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Abstract
The long-time/large-scale, small-friction asymptotic for the one dimensional Langevin
equation with a periodic potential is studied in this paper. It is shown that the Freidlin-
Wentzell and central limit theorem (homogenization) limits commute. We prove that,
in the combined small friction, long-time/large-scale limit the particle position con-
verges weakly to a Brownian motion with a singular diffusion coefficient which we
compute explicitly. We show that the same result is valid for a whole one parameter
family of space/time rescalings. The proofs of our main results are based on some
novel estimates on the resolvent of a hypoelliptic operator.

1 Introduction and Main Results

Random perturbations of dynamical systems has been the subject of intense study over
the last several decades [FW84]. One of the most extensively studied randomly per-
turbed dynamical systems is given by the Langevin equation modelling the interaction
of a classical particle with a heat bath at inverse temperature β:

q̈ = −∇V (q)− γq̇ +
√

2γβ−1ξ(t) . (1.1)

Here, V (q) denotes a smooth potential, γ is a friction coefficient which should be in-
terpreted as the strength of the coupling to the heat bath, and ξ(t) denotes standard
d–dimensional white noise, i.e. a mean zero generalized Gaussian process with corre-
lation structure

〈ξi(t)ξj(s)〉 = δijδ(t− s), i, j = 1, . . . d.

There are various applications of this model to solid state physics, e.g. surface diffu-
sion, Josephson junctions and superionic conductors. As a result, equation (1.1) has
been one of the most popular stochastic models in the physics and the mathematics
literature. See, e.g., [Ris89, Rei02, HTB90, HN05] and the references therein.

Various asymptotic limits for the Langevin equation (1.1) have been studied, both
in finite [Nel67, Fre04] and in infinite dimensions [SCF06, PS05]. It is well known,
for example, that for large values of the friction coefficient γ, solutions the rescaled
process

qγ(t) = q(t/γ) (1.2)
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converges to the solution of the Smoluchowski equation

γż = −∇V (z) +
√

2γβ−1ξ(t). (1.3)

This is usually called the Kramers to Smoluchowski limit.
Clearly, in the limit as the friction coefficient converges to zero, and for fixed fi-

nite time intervals, we retrieve the deterministic dynamics which is governed by the
Hamiltonian system

q̈ = −∇V (q).

The small γ, large-time asymptotic is much more interesting and was originally studied
by Freidlin and Wentzell [FW84, FW94]. It was shown in these references that, for
d = 1, and under appropriate assumptions on the potential, the Hamiltonian of the
rescaled process

qγ = γq(t/γ), (1.4)

converges weakly, in the limit as γ → 0, to a diffusion process on a graph. This re-
sult was obtained for one dimensional Langevin equations with periodic potentials–the
problem we study in this paper–in [FW99]. From this limit theorem one can infer the
limiting behavior of the rescaled particle position, which actually converges to a non-
Markovian process; see Corollary 2.2 and Remark 2.3 in this paper. Results similar to
those of the Freidlin-Wentzell theory were obtained in [Sow03, Sow05] using singular
perturbation theory.

On the other hand, when the potential is either periodic or random, and for fixed
γ > 0, the long time behavior of solutions to (1.1) is described by an effective Brown-
ian motion. Indeed, the rescaled particle position

qε(t) := εq(t/ε2) (1.5)

converges weakly, in the limit as ε → 0, to a Brownian motion with a nonnegative
diffusion coefficient Dγ . An expression for the diffusion coefficient can be obtained
implicitly via the solution of a suitable Poisson equation [Rod89, HP04, PV85, Oll94,
Koz89]. See also Section 3 below.

The above limit theorem for the rescaled process qε(t) does not provide us with a
complete understanding of the long time asymptotic behavior of (1.1) for two reasons.
First, it does not contain any information on the time needed for the process q(t) to
reach the asymptotic diffusive regime, the diffusive time scale τdiff. Second, it does not
provide us with any information on the dependence of the effective diffusion coefficient
Dγ on the friction coefficient γ and on the inverse temperature β. The large-γ/large-β
regime is the most interesting one from the point of view of applications and it has been
studied quite extensively by means of formal asymptotics and numerical experiments,
see [SLL+04, LSR+04] and the references therein. An asymptotic formula for the
diffusion coefficient which is valid at small temperatures was obtained rigorously by
Kozlov in [Koz89]. The formula obtained in that paper, however, is not valid uniformly
in γ, but only for large or intermediate values of the friction coefficient. The purpose of
this paper is to study the dependence of the diffusive time scale τdiff and of the effective
diffusion coefficient Dγ on the friction coefficient, in particular in the limit as γ tends
to 0, and to obtain results which are uniform in β. We also derive various results related
to the large γ asymptotic.

To get some intuition on the dependence of τdiff and Dγ on γ, we calculate numer-
ically Dγ for the nonlinear pendulum with dissipation and noise through the formula

Dγ = lim
t→∞

〈(q(t)− 〈q(t)〉)2〉
2t

,
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Figure 1: Second moment and effective diffusivity for various values of γ .

where 〈·〉 denotes ensemble average. In Figure 1a we plot the second moment of the
particle position divided by 2t as a function of time, for various values of the friction
coefficient. In Figure 1b we plot the diffusion coefficient as a function of γ. All simu-
lations were performed at a fixed temperature β−1 = 0.1. The numerical simulations
suggest that

τdiff ∼
1
γ
, for γ � 1, (1.6)

and that

Dγ ∼
1
γ
, for both γ � 1 and γ � 1. (1.7)

The central result of this article is a rigorous justification of the above two (actually
three) scaling limits, and the explicit calculation of the prefactors for both the large and
the small γ asymptotics of Dγ . We will restrict our attention to the one-dimensional
case. We study the long time/small γ asymptotic of the one-dimensional Langevin
equation

q̈ = −∂qV (q)− γq̇ +
√

2γβ−1ξ(t) (1.8)

when V (q) is a smooth, periodic potential and ξ(t) is white noise. Our first result can
be summarized in the following.

Theorem 1.1. The Freidlin–Wentzell scaling limit (1.4) and the diffusive scaling limit
(1.5) ‘commute’. In particular, the rescaled process

εγq(t/(γε2))

converges weakly, both in the limε→0 limγ→0 limit and the limγ→0 limε→0 limit, to a
Brownian motion with diffusion coefficient D∗ given by formula (2.8) below.

Furthermore, the Kramers to Smoluchowski scaling limit (1.2) and the diffusive
scaling limit (1.5) also ’commute’: the rescaled process

εq(t/(γε2))
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converges weakly, both in the limε→0 limγ→∞ limit and the limγ→∞ limε→0 limit, to a
Brownian motion with diffusion coefficient D̄ given by formula (4.2) below.

The above theorem justifies rigorously the expressions (1.6) and (1.7), for γ � 1
and γ � 1.

Clearly, the above theorem implies that

lim
γ→0

γDγ = D∗ and lim
γ→∞

γDγ = D̄.

In fact, we can say slightly more: in Section 4, we prove the two-sided bound

D∗

γ
≤ Dγ ≤

D̄

γ
, ∀ γ ∈ (0,∞) .

We also compute the next order correction in the large γ expansion of the diffusion
coefficient Dγ .

More generally, we are going to study the small-γ asymptotic of the rescaled pro-
cess

qγ(t) = λγq(t/µγ) (1.9)

for a suitable one-parameter family of space-time rescalings λγ , µγ . It turns out that
the “right” scalings – the ones giving rise to a non-trivial limiting process – are of the
form

λγ = γ1+α, µγ = γ1+2α, α ∈ [0,∞). (1.10)

Note that the case α = 0 corresponds to the Freidlin-Wentzell rescaling (1.4), whereas
the case α = ∞ corresponds to the diffusive rescaling (1.5). Our second result is the
following.

Theorem 1.2. Assume that the Markov process (q(t), p(t)) is stationary on T×R. Then
the rescaled process qγ(t) defined in (1.9) converges weakly to a Brownian motion for
every α ∈ (1/2,+∞). The diffusion coefficient coefficient of the limiting Brownian
motion is independent of α and is given by (2.8).

