bounded variation, we can define a translated path
(Y,Y) = τh(X,X) in a natural way by

Yt = Xt+ht , Ys,t = Xs,t+

∫ t

s

δXs,r⊗dhr +

∫ t

s

δhs,r⊗dXr +

∫ t

s

δhs,r⊗dhr .
(4.5)

Since we assumed h to be of bounded variation, the integrals appearing in this expression
should be interpreted as usual Riemann-Stieltjes integrals. Assume furthermore that
h is such that there exists a constant ‖h‖1;γ such that, for every s ≤ t in [0, T ], the
variation of h over the interval [s, t] is bounded by ‖h‖1;γ |t−s|γ . In this case, it follows
immediately that there exists M (depending on T ) such that

‖Y −X‖γ ≤ ‖h‖1;γ , ‖Y− X‖2γ ≤M‖h‖1;γ(‖h‖1;γ + ‖X‖γ) . (4.6)

Similarly, we check that there exists a constant M such that

‖τh(X,X)− τh(X̃, X̃)‖γ ≤M‖h‖1;γ‖(X,X)− (X̃, X̃)‖γ , (4.7)

so that τh is Lipschitz continuous as a map from Cγg ([0, T ],Rd) to itself.
Denote now byWγ the completion of C∞0 (R−;Rd) with respect to the norm

|||ω|||γ ≡ sup
s,t∈R−
s6=t

|ω(t)− ω(s)|
|t− s|γ(1 + |t|+ |s|) 1

2

. (4.8)
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For H ∈ (0, 1) and γ ∈ (0, H), it can be shown that there exists a probability measure
P− onWγ such that the canonical process associated to P− is a fractional Brownian
motion with Hurst parameter H [Hai05].

Notice now that the operator G given by (4.3) is actually defined on all of Wγ .
Indeed, similarly to [HO07, Prop A.2], it can be checked that the kernel g defined in
Equation (4.4) is smooth away from 0 and that its derivative satisfies

g′(t) = O(1) , t� 1 , g′(t) = O(tH−
3
2 ) , t� 1 . (4.9)

It follows that, for w− ∈ Wγ , one has the bound

|(Gw−)′(t)| ≤ C|||w−|||γ(tγ−1 + tγ−
1
2 ) ,

where ||| · |||γ is as in (4.8). In particular, over every finite time interval there exists a
constant M such that

‖Gw−‖1;γ ≤M |||w−|||γ . (4.10)

As a consequence of this discussion, (4.2) makes sense in Cγg (R+,Rd) for every w− ∈
Wγ , and this is how we will interpret this identity from now on.

4.1 Derivatives of the solutions
We now derive expressions for the derivatives of solutions to (1.1), both with respect
to its initial condition and with respect to the driving noise. For this, we make the
following assumption, which will be enforced throughout the whole article:

Assumption 4.1 The vector fields Vj are C∞ and all of their derivatives grow at most
polynomially fast. Furthermore, for every initial condition z ∈ Rn, every final time T ,
and every (X,X) ∈ Dγg ([0, T ],Rd) with γ > 1

3 , (1.1) has a solution up to time T .

Remark 4.2 Since the solution to (1.1) depends continuously on both its initial condi-
tion and the rough path (X,X) [FV10b], it follows from a simple compactness argument
that, for every R > 0 and every final time T > 0, there exists a constant M such that
the bound

‖(Z,Z ′)‖X,γ ≤M ,

holds uniformly over all initial conditions |z| ≤ R and all driving noises ‖(X,X)‖γ ≤ R.
Here, we use the fact that, over finite time intervals, the embedding Dβg ↪→ Dγg is
compact for β > γ [FV10b, Prop. 8.17] and that the continuous dependence on the
driving path also holds in Dβg .

For an initial condition z and an instance of the driving noise w = (w−, w+), let
Φt(z, w+) denote the solution map of (1.1):

Zt = Φt(z, w+) .

Note that for defining the solution, we only use w+ and do not use w−, the past of the
driving noise. Define the Jacobian

J0,t
def
=
∂Φt(z, w+)

∂z
,

and, for notational convenience, set V = (V1, V2, · · · , Vd). Then the Jacobian J0,t and
its inverse satisfy the (rough) evolution equations

dJ0,t = DV0(Zt) J0,t dt+DV (Zt) J0,t dXt , (4.11a)



MALLIAVIN DERIVATIVES 16

dJ−1
0,t = −J−1

0,t DV0(Zt) dt− J−1
0,t DV (Zt) dXt . (4.11b)

Here, both J and J−1 are n × n matrices, and J0,0 = J−1
0,0 = 1. In order to deduce

(4.11b) from (4.11a), we used the chain rule, which holds provided that (X,X) ∈ Cγg .
We now consider the effect on the solution of a variation, not of the initial condition,

but of the driving noise itself. For this, we define the operators AT : L2([0, T ],Rd) 7→
Rn by

AT v =

∫ T

0

J−1
0,s V (Zs) v(s) ds . (4.12)

A particular role will be played byA∗T : Rn 7→ L2([0, T ],Rd), the adjoint ofAT , which
is given by:

(A∗T ξ)(s) = V (Zs)∗(J−1
0,s )∗ξ , ξ ∈ Rn . (4.13)

It is known [FV10b] that for every sample path w+ of fBm in Dγg and for any fixed T ,
the map1

h ∈ HH,+ 7→ ΦT (z, w+ + h) (4.14)

is Fréchet differentiable, whereHH,+ denotes the Cameron-Martin space of the Gaus-
sian process w+. Furthermore, setting h(s) =

∫ s
0
v(r) dr for some v, one has the

identity
DhΦT (z, w+ + h)|h=0 = J0,TAT v , (4.15)

whenever v ∈ L2. Note that, by (4.2), the space HH,+ consist of those paths h such
that h = D 1

2−H h̃ for some h̃ in the Cameron-Martin space of W , which in turn is equal
to H1, the space of square integrable functions with square integrable weak derivative.
This shows that the corresponding element v does not necessarily belong to L2, so that
one may wonder what the meaning of (4.15) is in general. Writing Fs = J−1

0,s V (Zs) as
a shorthand, a calculation shows that there is a constant c such that

ATD
1
2−Hv = c

∫ T

0

(∫ T

s

(r−s)H− 3
2 (Fs−Fr) dr+

(T − s)H− 1
2

1
2 −H

Fs

)
v(s) ds , (4.16)

so that |ATD
1
2−Hv| ≤M‖F‖Cγ‖v‖L2 for some constantM , provided that γ > 1

2−H .
Since, in our particular case, F is a rough path controlled by (X,X), the condition
‖F‖Cγ <∞ for γ > 1

2 −H can always be satisfied when 1
2 −H < H , namely when

H > 1
4 .

In the sequel, we will write DvZ
z
T as a shorthand for the derivative of the solution

map in the direction h =
∫ ·

0
v(s) ds, i.e.

DvZ
z
T = DhΦT (z, w+) = J0,TAT v . (4.17)

We also set
DsZ

z
t = Js,tV (Zzs ) def

= J0,tJ
−1
0,sV (Zzs ) , (4.18)

so that DvZ
z
T is the L2-scalar product of DZzT with v.

1Since Dγg is not a linear space, the “addition” of the paths w+ and h should be interpreted in the sense of
(4.5) below.
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4.2 Malliavin differentiability of the solutions
Using the representation (4.2), the solution map Φt(z, w+) conditioned on the past w−
of the driving noise may be viewed as a functional of an underlying Wiener process
on [0,∞) which then allows us to define the Malliavin derivative of the solution map
DZzt = DΦt(z, w+) in the usual way. As shown in [CFV09], the Malliavin derivative
is related to the Fréchet derivative given by (4.14) in the following way. For any∫ ·

0
v(s) ds ∈ HH,+, define ṽ = I 1

2−Hv. Then we have the identity

DṽZzT =
1

αH
DvZ

z
T =

1

αH
J0,TAT v =

1

αH
J0,TATD

1
2−H ṽ , (4.19)

where αH is as in (4.2). In line with the notation from [Nua06], we define s 7→ DsZzt
to be the stochastic process such that the relation

DṽZzt =

∫ t

0

ṽ(s) DsZzt ds ,

holds for every ṽ ∈ L2. Comparing this with (4.16), we see that one has the identity

DsZzt = c

∫ t

s

(r − s)H− 3
2 (Js,tV (Zzs )− Jr,tV (Zzr )) dr

+
2c

1− 2H
(T − s)H− 1

2 Js,tV (Zzs ) ,
(4.20)

for some fixed constant c. (Furthermore, DsZzt = 0 for s ≥ t.) In general, we can
rewrite this as

DZzt = D
1
2−H
+ DZzt , (4.21)

where DsZ
z
t is as in (4.18), with DsZ

z
t = 0 for s ≥ t, and D

1
2−H
+ is the linear operator

given by

(D
1
2−H
+ f)(s) = c

∫ ∞
s

(r − s)H− 3
2 (f (r)− f (s)) dr .

The aim of this section is to obtain a priori bounds on the higher-order Malliavin
derivatives of the solution. As a first step, we obtain pointwise bounds on multiple
derivatives of the solution map. In view of (4.18), we will need to compute DsJ0,t

in order to obtain such bounds. At this stage, let us put indices back into the various
expressions in order to clarify the precise meaning of the various expressions that appear.
We will use Einstein’s convention of summation over repeated indices and we write D i

s

for the derivative with respect to the ith component of the driving noise (X,X). It is
clear that DsJ0,t = 0 for t < s. Furthermore, we see from (4.11a) that

D i
sJ

k`
0,s = DmV

k
i (Zs)Jm`0,s . (4.22)

For t > s, we formally differentiate (4.11a) and we use the identity (4.18) to obtain the
rough evolution equation

dD i
sJ

k`
0,t = DmV

k
j (Zt) D i

sJ
m`
0,t dX

j(t) +DmV
k
0 (Zt) D i

sJ
m`
0,t dt

+D2
mnV

k
j (Zt) Jm`0,t J

no
s,tV

o
i (Zt) dXj(t) +D2

mnV
k
0 (Zt) Jm`0,t J

no
s,tV

o
i (Zt) dt .

