
Signal Processing Problems on Function Space:
Bayesian Formulation, Stochastic PDEs and

Effective MCMC Methods

March 4, 2009

M. Hairer1,2, A. Stuart1, J. Voss1,3

1 Mathematics Institute, Warwick University, Coventry, UK
2 Courant Institute, NYU, New York, USA
3 Department of Statistics, University of Leeds, Leeds, UK

Abstract
In this chapter we overview a Bayesian approach to a wide range of signal pro-
cessing problems in which the goal is to find the signal, which is a solution
of an ordinary or stochastic differential equation, given noisy observations of
its solution. In the case of ordinary differential equations (ODEs) this gives
rise to a finite dimensional probability measure for the initial condition, which
then determines the measure on the signal. In the case of stochastic differen-
tial equations (SDEs) the measure is infinite dimensional, on the signal itself, a
time-dependent solution of the SDE.
We derive the posterior measure for these problems, applying the ideas to ODEs
and SDEs, with discrete or continuous observations, and with coloured or white
noise. We highlight common structure inherent in all of the problems, namely
that the posterior measure is absolutely continuous with respect to a Gaussian
prior. This structure leads naturally to the study of Langevin equations which
are invariant for the posterior measure and we highlight the theory and open
questions relating to these S(P)DEs. We then describe the construction of ef-
fective Metropolis-based sampling methods for the posterior measure, based on
proposals which can be interpreted as approximations of the Langevin equation.

Contents

1 Overview 2

2 General Properties of the Posterior 3



OVERVIEW 2

3 Theme A. Bayesian Inference for Signal Processing 6

4 Theme B. Langevin Equations 24

5 Theme C. MCMC Methods 29

6 Discussion and Bibliography 35

A Some Results from Probability 37

1 Overview

Many applied problems concerning the integration of data and mathematical model
arise naturally in dynamically evolving systems. These may be formulated in the
general framework of Bayesian inference. There is particular structure inherent
in these problems, arising from the underlying dynamical models, that can be ex-
ploited. In this chapter we highlight this structure in the context of continuous time
dynamical models in finite dimensions. We set-up a variety of Bayesian inference
problems, some finite dimensional, for the initial condition of the dynamics, and
some infinite dimensional, for a time-dependent path of an SDE. All of the prob-
lems share a common mathematical structure namely that the posterior measure
µy, given data y, has a density with respect to a Gaussian reference measure µ0 so
that

dµy

dµ0

(x) = Z(y)−1 exp
(
−Φ(x; y)

)
(1.1)

for some potential function Φ(·; y) and normalisation constant Z(y) both parame-
terized by the data. We denote the mean and covariance operator for µ0 bym0 and
C0, and we use L = C−1

0 to denote the precision operator. Thus µ0 = N (m0, C0).
The content of this chapter is centred around three main themes:

• Theme A. To exhibit a variety of problems arising in data assimilation which
share the common structure (1.1).

• Theme B. To introduce a class of stochastic PDEs (SPDEs) which are re-
versible with respect to µ0 or µy respectively.

• Theme C. To introduce a range of Metropolis-Hastings MCMC methods
which sample from µy, based on the SPDEs discussed in Theme B.

A central aspect of this chapter will be to exhibit, in Theme A, common prop-
erties of the potential Φ(x; y) which then form the key underpinnings of the theo-
ries outlined in Themes B and C. These common properties of Φ include bounds
from above and below, continuity in both x and y, and differentiability in x.
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The continuous time nature of the problems means that, in some cases, the
probability measures constructed are on infinite dimensional spaces: paths of con-
tinuous-time, vector valued processes. We sometimes refer to this as pathspace.
Working with probability measures on function space is a key idea throughout
this Chapter. We will show that this viewpoint leads to the notion of a well-posed
signal processing problem, in which the target measure is continuous with re-
spect to data. Furthermore a proper mathematical formulation of the problems
on pathspace leads to efficient sampling techniques, defined on pathspace, and
therefore robust under the introduction of discretization. In contrast, sampling
techniques which first discretize, to obtain a finite dimensional sampling prob-
lem, and then apply standard MCMC techniques, will typically lead to algorithms
which perform poorly under refinement of the discretization.

In section 2 we describe some general properties of measures defined through
(1.1). Sections 3.1–3.6 are concerned with Theme A. In section 3.1 we initiate
our study by considering a continuous time deterministic ODE observed nois-
ily at discrete times; the objective is to determine the initial condition. Sections
3.2 and 3.3 generalize this set-up to the situation where the solution is observed
continuously in time, and subject to white noise and coloured noise respectively.
In section 3.4 we return to discrete observations, but assume that the underlying
model dynamics is subject to noise – or model error; in particular we assume that
the dynamics is forced by an Ornstein-Uhlenbeck process. This section, and the
remaining sections in Theme A, all contain situations where the posterior mea-
sure is on an infinite dimensional space. Section 3.5 generalizes the ideas in sec-
tion 3.4 to the situation where the model error is described by white noise in time.
Finally, in section 3.6, we consider the situation with model error (in the form of
white noise) and continuous time observations. In section 4 we address Theme B,
whilst section 5 is concerned with Theme C. Some notational conventions, and
background theory, are outlined in the Appendix.

We emphasize that, throughout this chapter, all the problems discussed are
formulated as smoothing problems, not filtering problems. Thus time distributed
data on a given time-interval [0, T ] is used to update knowledge about the entire
state of the system on the same time interval. For a discussion of filtering methods
we refer to [DdFG01].
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2 General Properties of the Posterior

In the next section we will exhibit a wide variety of signal processing problems
which, when tackled in a Bayesian framework, lead to a posterior probability mea-
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sure µ on a Banach space (E, ‖ · ‖E), specified via its Radon-Nikodym derivative
with respect to a prior Gaussian measure µ0. Specifically we have (1.1) where
µ0 = N (m0, C0) is the prior Gaussian measure and Φ(x; y) is a potential. We as-
sume that y ∈ Y , a separable Banach space with norm ‖ · ‖Y . The normalization
constant Z(y) is chosen so that µ is a probability measure:

Z(y) =

∫
E

exp(−Φ(x; y)) dµ0(x). (2.1)

For details about Gaussian measures on infinite dimensional spaces we refer to
the monograph [Bog98].