Remark 1.3. We believe that this is the theorem is also true for α ∈ (0, 1/2). However,
we haven’t been able to prove this. See also Remark 1.8 below.

Remark 1.4. The stationarity assumption is not necessary and can be replaced with
the assumption that the distribution of the initial condition has an L2 density with
respect to the Maxwell-Boltzmann distribution µ(dp dq) = Z−1 exp(−βH(p, q)) dp dq.
For purely technical reasons it seems to be more difficult to obtain the same result for
deterministic initial conditions.

The, perhaps, surprising result is that the diffusion coefficient is independent of the
exponent α: as long as we are at length and time scales which are long compared to the
Freidlin-Wentzell length and time scales, the particle performs an effective Brownian
motion with the same diffusion coefficient.

Remark 1.5. A similar result holds for the large γ limit: Under the assumption of
stationarity, we have that

lim
γ→∞

γ−αq(tγ1+2α) =
√

2D̄W (t)

weakly on C([0, T ],R) for every α > 0, where D̄ is given by formula 4.2 below.
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Similar scalings to the one considered in (1.9) were considered for the passive tracer
dynamics

q̇ = v(q) +
√

2σξ, ∇ · v = 0

by Fannjiang in [Fan02]. There it was shown that the diffusive time scale depends
crucially on the ergodic properties of the vector field v(q) on Td. On the contrary, for
the problem studied in this paper, the small γ asymptotic of τdiff andD are independent
of the specific properties of the potential V (q). This is because the Hamiltonian vector
field can never generate an ergodic flow on the phase space T× R due to the presence
of the integral of the energy.

The proofs of Theorems 1.1 and 1.2 are based on a careful analysis of the gener-
ator of the Markov process (q(t), p(t)) on T × R. It turns out to be notationally more
convenient to study the the rescaled generator of (1.8)

Lγ =
1
γ
A+ LOU, (1.11)

on T×R, whereA = p∂q−V ′(q)∂p is the Liouville operator describing the unperturbed
deterministic dynamic and LOU = β−1∂2

p − p∂p is the generator of the Ornstein-
Uhlenbeck process describing the interaction with the heat bath.

The main technical results which are needed for the proof of Theorem 1.1 are an
estimate on the resolvent of Lγ , as well as estimates on derivatives of solutions to
Poisson equation of the form −Lγu = h. We obtain an estimate on the semigroup
generated by Lγ which is independent of γ:

Theorem 1.6. There exist constants C and α independent of γ such that

‖eLγtf‖ ≤ Ce−αt‖f‖ , (1.12)

holds for every t > 0, every γ < 1, and every f ∈ L2(µ) such that
∫
fdµ = 0, where

µ(dp dq) = Z−1 exp(−βH(q, p)) dp dq.

The Poisson equation that we need to analyze is

−Lγϕγ = p. (1.13)

The boundary conditions for this PDE are that the solution in periodic in q and that it
belongs to L2(µ). Our estimate on derivatives of ϕγ is uniform in γ:

Proposition 1.7. Assume that V (q) is smooth and let ϕγ be the solution to (1.13). The
there exists a constant C which is independent of γ such that

‖ϕγ‖2 +‖∂pϕγ‖2 +‖∂qϕγ‖2 +γ
(
‖∂2

pϕγ‖2 +‖∂p∂qϕγ‖2 +‖∂2
qϕγ‖2

)
≤ C , (1.14)

independently of γ. Furthermore, ∂pϕγ is an element of L4(µ) and

‖∂pϕγ‖L4(µ) ≤ C(1 + γ−1/4) . (1.15)

Remark 1.8. We believe that estimate 1.15 should actually be uniform in γ. However,
we haven’t been able to prove this. The reason for this is that we obtain (1.15) as a con-
sequence of Sobolev embedding, but ∂2

pϕγ is not uniformly bounded in any weighted
L2 space.
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The proof of estimates 1.12 and 1.15 is based on the commutator techniques that
were developed recently by Villani [Vil06]. Somewhat similar estimates to the ones we
prove in this paper were recently derived by Hérau in [Hér07].

The rest of the paper is organized as follows. In Section 2 we analyze the Freidlin-
Wentzell scaling (1.4). In Section 3, we then study the diffusive scaling (1.5). In
Section 4 we obtain upper and lower bounds on the diffusion coefficient and we study
the large γ asymptotic. The intermediate scalings (1.9) for α ∈ (0,+∞) are investi-
gated in Section 5. The necessary estimates on the resolvent of the generator Lγ are
presented in Section 6.

Acknowledgements
The authors would like to thank R. Sowers, E. Vanden Eijnden and A.M. Stuart for
useful discussions and comments.

2 Critical Scaling: the α = 0α = 0α = 0 case

Let us rewrite the Langevin equation (1.1) in one space dimension as a first order
system:

dq(t) = p(t) dt , (2.1a)

dp(t) = −∂qV (q(t)) dt− γp(t) dt+
√

2γβ−1 dW , (2.1b)

where V (q) is a smooth periodic potential with period 1 and W (t) is a standard one-
dimensional Wiener process.

This section is devoted to the study of the critical scaling

qγ(t) = γq(t/γ) , (2.2)

which corresponds to the limiting case which is not covered by Theorem 1.2. It turns
out that under this scaling, qγ does not converge to a Brownian motion, but to a non-
Markovian process that will be described in this section.

The behavior at the critical scaling can be understood with the help of the Freidlin-
Wentzell theory of averaging for small random perturbations of a Hamiltonian system
[FW94, FW98, FW99]. Recall that one can associate to a Hamiltonian system on the
symplectic manifold M = T × R a graph Γ in such a way that every point in the
graph corresponds to a connected component of a level set of H . Vertices of the graph
correspond to level sets containing a critical point of H . See Figure 2 for an example.

We identify points on the graph Γ with elements of R×Z by ordering the edges of
the graph and taking the value of the Hamiltonian as a local coordinate along each edge.
We denote by H̃ : M→ Γ ≈ R×Z the ‘extended’ Hamiltonian which associates each
point to its energy, together with the number of the edge to which the corresponding
connected component belongs.

Denoting by λ the Lebesgue measure on M, the measure λ̃ = H̃∗λ on Γ then
has a density with respect to Lebesgue measure on Γ, which we denote by T (z). The
notation T (z) is justified by the fact that it is actually equal to the period of the orbit
corresponding to the point z. It is therefore a straightforward exercise to see that

T (z) ≈ | log(z − z0)| ,
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Figure 2: Example of a potential with the orbits of the Hamiltonian flow and the corre-
sponding Freidlin-Wentzell graph Γ.

near the vicinity of a critical orbit z0 which corresponds to a maximum of the potential.
For a point z ∈ Γ, denote by `z the measure on H̃−1(z) which is such that∫

M
f (x)λ(dx) =

∫
Γ

∫
H̃−1(z)

f (x) `z(dx) dz ,

for every integrable function f : M→ R. The measure `z is not a probability measure
but has mass T (z). With this notation at hand, we define the function

S(z) =
∫

H̃−1(z)
p2 `z(dx) ,

where we used the notation x = (q, p) for elements of M. The function S(z) has non-
trivial limits as z approaches the vertices of Γ. Note that these limits are in general
different for different ways of approaching the same vertex, so that S is discontinuous
on Γ. It is also possible to check [FW84] that S satisfies the relation S′(z) = T (z) in
the interior of the edges.

The main result of [FW99] is then

Theorem 2.1. Let Xγ(t) be defined by Xγ(t) = (p(t/γ), q(t/γ)), where (p, q) is a
solution to (2.1). Then, the process H̃(Xγ(t)) converges weakly to a Markov process
Y on Γ whose generator is given by the expression

Lv(z) =
1

βT (z)
d

dz

(
S(z)

dv(z)
dz

)
− S(z)
T (z)

dv(z)
dz

, (2.3)

for z in the interior of the edges of Γ. The domain of L consists of functions v such
that the above expression is square integrable, and such that at each interior vertex,
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the derivatives of v along the edges satisfy the ‘gluing’ conditions∑
k∼z0

σ(z0, k) lim
z→kz0

S(z)
dv(z)
dz

= 0.