Note now that this is a linear inhomogeneous equation for D i
sJ

k`
0,t, where the linear part

has exactly the same structure as (4.11a). As a consequence, we can solve it using the
variation of constants formula which, when combined with (4.22), yields the expression

D i
sJ

k`
0,t = Jkjs,tDmV

j
i (Zs)Jm`0,s +

∫ t

s

Jkpr,tD
2
mnV

p
j (Zr) Jm`0,r J

nq
s,rV

q
i (Zr) dXj(r)
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+

∫ t

s

Jkpr,tD
2
mnV

p
0 (Zr) Jm`0,r J

nq
s,rV

q
i (Zr) dr . (4.23)

A similar identity also holds for DsJ
−1
0,t , but the precise form of this expression is

unimportant as will be seen presently.
Denote by T the space of finite rooted trees and by F the space of finite forests

(unordered finite collections of trees, allowing for repetitions). Formally, we denote by
(τ1, . . . , τk) the forest consisting of the trees τ1, . . . , τk. For F = (τ1, . . . , τk) ∈ F , we
also write [F ] = [τ1, . . . , τk] ∈ T for the tree obtained by gluing the roots of the trees
of F to a common new root.

For any forest F ∈ F , we then build a sequence of subsets VkF ⊂ C
γ
X ([0, T ],R)

with k ≥ 1 in the following way. For the empty forest (), we set Vk() = {1} for every k.
For F = (•), the forest consisting of one single tree, which itself consists only of a root,
we set

Vk(•) = {J ij0,·, (J
−1
0,· )

ij
, D(`)

i1,...,i`
V jm(Z·) : ` ∈ {0, . . . , k}} ,

where m ∈ {0, . . . , d}, and the indices i, j, and i1, . . . i` belong to {1, . . . , n}. For
forests F = (τ1, . . . , τm) consisting of more than one tree, we set

Vk(τ1,...,τm) = {Y1 · · ·Ym : Yj ∈ Vk(τj ) ,∀j} . (4.24)

In other words, the processes contained in Vk(τ1,...,τm) are obtained by multiplying
together the processes contained in Vk(τj ). Finally, if F consists of a single tree consisting
of more than just one root, so that F = [G] for some forest G, we set

Vk[G] =
{∫ ·

0

Ys dX
`(s) ,

∫ ·
0

Ys ds : Y ∈ VkG , ` ∈ {1, . . . , d}
}
. (4.25)

This construction has the following feature:

Lemma 4.3 There exists a map F 7→ TF from F to 2F , the set of subsets of F , with
the following properties:
• The set TF is finite for every F ∈ F .
• For every F ∈ F , k ≥ 1, there exist coefficients ci

Y,U,Ū
taking values in

{0, 1,−1} such that the identity

D i
sYt =

∑
G,Ḡ∈TF

∑
U∈Vk+1

G

∑
Ū∈Vk+1

Ḡ

ciY,U,ŪUsŪt

holds for every Y ∈ VkF and every 0 ≤ s < t ≤ T .

Proof. Note first that, by writing Jr,t = J0,tJ
−1
0,r and similarly for Js,r, we see from

(4.23) that DsJ0,t can indeed be written as

D i
sJ

k`
0,t =

∑
G,Ḡ∈TJ

∑
U∈V2

G

∑
Ū∈V2

Ḡ

cik`U,ŪUsŪt ,

for some coefficients cik`
U,Ū
∈ {0, 1,−1}, and for

TJ = {(•), (•, •, •), (•, [•, •, •, •, •])} .
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The same statement holds true for D i
s(J
−1
0,t )k`. Furthermore, we have from (4.18) and

the chain rule the identity

D i
sD

(`)
i1,...,i`

V jm(Zt) = D(`+1)
i1,...,i`,k

V jm(Zt)J
kp
s,tV

p
i (Zs) ,

so that we have

D i
sD

(`)
i1,...,i`

V jm(Zt) =
∑

G,Ḡ∈TD

∑
U∈V2

G

∑
Ū∈V2

Ḡ

c̄U,ŪUsŪt ,

for some coefficients c̄U,Ū ∈ {0, 1,−1} (depending also on all the indices appearing on
the left hand side), and for

TD = {(•, •)} .
It follows that we can indeed find a set T(•) = TJ

⋃
TD with the two properties stated

in the lemma.
For more complicated forests, the claim follows by building T recursively in the

following way. If F = (τ1, . . . , τm) for trees τj such that T(τj ) is known, we observe
that one has the identity

Dj
sY1(t) . . . Ym(t) =

m∑
i=1

Y1(t) . . . Yi−1(t) Dj
sYi(t)Yi+1(t) . . . Ym(t) . (4.26)

As a consequence, if we write F ⊕G for the union of two forests and F 	G for the
forest obtained by removing from F its subforest G, we can set

T(τ1,...,τm) =

m⋃
i=1

{T(τi), F 	 (τi)⊕ T(τi)} . (4.27)

It follows from (4.26) and (4.24) that this definition does indeed ensure that the requested
properties are satisfied.

It remains to consider the case F = (τ ) for some non-trivial tree τ . In this case,
there exists a forest G such that τ = [G] and elements in VkF are given by (4.25). Note
now that one has the identities

D i
s

∫ t

0

Yr dX
`(r) = δi`Ys +

∫ t

0

D i
sYr dX

`(r) ,

D i
s

∫ ·
0

Yr dr =

∫ t

0

D i
sYr dr .

As a consequence, if we set

T[G] = TG ∪ {G, ()} ∪ {([H]) : H ∈ TG} . (4.28)

the requested properties are again satisfied by induction. Since every forest can be
built from elementary trees by the two operations considered in (4.27) and (4.28), this
concludes the proof.

For our purpose, this has the following useful consequence. For a fixed final time T ,
define the controlled rough path J z ∈ Dγg ([0, T ],R2n2+n) by

J zt = (Zt, J0,t, J
−1
0,t ) . (4.29)

(Note that both J and J−1 also implicitly depend on the starting point z.) We then have
an a priori bound on the derivatives of the solution with respect to the driving noise in
terms of J z:
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Proposition 4.4 Let At denote any component of the vector J zt . Under assumption 4.1,
for every multiindex α = (α1, . . . , α`) there exists a finite index set Tα and elements
F kj ∈ C

γ
X ([0, T ],R) with k ∈ Tα and j ∈ {1, . . . , |α|+ 1}, such that the identity

Dα1
s1 · · ·D

α`
s`
At =

∑
k∈Tα

F k1 (s1) · · ·F k` (s`)F k`+1(t) , (4.30)

holds for every 0 ≤ s1 < . . . < s` < t ≤ T .
Furthermore, there exist constants M and p depending only on α and T such that

the bound
‖F kj ‖X,γ ≤M(1 + ‖(J z,J z ′)‖X,γ)

p ,

holds for every k and j.

Proof. The first claim follows immediately from Lemma 4.3 by induction on |α|. The
second claim follows from the construction of the sets VkF , combined with Lemma 2.4
and Theorem 2.2.

In the particular case when X is fractional Brownian motion with Hurst parameter
H , it follows from Proposition 4.4 that, if we consider the Malliavin derivatives Ds with
respect to the underlying Wiener process as at the beginning of this section, we have the
following bound:

Theorem 4.5 As above, letAt denote any component of the vector J zt and let (X,X) be
fractional Brownian motion with Hurst parameter H ∈ ( 1

3 ,
1
2 ). Under Assumption 4.1,

for every multiindex α = (α1, . . . , α`), every γ ∈ ( 1
3 , H), every δ > 0, and every T > 0,

there exist constants M and p such that the bound

(
|Dα1
s1 · · ·D

α`
s`
As`+1

|
∏̀
j=1

|sj+1 − sj |1−2H+δ
)
≤M(1 + ‖(J z,J z ′)‖X,γ)

p ,

holds uniformly for all 0 ≤ s1 < . . . < s`+1 ≤ T . Furthermore, the exponent p can be
chosen to depend only on |α|.

Remark 4.6 Since the function t 7→ t2H−1−δ is square integrable near the origin for
δ sufficiently small, the random variable At belongs to the stochastic Sobolev space
D∞loc. If furthermore E‖(J ,J ′)‖pX,γ <∞ for every p, then At belongs to the stochastic
Sobolev space D∞. See [Nua06, p. 49] for the definitions of D∞loc and D∞.

Proof. Consider now s1 < . . . < s` to be fixed and consider, for j = 0, . . . , `, the
sequence of functions

F (j)(rj+1, . . . , r`) = Ds1 · · ·DsjDrj+1
· · ·Dr`At ,

so that our aim is to obtain a bound on F (`). Note that, by (4.21), the F (j) satisfy the
recursive formula

F (j)(rj+1, . . . , r`) = c

∫ ∞
sj

(r − sj)H−
3
2 (F (j−1)(r, rj+1, . . . , r`) (4.31)

− F (j−1)(sj , rj+1, . . . , r`)) dr .
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We claim now that, for every j, there exists an index set Tj and a family of functions
F (j,k)
i such that, for sj < rj+1 < . . . < r` < t, one has the identity

F (j)(rj+1, . . . , r`) =
∑
k∈Tj

∏̀
i=j+1

F (j,k)
i (ri) . (4.32)

Furthermore, for every β ∈ ( 1
2 − H,H), there exists a constant M independent of

s1, . . . , s` such that these functions satisfy the bound

∏̀
i=j+1

‖F (j,k)
i (ri)‖β,j ≤M

j∏
i=1

|sj+1 − sj |H−
1
2−β(1 + ‖(J z,J z ′)‖X,γ)

p , (4.33)

for some fixed p > 0. Here, where we denote by ‖F‖β,j the Cβ-norm (not seminorm!)
of F , restricted to the interval [sj+1, t]. In the special case j = `, this is just |F (t)|.
Once we show that (4.32) and (4.33) hold, the proof is complete since the special case
j = ` and the choice β = 1

2 −H + δ yields the stated claim for δ sufficiently small. For
larger values of δ, the claim can easily be reduced to that for small δ.

Note furthermore that F (j)(rj+1, . . . , r`) = 0 if there exists i > j such that ri > t
and that the function F (j) is symmetric under permutations of its arguments. As a
consequence, (4.32) is sufficient to determine F (j).