In many of the applications considered here, Φ satisfies the following four
properties:

Assumption 2.1 The function Φ: E × Y → R has the following properties:

1. For every r > 0 and every ε > 0, there exists M = M (r, ε) such that, for
all x ∈ E and all y such that ‖y‖Y ≤ r, Φ(x; y) ≥M − ε‖x‖2

E .

2. There exists p ≥ 0 and, for every r > 0, there exists C = C(r) > 0 such
that, for all x ∈ E and all y ∈ Y with ‖y‖Y ≤ r, Φ(x; y) ≤ C(1 + ‖x‖pE).

3. For every r > 0 and every R > 0 there exists L = L(r, R) > 0 such that,
for all x1, x2 ∈ E with ‖x1‖E ∨ ‖x2‖E ≤ R and all y ∈ Y with ‖y‖Y ≤ r,

|Φ(x1; y)− Φ(x2; y)| ≤ L‖x1 − x2‖E .

4. There exists q > 0 and, for every r > 0, there exists K = K(r) > 0 such
that, for all x ∈ E and all y1, y2 ∈ E with ‖y1‖Y ∨ ‖y2‖Y ≤ r,

|Φ(x; y1)− Φ(x; y2)| ≤ K(1 + ‖x‖qE)‖y1 − y2‖Y .

We show that, under these assumptions, the posterior measure µy is continuous
with respect to the data y in the total variation distance. This is a well-posedness
result for the posterior measure. The result, and proof, is similar to that in [CDRS]
which concerns Bayesian inverse problems for the Navier-Stokes equations, but
where the Hellinger metric is used to measure distance.

Theorem 2.2 Let µy and µ0 be measures on a separable Banach space E such
that µ0 is a Gaussian probability measure, µy is absolutely continuous w.r.t. µ0,
and the log density Φ = − log

(
dµy

dµ0

)
: E × Y → R satisfy Assumption 2.1. Then

µy is a probability measure and the map y 7→ µy is locally Lipschitz continuous
in total variation distance: if µ and µ′ are two measures given by (1.1) with data
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y and y′ then, for every r > 0 and for all y, y′ with ‖y‖Y ∨‖y′‖Y ≤ r, there exists
a constant C = C(r) > 0 such that

‖µ− µ′‖TV ≤ C‖y − y′‖Y .

Proof. Since the reference measure µ0 is Gaussian, ‖x‖E has Gaussian tails under
µ0. The lower bound (i) therefore immediately implies that exp(−Φ) is integrable,
so that Z(y) is indeed finite for every y.

We now turn to the continuity of the measures with respect to y. Throughout
the proof, all integrals are over E. We fix a value r > 0 and use the notation C
to denote a strictly positive constant that may depend upon r and changes from
occurrence to occurrence. As in the statement, we fix y, y′ ∈ Y and we write
µ = µy and µ′ = µy

′ as a shorthand. Let Z and Z ′ denote the normalization
constants for µ and µ′, so that

Z =

∫
exp
(
−Φ(x; y)

)
dµ0(x) , Z ′ =

∫
exp
(
−Φ(x; y′)

)
dµ0(x) .

Since µ0 is Gaussian, assumption (1) yields the upper bound |Z| ∨ |Z ′| ≤ C. In
addition, since Φ is bounded above by a polynomial by (2), we have a similar
lower bound |Z| ∧ |Z ′| ≥ C. Using again the Gaussianity of µ0, the bound (4)
yields

|Z − Z ′| ≤ C

∫
‖y − y′‖Y (1 + ‖x‖qE) exp(−(Φ(x; y) ∨ Φ(x; y′))) dµ0(x)

≤ C‖y − y′‖Y
∫

(1 + ‖x‖qE) exp(ε‖x‖2
E −M) dµ0(x)

≤ C‖y − y′‖Y . (2.2)

From the definition of the total variation distance, we then have

‖µ− µ‖TV =

∫ ∣∣∣Z−1 exp(−Φ(x; y))− (Z ′)−1 exp(−Φ(x; y′))
∣∣∣ dµ0(x)

≤ I1 + I2 ,

where

I1 =
1

Z

∫ ∣∣∣exp(−Φ(x; y))− exp(−Φ(x; y′))
∣∣∣ dµ0(x) ,

I2 =
|Z − Z ′|
ZZ ′

∫
exp(−Φ(x; y′)) dµ0(x) .

Since Z is bounded from below, we have I1 ≤ C‖y − y′||Y just as in (2.2). The
second term is bounded similarly by (2.2) and the lower bound (i) on Φ, thus
concluding the proof.
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Remark 2.3 We only ever use the Gaussianity of µ0 to deduce that there exists
ε > 0 such that

∫
E

exp(ε‖x‖2
E)µ0(dx) < ∞. Therefore, the statement of Theo-

rem 2.2 extends to any reference measure µ0 with this property.

3 Theme A. Bayesian Inference for Signal Processing

It is instructive to summarize the different cases treated in this section in a table.
The choice of column determines whether or not model error is present, and when
present whether it is white or coloured; the choice of row determines whether or
not the observations are discrete, and when continuous whether or not the obser-
vational noise is white or coloured. There are three possibilities not covered here;
however the reader should be able to construct appropriate models in these three
cases after reading the material herein.

model error

observation no white coloured

discrete 3.1 3.5 3.4
white 3.2 3.6

coloured 3.3

3.1 No Model Error, Discrete Observations
Here we address the question of making inference concerning the initial condition
for an ODE, given noisy observation of its trajectory at later times. Thus the
basic unknown quantity, which we wish to find the (posterior) distribution of, is a
finite-dimensional vector.

Let v ∈ C1([0, T ],Rn) solve the ODE

dv

dt
= f (v), v(0) = u. (3.1)

We assume that f is sufficiently nice (say locally Lipschitz and satisfying a co-
ercivity condition) that the equation defines a semigroup ϕt : Rn → Rn with
v(t) = ϕt(u). We assume that we observe the solution in discrete time, at times
{tk}Kk=1. Specifically, for some function g : Rn → Rl we observe

yk = g(v(tk)) + ηk, k = 1, . . . , K, (3.2)

where the ηk ∼ N (0, Bk) are a sequence of Gaussian random variables, not nec-
essarily independent. We assume that

0 < t1 ≤ t2 ≤ · · · ≤ tK ≤ T. (3.3)
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Concatenating the data we may write

y = G(u) + η, (3.4)

where y = (y1, . . . , yK) are the observations, G(u) = (g(ϕt1(u)), . . . , g(ϕtK (u)))
maps the state of the system and η = (η1, . . . , ηK) is the observational noise. Thus
η ∼ N (0, B) for some matrix B capturing the correlations amongst the {ηk}Kk=1.