Here, z0 denotes an interior vertex of Γ, the sum runs over all edges k adjacent to z0,
and z →k z0 means that z converges to z0 along the edge k. The factor σ(z0, k) is
equal to 1 if H(z) > H(z0) for z in the kth edge and −1 otherwise.

Note that the gluing conditions are such that the process Y is reversible with re-
spect to the probability measure µβ(dz) = Z−1

β e−βzλ̃(dz) = Z−1
β e−βzT (z) dz on

Γ. This in turn is precisely the push-forward under H̃ of the probability measure
Z−1

β e−βH(x) λ(dx) on M which is invariant for the process Xγ .

Corollary 2.2. Let f : M→ R be smooth with at most polynomial growth and define
f̄ : Γ → R by

f̄ (z) =
1

T (z)

∫
H̃−1(z)

f (x) `z(dx) .

Then, the process
∫ t

0
f (Xγ(s)) ds converges weakly to the process

∫ t

0
f̄ (Y (s)) ds.

Proof. If f ≡ 0 in a neighborhood of the critical orbits, the result follows from a
standard averaging argument which will not be reproduced here. We refer to [] for a
similar calculation. We can now construct smooth functions fδ such that fδ ≡ 0 in
a δ-neighborhood of the critical orbits and fδ = f outside of a 2δ-neighborhood of
the critical orbits. The result then follows immediately from the fact that there exists a
function h with limδ→0 h(δ) = 0 such that the expectation of the time that the process
Xγ spends in the region where fε 6= f is bounded by h(δ), uniformly in γ (see [FW84,
p. 294]).

Remark 2.3. An important particular case of Corollary 2.2 is that of f (p, q) = p. It
shows that the process qγ defined in (2.2) converges weakly to the process

q∗(t) =
∫ t

0

p̄(Y (s)) ds ,

where the function p̄ : Γ → R is defined from p as in Corollary 2.2.

It is clear that the process q∗ is not Markov by itself, but requires the computation
of Y first. Note also that the function p̄(z) vanishes identically for values of z cor-
responding to closed orbits, so that the process q∗ is constant on intervals of time of
positive length. On values of z for which the orbits are open, one has

p̄(z) = ± 1
T (z)

, (2.4)

since the average velocity is given by the size of the torus (which was set to 1), divided
by the period of the orbit.

Denote by Pt the semigroup over Γ generated by L. It follows from the central
limit theorem for additive functionals of reversible Markov processes [KV86] that the
process εq∗(t/ε2) converges weakly as ε → 0 to a Brownian motion with diffusivity
given by

D∗ =
∫ ∞

0

∫
Γ

p̄(z)Ptp̄(z)µβ(dz) dt .
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Since L is self-adjoint in L2(Γ, µβ) and has a spectral gap, this integral converges and
is given by

D∗ = −〈p̄, L−1p̄〉β , (2.5)

where we denoted by 〈·, ·〉β the scalar product in L2(Γ, µβ).
It turns out that in our case, this expression can be computed in a very explicit way.

Note that in L2(Γ, µβ), one has L = −A∗A, where the first order differential operator
A is given by

Av(z) =

√
S(z)
βT (z)

dv(z)
dz

≡ a(z)
dv(z)
dz

.

The domain of A consists of all continuous functions f on Γ such that f is weakly
differentiable in the interior of each edge and such that Af ∈ L2(Γ, µβ).

The adjoint of A is given by the operator that acts in the interior of the edges of Γ
like

A∗w(z) = − eβz

T (z)
d

dz
(T (z)e−βza(z)w(z))

= − d

dz
(a(z)w(z))− w(z)a(z)

(T ′(z)
T (z)

− β
)

,

endowed with the ‘boundary conditions’∑
k∼z0

σ(z0, k) lim
z→kz0

T (z)a(z)w(z) = 0 . (2.6)

Here, we used the same notations as in the statement of Theorem 2.1. One then has the
following variational formulation of D∗:

D∗ = inf{‖g‖2β |A∗g = p̄} . (2.7)

Functions satisfying the relation A∗g = p̄ are of the form

g(z) =
√
βeβz

√
S(z)T (z)

(
Vk +

∫ z

z0

T (z)p̄(z)e−βz dz
)

,

where we denote by k the index of the edge to which z belongs and by z0 the vertex
with the lowest energy adjacent to that edge. The constants Vk are determined by the
requirements that g satisfies the conditions (2.6) and that g ∈ L2. By (2.7), remaining
degrees of freedom should be dealt with by minimising over ‖g‖β .

In our case, the graph Γ contains two infinite edges and a number of finite ones.
Since p̄ vanishes on the finite edges and is given by (2.4) on the two infinite edges, it
follows that the function g minimizing (2.7) is given by

g(z) = σ(z)
1√

βS(z)T (z)
,

where the function σ(z) vanishes on all the finite edges and is equal to±1 on the infinite
edges, with the same sign as p̄. Therefore, we finally obtain for D∗ the expression

D∗ =
2

βZβ

∫ ∞

E0

e−βz

S(z)
dz , (2.8)
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where E0 is the energy of the vertex at which the two infinite edges join. (The reason
for the factor 2 in front of the above expression is that there are exactly two infinite
edges starting at E0.) The function S(z) is asymptotic to 2zT (z) ≈

√
2z at infinity and

converges to a non-zero constant as z → E0. Furthermore, the partition function Zβ

behaves like T0/β for large values of β (here T0 is the value of T (z) as z approaches
the orbit where the energy attains its global minimum).

In order to compute the behavior of Zβ for small values of β, we use the fact that
T (z) ≈ 1√

2z
for large values of z. Therefore

Zβ ≈
∫ ∞

0

e−βz

√
2z

dz =
√

π

2β
.

A similar calculation allows to evaluate the behavior of the integral over e−βz/S(z) for
small values of β. Collecting these asymptotic estimates, one obtains

D∗ ≈ 2
β

β → 0 ,

D∗ ≈ 2e−βE0

βT0S(E0)
β →∞ .

Remark 2.4. It is unsurprising to see that the high-temperature limit β → 0 coincides
with the result that one obtains when V ≡ 0.

3 The Central Limit Theorem Regime: The α = ∞α = ∞α = ∞ Case.

Just as in the previous section, the long time behavior of solutions to (1.1) for a fixed
value of γ is governed by an effective Brownian motion. Indeed, the following central
limit theorem holds [Rod89, PV85, HP04, Koz89].

Theorem 3.1. Let V (q) ∈ C∞per(T) and define the rescaled process

qε(t) := εq(t/ε2).

Then qε(t) converges weakly, on C([0, T ],R), in the limit as ε → 0, to a Brownian
motion with diffusion coefficient

Dγ =
1
γ

∫
T×R

pϕγµ(dp dq) , (3.1)

where µ(dp dq) = Z−1 exp(−βH(p, q)) dp dq, and the function ϕγ is the unique mean-
zero solution of the Poisson equation

−Lγϕγ = p . (3.2)

Here Lγ is the rescaled generator defined in (1.11) and ϕγ is periodic in q and an
element of L2(µ).

Remark 3.2. This theorem is valid in arbitrary dimensions. It is also valid when the
force field in (1.1) is not the gradient of a scalar function, provided that µ(dp dq) is
replaced by the corresponding invariant measure; see [HP04].

The main result of this section is that, in the limit as the friction coefficient γ tends
to 0, the rescaled effective diffusion coefficient given by (3.1) converges to the Freidlin-
Wentzell effective diffusivity (2.5).
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Proposition 3.3. One has limγ→0 γDγ = D∗, where D∗ is obtained by (2.5).