The proof now goes by induction over j. For j = 0, we have

F (0)(r1, . . . , r`) = Dr1 · · ·Dr`At ,

which is indeed of the form (4.32) by Proposition 4.4. In this case, the bound (4.33)
reduces to the statement that the F (0,k)

i are β-Hölder continuous, which is also a con-
sequence of Proposition 4.4. In order to make use of the recursion (4.31), we have to
rewrite it in such a way that the arguments of F (j−1) are always ordered. Using the
recursion hypothesis, we then have the identity

F (j)(rj+1, . . . , r`) = c
∑

k∈Tj−1

∫ rj+1

sj

(r − sj)H−
3
2 (F (j−1,k)

j (r)− F (j−1,k)
j (sj)) dr

×
∏
i>j

F (j−1,k)
i (ri)

+ c
∑

k∈Tj−1

∑
i>j

∫ ri+1

ri

(r − sj)H−
3
2F (j−1,k)

i (r) dr

×
(i−1∏
q=j

F (j−1,k)
q (rq+1)

)( ∏̀
q=i+1

F (j−1,k)
q (rq)

)
− 2c

1− 2H
(rj+1 − sj)H−

1
2F (j−1,k)

j (sj)
∏
i>j

F (j−1,k)
i (ri)

def
= T1 + T2 + T3 .

Rewriting the integral from ri to ri+1 appearing in T2 as∫ t

ri

(r − sj)H−
3
2F (j−1,k)

i (r) dr −
∫ t

ri+1

(r − sj)H−
3
2F (j−1,k)

i (r) dr ,
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we see that F (j) is indeed again of the form (4.32). It remains to show that the bound
(4.33) holds. To show that it holds for T1, write

Gk(s) =

∫ s

sj

(r − sj)H−
3
2 (F (j−1,k)

j (r)− F (j−1,k)
j (sj)) dr ,

so that one has, for s > sj , the bound

|∂sGk(s)| ≤ (s− sj)H−
3
2 +β‖F (j−1,k)

j ‖β,j−1 .

In particular, one has for s > sj+1 the bound

|∂sGk(s)| ≤ (sj+1 − sj)H−
1
2 (s− sj)β−1‖F (j−1,k)

j ‖β,j−1 .

Furthermore, we obtain in a similar way the bound

|Gk(sj+1)| ≤M (sj+1 − sj)H−
1
2 +β‖F (j−1,k)

j ‖β,j−1 ,

for some constant M , so that a straightforward calculation yields

‖Gk‖β,j ≤M (sj+1 − sj)H−
1
2 ‖F (j−1,k)

j ‖β,j−1 ,

for some constant M . The requested bound on T1 (actually a bound that it better than
requested) then follows at once.

To bound T2, we proceed similarly by setting

Gk(s) =

∫ t

s

(r − sj)H−
3
2F (j−1,k)

i (r) dr ,

and noting that Gk(t) = 0 and

|∂sGk(s)| ≤ (sj+1 − sj)H−
1
2−β(s− sj)β−1‖F (j−1,k)

i ‖β,j−1 .

It follows as above that

‖Gk‖β,j ≤M (sj+1 − sj)H−
1
2−β‖F (j−1,k)

i ‖β,j−1 ,

as requested. Finally, the bound on T3 follows in the same way.

5 Regularity of laws

Our aim in this section is to show that, if the vector fields V satisfy Hörmander’s
celebrated Lie bracket condition (see below), then the Malliavin matrix of the process
Zt is almost surely invertible and to obtain quantitative bounds on its lowest eigenvalue.

In order to state Hörmander’s condition, we define recursively the families of vector
fields

V0 = {Vk : k ≥ 1} , Vn+1 = Vn ∪ {[U, Vk] : U ∈ Vn , k ≥ 0} ,

where [U, V ] denotes the Lie bracket between the vector fields U and V . Note that
under Assumption 4.1, the elements in Vn also have derivatives of all orders that grow
at most polynomially. We now formulate Hörmander’s bracket condition [Hör67]:
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Assumption 5.1 For every z0 ∈ Rn, there exists N ∈ N such that the identity

span{U (z0) : U ∈ VN} = Rn (5.1)

holds.

It is well-known from the works of Malliavin, Bismut, Kusuoka, Stroock and others
[Mal78, Bis81, KS84, KS85, KS87, Nor86, Mal97, Nua06] that when the driving noise
X is Brownian motion, one way of proving the smoothness of the law of ZT under
Hörmander’s condition is to first show the invertibility of the “reduced Malliavin matrix”
2

CT
def
= ATA∗T =

∫ T

0

J−1
0,sV (Zs)V (Zs)∗(J−1

0,s )∗ ds . (5.2)

Recall that the matrix norm of a symmetric matrix is equal to its largest eigenvalue.
Since CT is a symmetric matrix, one can write the norm of its inverse as

‖C−1
T ‖

−1 = inf
‖ϕ‖=1

〈v, CT v〉, ϕ ∈ Rn . (5.3)

Before we turn to our bound on the inverse ofCT , let us introduce some notation. For
any smooth vector field U , define the process ZU (t) = J−1

0,t U (Zt), and set furthermore

Rz
def
= 1 + Lθ(X)−1 + ‖(X,X)‖γ + ‖(J z,J z ′)‖X,γ + |z| , (5.4)

where J z is as in (4.29). Here, we fix a “roughness exponent” θ > H which will appear
n subsequent statements.

Lemma 5.2 Fix a final time T > 0. Under Assumption 4.1, there exist constants
c, a > 0 and M > 0 such that the bound

‖〈ϕ,ZU (·)〉‖∞ ≤MRc |〈ϕ,CTϕ〉|a ,

holds for all U ∈ V1, all ϕ ∈ Rn such that ‖ϕ‖ = 1, all initial conditions z and all
(X,X) ∈ Dγg ([0, T ],Rd).

Proof. By definition we have

〈ϕ,CTϕ〉 =

d∑
i=1

∫ T

0

〈ϕ, J−1
0,sVi(Zs)〉2 ds =

d∑
i=1

‖〈ϕ,ZVi (·)〉‖2L2[0,T ] . (5.5)

To obtain an upper bound of order |〈ϕ,CTϕ〉|a on the supremum norm, our main tool
is the interpolation inequality

‖f‖∞ ≤ 2 max
(
T−

1
2 ‖f‖L2[0,T ], ‖f‖

2γ
2γ+1

L2[0,T ] ‖f‖
1

2γ+1
γ

)
, (5.6)

which holds for every γ-Hölder continuous function f : [0, T ] 7→ R (see for example
[HP11, Lemma A.3]). Since in our case the final time T is fixed, the L2 norm is
controlled by the γ-Hölder norm, so that

‖〈ϕ,ZVi (·)〉‖∞ ≤M‖〈ϕ,ZVi (·)〉‖
2γ

2γ+1

L2[0,T ]‖〈ϕ,ZVi (·)〉‖
1

2γ+1

Cγ

2This is a slight misnomer since our SDE is driven by fractional Brownian motion, rather than Brownian
motion. One can actually rewrite the solution as a function of an underlying Brownian motion by making use
of the representation 4.2, but the associated Malliavin matrix has a slightly more complicated relation to CT
than usual. Still, it will be useful to first obtain a bound on the inverse of CT .
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Since the vector fields Vi have derivatives with at most polynomial growth by
assumption, we obtain immediately from Lemma 2.4 the bound

‖〈ϕ,ZVi (·)〉‖Cγ ≤MRa , (5.7)

for some exponent a. Combining this with (5.5), the claim follows at once.

The next lemma involves an iterative argument (similar in spirit to [KS85, Nor86,
BH07]) to show that a similar bound holds with Vj replaced by any vector field obtained
by taking finitely many Lie brackets between the Vj’s.

Lemma 5.3 Fix a final time T > 0. Under Assumption 4.1, for every i ≥ 1, there exist
constants ci, ai > 0 and M > 0 such that

‖〈ϕ,ZU (·)〉‖∞ ≤MRci |〈ϕ,CTϕ〉|ai ,

for every U ∈ Vi, every ϕ ∈ Rn such that ‖ϕ‖ = 1, every initial condition z and every
(X,X) ∈ Dγg ([0, T ],Rd).

Proof. The proof goes by induction over i. We already know from Lemma 5.2 that the
statement holds for i = 1. Assume now that it holds for some i ≥ 1 and let us show
that it holds for i+ 1. For any t ≤ T and U ∈ Vi, a simple application of the chain rule
(which holds since (X,X) is assumed to be a geometric rough path) yields

〈ϕ,ZU (t)〉 =

∫ t

0

〈ϕ,Z[V0,U ](s)〉 ds+

d∑
j=1

∫ t

0

〈ϕ,Z[Vj ,U ](s)〉dXj
s , (5.8)

where the second integral is a rough integral as in Theorem 2.2.
First we derive a priori bounds on the two integrands of (5.8) and then apply Theorem

3.4. It follows from Lemma 2.4 and Assumption 4.1 that

‖〈ϕ,Z[Vj ,U ](·)〉‖X,γ ≤MRa , j = 0, . . . , d , (5.9)

so that a similar bound holds on ‖〈ϕ,Z[Vj ,U ](·)〉‖γ .
By the induction hypothesis, for every U ∈ Vi we have the bound ‖〈ϕ,ZU (·)〉‖∞ ≤

MRci |〈ϕ,CTϕ〉|ai for some constants ai, ci. Applying Theorem 3.4 to (5.8) and using
the a priori bound (5.9), we conclude that there exist constants αi+1, ci+1 such that

‖〈ϕ,Z[U,V`](·)〉‖∞ ≤MRci+1 |〈ϕ,CTϕ〉|αi+1 ,

for ` = 0, . . . , d. Since Vi+1 contains precisely the vector fields [U, V`], this concludes
the proof.

Now we combine the above two lemmas and Hörmander’s hypothesis, Assump-
tion 5.1, to obtain lower bounds on the smallest eigenvalue of CT .

Proposition 5.4 Assume that Assumptions 4.1 and 5.1 hold. Fix T > 0 and let the
matrix CT and the quantityR be as defined in (5.2) and (5.4) respectively. Then there
exists a constant c > 0 such that the bound

inf
‖ϕ‖=1

|〈ϕ,CTϕ〉| > MR−c , (5.10)

holds uniformly over every driving path (X,X) ∈ Dγg and every initial condition z.
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Remark 5.5 We emphasise again that (5.10) yields a lower bound on the eigenvalues
of CT that is not probabilistic in nature. All the probabilistic cancellations that take
place in the classical probabilistic proofs of Hörmander’s theorem are “hidden” in the
strict positivity of Lθ(X) and the boundedness of ‖(X,X)‖γ .