We will now construct the distribution of the initial condition u given an ob-
servation y, using Bayes formula (see (A.1) in the Appendix). We assume that
the prior measure on u is a Gaussian µ0 ∼ N (m0, C0), with mean m0 and covari-
ance matrix C0. Given the initial condition u, the observations y are distributed
according to the Gaussian measure with density

P(y|u) ∝ exp(−Φ(u; y)), Φ(u; y) =
1

2
|y − G(u)|2B , (3.5)

where we define |y|2B = 〈y,B−1y〉 (see Appendix). By Bayes rule we deduce that
the posterior measure ν on u, given y, has Radon-Nikodym derivative

dµy

dµ0

(u) ∝ exp
(
−Φ(u; y)

)
. (3.6)

Thus the measure µy has density π with respect to Lebesgue measure which is
given by

π(u) ∝ exp
(
−1

2
|y − G(u)|2B −

1

2
|u−m0|2C0

)
. (3.7)

Example 3.1 Let n = 1 and consider the ODE

dv

dt
= av, v(0) = u.

Thus ϕt(u) = exp(at)u. As our prior measure we take the Gaussian N (m0, σ
2)

Assume that we observe the solution itself at times tk and subject to mean zero
i.i.d. Gaussian noises with variance γ2, resulting in observations {yk}Kk=1. We
have observations y = Au+ η where η ∼ N (0, B)

A = (exp(at1), . . . , exp(atK))
B = γ2I.

The posterior measure is then Gaussian with density

π(u) ∝ exp
(
− 1

2γ2

K∑
k=1

|yk − exp(atk)u|2 − 1

2σ2
|u−m0|2

)
.
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By completing the square we find that the posterior mean is

m0 + σ2

γ2

∑K
k=1 exp(atk)yk

1 + σ2

γ2

∑K
k=1 exp(2atk)

and the posterior variance is

σ2

1 + σ2

γ2

∑K
k=1 exp(2atk)

.

Since yk = exp(atk)u + ηk we may write yk = exp(atk)u + γξk for ξ ∼ N (0, 1).
We set

y = (y1, . . . , yK) , ξ = (ξ1, . . . , ξK) .

The posterior mean m and covariance Σ can then be written succinctly as

Σ =
σ2

1 + σ2

γ2 |A|2
,

m =
m0 + σ2

γ2 〈A, y〉
1 + σ2

γ2 |A|2
=
m0 + σ2

γ2 〈A,Av(0) + γξ〉
1 + σ2

γ2 |A|2
.

We now consider the limits of small observational noise, and of large data sets,
respectively.

First consider small noise. As γ2 → 0, the posterior variance converges to
zero and the posterior mean to 〈A, y〉/|A|2, solution of the least squares problem

argminx|y − Ax|2.

Now consider large data sets where K → ∞. If |A|2 → ∞ as K → ∞ then the
posterior mean converges almost surely to the correct initial condition v(0), and
the posterior variance converges to zero. Thus the posterior approaches a Dirac
supported on the correct initial condition. Otherwise, if |A|2 approaches a finite
limit, then uncertainty remains in the posterior, and the prior has significant effect
in determining both the mean and variance of the posterior.

Example 3.2 Consider the Lorenz equations

dv1

dt
= σ(v2 − v1),

dv2

dt
= ρv1 − v2 − v1v3,

dv3

dt
= v1v2 − βv3,

started at v(0) = u ∈ R3. In this case, as a consequence of the chaoticity of the
equations, observing a trajectory over long intervals of time does not allow one
to gain more information on the initial condition. See Figure 1 for an illustration.
We refer to [Eve06] for further discussion of this example.
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We now return to the general problem and highlight a program that we will
carry out in earnest for a number of more complex infinite-dimensional posterior
measures in later sections. We work within the context of ODEs with globally
Lipschitz continuous drifts. This condition ensures global existence of solutions,
as well as enabling a straightforward explicit bound on the solution in terms of its
initial data. However other, less stringent, assumptions could also be used, pro-
vided global existence is known. For example, generalisations to locally Lipschitz
drifts satisfying a suitable dissipativity condition are straightforward.

Theorem 3.3 Assume that f : Rn → Rn and g : Rn → Rl are globally Lipschitz.
Let E = Rn, Y = R`K . Then µy � µ0 with dµy/dµ0 ∝ exp(−Φ) where Φ
is given by (3.5). The map Φ satisfies Assumptions 2.1 and y 7→ µy is locally
Lipschitz continuous in the total variation metric.

Proof. It will be useful to introduce the notation gk : Rn → Rl defined by gk =
g ◦ ϕtk . Recall from (3.4) that

G(u) = (g1(u), . . . , gK(u)). (3.8)

This is linearly bounded since g and ϕt are linearly bounded; clearly Φ ≥ 0 by
construction. Thus (1) and (2) of Assumption 2.1 are satisfied. Furthermore, by
the Lipschitz continuity of f , ϕt : Rn → Rn is well-defined and Lipschitz. As the
composition of Lipschitz functions, G is itself a Lipschitz function. Hence Φ(·; y)
is Lipschitz and (3) holds. Also Φ(x; ·) is quadratic in y and hence (4) holds.

For the purpose of studying algorithms that sample from µy, it is also of inter-
est to show that the derivative of Φ(· ; y) is sufficiently regular.

Theorem 3.4 Let k > 0. Assume, on top of the assumptions of Theorem 3.3, that
f ∈ Ck(Rn,Rn) and g ∈ Ck(Rn,Rl). Then the potential Φ(·; y) given by (3.5) is
in Ck(Rn,R).

Proof. As in the previous proof, the observation vector G(u) is given by (3.8). By
standard ODE theory ϕt ∈ Ck(Rn,Rn). As the composition of Ck functions, G is
itself a Ck function. Since Φ is quadratic in G, the result follows for Φ.