Proof. Denote as before by Lγ the generator of the critically rescaled dynamic (2.2)
given in eqn. (1.11) and by Pγ

t the corresponding semigroup acting on L2(M, µ). De-
note furthermore as previously by L the generator of the limiting Feeidlin-Wentzell
dynamic (2.3) and by Pt the corresponding semigroup acting on L2(Γ, µ). Finally, we
introduce the averaging operator Π defined (on continuous functions f : M→ R) by

(Πf )(z) =
1

T (z)

∫
H̃−1(z)

f (y) `z(dy) , z ∈ Γ . (3.3)

Note that Πf is a function from Γ to R. Furthermore, it is immediate that Π is a
contraction from L2(M, µ) to L2(Γ, µ) and can therefore be extended uniquely to all of
L2(M, µ).

We also define the isometric embedding operator ι : L2(Γ, µ) → L2(M, µ) by

(ιf )(x) = f (H̃(x)) .

With these notations, one has D∗ = 〈Πp, L−1Πp〉 and γDγ = 〈p, L−1
γ p〉, so that the

result follows if one can show that the strong limit in L2(M, µ)

lim
γ→0

L−1
γ f = ιL−1Πf , (3.4)

holds for every element f ∈ L2(M, µ) such that
∫
f (x)µ(dx) = 0.

This will be the consequence of the following two lemmas:

Lemma 3.4. For every function f ∈ L2(M, µ), the limit limγ→0 Pγ
t f = ιPtΠf holds

in L2(M, µ).

Proof. Assume first that f is bounded and continuous. It then follows from Corol-
lary 2.2 that limγ→0(Pγ

t f)(x) = (ιPtΠf)(x) for every x ∈M. The claim then follows
from Lebesgue’s dominated convergence theorem. The fact that the claim holds for ev-
ery f ∈ L2(M, µ) is now a simple consequence of the density of bounded continuous
functions, together with the fact that Pγ

t is a contraction operator in L2(M, µ).

This, together with Theorem 1.6 yields:

Lemma 3.5. There exist constants C and α (independent of γ < 1) such that

‖Pγ
t f‖+ ‖Ptf‖ ≤ Ce−αt‖f‖ ,

for every f ∈ L2(Γ, µ) such that
∫
f (x)µ(dx) = 0, and for every t > 0.

Proof. The bound on ‖Pγ
t f‖ is precisely the one given in Theorem 1.6. Since this

bound is uniform in γ, the bound on Ptf follows at once from Lemma 3.4.

We now have all the necessary ingredients for the proof of (3.4). Fix ε > 0 and
choose T sufficiently large such that∥∥∥L−1

γ f −
∫ T

0

Pγ
t f dt

∥∥∥ ≤ ε ,
∥∥∥L−1Πf −

∫ T

0

PtΠf dt
∥∥∥ ≤ ε .

Such a T can be chosen independently of γ by Lemma 3.5. On the other hand, it
follows from Lemma 3.4 and Lebesgue’s dominated convergence theorem that

lim
γ→0

∥∥∥∫ T

0

(
Pγ

t f − ιPtΠf
)
dt

∥∥∥ = 0 ,

and the result follows.
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Remark 3.6. Following the methodology advertised in [PS07], it would be satisfying
to obtain an expansion for ϕγ of the type ϕγ = ϕ0 + γϕ1 + % for some error term %
and therefore to get better explicit control over the convergence in (3.4). The problem
with this approach is the loss of regularizing properties of the resolvent L−1

γ as γ → 0.
In particular, the limiting function ϕ0 is not C∞, but only Lipschitz continuous. As a
consequence, the first corrector is not of order γ, but expected to be of order γ1/2, see
[Sow03, Sow05], thus leading to a breakdown of the naive perturbative expansion.

4 Estimates on the Effective Diffusion Coefficient

In this section we present some estimates on the diffusion coefficient Dγ defined
in (3.1). To state the upper bound we need to define the diffusion coefficient for the
Smoluchowski equation

ż = −∂zV (z) +
√

2
β
ξ(t), (4.1)

with V (z) being the smooth periodic potential in (1.1). It is well known, see e.g.
[Oll94] or [PS07, Ch. 13], that the rescaled process εz(t/ε2) converges weakly in
the limit as ε → 0 to

√
2D̄W (t) where W (t) is a standard Brownian motion and the

diffusion coefficient is given by the formula

D̄ = β−1

∫
T
|1 + ∂qχ|2 ν(dq) =: β−1‖1 + ∂qχ‖2, (4.2)

where
ν(dq) =

1
Z
e−βV (q) dq, Z =

∫
T
e−βV (q) dq ,

and the function χ is the solution to the Poisson equation

L̄χ = ∂qV (q), L̄ = −∂qV (q)∂q + β−1∂2
q , (4.3)

equipped with periodic boundary conditions. It is well known that D̄ ≤ β−1. The
upper bound in the theorem below shows that diffusion for the Langevin dynamics is
depleted even further.

Proposition 4.1. Let D∗ be as in (2.8) and let D̄ be as above. Then, the bound

D∗

γ
≤ Dγ ≤

D̄

γ
, (4.4)

is valid for every γ ∈ (0,∞).

Proof. We multiply equation (3.2) by a smooth test function ψ ∈ L2(µ) to obtain

1
γ

∫
T×R

ϕγAψ µ(dp dq) + β−1

∫
T×R

∂pϕγ∂pψ µ(dp dq) =
∫

T×R
pψ µ(dp dq). (4.5)

We choose a test function which is independent of p, ψ = ψ(q) to obtain∫
T×R

ϕγp∂qψ µ(dp dq) = 0. (4.6)

We introduce the decomposition

ϕγ(q) =
∫
ϕγ(p, q) νβ(dp) , ϕ̃γ(p, q) = ϕγ(p, q)− ϕγ(q) , (4.7)
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where νβ(p) = Z−1 exp(−βp2/2). Note that if ϕ is a function from R to R such that∫
ϕ(p) νβ(dp) = 0, then it follows from the spectral decomposition of the harmonic

oscillator Schrödinger operator that ‖∂pϕ‖2 ≥ β‖ϕ‖2, where the norms are in L2(νβ).
This inequality can be applied pointwise to ϕ̃γ , so that he bound

‖∂pϕγ‖2 = ‖∂pϕ̃γ‖2 ≥ β‖ϕ̃γ‖2 (4.8)

holds.
Substituting the decomposition (4.7) and (4.6) into the expression forDγ , we obtain

Dγ =
∫

T×R
ϕ̃γp µ(dp dq) =

∫
T×R

ϕ̃γp(1 + ∂qψ)µ(dp dq)

≤ ‖ϕ̃γ‖ ‖p(1 + ∂qψ)‖ ≤
√
β−1‖∂pϕγ‖‖1 + ∂qψ‖‖p‖

≤
√
γDγ‖1 + ∂qψ‖

√
β−1.

Here, we used (4.8) on the second line and we used the fact that the effective diffusion
coefficient can be written as

Dγ =
1
γβ
‖∂pϕγ‖2 .

to go from the second to the third line. It follows from this calculation that Dγ ≤
1

γβ ‖1 + ∂qψ‖2, so that (4.4) follows by taking ψ in the above estimate to be χ, the
solution of (4.3), and by using (4.2).

Now we proceed with the bound from below. This time, we use a test function ψ
of the form

ψ(p, q) =
{

ϕ ◦H for p ≥ 0
−ϕ ◦H for p ≤ 0

where ϕ : R+ → R+ is a smooth function with ϕ(H) = 0 for H ≤ E0 and such that
limH↓E0 ϕ

′(H) 6= 0. Plugging this ansatz into equation (4.5), we obtain

β−1

∫
T×R

∂pϕγ∂pψ µ(dp dq) =
∫

T×R
pψ µ(dp dq) = −β−1

∫
T×R

∂pψ µ(dp dq).

Here, we used integration by parts and the explicit expression for µ in order to obtain
the second equality. Cauchy-Schwarz now yields:

Dγ =
1
γβ
‖∂pϕγ‖2 ≥

(∫
T×R ∂pψ µ(dp dq)

)2

γβ‖∂pψ‖2
.