Proof of Proposition 5.4. Let N ∈ N be such that

K
def
= inf
|z|≤R

inf
‖ϕ‖=1

∑
U∈V̄N

|〈ϕ,U (z)〉|2 > 0 . (5.11)

The existence of such an N follows from Assumption 5.1 and the smoothness of the
vector fields V .

Note now that, considering the right hand side at time 0, we see that

|〈ϕ,U (z0)〉|2 ≤ ‖〈ϕ,ZU (·)〉‖2∞ .

From Lemmas 5.2 and 5.3, there then exist constants cN , αN such that

K ≤ inf
‖ϕ‖=1

sup
U∈V̄N

‖〈ϕ,ZU (·)〉‖2∞ ≤MRcN inf
‖ϕ‖=1

|〈ϕ,CTϕ〉|αN , (5.12)

which is precisely the required bound.

Now let MT be the Malliavin matrix of the map W 7→ ZzT where W is the
underlying Wiener process from the representation (4.2). Then we have the following
pathwise bound onMT :

Theorem 5.6 Under the assumptions of Proposition 5.4, there exists a constant c1 > 0
such that the bound

inf
‖ϕ‖=1

|〈ϕ,MTϕ〉| > MR−c1 , (5.13)

holds for every driving path (X,X) ∈ Dγ and every initial condition with |z| ≤ R.

Proof. By virtue of (4.19), we have the identity

|〈ϕ,MTϕ〉| = ‖(D
1
2−H )∗A∗TJ∗0,Tϕ‖2L2[0,T ] (5.14)

where (D 1
2−H )∗ is the L2[0, T ] adjoint of the operator D 1

2−H defined in (4.1). Notice
that I 1

2−H : L2[0, T ] 7→ L2[0, T ] is a bounded operator and since I 1
2−H and D 1

2−H

are inverses of each other, we conclude that operator (D 1
2−H )∗ has a bounded inverse in

L2[0, T ]. Thus

‖(D 1
2−H )∗A∗TJ∗0,Tϕ‖L2[0,T ] ≥M‖A∗TJ∗0,Tϕ‖2L2[0,T ] = M〈J∗0,Tϕ,CTJ∗0,Tϕ〉 ,

which, from Proposition 5.4, is bounded from below by

MR−c‖J∗0,Tϕ‖2 ≥MR−c1‖ϕ‖2 ,

where the last bound is a consequence of the fact that ‖J−1
0,T ‖ ≤MR.



REGULARITY OF LAWS 26

5.1 Probabilistic Bounds and Smoothness of Laws
Recall from (4.2) that the “future” evolution of the fBm conditional on the past w− may
be expressed as

w+ = Gw− + αHD
1
2−HW ,

where Gw− is the conditional expectation with the operator G given by (4.3). As in the
previous section, we will mostly be interested in the situation when w− is fixed and the
conditional law of the solution is considered.

One problem is that it is in general quite difficult to obtain moment bounds on the
Jacobian (and its inverse) for equations of the type (1.1) when the driving noise is only
γ-Hölder for some γ > 1

3 . (Rather than γ > 1
2 .) The best bounds obtained in [FV10b]

rule out a downright explosion of the Jacobian, but only yield logarithmic moments
in general. The very recent article [CLL11] obtains such moment bounds, but under
boundedness conditions that are stronger than Assumption 4.1. See also [FR11] for a
related result. We therefore state the moment bounds on the solution and its Jacobian as
an additional assumption:

Assumption 5.7 There exists an exponent ζ < 2 and a seminorm ||| · ||| on C(R−,Rd)
such that |||w−||| is almost surely finite and such that, for every R > 0 and every p ≥ 1,
the bound

Ẽ‖(J z,J z ′)‖pX,γ ≤M exp(M |||w−|||ζ) , (5.15)

holds for some constant M , uniformly over all initial conditions with |z| ≤ R.

Remark 5.8 Combining (5.15) with Fernique’s theorem immediately yields the uncon-
ditioned bound

E‖(J z,J z ′)‖pX,γ ≤M , (5.16)

for any p ≥ 1.

Now we combine the results above with the results from the previous section to ob-
tain probabilistic bounds on the inverse of the Malliavin matrix, under the additional
hypothesis that Assumption 5.7 holds.

Proposition 5.9 Let (1.1) be such that Assumptions 4.1, 5.1, and 5.7 are satisfied. Fix
T > 0 and letMT be the Malliavin matrix as in (5.13).

Then, there exists a norm ||| · ||| such that |||w−||| < ∞ almost surely and, for any
R > 0 and any p ≥ 1, there exists M such that the bound

P̃
(

inf
‖ϕ‖=1

〈ϕ,MTϕ〉 ≤ ε
)
≤M eM |||w−|||ζ εp , (5.17)

holds for all ε ∈ (0, 1] and all initial conditions z with |z| ≤ R. Here, the constant ζ is
as in (5.15).

Similarly, the unconditional bound

P
(

inf
‖ϕ‖=1

〈ϕ,MTϕ〉 ≤ ε
)
≤M εp , (5.18)

holds.
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Proof. From Theorem 5.6 we deduce that for small enough ε,

P̃
(

inf
‖ϕ‖=1

|〈ϕ,MTϕ〉| ≤ ε
)
≤ P̃(R ≥ ε−c1) ,

for some constant c1 > 0. By Markov’s inequality, for any p ≥ 1, this expression is
bounded by

Mεpc1 ẼRp .
Now for any p ≥ 1, from Lemma 3.9 and Assumption 5.7 it follows that

Ẽ
(
Lθ(X)−p + ‖(J z,J z ′)‖pX,γ

)
≤M eM |||w−|||ζ .

Furthermore, it follows from (4.2) that Ẽ‖(X,X)‖pγ ≤M eM‖Gw−‖ζγ , thus proving the
claim (5.17). The second claim then follows from Fernique’s theorem.

As an immediate corollary, we obtain that the Malliavin matrix has all moments:

Corollary 5.10 Under the assumptions of Proposition 5.9, the matrixMT is almost
surely invertible and, for any R > 0 and any p ≥ 1,

Ẽ (‖M−pT ‖) ≤M eM |||w−|||ζ ,

uniformly over all initial conditions z of (1.1) such that |z| ≤ R.

As a consequence of Proposition 5.9, we obtain the smoothness of the laws of Zt
conditioned on an instance of the past w−:

Theorem 5.11 Let (1.1) be such that Assumptions 4.1, 5.1, and 5.7 are satisfied.
Then, for every realisation of the past w− with |||w−||| <∞, every initial condition

z and every t > 0, the conditional distribution of Zzt has a smooth density with respect
to Lebesgue measure. Furthermore, every derivative of this density has finite moments
of all orders with respect to the law of w−, so that the unconditioned distribution of Zzt
also has moments of all orders.

Remark 5.12 The norm |||·||| appearing in the statement is the same as the one appearing
in Assumption 5.7.

Proof. Combining Theorem 4.5 with Assumption 5.7, we see that the random variable
Zzt belongs to the space D∞. The claim then immediately follows from the fact that the
Malliavin matrix has inverse moments of all orders [Nua06].

The claim about the moments of the density follows from the fact that, by (5.15),
‖M−1

T ‖ and all Malliavin derivatives of Zzt also have unconditional moments of all
orders.

5.2 A cutoff argument
While [CLL11] provides a large collection of examples for which Assumption 5.7 holds,
this condition is not always easy to check. In this section, we therefore provide a cutoff
argument that allows to still show the existence of a density for the law of the solutions
to (1.1) under Hörmander’s condition, without assuming that Assumption 5.7 holds.
Actually, we show slightly more than the mere existence of a density, namely we show
that the density can be approximated from below by a sequence of smooth densities.
More precisely, the main result of this section is the following:
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Theorem 5.13 Assume that Assumptions 4.1 and 5.1 hold, and denote by µt the condi-
tional law of the solution to (1.1) at time t > 0, with fixed initial condition z ∈ Rn.

Then, there exists a sequence of increasing positive measures µnt with C∞ densities
%nt such that limn→∞ µnt (A) = µt(A) for every Borel set A. In particular, µt has a
density %t with respect to Lebesgue measure and limn→∞ %nt (x) = %t(x) for Lebesgue-
almost every x.

Remark 5.14 The statement that %t can be approximated from below by smooth func-
tions is strictly stronger than just %t ∈ L1, which was already obtained in [CF10]. An
example of a density function that cannot be approximated in this way would be the
characteristic function of a Cantor set with positive Lebesgue measure.

Proof. The idea is to perform the following cutoff argument. For β > 0 real, T ≥ t and
q ≥ 2 an even integer, we define the function

Λβ,q,T (X,X) =

∫ T

0

∫ t

0

|δXs,t|2q + ‖X̃st‖q

|t− s|2βq
ds dt , (5.19)

where we denote by X̃ the antisymmetric part of X. This function has the following
desirable properties:

1. From the scaling of the covariance function for fractional Brownian motion and
the equivalence of moments for Gaussian measures, we conclude that if (X,X)
is fractional Brownian motion with Hurst parameter H , then Λβ,q,T (X,X) has
finite (conditional) moments of all orders, provided that β < H .

2. For every γ ∈ (0, H) and every β ∈ (γ,H), there exists q > 0 and M > 0 such
that

‖X‖2γ + ‖X‖2γ ≤MΛ
1/q
β,q,T (X,X) . (5.20)

A proof of this fact can be found in [FV10b, p. 149]. Note that since we assume
(X,X) to be geometric, the symmetric part of Xs,t is given by δXs,t ⊗ δXs,t, so
that it is indeed sufficient to control the increments of X and the antisymmetric
part of X.

3. For every (X,X) ∈ Dγ , the map

HH,+ 3 h 7→ Λβ,q,T (τh(X,X)) ,

is Fréchet differentiable to all orders [FV10b], where τh is the “translation map”
as defined in (4.5) below. In particular, the map w+ 7→ Λβ,q,T (X(w+),X(w+))
belongs to the space D∞ of random variables that are Malliavin differentiable
of all orders with all Malliavin derivatives having moments of all orders. The
precise statement of this fact is given in Proposition A.1 in the appendix.