3.2 No Model Error, Continuous White Observational Noise
We now consider the preceding problem in the limit where K → ∞ and the set
{ti}∞i=1 is dense in [0, T ]. Once again v(t) solves (3.1):

dv

dt
= f (v), v(0) = u , (3.9)



THEME A. BAYESIAN INFERENCE FOR SIGNAL PROCESSING 10

but now we assume that we observe a function of the solution in continuous time,
and subject to white noise. Specifically we assume that we observe the time-
integrated data y solving the SDE

dy

dt
= g(v) +

√
Σ
dW

dt
, y(0) = 0. (3.10)

Here g : Rn → R` and Σ ∈ R`×` is positive-definite. Using as before the semi-
group ϕt solving (3.9), this may be rewritten as

dy

dt
= g(ϕt(u)) +

√
Σ
dW

dt
, y(0) = 0.

The precise interpretation of the data {y(t)}t∈[0,T ] is that we observe the function
y(t) defined by

y(t) =

∫ T

0

g(ϕt(u)) dt+
√

ΣW (t).

Let Q0 denote the Gaussian measure on L2([0, T ],R`) given by the law of
y(t) =

√
ΣW (t). Now place the prior measure µ0 ∼ N (m0, C0) on the initial

condition in Rn. Then take ν0 to be the product measure on L2([0, T ],R`) × Rn

given by Q0 ⊗ µ0. Note that ν0(du|y) = µ0(du) since u and y are independent
under ν0.

Let Qu denote the measure onL2([0, T ],R`) for y solving (3.10), with u given.
By the Girsanov Theorem A.2 we have that

dQu

dQ0

(y) = exp
(
−1

2

∫ T

0

|g(ϕt(u))|2Σdt+

∫ T

0

〈g(ϕt(u)), dy〉Σ
)
.

Thus if ν is the measure on L2([0, T ],R`)×Rn given by (3.10) with u drawn from
µ0, then we have

dν

dν0

(u, y) = exp
(
−1

2

∫ T

0

|g(ϕt(u))|2Σdt+

∫ T

0

〈g(ϕt(u)), dy〉Σ
)
.

Let µy(du) denote ν(du|y). By Theorem A.1 we have

dµy

dµ0

(u) ∝ exp(−Φ(u; y)) , (3.11)

Φ(u; y) =
1

2

∫ T

0

|g(ϕt(u))|2Σdt−
∫ T

0

〈g(ϕt(u)), dy〉Σ .

Integrating the second term by parts and using the fact that ϕt solves (3.9), we
find that

Φ(u; y) =
1

2

∫ T

0

(
|g(ϕt(u))|2Σ + 2〈Dg(ϕt(u))f (ϕt(u)), y〉Σ

)
−〈g(ϕT (u)), y(T )〉Σ .

(3.12)
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Theorem 3.5 Assume that f : Rn → Rn is locally Lipschitz continuous and lin-
early bounded, and that g ∈ C2(Rn,Rl) is globally Lipschitz continuous. Let
E = Rn and Y = C([0, T ],Rl). Then µy � µ0 with dµy/dµ0 ∝ exp(−Φ) where
Φ is given by (3.12). The function Φ satisfies Assumptions 2.1 and y 7→ µy is
locally Lipschitz continuous in the total variation metric.

Proof. Since ab ≥ − ε
2
a2− 1

2ε
b2 for any ε > 0 and a, b ∈ R, it follows from (3.12)

that Φ is bounded from below by

Φ(u; y) ≥ −C
ε
‖y‖2

L∞ − ε|g(ϕT (u))|2 − εT
∫ T

0

|Dg(ϕt(u))f (ϕt(u))|2 dt ,

for some constant C depending only on Σ. Since the assumption that f grows
linearly implies the existence of a constant C such that |ϕt(u)| ≤ C|u| for ev-
ery t ∈ [0, T ], the requested lower bound on Φ follows from the linear growth
assumptions on f and g as well as the boundedness of Dg.

The polynomial upper bound on Φ(·; y) follows in exactly the same way, yield-
ing

|Φ(u; y)| ≤ C(‖y‖2
L∞ + |u|2) ,

for some constant C. Conditions (3) and (4) in Assumption 2.1 follow similarly,
using the Lipschitz continuity of ϕt(·) as in the proof of Theorem 3.3.

Remark 3.6 Note that it is the need to prove continuity in y which requires us
to work in the function space C([0, T ],Rl), since computation of Φ requires the
evaluation of y at time T . Note also that it is possible to weaken the growth con-
ditions on f and g, at the expense of strengthening the dissipativity assumptions
on f .

We mention an insightful, unrigorous but useful, way of writing the potential
Φ. If we pretend that y is differentiable in time (which it almost surely isn’t), then
we may write Φ from (3.11) as

Φ(u; y) =
1

2

∫ T

0

∣∣∣g(ϕt(u))− dy

dt

∣∣∣2
Σ
dt− 1

2

∫ T

0

∣∣∣dy
dt

∣∣∣2
Σ
dt .

The Gaussian reference measure µ0, again only at a formal level, has density
exp(−1

2

∫ T
0
|dy
dt
|2Σdt) with respect to (the of course nonexistent) ‘Lebesgue mea-

sure’. This suggests that µy has density exp(−1
2

∫ T
0
|g(ϕt(u))− dy

dt
|2Σ dt).

In this form we see that, as in the previous section, the potential Φ for the
Radon-Nikodym derivative between posterior and prior, written in the general
form (1.1), simply measures the mismatch between data and observation operator.
This nonrigorous rewrite of the potential Φ is useful precisely because it highlights
this fact, easily lost in the mathematically correct formulation (3.11).

The following theorem is proved similarly to Theorem 3.4.
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Theorem 3.7 Let k > 0. Assume that we are in the setting of Theorem 3.5 and
that furthermore f ∈ Ck(Rn,Rn), and g ∈ Ck+1(Rn,Rl). Then the potential
Φ(·; y) given by (3.12) belongs to Ck(Rn,R).