At this point, we notice that, with the notations of Section 2, this is equivalent to

Dγ ≥

(
2Z−1

β

∫∞
E0
ϕ′(z)e−βz dz

)2

2γβZ−1
β

∫∞
E0

(ϕ′(z))2S(z)e−βz dz
.

Choosing ϕ such that ϕ′(z) = 1/S(z), we finally obtain

Dγ ≥
2

γβZβ

∫ ∞

E0

e−βz

S(z)
dz

which, combined with (2.8), is the required bound.
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Figure 3: Large γ asymptotic for the effective diffusivity.

4.1 Large γγγ Asymptotic
It is well known that, when γ is large, solutions to the Langevin equation (1.1) are
approximated by solutions to the Smoluchowski equation (4.1), see e.g. [Nel67, Thm.
10.1], [Fre04]. It is therefore not surprising that a result similar to Proposition 3.3 holds
in the large γ limit:

lim
γ→∞

γD = D̄ =
1

βZẐ
,

where

Z =
∫ 1

0

e−βV (q) dq, Ẑ =
∫ 1

0

eβV (q) dq.

In the above we used the fact that D̄ can be calculated explicitly [PS07, Sec. 13.6].
It is also quite straightforward (at least formally) to obtain the next term in the small
γ−1 expansion for Dγ . We solve perturbatively (3.2) using the technique presented
in [HL84, Ch. 8] we obtain

Dγ =
1

βγZẐ
− βZ1

γ3ZẐ2
+O

(
1
γ5

)
, (4.9)

where Z and Ẑ are as before, and Z1 is given by Z1 =
∫ 1

0
(V ′(q))2eβV (q) dq.

In Figure 3, we plot the diffusion coefficientD for the nonlinear pendulum obtained
from direct numerical simulations, together with the approximation (4.9). As expected,
the agreement between the result of the the Monte-Carlo simulation and the theoretical
prediction is very good, even for values of γ that are close to O(1).1

1In the case where the potential has period `, as opposed to 1, then formula (4.9) has to be multiplied by
`2 and all the integrals that define the coefficients that appear in the formula are taken from 0 to `.
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5 The intermediate regime: the α ∈ (0, +∞)α ∈ (0, +∞)α ∈ (0, +∞) case

In this section we consider intermediate length and time scales, between and Freidlin-
Wentzell and the central limit theorem ones. In particular, we prove Theorem 1.2,
namely that, at intermediate length/time scales the particle position converges weakly
to a Brownian motion with the Freidlin-Wentzell effective diffusivity 2.8.

Proof of Theorem 1.2. Notice that the stationarity assumption implies that, for every
smooth function in L1(µ), periodic in q,

Ef (p(t), q(t)) =
∫

T×R
f (p, q)µ(dp dq).

Let ϕγ be the solution to the Poisson equation (3.2). We apply Itô’s formula to ϕγ(p, q)
to obtain

qγ(t) = λγq(0) + λγ

∫ t/µγ

0

p(s) ds

= λγq(0)− λγγ
−1

(
ϕγ(p(t/µγ), q(t/µγ))− ϕγ(p(0), q(0))

)
+

√
2γ−1λ2

γβ
−1

∫ t/µγ

0

∂pϕγ(p(s), q(s)) dW (s)

=: λγq(0) +Rγ +Mγ ,

where λγ , µγ are given in (1.10). We obviously have that limγ→0 E(λγq(0))2 = 0.
Proposition 6.1, the stationarity assumption and our assumption that α > 0, further-
more imply that

E|Rγ |2 ≤ Cγα → 0,

as γ → 0.
Consider now the martingale term Mγ . According to the martingale central limit

theorem [EK86], in order to prove that Mγ converges to a Brownian motion, it is
sufficient to show that the quadratic variation process 〈Mγ〉, converges weakly to a
constant times t. This quadratic variation process is given by:

〈Mγ〉t =
2λ2

γ

γβ

∫ t/µγ

0

|∂pϕγ(p(s), q(s))|2 ds .

Define

fγ(p, q) :=
2λ2

γ

γµγβ
|∂pϕγ(p, q)|2 = 2β−1|∂pϕγ |2

and
fγ :=

∫
T×R

fγ(p, q)µ(dp dq) ,

where µ = Z−1 exp(−βH(p, q)) dp dq. It follows from Propositions 6.1 and 6.3 that
fγ remains bounded between two positive constants as γ → 0.

In order to bound the error between 〈Mγ〉t and fγt, the idea is to subdivide the
interval [0, t] into N ‘small’ intervals of size τ = t/N and to add the individual errors
made at each time interval. Denote tk = kτ and εk = |〈Mγ〉tk+1 − 〈Mγ〉tk

− fγτ |.
Then, the fact that 〈Mγ〉 is an increasing process implies that

sup
s∈[0,t/µγ ]

|〈Mγ〉s − fγs| ≤
N∑

k=1

εk + fγτ +
N

sup
k=1

εk ≤ 2
N∑

k=1

εk + fγτ . (5.1)
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The individual errors εk can be bounded in a standard way by

Eε2k = E
(∫ tk

tk−1

fγ(p(s/µγ), q(s/µγ)) ds− fγτ
)2

= E
(∫ tk

tk−1

fγ(p(s/µγ), q(s/µγ)) ds
)2

− f
2

γτ
2

=
∫ τ

0

∫ τ

0

∫
T×R

fγ(p, q)(Pγ
|r−s|/µγ

fγ)(p, q)µ(dp dq) dr ds− f
2

γτ
2

≤
∫ τ

0

∫ τ

0

‖fγ‖2e−Cγ|r−s|/µγ dr ds ≤ C

γ
‖fγ‖2µτµγ .

Here, we used the stationarity assumption. We also used Theorem 1.6 to bound the
action of the semigroup Pγ

t . Combining this with (5.1) yields

E
(

sup
s∈[0,t/µγ ]

|〈Mγ〉s − fγs|
)
≤ C‖fγ‖µ

√
µγ

γτ
+ fγτ

= C‖∂pϕγ‖2L4(µ)γ
ατ−1/2 + C‖∂pϕγ‖2τ ≤ C

(
γα−1/2τ−1/2 + τ

)
.

We now choose τ = γζ for some ζ > 0, arbitrarily small. Since we assumed α > 1/2,
we conclude that

lim
γ→0

E
(

sup
s∈[0,t/µγ ]

|〈Mγ〉s − fγs|
)

= 0 .

Furthermore, it follows from the definition of f̄γ and from Proposition 3.3 that one
has limγ→0 f̄γ = 2D∗. This immediately implies that, as γ → 0, 〈Mγ〉t converges
to 2D∗t in L1(µ) and therefore Mγ converges to a Brownian motion with diffusivity
D∗.

The proof of the result stated in Remark 1.5 on the large γ asymptotic is essentially
identical to the one presented above: Itô’s formula, our assumption of stationarity and
the scaling λγ = γ−α lead to

γ−αq(tγ1+2α) = Mγ +Rγ ,

where limγ→∞ ‖Rγ‖ = 0 and

Mγ = 2γ−1−2αβ−1

∫ tγ1+2α

0

|∂pϕγ(p(s), q(s))|2 ds.

The result now follows from the martingale central limit theorem, the subdivision of
[0, t] that was used in the proof above and the fact that, for γ � 1, estimate (1.15)
becomes

‖∂pϕγ‖L4(µ) ≤ C,

for some constant independent of γ.

6 Resolvent bounds

In this section, we obtain the main bounds on the solution ϕγ of the Poisson equation
(3.2). It will be convenient to work not only in the L2 space weighted by the invariant
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measure µ = exp(−βH(p, q)) dp dq, but in the whole scale of spacesHδ = L2(µδ) for
δ ∈ (0, β]. The main technical difficulty is to obtain bounds in spaces for δ 6= β, but
this seems to be required in order to obtain the bound on the L4-norm of ∂pϕγ required
in Section 5. We first focus on bounds for the case δ = β.