The proof is now straightforward. First of all, we let γ < H be as in the previous
sections, let β ∈ (γ,H), and fix q large enough so that (5.20) holds. We also let
χ : R+ → R+ be a C∞ non-increasing cut-off function so that χ(λ) = 1 for λ ≤ 1 and
χ(λ) = 0 for λ ≥ 2. With these definitions at hand, we set

Ψn(w+) def
= χ(n−1Λβ,q,T (X(w+),X(w+))) . (5.21)
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Fix furthermore z ∈ Rn and as before denote by Φt(z, w+) the Itô map, so that
µt = Φ∗tP. We then set µnt = Φ∗t (ΨnP). In other words, we have the identity

µnt (A) =

∫
Φ−1
t (A)

Ψn(w+)P(dw+) ,

valid for every measurable set A ⊂ Rn. Since Λβ,q,T is almost surely finite, we clearly
have µnt (A)↗ µt(A) for every measurable set A, so that the claim follows if we can
show that every µnt has a smooth density. This in turn follows by Malliavin’s lemma
[Nua06] if we are able to show that, for every bounded open set K ⊂ Rn and every
multiindex α, there exists a constant M such that the bound

Ẽ(DαG(Φt(z, w+))Ψn(w+)) ≤M (w−) sup
x∈K
|G(x)| ,

holds uniformly over all test function G : Rn → R that are C∞ and supported in K.
Let α = (α1, α2, · · · , αk), αi ∈ {1, 2, · · · , n}. Using the chain rule and the inte-

gration by parts formula from Malliavin calculus, we have the identity

Ẽ(DαG(Φt(z, w+))Ψn(w+)) = Ẽ
(
G(Φt(z, w+))Hα(Φt(z, w+),Ψn(w+))

)
,

(5.22)
where the random variablesHα are defined as follows. For α = φ, the empty multiindex,
we set Hφ = Ψn. Furthermore, given a random variable G and an index α1, we set

Hα1 (G) = D∗
(
G

n∑
j=1

(M−1
t )α1j Dj·Φt(z, w+)

)
. (5.23)

with these definitions at hand, it is straightforward to see that, for α = (α1, . . . , αk), we
have

Hα = Hα1(H(α2,...,αk)) .

Fortunately, all of these expressions can be controlled in the following way. Define the
set

Sn
def
= {w : Λβ,q,T (X(w+),X(w+)) ≤ 2n} . (5.24)

It then follows from the local property of the Skorokhod integral [Nua06, Prop. 1.3.15]
that Hα(w+) = 0 for w+ 6∈ Sn. As a consequence, we also have the identity

Hα = H̃α1
(H(α2,...,αk)) ,

where

H̃α1
(G) = D∗

(
G

n∑
j=1

(Ψ2n(M−1
t )α1j) Dj· (Ψ2nΦt(z, w+))

)
.

Note now that, by Corollary A.2, Theorem 5.6, and Theorem 4.5, both Ψ2n(M−1
t )α1j

and Ψ2nΦt(z, w+) belong to the stochastic Sobolev space D`,p for every `, p > 1,
uniformly over every w− such that |||w−|||γ ≤ R for any R > 0, where |||w−|||γ was
defined in (4.8).

As a consequence, for α = (α1, . . . , αk) and ` > 0, we have the bound

Ẽ‖D(`)Hα‖p ≤ K (|||w−|||)
∑

m≤`+1

(Ẽ‖D(m)H(α2,...,αk)‖2p)
1
2 ,

where we denote by D(k) the kth iterated Malliavin derivative and by ‖ · ‖ the L2-norm.
Since Hφ also belongs to D`,p for every `, p > 1 by Corollary A.2, the claim then
follows.
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6 Ergodicity of SDEs driven by fBm

The aim of this section is to use the preceding results in order to obtain ergodicity
results for stochastic differential equations driven by fractional Brownian motion. In
order to do this, we make use of the abstract framework introduced in [Hai05] and
further refined in [HO07, Hai09]. This allows to introduce a notion of a “strong Feller
property” for a large class of equations driven by non-white noise, together with a
corresponding version of the Doob-Khasminskii theorem, stating that the strong Feller
property, combined with a form of topological irreducibility and a quasi-Markovian
property, is sufficient to deduce the uniqueness of an “invariant measure” in a suitable
sense.

In order to use this framework, we view solutions to (1.1) as a discrete-time Markov
process on a space of the typeW ×Rn, whereW contains all the information about the
driving noise X required to solve (1.1) over a (fixed) time interval 1 and to predict the
law of its future evolution. In our case, it is natural to chooseW to be of the form

W =W− ⊕W+ ,

whereW− contains the “past” of the driving noise up to time 0, andW+ contains the
noise between times 0 and 1. The reason for splitting our space explicitly into two
parts is that in order to be able to give a meaning to solutions to (1.1), we consider the
driving noise as a rough path, i.e. we chooseW+ = Dγg ([0, 1],Rd) for some γ ∈ ( 1

3 , H).
(Recall that Dγg is the closure of the set of lifts of smooth functions in Dγ .)

On the other hand, in order to recover the conditional law of fractional Brownian
motion given its past, iterated integrals are not needed and it is sufficient to retain
information about the path itself. Therefore, it makes sense to chooseW− in a way
similar to [Hai05], namely we choose W− = Wγ for some γ < H , where Wγ was
defined in (4.8). Denote as before by P− the measure onWγ such that the canonical
process is a fractional Brownian motion with Hurst parameter H under P−.

For any given w− ∈ W−, we now construct a measure on W+ as the law of a
two-sided fractional Brownian motion, conditioned on its past w−, and enhanced with
the corresponding “area process”. More precisely, denote by P̃+ the law of the stochastic
process {Xt}t∈[0,1], given by

Xt = αH

∫ t

0

(t− r)H−
1
2 dWr , (6.1)

where W is a standard Wiener process and αH is the constant appearing in (4.2). In can
be checked that the covariance of P̃+ satisfies the assumptions of [CQ02, FV10a], so
that it can be lifted in a canonical way to a measure P+ onW+.

With this definition at hand, we define a Markov transition kernel P̂ fromW− to
W+ by

P̂(w−, ·) = τ∗Gw−
P+ .

It follows from (4.10), (4.6), and (4.7) that P̂ is Feller. Furthermore, it determines a
measure P onW =W− ×W+ in a natural way by

P(dw− × dw+) = P−(dw−)P̂(w−, dw+) .

It follows from our construction that if we denote by Π: W → C((−∞, 1],Rd) the
natural map that concatenates w− with the “path” component of w+, then the image
of P under Π is precisely the law of a two-sided fractional Brownian motion with
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Hurst parameter H . Similarly, we have a natural shift map Θ: W → W− that con-
sists of composing Π with the usual time-1 shift map that maps C((−∞, 1],Rd) into
C((−∞, 0],Rd) ⊃ W−. It follows from the definitions ofW− andW+ that the map Θ
is actually continuous. This construction allows us to lift P̂ to a Feller Markov transition
kernel onW by

P(w, ·) = δΘ(w) ⊗ P̂(Θ(w), ·) .

It also follows from our construction that P is invariant (and ergodic) for P . Indeed, the
action of P(w, ·) is to shift the “path” component of w backwards by one time unit and
to then concatenate it with the canonical lift toW+ of a piece of two-sided fractional
Brownian motion, conditional on its past being given by Θ(w).

We now combine the noise process (W,P,P) with the solution map for (1.1) in the
following way. As before let Φ·(z, w+) denote the map that solves (1.1) for a given
initial condition z and a given realisation w = (w−, w+) of the driving noise. Since the
Itô map is continuous on the space of rough paths with fixed Hölder regularity [FV10b],
the map Φ is continuous. We can then view the solutions to (1.1) as a Markov process
on Rn ×W with transition probabilities given by

Q(z, w; · ) = Φ∗zP(w, · ) ,

where we define Φz : W → Rn ×W by Φz(w) = (Φ1(z, w+), w). In other words, we
first shift back the noise by a time interval 1, then draw a sample from the conditional
realisation of an enhanced fractional Brownian motion on [0, 1], and then use this
sample to solve (1.1) between 0 and 1.

The aim of this section is to show that the Markov operator Q admits a unique
invariant measure, modulo a natural equivalence relation described in Section 6.1 below.
Note that while Q is Feller (since Φ is continuous and P is Feller), but it is certainly
not strong Feller in the usual sense. We will however show in Section 6.1 that there
is a natural generalisation of the strong Feller property in this context that, in a way,
only considers the part of Q in Rn. In this generalised sense, it turns out that the
invertibility of the Malliavin matrix shown in the preceding sections allows to prove
that Q satisfies the strong Feller property in this generalised sense. Combined with a
form of topological irreducibility and a “quasi-Markov” property, this is then sufficient
to deduce the uniqueness of the invariant measure for Q modulo equivalence of the
induced laws on the space of trajectories on Rn.

6.1 General uniqueness criterion for the invariant measure
From now on, we use the notation X = Rn in order to simplify notations and to
emphasise the fact that the results do not depend on the linear structure of the space.

The aim of this section is to study the uniqueness of “invariant measures” for (1.1).
The question of uniqueness of the invariant measure for the SDE (1.1) should not
be interpreted as the question of uniqueness of the invariant measure for the Markov
operator Q constructed in the previous section. This is because one might imagine
that the augmented phase space X ×W contains some “redundant” randomness that
is not necessary to describe the stationary solutions to (1.1). (This would be the case
for example if the Vi’s are not always linearly independent.) One would like therefore
to have a concept of uniqueness for the invariant measure that is independent of the
particular description of the driving noise.

To this end, we introduce the Markov transition kernel Q̄ from X × W to XN

constructed in the following way. Denote by (zn, wn) a sample of the Markov chain
with transition probabilities Q starting at (z0, w0). We then denote by Q̄(z0, w0; · ) the
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law of (z1, z2, . . .). (We do not include the starting point, consistent with the convention
that 0 6∈ N.)