3.3 No Model Error, Continuous Coloured Observational Noise
We now consider the discrete observations problem in the limit where K → ∞
and the set {ti}∞i=1 is dense in [0, T ], but we assume that the observational noise
is correlated. We model this situation by assuming that u(t) solves (3.1), and that
we observe a function of the solution in continuous time, subject to noise drawn
from the distribution of a stationary Ornstein-Uhlenbeck process. In other words,
we observe the process

y(t) = g(ϕt(u)) + ψ(t) , (3.13)

where
dψ

dt
= −Rψ +

√
2Λ
dW

dt
, ψ(0) ∼ N (0, R−1Λ) . (3.14)

Here g : Rn → R`, and the matrices R,Λ ∈ R`×` are symmetric positive-definite
and are assumed to commute for simplicity (in particular, this ensures that the
process ψ is reversible).

Once again we adopt a Bayesian framework to find the posterior probability
for u given y. For economy of notation we set θ(t) = g(ϕt(u)) and denote by θ̇(t)
the time-derivative of θ. We deduce from Itô’s formula that

dy

dt
= θ̇ −Rψ +

√
2Λ
dW

dt
= θ̇ −R(y − θ) +

√
2Λ
dW

dt

= θ̇ +Rθ −Ry +
√

2Λ
dW

dt
.

Furthermore
y(0) ∼ N (θ(0), R−1Λ) = N (g(u), R−1Λ) ,

independently of W .
Let Q0 denote the measure on L2([0, T ],R`) generated by the Gaussian pro-

cess (3.14) and place the prior measure µ0 ∼ N (m0, C0) on the initial condition u
in Rn. Then take ν0 to be the measure on L2([0, T ],R`)× Rn given by Q0 ⊗ µ0.
Note that ν0(du|y) = µ0(du) since u and y are independent under ν0.

We let ν denote the probability measure for y and u, with u distributed accord-
ing to µ0. By the Girsanov theorem

dν

dν0

(u, y) ∝ exp(−Φ(u; y))

Φ(u; y) =
1

4

∫ T

0

(|h(ϕt(u))|2Λ dt− 2〈h(ϕt(u)), dy +Ry dt〉Λ)
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+
1

2
|g(u)|2R−1Λ − 〈y(0), g(u)〉R−1Λ.

Here and below we use the shortcut

h(u) = θ̇ +Rθ,

= Dg(u)f (u) +Rg(u).

We let µy(u) denote the posterior distribution for u given y. By applying Bayes
formula in the guise of Theorem A.1 we obtain

dµy

dµ0

(u) ∝ exp(−Φ(u; y)) (3.15)

Φ(u; y) =
1

4

∫ T

0

(|h(ϕt(u))|2Λ dt− 2〈h(ϕt(u)), dy +Ry dt〉Λ)

+
1

2
|g(u)|2R−1Λ − 〈y(0), g(u)〉R−1Λ.

As in the previous section, the posterior measure involves a Riemann integral and
a stochastic integral, both parameterized by u, but the stochastic integral can be
converted to a Riemann integral, by means of an integration by parts. Setting

h̃(u) = Dh(u)f (u) = Dg(u)Df (u) f (u)+D2g(u)(f (u), f (u))+(RDg(u)) f (u) ,

we find that

Φ(u; y) =
1

4

∫ T

0

(|h(ϕt(u))|2Λ + 2〈h̃(ϕt(u)), y −Ry〉Λ)dt (3.16)

+
1

2
〈h(u), y(0)〉Λ −

1

2
〈h(ϕT (u)), y(T )〉Λ

+
1

2
|g(u)|2R−1Λ − 〈y(0), g(u)〉R−1Λ.

Proof of the following two theorems is very similar to those for Theorems 3.5
and 3.7.

Theorem 3.8 Assume that f ∈ C2(Rn,Rn) is linearly bounded in (3.1), that
g ∈ C3(Rn,Rl) is globally Lipschitz continuous in (3.13), and that h̃ is linearly
bounded. Let E = Rn and Y = C([0, T ],Rl). Then µy � µ0 with dµy/dµ0 ∝
exp(−Φ) where Φ is given by (3.16). The map Φ satisfies Assumptions 2.1 and
y 7→ µy is locally Lipschitz continuous in the total variation metric.

Remark 3.9 The condition that h̃ is linearly bounded follows for example if we
assume that D2g(u) is bounded by C/(1 + |u|) for some constant C.

Theorem 3.10 Let k ≥ 1. Assume that, further to satisfying the assumptions
of Theorem 3.8, one has f ∈ Ck+1(Rn,Rn) and g ∈ Ck+2(Rn,Rl). Then the
potential Φ(·; y) given by (3.12) belongs to Ck(Rn,R).
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3.4 Coloured Model Error, Discrete Observations
The posterior probability measures on the initial condition u in the previous three
examples can be very complicated objects from which it is hard to extract infor-
mation. This is particularly true in cases where the semigroup ϕt exhibits sensi-
tive dependence on initial conditions, there is data over a large time-interval, and
the system is sufficiently ergodic and mixing. The posterior is then essentially
flat, with small random fluctuations superimposed, and contains little information
about the initial condition. In such situations it is natural to relax the hard con-
straint that the dynamical model is satisfied exactly and to seek to explain the
observations through a forcing to the dynamics: we allow equation (3.1) to be
forced by an extraneous driving noise, known as model error. Thus we view the
dynamics (3.1) as only being enforced as a weak constraint, in the sense that the
equation need not be satisfied exactly. We then seek a posterior probability mea-
sure on both the initial condition and a driving noise process which quantifies the
sense in which the dynamics is not exactly satisfied. Since we are working with
continuous time, the driving noise process is a function and thus the resulting pos-
terior measure is a measure on an infinite dimensional space of functions. This
section is the first of several where the desired probability measure lives on an
infinite dimensional space.

To be concrete we consider the case where the driving noise is correlated in
time and governed by an Ornstein-Uhlenbeck process. We thus consider the model
equations

dv

dt
= f (v) +

1√
δ
ψ , v(0) = u , (3.17)

dψ

dt
= −1

δ
Rψ +

√
Λ

δ

dW

dt
, ψ(0) ∼ N

(
0,

1

2
R−1Λ

)
.

We assume as before that R and Λ commute. The parameter δ sets a correlation
time for the noise; in the next section we will let δ → 0 and recover white noise
forcing. Equation (3.17) specifies our prior model for the noise process ψ. We as-
sume that ψ(0) is chosen independently of W , and then (3.17) describes a station-
ary OU process ψ. As our prior on the initial condition we take u ∼ N (m0, C0),
independently of ψ. We have thus specified a prior Gaussian probability measure
µ0(u0, ψ) on Rn × L2([0, T ],Rn).