The norm and scalar product inHδ will be denoted by ‖ ·‖δ and 〈·, ·〉δ respectively.
The subscript is omitted in the case δ = β. We also denote by µδ the probability
measure on T × R proportional to exp(−δH(p, q)) dp dq and by νδ the probability
measure on R proportional to exp(−δp2/2) dp.

6.1 Bounds inHβHβHβ

We have the following preliminary bound:

Proposition 6.1. Let ϕγ denote the solution of (3.2) and assume that V (q) ∈ C∞per(T).
Then, ϕγ satisfies the bound

‖∂pϕγ‖ ≤ C , (6.1)

for some constant C independent of γ.

Proof. Existence and uniqueness of solutions to (3.2) is proved for example in [PV85],
see also [HP04, Thm. 3.3]. The smoothness of the solution follows from the hypoel-
lipticity of the operator Lγ . Estimate (6.1) follows from the Poincaré inequality for
Gaussian measures in the following way: we multiply (3.2) by ϕγ and integrate by
parts on the left hand side to obtain

β−1‖∂pϕγ‖2 = 〈p, ϕ+ ϕ̃〉 ,

where we defined

ϕγ(q) =
∫
ϕγ(p, q) νβ(dp) , ϕ̃γ(p, q) = ϕγ(p, q)− ϕγ(q) .

Since, for every q, ϕ̃γ averages to zero with respect to νβ , it satisfies the Poincaré
inequality. On the other hand, we have that 〈p, ϕγ〉 = 0, since ϕγ is a function of q
only. Hence, by Cauchy-Schwarz and Poincaré, we have the bound

‖∂pϕγ‖2 = β〈p, ϕ̃γ〉 ≤ β‖p‖‖ϕ̃γ‖ ≤ C‖∂pϕ̃γ‖ = C‖∂pϕγ‖ ,

for some constant C independent of γ. This concludes the proof.

We proceed now with the proof of Theorem 1.6 which we restate here for the
reader’s convenience.

Theorem 6.2. There exist constants C and α independent of γ such that

‖eLγtf‖ ≤ Ce−αt‖f‖ , (6.2)

holds for every t > 0, every γ < 1, and every f ∈ L2(µ) such that
∫
fdµ = 0.

Proof. The proof is a variation on the commutator techniques introduced in [Koh69,
Koh78] and further developed in [EPRB99, EH00, HN04, HN05, Vil06]. The argument
given here is actually mainly inspired by the techniques developed by Villani in [Vil06].
In particular, we make use of his idea of constructing a ‘skewed’ scalar product in
which the coercivity of Lγ becomes apparent. The main difference is that we are going
to track carefully the dependence of the various terms on the parameter γ.
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We will use the following notations:

A = β−1/2∂p , A∗ = −β−1/2∂p + β1/2p ,
B = p∂q − V ′(q)∂p , B∗ = −B ,

The reason why we are using the symbolB for the Liouville operator and notA as pre-
viously is to be consistent with the notations adopted in [Vil06]. With these notations,
we have Lγ = −A∗A+ γ−1B. Here, the adjoints A∗ and B∗ are taken with respect to
the scalar product in H = L2(µ). We also introduce the operators

Ĉ = [A,B] = β−1/2∂q ,

R = [Ĉ, B] = −β−1/2V ′′(q)∂p = −V ′′(q)A .

We introduce the symmetric sesquilinear form 〈〈·, ·〉〉 defined by polarisation from

〈〈f, f〉〉 = a〈f, f〉+ γ(b〈Af,Af〉+ 2 Re〈Af, Ĉf〉+ b〈Ĉf, Ĉf〉) ,

for some constants a and b to be determined later. If we take b > 1, then this is indeed
positive definite and induces a norm equivalent to the norm ‖ · ‖1,γ given by

‖f‖21,γ = ‖f‖2 + γ(‖∂pf‖2 + ‖∂qf‖2) . (6.3)

Following the same manipulations as in [Vil06, Theorem 18], we see that there exists
a constant c independent of γ such that

Re〈f, Lγf〉 = −‖Af‖2 ,

Re〈Af,ALγf〉 ≤ −‖A2f‖2 + c‖Af‖2 +
c

γ
‖Af‖‖Ĉf‖ ,

Re〈Af, ĈLγf〉+ Re〈ALγf, Ĉf〉 ≤ −
1
γ
‖Ĉf‖2 +

c

γ
‖Af‖2

+ c‖A2f‖‖ĈAf‖+ c‖Ĉf‖‖Af‖ ,

Re〈Ĉf, ĈLγf〉 ≤ −‖ĈAf‖2 +
c

γ
‖Af‖‖Ĉf‖ .

It is now easy to see that we can choose a � b � 1 sufficiently large (but still inde-
pendently of γ!) so that

Re〈〈f, Lγf〉〉 ≤ −‖Af‖2 − ‖Ĉf‖2 − γ(‖A2f‖2 + ‖ĈAf‖2) . (6.4)

Note now that, provided that f is centred with respect to µ, the Poincaré inequality tells
us that there exists a constant κ such that

‖Af‖2 + ‖Ĉf‖2 ≥ κ‖f‖2 ,

so that (6.4) implies in particular that Re〈〈f, Lγf〉〉 ≥ κ′〈〈f, f〉〉 for some κ′. This
immediately implies that there exist positive constants C and α such that

‖eLγtf‖1,γ ≤ Ce−αt‖f‖1,γ . (6.5)

We will now show that there exists a time τ and a constant C, both independent of γ
(provided that γ is sufficiently small) such that

‖eLγτf‖1,γ ≤ C‖f‖ . (6.6)
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Combining this with (6.5) and (6.3) then implies that (6.2) holds.
In order to show (6.6), we combine the previous technique with the usual trick for

proving regularisation results for parabolic PDEs. We fix a smooth function f and we
define the quantity

2Af (t) = K‖ft‖2 + γ(t‖Aft‖2 + t3‖Ĉft‖2 + δt2〈Aft, Ĉft〉) , ft = Pγ
t f ,

for some (large) constantK and some (small) constant δ to be determined later. Taking
the time derivative of Af , we obtain

∂tAf ≤ −K‖Aft‖2 + γ‖Aft‖2 + t(−γ‖A2ft‖2 + cγ‖Aft‖2 + c‖Aft‖‖Ĉft‖)
+ 3γt2‖Ĉft‖2 + t3(−γ‖ĈAft‖2 + c‖Aft‖‖Ĉft‖) + 2tγδ〈Aft, Ĉft〉
+ δt2(−‖Ĉft‖2 + c‖Aft‖2 + cγ‖A2ft‖‖ĈAft‖+ cγ‖Ĉft‖‖Aft‖)

≤ −K
2
‖Aft‖2 − γt‖A2ft‖2 − γt3‖ĈAft‖2 − δt2‖Ĉft‖2

+ ct‖Aft‖‖Ĉft‖+ cγδt2‖A2ft‖‖ĈAft‖ .

(For the second inequality we changed the value of the constant c and we assumed that
t ∈ [0, 1].) Notice now that one can first choose δ sufficiently small (but independently
of γ) such that

cγδt2‖A2ft‖‖ĈAft‖ ≤ γt‖A2ft‖2 + γt3‖ĈAft‖2 .

We can then choose K sufficiently large so that

ct‖Aft‖‖Ĉft‖ ≤
K

2
‖Aft‖2 + δt2‖Ĉft‖2 .

With these choices, we get ∂tAf ≤ 0, so that Af (1) ≤ Af (0). This immediately
implies the bound (6.6).

By simply integrating from 0 to ∞, this implies that one has the resolvent bound:

‖L−1
γ f‖ ≤ C‖f‖ , (6.7)

holding for every f ∈ Hβ such that 〈1, f〉 = 0. It turns out that, up to a constant, this
bound is actually optimal:

Proposition 6.3. There exists a constant C independent of γ such that the operator
norm of the resolvent satisfies

‖L−1
γ ‖ ≥ C .