With this notation, we have a natural equivalence relation between measures on
X ×W given by

µ ∼ ν ⇔ Q̄µ = Q̄ν . (6.2)

In other terms, two measures on X × W are equivalent if they generate the same
dynamics inX . In the particular case when the process inX is Markov, Q̄ is independent
of w and the equivalence relation simply states that the marginals on X should agree.
Denoting by ‖ · ‖TV the total variation norm, this suggests that the following is a good
generalisation of the strong Feller property to our setting:

Definition 6.1 The solutions to (1.1) are said to be strong Feller if there exists a jointly
continuous function ` : X 2 ×W → R+ such that

‖Q̄(z, w; ·)− Q̄(y, w; · )‖TV ≤ `(z, y, w) , (6.3)

and `(z, z, w) = 0 for every z ∈ X and every w ∈ W .

We stress again that the definition given here has essentially nothing to do with the
strong Feller property of Q. It rather generalises the notion of the strong Feller property
for the Markov process associated to (1.1) in the case where the driving noise is white
in time. See for example the review article [Hai09] for more details.

Definition 6.2 The solutions to (1.1) are said to be topologically irreducible if, for every
z ∈ X , w ∈ W and every non-empty open set U ⊂ X , one has Q(z, w;U ×W) > 0.

Remark 6.3 In order to prove topological irreducibility, one usually uses some form of
the Stroock-Varadhan support theorem [SV72]. A version of this theorem was shown in
the present context to hold in [FV10b, Thm 15.63]. This shows that, in order to verify
that (1.1) is topologically irreducible, it suffices to show that, for every x0 ∈ Rn, the set
of points that are obtained as the solution at time t = 1 to

ẋ(t) = V0(x(t)) +

d∑
i=1

Vi(x(t))ui(t) , x(0) = x0 ,

with u ∈ C∞([0, 1],Rd) is dense in Rn.

The following result, which is a consequence of [HO07, Thm 3.10], is a generalisa-
tion of the well-known Doeblin-Doob-Khasminskii criterion for the uniqueness of the
invariant measure of a general Markov chain:

Theorem 6.4 If the solutions to (1.1) are strong Feller and and topologically irreducible,
then (1.1) can have at most one invariant measure, modulo the equivalence relation
(6.2).

Proof. The only missing ingredient to be able to apply [HO07, Thm 3.10] is the “quasi-
Markov” property of the solutions to a stochastic differential equation driven by frac-
tional Brownian motion with H ∈ ( 1

3 ,
1
2 ). For the case H > 1

2 , this property was shown
to hold in [HO07, Prop. 5.11]. The proof in the case H < 1

2 is virtually identical, so we
only sketch it. It only uses the fact that the set X = {h ∈ C∞([0, 1],Rd) : h′(0) = 0}
has the following properties:
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1. The canonical injection X ↪→W+ has dense image inW+.
2. The set X belongs to the Cameron-Martin space of P̃+, viewed as a measure on
C([0, 1],Rd).

3. The set {Ĝh : h ∈ X}, where Ĝ is defined as

Ĝh(t) = γH

∫ 1

0

1

r
g
( t
r

)
(h(1− r)− h(0)) dr − γHh(0)

∫ ∞
1

1

r
g
( t
r

)
dr ,

belongs to the Cameron-Martin space of P̃+, viewed as a measure on C(R+,Rd).
Indeed, because of the representation (4.2) and the properties of fractional in-
tegrals, it suffices to check that DH+ 1

2 Ĝh ∈ L2(R+,Rd). for h ∈ X . Using
(4.9), an explicit calculation shows that DH+ 1

2 Ĝh ∼ t
1
2−H for t � 1 and

DH+ 1
2 Ĝh ∼ t−

1
2−H for t � 1 (see also [Hai05, Lemma 4.3]), so that this is

indeed the case.
Indeed, the first property ensures that, given any two open sets U, V ∈ W+, we can
find two smaller open sets Ū , V̄ ∈ W+, such that Ū ⊂ U , V̄ ⊂ V , and V̄ = τhŪ , with
h ∈ X . Furthermore, P+(Ū ) > 0, and so is P+(V̄ ) since the topological support of P+

is all ofW+ by [FV10b, Thm 15.63].
Since X belongs to the Cameron-Martin space of P+, this guarantees that, for every

w− ∈ W−, we can construct a subcoupling P̂U,V on W2
+ between P̂(w−, ·)|Ū and

P̂(w−, ·)|V̄ such that P̂U,V charges the set of pairs (w+, w̄+) such that w̄+ = τhw+. In
order to check the quasi-Markov property, it now suffices to check that the measures
Q̄(x,w; ·) and Q̄(x, w̄; ·) are mutually equivalent if (w, w̄) are such that their components
inW− are identical and their components inW+ satisfy w̄+ = τhw+. This in turn is
precisely the content of the third property above.

The aim of the next section is to show that (1.1) does indeed possess the strong Feller
property, provided that the vector fields {Vi} satisfy Hörmander’s bracket condition.

6.2 Verification of the strong Feller property
The main result of this section is that the strong Feller property is a consequence of
Hörmander’s bracket condition.

Theorem 6.5 Under Assumptions 4.1 and 5.1, (1.1) is strong Feller in the sense of
Definition 6.1.

Remark 6.6 The main feature that distinguishes this situation from the usual one is
that the process is not Markov. As a consequence, our definition of the strong Feller
property implies that, as in [HO07], we need to construct a coupling between solutions
starting from nearby points such that, with high probability, solutions agree not only
after some fixed time (say 1), but also for all subsequent times. Furthermore, we will
circumvent the fact that we do not assume a priori that the Jacobian of our solution has
moments. This will be done by a cutoff procedure similar to [HO07].

Proof. Fix some arbitrary value N > 1 and a Fréchet differentiable map ψ : XN → R,
which is bounded with bounded derivative. Denote furthermore by RN : XN → XN
the projection onto the first N components, and set as before

Q̄ψ(z, w) def
=

∫
XN

ψ(RNx)Q̄(z, w; dx) ,
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so that Q̄ψ : X ×W → R.
The strong Feller property will follow if we show the existence of a jointly continu-

ous function ` : X 2 ×W 7→ R+ such that

|Q̄ψ(z, w)− Q̄ψ(y, w)| ≤ `(z, y, w) , (6.4)

for all Fréchet differentiable functions ψ with bounded derivatives such that

sup
x∈XN

|ψ(x)| ≤ 1,

uniformly for all N > 1.
To this end, set zs = zs+ y(1− s) for s ∈ [0, 1] and ξ = z − y. Let Φ[1,T ](z, w+)

denote the solution to (1.1), restricted to the interval [1, T ]. Since

Qψ(z, w) = ẼψT (Φ[1,T ](z, w+)) ,

where ψT is just ψ, composed with the evaluation map at integer times, we have the
identity

Q̄ψ(z, w)− Q̄ψ(y, w) = Ẽ
∫ 1

0

DψT (Φ[1,T ](zs, w+))Js0,·ξ ds . (6.5)

Here, Js0,· denotes the linearisation of (1.1) with the initial condition zs.
If moment bounds for the Jacobian Js0,t are available, as in [HP11], we can proceed

via a stochastic control argument using a Bismut-Elworthy-Li type formula [EL94] to
show that that Qψ(z, w) is actually differentiable in z. Since we do not assume this, we
will combine this with a cutoff argument adapted from [HO07].

Recall the function Λβ,q(X,X) def
= Λβ,q,1(X,X) from (5.19) with β > γ and set q

to be an even integer such that (5.20) holds. Similar to (5.21), define the cutoff function

ΨR(w+) def
= χ

( 1

R
Λβ,q(X(w+),X(w+))

)
, R > 0 , (6.6)

where χ : R+ → R+ is a C∞ decreasing function with χ(λ) = 1 for λ ≤ 1 and
χ(λ) = 0 for λ ≥ 2.

From (6.5) we obtain that

|Q̄ψT (z, w)− Q̄ψT (y, w)| ≤
∣∣∣∣Ẽ∫ 1

0

ΨR(w+)DψT (Φ[1,T ](zs, w+))Js0,·ξ ds
∣∣∣∣

+
∣∣∣Ẽ (1−ΨR(w+))ψT (Φ[1,T ](z, w+))

∣∣∣
+
∣∣∣Ẽ (1−ΨR(w+))ψT (Φ[1,T ](y, w+))

∣∣∣
def
= T1 + T2 + T3.

Since ψT is bounded by 1, we have the bound,

T2 + T3 ≤ 2P
(
w,
{
w+

∣∣∣ Λβ,q(X(w+),X(w+)) > 2R
})

, (6.7)

which can be made arbitrarily small by choosing R sufficiently large.
For tackling the term T1, we now outline the stochastic control argument. Recall the

operator A from (4.12). As explained in (4.17), the Fréchet derivative of the flow map
with respect to the driving noise w+ in the direction of

∫ ·
0
v(s) ds is given by

Js0,TAT v .
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The key idea underlying Bismut-type formulae is to use the relation (4.17) to convert
the derivative of ΦT (zs, w+) with respect to its initial condition zs into a derivative with
respect to the driving noise and to use the integration by parts formula from Malliavin
calculus.

To this end, given an initial displacement ξ ∈ Rn, we seek for a “control” v on
the time interval [0, 1] that solves the equation A1v = ξ. If this can be achieved,
then we extend v to all of R+ by setting v(s) = 0 for s ≥ 1 and define ṽ = I 1

2−Hv.
Note that since v(s) = 0 for s > 1, it follows from the definition of AT that we have
AT v = A1v = ξ for T ≥ 1. If v is sufficiently regular in time so that ṽ ∈ L2(R+,Rd),
we have the identity

DṽZzsT = Js0,T ξ , (6.8)

for every T ≥ 1 and therefore, by the chain rule

DψT (Φ[1,T ])J0,·ξ = DψT (Φ[1,T ])DṽZzs· = Dṽ(ψT (Φ[1,T ])) . (6.9)

It remains to find a control v which solves A1v = ξ. From Proposition 5.4,
C1 = A1A∗1 is invertible and therefore one possible solution to the equation A1v = ξ
is given by the “least squares” formula:

v(r) def
= A∗1((A1A∗1)−1ξ)(r) = V (Zr)∗ (J−1

0,r )∗ C−1
1 ξ, r ∈ (0, 1) . (6.10)

Note that the control v also depends on the initial condition zs but since |zs| ≤ |z| ∨ |y|,
all our estimates for the rest of the proof will be uniform in the initial condition by
Remark 4.2.