As observations we take, as in section 3.1,

yk = g(v(tk)) + ηk, k = 1, . . . , K,

where ηk ∼ N (0, Bk) are a sequence of Gaussian random variables, not necessar-
ily independent, and the observation times satisfy (3.3). Concatenating the data
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we may write
y = G(u, ψ) + η, (3.18)

where y = (y1, . . . , yK) are the observations, G(u, ψ) = (g(v(t1)), . . . , g(v(tK)))
maps the state of the system and η = (η1, . . . , ηK) is the observational noise.
Thus η ∼ N (0, B) for some matrix B capturing the correlations amongst the
{ηk}Kk=1. Here G is a map from Rn × L2([0, T ],Rn) to RlK . The likelihood for
the observations is then

P(dy|u, ψ) ∝ exp
(
−1

2
|y − G(u, ψ)|2B

)
dy.

Let ν denote the measure on Rn × L2([0, T ],Rn)× RlK given by

ν(du, dψ, dy) = P(dy|u, ψ)µ0(du, dψ) ,

and let ν0 denote the measure on Rn × L2([0, T ],Rn)× RlK given by

ν0(du, dψ, dy) ∝ exp
(
−1

2
|y|2B

)
µ0(du, dψ)dy .

Since (u, ψ) and y are independent under ν0(du, dψ)dy, Theorem A.1 shows that
the posterior probability measure µy(du, dψ) is given by

dµy

dµ0

(u, ψ) ∝ exp(−Φ(u, ψ; y)) , Φ(u, ψ; y) =
1

2
|y − G(u, ψ)|2B. (3.19)

Example 3.11 Consider again the Lorenz equation from Example 3.2. Using the
setup from this section, we get a posterior distribution on the pairs (u, ψ) where u
is the initial condition of the Lorenz ODE as in Example 3.2 above, and ψ is the
additional forcing (model error) from (3.17).

We consider again the setting from Figure 1, but this time with the additional
forcing term ψ. Now the posterior for u can be obtained by averaging (3.19)
over ψ. This leads to a smoothing of the posterior distribution. The effect is
illustrated in Figure 2.

Theorem 3.12 Assume that f : Rn → Rn and g : Rn → Rl are globally Lips-
chitz continuous. Let E = Rn × L2([0, T ],Rn) and Y = RlK . Then µy � µ0

with dµy/dµ0 ∝ exp(−Φ) where Φ is given by (3.19). The map Φ satisfies As-
sumptions 2.1 and y 7→ µy is locally Lipschitz continuous in the total variation
metric.
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Proof. Assumption 2.1(1) follows with M = 0 and ε = 0. To establish (2) we
note that, for 0 ≤ t ≤ T ,

1

2

d

dt
|v|2 ≤ α + β|v|2 +

1

2
√
δ

(‖ψ‖2 + |v|2)

≤ α + β|v|2 +
1

2
√
δ

(‖ψ‖2
L2([0,T ],Rn) + |v|2).

Application of the Gronwall inequality shows that

‖v(t)‖ ≤ C(t)
(
‖ψ‖L2([0,T ],Rn) + |u|

)
and hence that, since g is linearly bounded,

|G(u, ψ)| ≤ C
(
‖ψ‖L2([0,T ],Rn) + |u|

)
.

From this, assumption (2) follows.
To establish (3) it suffices to show that G : Rn × L2([0, T ],Rn) → RlK is

locally Lipschitz continuous; this follows from the stated hypotheses on f and
g since the mapping (u, ψ) ∈ Rn × L2([0, T ],Rn) → v ∈ C([0, T ],Rn) is lo-
cally Lipschitz continuous, as may be shown by a Gronwall argument similar to
that used to establish (2). Assumption 2.1(4) follows from the fact that Φ(x; ·) is
quadratic, together with the polynomial bounds on G from the proof of (2).

Again, we obtain more regularity on Φ by imposing more stringent assump-
tions on f and g:

Theorem 3.13 For k > 0, if both f and g are Ck, then Φ is also Ck.

3.5 White Model Error, Discrete Observations
In the preceding example we described the model error as on OU process. In some
situations it is natural to describe the model error as white noise. Formally this
can be obtained from the preceding example by taking the limit δ → 0 so that the
correlation time tends to zero. Heuristically we have

1√
δ
ψ = R−1

√
2Λ
dW

dt
+O(

√
δ)

from the OU process (3.17). Substituting this heuristic into (3.17) and setting
δ = 0 gives the white noise driven model

dv

dt
= f (v) +

√
Γ
dW

dt
, v(0) = u, (3.20)



THEME A. BAYESIAN INFERENCE FOR SIGNAL PROCESSING 17

where
√

Γ = R−1
√

2Λ.
Again we assume that we are given observations in the form (3.2). There are

now two ways to proceed to define an inverse problem. We can either make infer-
ence concerning the pair (u,W ), or we can make inference concerning the func-
tion v itself. We consider the two approaches in turn. Note that (u,W ) uniquely
define v and so a probability measure on (u,W ) implies a probability measure
on v.

First we consider the formulation of the problem where we make inference
about (u,W ). We construct the prior measure µ0(du, dW ) by assuming that
u and W are independent, by taking u ∼ N (m0, C0) and by taking standard
n−dimensional Wiener measure for W . Now consider the integral equation

v(t) = u+

∫ t

0

f (v(s)) ds =
√

ΓW (t) . (3.21)

The solution of this equation defines a map

V : Rn × C([0, T ],Rn)→ C([0, T ],Rn)

(u,W ) 7→ V(u,W ) = v .

Thus we may write the equation (3.2) for the observations as

y = G(u,W ) + η , (3.22)

with η as in (3.18) and Gk(u,W ) = g(V(u,W )(tk)). The likelihood of y is thus

P(dy|u,W ) ∝ exp
(
−1

2
|y − G(u,W )|2B

)
dy .

This leads to a probability measure

ν(du, dW, dy) = P(y|u, ψ)µ0(du, dψ)dy

on the space Rn × C([0, T ],Rn) × RlK . By ν0 we denote the measure on Rn ×
C([0, T ],Rn)× RlK given by

ν0(du, dW, dy) ∝ exp
(
−1

2
|y|2B

)
µ0(du, dW )dy .