Proof. We make use of the fact that the norm of the resolvent can be characterized by

‖L−1
γ ‖ =

(
inf

f∈D(Lγ ) : 〈1,f〉=0

‖Lγf‖
‖f‖

)−1

. (6.8)

If we take f of the form f = ϕ ◦H for an arbitrary smooth bounded function ϕ such
that 〈1, f〉 = 0, then Lγf (and therefore also ‖Lγf‖) is independent of γ. Similarly,
‖f‖ is independent of γ so that the infimum appearing in (6.8) is bounded from above
by a constant independent of γ, thus proving the claim.

We now use these estimates to obtain bounds on the solution ϕγ to the Poisson
equation −Lγϕγ = p.
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Proposition 6.4. There exists a constant C independent of γ such that

‖ϕγ‖+ ‖∂pϕγ‖+ ‖∂qϕγ‖ ≤ C .

Proof. We have from (6.4) and the fact that the ‖ · ‖1,γ-norm of p is bounded indepen-
dently of γ that

‖∂pϕγ‖2 + ‖∂qϕγ‖2 ≤ Re〈〈ϕγ , Lϕγ〉〉 = Re〈〈ϕγ , p〉〉 ≤ C‖ϕγ‖1,γ ≤ C .

The last inequality followed from the bound (6.5). One can actually extract slightly
more from the above bounds. At this stage, we note that one can write B = γ(L −
A∗A), so that

‖Bϕγ‖2 = γ〈p,Bϕγ〉 − γ〈Aϕγ , ABϕγ〉 .

Since furthermore B is antisymmetric and [A,B] = ∂q, we have

‖Bϕγ‖2 ≤ Cγ + Cγ‖∂pϕγ‖‖∂qϕγ‖ .

Collecting this with the previous estimates, we obtain the existence of a constantC such
that ‖Bϕγ‖ ≤ C

√
γ, which in turn yields a bound of the type ‖A∗Aϕγ‖ ≤ C/

√
γ.

6.2 Bounds inHδHδHδ with δ 6= βδ 6= βδ 6= β

We now show that similar bounds hold in every Hδ . The main difficulty is that these
spaces are no longer weighted by the invariant measure of the system, so that sev-
eral simplifications are lost. In particular, the very useful relation Re〈ϕ,Lγϕ〉 =
−β−1‖∂pϕ‖2 does not hold anymore.

Throughout this section, we will write Lsym for the symmetric part of Lγ in Hδ:
〈ϕ,Lγϕ〉δ = 〈ϕ,Lsymϕ〉δ . An explicit calculation shows that one has

Lsym = −β−1∂∗p∂p +
β − δ

2β
− δ(β − δ)

2β
p2 ,

where we denote by ∂∗p = −∂p + δp the adjoint of ∂p inHδ . Note that one has Lsym =
−β−1∂∗p∂p if and only if δ = β. A standard calculation shows that Lsym is unitarily
equivalent to the Schrödinger operator corresponding to the harmonic oscillator, so that
one can explicitly compute its spectral decomposition. In order to do so, we define

α = −δ
2

+
√
δ(2β − δ)

2
, A = β−1/2(∂p + αp) , (6.9)

and we note that one can write

Lsym = −A∗A+
β −

√
δ(2β − δ)
2β

. (6.10)

Furthermore, one has [A∗, A] = −(2α+δ)/β. This shows that the eigenvalues of Lsym
are given by

λn =
β −

√
δ(2β − δ)
2β

− n

√
δ(2β − δ)
β

, n = 0, 1, . . . ,

and the corresponding eigenfunctions are fn ∝ (A∗)nf0 with f0 ∝ exp(−αp2/2). In
the special case δ = β, one simply has λn = −n.
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In order to obtain bounds in Hδ , we note that (3.2) yields the relation

‖Aϕγ‖2δ −
β −

√
δ(2β − δ)
2β

‖ϕγ‖2δ = 〈ϕγ , p〉δ .

This immediately implies that there exist constants C and N independent of γ such
that one has

1
2
(‖Aϕγ‖2δ + ‖ϕγ‖2δ) ≤ |〈ϕγ , p〉δ|+ C

N∑
k=0

∫
T

(∫
R
fk(p)ϕγ(p, q)e−δp2/2 dp

)2

dq .

On the other hand, all the fk’s are of the form Pk(p)e−αp2/p for some polynomial Pk

of degree k. This implies that, for every δ′ < 2(α + δ), there exist constants C1, C2

such that one has the bound

‖Aϕγ‖δ + ‖ϕγ‖δ ≤ C1 + C2‖ϕγ‖δ′ .

Since, for δ ≥ β, one has α ≥ 0, one has in particular the bound

‖Aϕγ‖δ + ‖ϕγ‖δ ≤ C(1 + ‖ϕγ‖2δ) . (6.11)

This calculation shows that:

Proposition 6.5. One has ϕγ ∈
⋂

δ>0Hδ and, for every δ ∈ (0, β], there exists a
constant C independent of γ such that

‖∂pϕγ‖2δ + ‖ϕγ‖2δ ≤ C . (6.12)

Proof. Since one has ‖ϕγ‖δ ≤ C‖ϕγ‖δ′ for δ ≥ δ′, we can apply (6.11) recursively to
obtain

‖Aϕγ‖δ + ‖ϕγ‖δ ≤ C(1 + ‖ϕγ‖β) ≤ C ,

where we made use of Proposition 6.1 for the second inequality (the two constants C
are of course different). Since furthermore ‖pϕγ‖δ ≤ C‖ϕγ‖δ′ for δ ≥ δ′, this proves
the claim.

We are now going to show that it is also possible to obtain an order 1 bound for
‖∂qϕγ‖δ , but as before this is less straightforward. We first start with the following
preparatory result:

Proposition 6.6. There exists a constant C independent of γ such that

‖∂2
pϕγ‖+ ‖∂p∂qϕγ‖+ ‖∂2

qϕγ‖ ≤
C
√
γ
.

Proof. The bound for ‖∂2
pϕγ‖ was obtained in Proposition 6.4. In order to obtain

the bound on ∂p∂qϕγ , note that one has [Lγ , ∂q] = γ−1V ′′(q)∂p, so that Lγ∂qϕγ =
γ−1V ′′(q)∂pϕγ . Therefore, we have

‖∂p∂qϕγ‖2 = 〈∂qϕγ , Lγ∂qϕγ〉 = γ−1〈∂qϕγ , V
′′(q)∂pϕγ〉 ≤

C

γ
‖∂qϕγ‖‖∂pϕγ‖ ,

so that the bound follows from Proposition 6.4. Finally, it follows from (6.4) that we
have the bound

‖∂2
qϕγ‖2 ≤ |〈〈∂qϕγ , Lγ∂qϕγ〉〉| = γ−1|〈〈∂qϕγ , V

′′(q)∂pϕγ〉〉|
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≤ C

γ
‖∂qϕγ‖‖∂pϕγ‖+ C(‖∂p∂qϕγ‖2 + ‖∂p∂qϕγ‖‖∂2

pϕγ‖+ ‖∂2
qϕγ‖‖∂p∂qϕγ‖

+ ‖∂2
qϕγ‖‖∂2

pϕγ‖+ ‖∂2
qϕγ‖‖∂pϕγ‖+ ‖∂p∂qϕγ‖‖∂pϕγ‖)

≤ C

γ
+

1
2
‖∂2

qϕγ‖2 ,

where we made use of all of the the previously obtained bounds in the last step.

Our aim now is to mimic the proof of Theorem 1.6, with the space Hβ replaced
by Hδ for some arbitrary δ ∈ (0, β]. We define A as in (6.9) and we set as before
B = p∂q − V ′(q)∂p. We furthermore define the operator B̃ (which is antisymmetric in
Hδ) by

B̃ =
δ − β

β

(
p∂p −

δ

2
p2 +

1
2

)
.