Inserting the identity (6.9) into the definition of T1, we obtain

|T1| =
∣∣∣∫ 1

0

Ẽ(ΨR(w+) DṽψT (Φ[1,T ](zs, w+))) ds
∣∣∣ . (6.11)

Applying the integration by parts formula from Malliavin calculus, we obtain

Ẽ(ΨR(w+) DṽψT (Φ[1,T ])) = Ẽ
(
ψT (Φ[1,T ])D∗(ΨR(w+)ṽ)

)
≤
(
Ẽ|D∗(ΨR(w+)ṽ)|2

) 1
2

, (6.12)

where the second inequality follows from the fact that ψT is bounded by 1. To conclude
the proof, it thus suffices to show that

Ẽ(|D∗(ΨRṽ)|2) ≤ C(R,w−, z) |ξ|2 , (6.13)

where C is uniformly bounded on |||w−|||γ ≤M and |z| ≤M .
Since the stochastic process ṽ is in general not adapted to the filtration generated

by the underlying Wiener process, we use the following extension of Itô’s isometry
[Nua06]:

Ẽ(|D∗(ΨRṽ)|2) = Ẽ
(∫ ∞

0

|ΨRṽ(s)|2ds
)

+ Ẽ
∫ ∞

0

∫ ∞
0

tr(Dt(ΨRṽ(s))T Ds(ΨRṽ(t))) ds dt

≤ Ẽ‖ΨRṽ‖2 + Ẽ‖D(ΨRṽ)‖2 ≤ c(Ẽ‖ΨRv‖2 + Ẽ‖DΨRv‖2)
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def
= I1 + I2 . (6.14)

Here, ‖v‖ denotes the L2-norm of v and similarly for Dv. Since ṽ = IH− 1
2 v, the

second inequality is a consequence of the fact that IH− 1
2 is a bounded operator from

L2([0, 1]) into L2(R+), see Corollary 6.8 below.
The bound (6.13) on I1 now follows immediately from Proposition 5.4 and Re-

mark 4.2. The bound on I2 follows similarly by also using Theorem 4.5. The proof of
Theorem 6.5 is complete.

We now show that I 1
2−H is indeed a bounded operator from L2([0, 1]) to L2(R+).

For this, define the operator Ĩα by

(Ĩαv)(s) =

∫ 1

0

|s− r|α−1v(r) dr .

We then have:

Lemma 6.7 For α ∈ (0, 1
2 ), there exists a constant c such that, for positive v,

‖Ĩαv‖2 ≤ c‖v‖ ‖Ĩ2αv‖ .

Proof. We have the bound

‖Ĩαv‖2 =

∫ 1

0

∫ 1

0

∫ ∞
0

|s− r|α−1 |s− t|α−1 ds v(r) v(t) dr dt

≤
∫ 1

0

∫ 1

0

∫ ∞
−∞
|s− r|α−1 |s− t|α−1 ds v(r) v(t) dr dt

= c

∫ 1

0

∫ 1

0

|r − t|2α−1 ds v(r) v(t) dr dt ,

where the first step follows from the positivity of v and the second step follows from
a simple scaling argument. Since this is nothing but c〈v, Ĩ2αv〉, the requested bound
follows from the Cauchy-Schwarz inequality.

Corollary 6.8 For every α ∈ (0, 1), the operator Iα is bounded from L2([0, 1]) to
L2(R+).

Proof. Note that
|Iαv(s)| ≤ Iα|v|(s) ≤ Ĩα|v|(s) .

Since |s − r|α−1 is square integrable if α > 1
2 , the claim follows for that range of α.

For smaller values of α, it is always possible to reduce oneself to the range (1
2 , 1) by

Lemma 6.7, noting also that ‖Ĩαv‖ ≤ c‖Ĩβv‖ for α > β.

7 Examples

In this section, we collect a few examples to which our main results apply.
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7.1 Hypoelliptic Ornstein-Uhlenbeck process
Consider the process xt given by

dx = Axdt+ C dBH (t) , (7.1)

where x ∈ Rn, BH is an m-dimensional fractional Brownian motion with Hurst
parameter H > 1

3 , A is an n× n matrix with A+AT < 0, and C is an n×m matrix.
It is well-known that (7.1) satisfies Hörmander’s condition if and only if there exists
k > 0 such that the matrix (C,AC, . . . , AkC) has rank n.

Since the Jacobian is given by Js,t = exp(A(t− s)) and therefore has moments of
all orders, we conclude that, for any initial condition x0 and for any sequence of times
t1, . . . , tk, the joint distribution of (xt1 , . . . , xtk ) has a smooth density with respect
to Lebesgue measure. Since this distribution is Gaussian, one could have verified
directly that its covariance is non-degenerate, but this would have been a rather lengthy
calculation.

7.2 Linear equations / Lévy area
Let B be a d-dimensional fractional Brownian motion and consider equations in Rm of
the type

dXi = (AijkXj + Cik) ◦ dBk(t) , (7.2)

where we use Einstein’s convention of summation over repeated indices. In this case,
the derivative of the solution with respect to its initial condition in a direction η ∈ Rm
is nothing but the solution to

dJi = AijkJj ◦ dBk(t) , (7.3)

with initial condition J(0) = η. Similar formulae hold for higher order derivatives,
so that it follows from the results recently obtained in [FR11] that Assumption 5.7
is satisfied and our result on the smoothness of the densities applies, provided that
Hörmander’s condition holds.

As an immediate consequence, we have the smoothness of the Lévy area, which
was recently obtained independently in [Dri10]:

Proposition 7.1 Let B be a d-dimensional fractional Brownian motion with Hurst
parameter H > 1

3 and let Wij(t) =
∫ t

0
Bi(s) ◦ dBj(s)−

∫ t
0
Bj(s) ◦ dBi(s) for i < j.

Then, for any fixed t > 0, the vector (Bk(t),Wij(t)) with k = 1, . . . , d and i < j has a
smooth density with respect to Lebesgue measure.

Proof. The verification of Hörmander’s condition boils down to a simple problem in
linear algebra. Writing ej for the basis vector in the direction Bj and fij for the basis
vector in the direction Wij , we can rewrite x = B ⊕W as the solution to the SDE

dx =
∑
j

(
ej +

∑
i<j

fij〈x, ei〉 −
∑
i>j

fji〈x, ei〉
)
◦ dBj =

∑
j

Vj(x) ◦ dBj .

An explicit calculation shows that, for j < k, we have

[Vj , Vk](x) = 2fjk ,

so that Hörmander’s condition holds after one step.

Remark 7.2 Higher order totally antisymmetric iterated integrals can be treated in
exactly the same way with the kth iterated Lie brackets recovering precisely the basis
vectors of the elements in the kth antisymmetric tensor.
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7.3 Simplified fractional Langevin equation
Consider the process (qt, pt) on R2n given by

dq = p dt , dp = −∇V (q) dt− p dt+ dBH (t) , (7.4)

where, for the sake of simplicity, we assume that V : Rn → R+ has bounded second
derivative and there exist C > 0 and κ > 0 such that

〈q,∇V (q)〉 ≥ κ|q|2 − C , V (q) ≥ κ|q|2 − C . (7.5)

This equation is a simplified version of the fractional Langevin equation. (The equation
satisfying the correct physical detailed balance condition would have a more complicated
memory kernel instead of the simple friction term −p dt appearing above.)

Because we assume V to have a bounded second derivative, the Jacobian of (7.1)
is bounded by a deterministic constant over any finite time interval. Furthermore,
Hörmander’s condition is easy to verify, so that we can apply Theorem 5.11 to infer the
existence of smooth densities for the joint distribution of the solution at any time.

Regarding the existence of a unique invariant measure for (7.1), it only remains to
obtain a Lyapunov function for the solution to (7.4). For this, similarly to [Hai05], we
proceed as follows. We consider the process (p̃, q̃) solution to

dq̃ = −q̃ dt , dp̃ = −dp̃ dt+ dBH (t) .

It is of course trivial to bound solutions to this equation. Then, we set P = p− p̃ and
Q = q − q̃. The equation for (P,Q) can be written as

Q̇ = P +RQ , Ṗ = −∇V (Q)− P +RP ,

where
RQ = p̃− q̃ , RP = ∇V (Q)−∇V (Q+ q̃) .

Note that since we assumed that V has bounded second derivative, both RP and
RQ are bounded by a multiple of |p̃| + |q̃|, independently of P and Q. We now set
H̄(P,Q) = 1

2P
2 + V (Q) + γPQ for a constant γ to be determined later. An explicit

calculation yields the bound

d

dt
H̄(P,Q) = −(1−γ)|P |2−γ〈Q,∇V (Q)〉+ 〈∇V (Q)+γP,RQ〉+ 〈P +γQ,RP 〉 .

Making use of (7.5) and the bounds on RQ and RP , we see that there exists constant
α > 0 and C > 0 such that

d

dt
H̄(P,Q) ≤ −αH̄(P,Q) + C(1 + |p̃|2 + |q̃|2) .

Since, by (7.5), H̄ grows quadratically at infinity for γ small enough, It follows in the
same way as in [Hai05, Prop. 3.12] that |p|2 + |q|2 is a Lyapunov function for (7.4). We
therefore have:

Theorem 7.3 If V has bounded second derivative and (7.5) holds, then there exists a
unique invariant measure for (7.4).

Proof. The existence of an invariant measure follows from the fact that |p|2 + |q|2 is a
Lyapunov function. The uniqueness then follows from Theorem 6.4.
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Appendix A Bounds on the cutoff function

In this section, we show that the function Λβ,q appearing in Sections 5.2 and 6.2 does
indeed have the requested smoothness properties. Our main result is the following:

Proposition A.1 Let Λβ,q be as in (5.19) and assume that β and q are such that (5.20)
holds and such that 2β ≤ γ+H . (This is always possible by first setting β = (γ+H)/2
and then choosing q large enough.)

Then, for every k > 0 and every R > 0, there exists a constant M such that the
bound

‖D(k)Λβ,q(X,X)‖ ≤M ,

holds for all (X,X) such that Λβ,q(X,X) ≤ 2R. Here, D(k) denotes the kth iterated
Malliavin derivative and ‖ · ‖ is the L2-norm on [0, T ]k.