Since (u, ψ) and y are independent under ν0(du, dψ)dy, Theorem A.1 shows that
the posterior probability measure is given by

dµy

dµ0

(u,W ) ∝ exp
(
−Φ(u,W ; y)

)
(3.23)

Φ(u,W ; y) =
1

2
|y − G(u,W )|2B .
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Theorem 3.14 Assume that f : Rn → Rn and g : Rn → Rl are globally Lips-
chitz continuous. Let E = Rn × C([0, T ],Rn) and Y = RlK . Then µy � µ0

with dµy/dµ0 ∝ exp(−Φ) where Φ is given by (3.23). The map Φ satisfies As-
sumptions 2.1 and y 7→ µy is locally Lipschitz continuous in the total variation
metric.

Proof. Note that µ0(Rn × C([0, T ],Rn)) = 1, because Wiener measure charges
continuous functions with probability 1. Assumption 2.1(1) follows with M =
ε = 0. To establish (2) we note that, for 0 ≤ t ≤ T ,

|v(t)| ≤ |u|+
∫ t

0

(α + β|v(s)|) ds+ |W (t)|

≤ |u|+
∫ t

0

(α + β|v(s)|) ds+ ‖W‖C([0,T ],Rn).

Application of the Gronwall inequality shows that

‖v(t)‖ ≤ C(t)(‖W‖C([0,T ],Rn) + |u|) .

Since g is polynomially bounded we have

|G(u,W )| ≤ C(‖W‖C([0,T ],Rn) + |u|)

and (2) follows. To establish (3) it suffices to show that G : Rn×C([0, T ],Rn)→
RlK is continuous; this follows from the stated hypotheses on f and g since the
mapping (u,W ) ∈ Rn × C([0, T ],Rn) → v ∈ C([0, T ],Rn) is continuous, as
may be shown by a Gronwall argument, similar to that used to establish (2). As-
sumption 2.1(4) follows from the fact that Φ(x; ·) is quadratic and the bound on G
derived to establish (2).

Again, higher-order differentiability is obtained in a straightforward manner:

Theorem 3.15 For k > 0, if both f and g are Ck, then Φ is also Ck.

We have expressed the posterior measure as a measure on the initial condition
u for v and the driving noise W . However, one can argue that it is natural to
take the alternative approach of making direct inference about {v(t)}Tt=0 rather
than indirectly through (u,W ). We illustrate how this may be done. To define a
prior, we first let µ0 denote the Gaussian measure on L2([0, T ],Rn) defined by the
equation

dv

dt
=
√

Γ
dW

dt
, u ∼ N (m0, C0).
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By the Girsanov theorem, the law of the solution v to (3.20), with u ∼ N (m0, C0),
yields a measure ν0 on L2([0, T ],Rn) which has Radon-Nikodym derivative

dν0

dµ0

(v) = exp
(
−1

2

∫ T

0

|f (v)|2Γ dt+

∫ T

0

〈f (v), dv〉Γ
)
, (3.24)

where the second integral is an Itô stochastic integral. The data is again assumed
to be of the form (3.2). We have

P(dy|v) ∝ exp
(
−1

2
|y − G(v)|2B

)
dy ,

where G(v) = (g(v(t1)), . . . , g(v(tK))) and B is the correlation in the noise. Here
G is a map from L2([0, T ],Rn) to RlK .

Thus we may define a probability measure on ν(dv, dy) on L2([0, T ],Rn) ×
RlK given by P(y|v)ν0(dv)dy. Since v and y are independent under ν0(dv)dy,
Theorem A.1 shows that the posterior probability measure is defined by

dµy

dν0

(v) ∝ exp(−Φ̂(v; y)) , Φ̂(v; y) =
1

2
|y − G(v)|2B . (3.25)

This expresses the posterior measure in terms of a non-Gaussian prior (for the
pathspace of a non-Gaussian SDE with Gaussian initial data).

Theorem 3.16 Assume that f : Rn → Rn and g : Rn → Rl are globally Lipschitz
continuous. Then µy � ν0 with dµy/dν0 ∝ exp(−Φ̂) where Φ̂ is given by (3.25).
The map Φ̂ satisfies Assumptions 2.1 and y 7→ µy is locally Lipschitz continuous
in the total variation metric.

Proof. Note that the reference measure ν0 is not Gaussian. Thus, by Remark 2.3,
we need to make sure that ν0 has Gaussian tails. This follows immediately from
the fact that the solution map (u,W ) 7→ v to the model equations (3.21) is globally
Lipschitz continuous from Rn × C([0, T ],Rn) into C([0, T ],Rn). As the push-
forward of a Gaussian measure under a Lipschitz continuous map, ν0 therefore
has Gaussian tails.

The function
Φ̂(v; y) =

1

2
|(y − G(v))|2B

is obviously bounded from below. It is furthermore locally Lipschitz continuous in
both y and v, since the solution map G is Lipschitz continuous from C([0, T ],Rn)
into RlK .
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Obtaining differentiability results on the density with respect to the Gaussian
prior µ0 is much more tricky, because of the appearance of the stochastic integral
in (3.24). We return to this topic below, after making the following observation. It
is frequently of interest to express the target measure as change of measure from
a Gaussian, for example to implement sampling algorithms as in section 5. This
may be achieved by the Girsanov theorem: by the properties of change of measure
we have
dµy

dµ0

(v) =
dµy

dν0

(v) × dν0

dµ0

(v)

∝ exp
(
−1

2
|(y − G(v))|2B

)
exp
(
−1

2

∫ T

0

(|f (v)|2Γdt− 2〈f (v), dv〉Γ)
)
.

Thus
dµy

dµ0

(v) ∝ exp
(
−Φ(v; y)

)
Φ(v; y) =

1

2
|y − G(v)|2B +

1

2

∫ T

0

(
|f (v)|2Γdt− 2〈f (v), dv〉Γ

)
. (3.26)

There is a naturally arising case where it is possible to study differentiability:
when f has a gradient structure. Specifically, if f = −Γ∇F , then Itô’s formula
yields

dF (v) = −〈f (v), dv〉Γ +
1

2
Tr(ΓD2F ) dt .

Substituting this into (3.26) yields the expression

Φ(v; y) =
1

2
|(y − G(v))|2B +

1

2

∫ T

0

(
|f (v)|2Γ − Tr(ΓD2F )

)
dt

+ F (v(T ))− F (v(0)) . (3.27)

We thus obtain the following result:

Theorem 3.17 For k ≥ 1, if g ∈ Ck, f is a gradient, and f ∈ Ck+1, then
Φ: C([0, T ],Rn)× RlK → R is Ck.