With these notations, we can check that Lγ can be written as

Lγ = −A∗A+
1
γ
B + B̃ +

β −
√
δ(2β − δ)
2β

,

where the adjoint of A is taken in Hδ . This motivates the definition of an operator L̂γ

given by

L̂γ = −A∗A+
1
γ
B .

Our strategy is then to obtain a bound similar to (6.4) with Lγ replaced by L̂γ and to
use make use of the fact that the difference between Lγ and L̂γ is sufficiently “small”.

Theorem 6.7. For every δ ∈ (0, β], there exists a constant C such that

‖∂pϕγ‖2δ + ‖∂qϕγ‖2δ + γ(‖∂2
pϕγ‖2δ + ‖∂p∂qϕγ‖2δ + ‖∂2

qϕγ‖2δ) ≤ C , (6.13)

independently of γ.

Remark 6.8. In terms of L2-estimates, these bounds are likely not to be absolutely
optimal. In the limit γ → 0 the solution ϕγ of the Poisson equation (3.2) indeed
converges to a function of the form

ϕγ,0(p, q) =
{

ϕ ◦H for p ≥ 0
−ϕ ◦H for p ≤ 0

where ϕ : R+ → R+ is a smooth function with ϕγ(H) = 0 for H ≤ E0 and such that
limH↓E0 ϕ

′(H) 6= 0. Note that the second derivative of ϕγ,0 is therefore not square-
integrable. For small values of γ, it is believed [Sow03, Sow05] that, around H = E0,
the function ϕγ develops a ‘boundary layer’ of width

√
γ on which, from simple scaling

arguments, its second derivative should be of order γ−1/2 .

Proof of Theorem 6.7. We define as before the operators Ĉ and R by

Ĉ = [A,B] = β−1/2(∂q + αV ′(q)) , R = [Ĉ, B] = −V ′′(q)A .

With these notations, we define similarly as before the scalar product

〈〈f, f〉〉δ = a‖f‖2δ + γ(b〈Af,Af〉δ + 2Re〈Af, Ĉf〉δ + b〈Ĉf, Ĉf〉δ) ,
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where a and b are constants to be determined later. Since the algebraic relations be-
tween L̂γ , A, B, Ĉ, and R are exactly the same as above, we can retrace step by step
the proof of (6.4) to get

‖Af‖2δ + ‖Ĉf‖2δ + γ(‖A2f‖2δ + ‖ĈAf‖2δ) ≤ −Re〈〈f, L̂γf〉〉δ . (6.14)

Since furthermore we know from Proposition 6.5 that ‖ϕγ‖δ and (and therefore also
‖pnϕγ‖δ for every n) are bounded by constants independent of γ, this implies the
existence of a constant C such that

‖∂pϕγ‖2δ + ‖∂qϕγ‖2δ + γ(‖∂2
pϕγ‖2δ + ‖∂p∂qϕγ‖2δ)

≤ C(1 + 〈〈ϕγ , ϕγ〉〉δ + |〈〈ϕγ , p∂pϕγ〉〉δ|) .

However, it is a straightforward calculation to check that, from Proposition 6.5 and the
definition of 〈〈·, ·〉〉δ , one has

|〈〈ϕγ , p∂pϕγ〉〉δ| ≤
1
2
(‖∂pϕγ‖2δ + γ(‖∂2

pϕγ‖2δ + ‖∂p∂qϕγ‖2δ)) + C(1 + 〈〈ϕγ , ϕγ〉〉) ,

so that we get the bound

‖∂pϕγ‖2δ + ‖∂qϕγ‖2δ + γ(‖∂2
pϕγ‖2δ + ‖∂p∂qϕγ‖2δ) ≤ C(1 + 〈〈ϕγ , ϕγ〉〉δ) .

We can actually even get slightly better than that, in the same way as in Proposition 6.6.
Using (6.14) and the commutation relation [L̂γ , ∂q] = γ−1V ′′(q)∂p, we have:

‖∂2
qϕγ‖2δ ≤ C + |〈〈∂qϕγ , L̂γ∂qϕγ〉〉δ| ≤ C + C|γ−1〈〈∂qϕγ , V

′′(q)∂pϕγ〉〉δ| ,

so that we finally get the existence of a constant C such that

‖∂pϕγ‖2δ + ‖∂qϕγ‖2δ + γ(‖∂2
pϕγ‖2δ + ‖∂p∂qϕγ‖2δ + ‖∂2

qϕγ‖2δ) ≤ C(1 + 〈〈ϕγ , ϕγ〉〉δ) .
(6.15)

Our aim now is to show that, for every δ ∈ (0, β], there exists a constant C such
that 〈〈ϕγ , ϕγ〉〉δ ≤ C, independently of γ, which will then conclude the proof of the
theorem. This will be performed thanks to a bootstrapping argument similar to the one
we used already in the proof of Proposition 6.5. One has, for some constant c > 0,

c〈〈ϕγ , ϕγ〉〉δ ≤ ‖ϕγ‖2δ + γ(‖∂pϕγ‖2δ + ‖∂qϕγ‖2δ)

≤ ‖ϕγ‖2δ + γ

∫
T

∫
R
((∂pϕγ)2 + (∂qϕγ)2)µδ(dp dq)

≤ ‖ϕγ‖2δ + γ

∫
T

∫
R

(
|ϕγ∂

2
pϕγ |+ |ϕγ∂

2
qϕγ |

+δ|pϕγ∂pϕγ |+ δ|V ′(q)ϕγ∂qϕγ |
)
µδ(dp dq)

Writing 2δ = δ1 + δ2 with δi > 0 and applying Cauchy-Schwarz, we obtain from this
the existence of positive constants c and C such that

c〈〈ϕγ , ϕγ〉〉δ ≤ ‖ϕγ‖2δ + Cγ(‖ϕγ‖δ1 + ‖pϕγ‖δ1)
× (‖∂2

pϕγ‖δ2 + ‖∂2
qϕγ‖δ2 + ‖∂pϕγ‖δ2 + ‖∂qϕγ‖δ2) .

It therefore follows from (6.15) and Proposition 6.5 that there is a constant (depending
on the choice of δi) such that

〈〈ϕγ , ϕγ〉〉δ ≤ C(1 + 〈〈ϕγ , ϕγ〉〉δ2) .
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Since δ2 can be chosen larger than δ (actually up to, but not including 2δ), we can
apply this inequality recursively to bound 〈〈ϕγ , ϕγ〉〉δ by 〈〈ϕγ , ϕγ〉〉β which in turn has
already been bounded in Propositions 6.5 and 6.6.

As a simple corollary, we have the following bound on ∂pϕγ which is used in the
proof of Theorem 1.2:

Corollary 6.9. The function ∂pϕγ belongs to L4(µδ) for every δ ∈ (0, β] and every
γ > 0. Its norm in L4(µδ) is of order O(γ−1/4).

Proof. Denoting by ∆ the Laplacian on R2, it follows from the fractional Sobolev
inequalities that(∫
|∂pϕγ |4 µδ(dp dq)

)1/2

≤
∫ (

(1−∆)1/4∂pϕγ e
−δH(p,q)/4 dp dq

)2

dp dq

≤
∫ (

(1−∆)1/2∂pϕγe
−δH(p,q)/4

)
∂pϕγe

−δH(p,q)/4 dp dq

≤ C‖∂pϕγ‖δ/2(‖∂pϕγ‖δ/2 + ‖∂2
pϕγ‖δ/2 + ‖∂q∂pϕγ‖δ/2 + ‖p∂pϕγ‖δ/2)

≤ C
(
1 + γ−1/2

)
,

were we used Theorem 6.7.

Remark 6.10. In a similar way, one can obtain, for every p ∈ [1,∞), bounds of order
O(1) for ϕγ L

p(µδ). Unfortunately, using the Sobolev bounds obtained for ϕγ in this
section, it is not possible to obtain bounds of order O(1) for ∂pϕγ in Lp(µδ), even
though we conjecture that such bounds hold true.
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