Proof. Note first that, by definition

D i
rδX

j
s,t = δij1r∈[s,t] ,

where δij is the Kronecker delta. It thus follows from (4.21) that

DirδX
j
s,t = c δij((t− r)H−

1
2 1r<t − (s− r)H−

1
2 1r<s)

def
= δijfs,t(r) . (A.1)

The L2-norm of fs,t is given by

‖fs,t‖2 = c2
∫ t

s

(t− r)2H−1 dr + c2
∫ s

0

((t− r)2H−1 − (s− r)2H−1) dr .

Since H < 1
2 by assumption, one has the inequality

|t2H − s2H | ≤ |t− s|2H ,

so that a straightforward calculation yields the bound

‖fs,t‖ ≤ κ|t− s|H ,

for some constant κ > 0.
Concerning X̃k`s,t = Xk`s,t − X`ks,t, an explicit calculation yields the identity

D i
rX̃k`s,t = 1r∈[s,t] (δik (δX`

r,t − δX`
s,r)− δi` (δXk

r,t − δXk
s,r)) .

Applying again (4.21), we obtain

DjrXk`s,t = δikG
`
s,t(r) + δi`G

k
s,t(r) ,

where we set

Gks,t(r) = 21r∈[s,t]

∫ t

r

(u− r)H−
3
2 δXk

r,u du

+ 1r∈[s,t](δX
k
r,t − δXk

s,r)

∫ ∞
t

(u− r)H−
3
2 du

+ 1r<s
∫ t

s

(u− r)H−
3
2 (δXk

s,u − δXk
u,t) du .
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The important fact about Gks,t(r) is that we can estimate it by

|Gks,t(r)| ≤M‖X‖γ1r∈[s,t](t− r)γ+H− 1
2

+M‖X‖γ1r<s(t− s)γ((t− r)H−
1
2 − (s− r)H−

1
2 ) ,

so that its L2-norm is controlled by

‖Gks,t‖ ≤M‖X‖γ |t− s|H+γ . (A.2)

We finally compute the second Malliavin derivative of Xk`s,t. It follows in a rather
straightforward way from (4.21) that, for r1 ∈ (s, t) and v ∈ (r1, t), one has

D i
vDjr1X

k`
s,t = (δikδj` + δi`δjk)

(
2

∫ t

v

(u− r1)H−
3
2 du+

∫ ∞
t

(u− r1)H−
3
2 du

)
,

for r1 < s and v ∈ (s, t), one has

D i
vDjr1X

k`
s,t = (δikδj` + δi`δjk)

(
2

∫ t

v

(u− r1)H−
3
2 du−

∫ t

s

(u− r1)H−
3
2 du

)
,

and for all other combinations with v > r1 one has D i
vDjr1X

k`
s,t = 0.

A lengthy but straightforward calculation then yields

Dir2Djr1X
k`
s,t = (δikδj` + δi`δjk)gs,t(r1, r2) , (A.3)

where, for s < r1 < r2 < t, the function gs,t is given by

gs,t(r1, r2) = 2

∫ t

r2

(v − r2)H−
3
2

∫ v

r2

(u− r1)H−
3
2 du dv

+ cg(t− r2)H−
1
2 (2(r2 − r1)H−

1
2 − (t− r1)H−

1
2 )

def
= g(1)

s,t(r1, r2) + g(2)
s,t(r1, r2) ,

for some constant cg . For r1 < s < r2 < t on the other hand, one has

gs,t(r1, r2) = 2

∫ t

r2

(v − r2)H−
3
2

∫ v

r2

(u− r1)H−
3
2 du dv

+ cg(t− r2)H−
1
2 (2(r2 − r1)H−

1
2 − (s− r1)H−

1
2 − (t− r1)H−

1
2 )

def
= g(3)

s,t(r1, r2) + g(4)
s,t(r1, r2) ,

Finally, for r1 < r2 < s < t, one has

gs,t(r1, r2) = 2

∫ t

s

(v − r2)H−
3
2

∫ v

r2

(u− r1)H−
3
2 du dv

def
= g(5)

s,t(r1, r2) .

It is possible to check that
‖gs,t‖ ≤M |t− s|2H , (A.4)

where ‖ · ‖ denotes again the L2-norm. (We postpone the proof of this to Lemma A.3
below.)

We now have all the necessary tools to conclude. Write

Λβ,q(X,X) = Λ(1)
β,q(X) + Λ(2)

β,q(X) ,
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where Λ(1) is as (5.19), but keeping only the term proportional to |δXs,t|2q in the integral,
and similarly for Λ(2). It follows from (A.1) that, for ` ≤ 2q, the multiple Malliavin
derivative of Λ(1)

β,q satisfies the bound

|Ds1 . . .Ds`Λ
(1)
β,q(X)| ≤M

∫ T

0

∫ t

0

|δXs,t|2q−`

|t− s|β(2q−`)

∏̀
j=1

|fs,t(rj)|
|t− s|β

ds dt .

Since the L2-norm of fs,t is bounded by M |t− s|H , it follows immediately that there
exits a constant M such that the L2-norm of Ds1 . . .Ds`Λ

(1)
β,q is bounded by MΛ(1)

β,q . Its
Malliavin derivative of order ` > 2q on the other hand vanishes identically.

Similarly, we only need to consider Malliavin derivatives of order ` ≤ 2q for Λ(2)
β,q.

A reasoning similar to the above shows that its Malliavin derivative can be written as

Ds1 . . .Ds`Λ
(2)
β,q =

∫ T

0

∫ t

0

P(Xs,t,Ds·Xs,t, gs,t(s·, s·))
|t− s|2βq

ds dt ,

where P is a homogeneous polynomial of degree q and “s·” is a generic placeholder
for any of the times s1, . . . , s`. It now follows from (A.2), (A.4), and the assumption
2β ≤ γ + H that the L2-norm of Ds1 . . .Ds`Λ

(2)
β,q is bounded by M(Λ(2)

β,q + ‖X‖qγ).
Since on the other hand ‖X‖qγ is bounded by MΛβ,q by assumption, this concludes the
proof.

Corollary A.2 Let ΨR(w+) be as defined in (6.6) with Λβ,q as in (5.19), and let β and
q be as in Proposition A.1.

Then, for everyR > 0, ΨR ∈ D∞. Furthermore, every multiple Malliavin derivative
of ΨR vanishes outside of the set {Λβ,q(X,X) ≤ 2R}.

Proof. By the chain rule,

DsΨR(w+) =
1

R
χ′ (R−1Λβ,q(X,X)) DsΛβ,q(X,X) ,

and similarly for higher order derivatives. Since all derivatives of χ vanish when the
argument is larger than 2, the claim follows from Proposition A.1.

Lemma A.3 For every T > 0, there exists a constant M such that the function gs,t
from (A.3) satisfies ‖gs,t‖ ≤M |t− s|2H .

Proof. We show the bound separately for g(j)
s,t with j = 1, . . . , 5. For g(1)

s,t, we use the
bound

(u− r1)H−
3
2 ≤ (u− r1)H−

3
2 (r2 − r1)−β ,

in order to conclude that, provided that 1− 2H < β, one has the pointwise bound

|g(1)
s,t(r1, r2)| ≤ (t− r2)2H−1+β(r2 − r1)−β ≤ |t− s|2H−1+β(r2 − r1)−β .

If furthermore β < 1
2 (which is always possible if H > 1

4 ) the integral of (r2 − r1)−2β

over s < r1 < r2 < t is proportional to |t− s|1−2β , thus yielding the required bound.
Similarly, g(2)

s,t satisfies

|g(2)
s,t(r1, r2)| ≤ C(t− r2)H−

1
2 (r2 − r1)H−

1
2 ,
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and a straightforward calculation shows that∫ t

s

(t− r2)2H−1

∫ r2

s

(r2 − r1)2H−1 dr1 dr2 = C|t− s|4H ,

for some constant C as required.
For g(3)

s,t we have, as for g(1)
s,t,

|g(3)
s,t(r1, r2)| ≤ (t− r2)2H−1+β(r2 − r1)−β .

This time however we choose β ∈ ( 1
2 , 1), so that∫ t

s

∫ s

0

|g(3)
s,t(r1, r2)|2 dr1 dr2 ≤M

∫ t

s

(t− r2)4H−2+2β(r2 − s)1−2β dr2 ,

which is indeed proportional to |t− s|4H .
To bound g(4)

s,t we perform the change of variables r1 7→ s− r1 and r2 7→ r2 + s, so
that∫ t

s

∫ s

0

|g(4)
s,t(r1, r2)|2 dr1 dr2 = M

∫ t−s

0

(t− s− r2)2H−1

×
∫ s

0

(2(r2 + r1)H−
1
2 − rH−

1
2

1 − (t− s+ r1)H−
1
2 )

2
dr1 dr2 .

We then dilate the expression by t− s, showing that it is proportional to

|t− s|4H
∫ 1

0

∫ s
t−s

0

(1− r2)2H−1(2(r2 + r1)H−
1
2 − rH−

1
2

1 − (1 + r1)H−
1
2 )

2
dr1 dr2 .

It is straightforward to check that this integral converges for all H ∈ (0, 1), which shows
the requested bound on g(4)

s,t.
Finally, to bound g(5)

s,t, we perform the change of variables r1 7→ s − r1 and
r2 7→ s− r2, followed by a dilatation of t− s, so that∫ s

0

∫ r2

0

|g(5)
s,t(r1, r2)|2 dr1 dr2 = |t− s|4H

∫ s
t−s

0

∫ s
t−s

r2

|g̃(5)(r1, r2)|2 dr1 dr2 ,

where

g̃(5)(r1, r2) =

∫ 0

−1

(r2 − v)H−
3
2

∫ r2

v

(r1 − u)H−
3
2 du dv .

Note now that, for every β ∈ (0, 3
2 − H), there exists a constant M such that, for

r1 > r2, one has the bound

|g̃(5)(r1, r2)| ≤M (r1− r2)−β
∫ 0

−1

(r2− v)2H−2+β dv ≤M (r1 − r2)−βr2H−1+β
2

1 + r2
dv .

Choosing β ≈ 1
2 (but slightly larger than 1

2 ) for r1 > r2 + 1 and β = 0 for r1 ≤ r2, we
can check that ∫ ∞

0

∫ ∞
r2

|g̃(5)(r1, r2)|2 dr1 dr2 <∞ ,

so that the claim follows.
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