3.6 White Model Error, Continuous White Observational Noise
It is interesting to consider the preceding problem in the limiting case where the
observation is in continuous time. Specifically we consider underlying stochastic
dynamics governed by (3.20) with observations given by (3.10). We assume that
v(0) ∼ N (m0, C0) and hence obtain the prior model equation for v, together with
the equation for the continuous time observation y, in the form:

dv

dt
= f (v) +

√
Γ
dW1

dt
, v(0) ∼ N (u0, C0), (3.28a)
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dy

dt
= g(v) +

√
Σ
dW2

dt
, y(0) = 0. (3.28b)

Here v ∈ Rn, y ∈ R`, f : Rn → Rn and g : Rn → R`. Furthermore, Γ ∈ Rn×n

and Σ ∈ R`×` are assumed positive-definite. The Brownian motions W1,W2 are
assumed independent.

Our aim is to find the probability distribution for v ∈ C([0, T ],Rn) given y ∈
C([0, T ],R`). This is a classical problem in continuous time signal processing for
SDEs, known as the smoothing problem. This differs from the filtering problem
where the aim is to find a time-indexed family of probability measures νt on Rn

for v(t) given y ∈ C([0, t],R`).
First we consider the unconditioned case. We let ν0(dv, dy) denote the Gaus-

sian measure on C([0, T ],Rn)×C([0, T ],R`) obtained in the case where f and g
are identically zero, and ν the same measure when f and g are not zero. By the
Girsanov Theorem A.2 we have, assuming that trajectories do not explode,

dν

dν0

(v, y) = exp
(
−1

2

∫ T

0

|f (v)|2Γdt+ |g(v)|2Σdt− 2〈f (v), dv〉Γ − 2〈g(v), dy〉Σ
)
.

(3.29)
Now we consider the measures found by conditioning v on y. Under ν0 the

random variables v and y are independent. Thus ν0(dv|y) is simply the Gaussian
measure µ0(dv) on C([0, T ],Rn) found from the equation

dv

dt
=
√

Γ
dW1

dt
, v(0) ∼ N (m0, C0) .

Now let µy(u) denote the measure onC([0, T ],Rn) found from ν(u|y). Integrating
the last integral in (3.29) by parts (we can do this because v and y are independent
under ν0 so that no Itô correction appears) and then applying Theorem A.1, we
deduce that

dµy

dµ0

(v) ∝ exp
(
−Φ(v; y)

)
(3.30)

Φ(v; y) =
1

2

∫ T

0

(
|f (v)|2Γdt+ |g(v)|2Σdt− 2〈f (v), dv〉Γ + 2〈y,Dg(v) dv〉Σ

)
+

1

2
(〈g(v(0)), y(0)〉 − 〈g(v(T )), y(T )〉) .

Here, both integrals are stochastic integrals in the sense of Itô and (3.30) is valid
for ν0-almost every y ∈ C([0, T ],R`). We have therefore shown that:

Theorem 3.18 Assume that equations (3.28a) and (3.28b) have solution on t ∈
[0, T ] which do not explode, almost surely. Then, the family of measures µy as
defined by equation (3.30) provides the conditional distribution for v given y.
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In this case Assumptions 2.1(1)–(4) do not hold in general. The statement
obtained in this case is much weaker than previously: while integration by parts
allows us to establish a conditional law for v given y for every realisation of the
observation process y, we do not obtain Lipschitz continuity of µy as a function
of y.

One situation where it is possible to establish Assumptions 2.1(1)–(3) for a
continuous time model of the form (3.28) is the particular case when g is linear
and f is a gradient of the form f = −Γ∇F . In this case, we may rewrite (3.28)
as

dv

dt
= −Γ∇F (v) +

√
Γ
dW1

dt
, v(0) ∼ N (u0, C0), (3.31a)

dy

dt
= Av +

√
Σ
dW2

dt
, y(0) = 0 . (3.31b)

The key to what follows is that we choose a slightly different unconditioned mea-
sure from before. We let ν0(dv, dy) denote the Gaussian measure obtained in the
case where F is identically zero (but A is not identically 0), and denote as before
by ν the measure obtained when f is not zero. By Girsanov’s Theorem A.2 we
have

dν

dν0

(v, y) = exp
(
−1

2

∫ T

0

|∇F (v)|2Γdt+ 2〈∇F (v), dv〉
)
.

Now we consider the measures found by conditioning v on y. Under ν0 the
random variables v and y are now dependent. The Gaussian measure µy0 :=
ν0(dv|y) does therefore depend on y in this case but only via its mean, not its
covariance. An explicit expression for the covariance and the mean of µy0 is given
in [HSVW05, Theorem 4.1]. Now let µy(dv) denote the measure on C([0, T ],Rn)
given by ν(dv|y).

By applying Theorem A.1, and then integrating by parts (Itô formula) as we
did in the previous section, we find that

dµy

dµy0
(v) ∝ exp

(
−Φ(v)

)
(3.32a)

Φ(v) =
1

2

∫ T

0

(
|Γ∇F (v)|2Γdt− Tr(ΓD2F (v))

)
dt

+ F (v(T ))− F (v(0)) . (3.32b)

Note that Φ(v) does not depend on y. In this particular case, the y-dependence
comes entirely from the reference measure.

Theorem 3.19 Assume that F ∈ C3(Rn,R+) with globally bounded first, second
and third derivatives. Let E = C([0, T ],Rn). Then µy � µy0 with dµy/dµy0 ∝
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exp(−Φ) where Φ is given by (3.32b). The map Φ satisfies Assumptions 2.1(1)–(3)
and y 7→ µy is locally Lipschitz continuous from C([0, T ],R`) into the space of
probability measures on E endowed with the total variation metric.

Proof. Satisfaction of parts (1)–(3) of Assumptions 2.1 follow from the definition
(3.32b) of Φ(v).

The covariance operator of µy0, which we denote by C0, does not depend on
y, and is the resolvent of a second order differential operator. Thus the Cameron-
Martin space for the reference measure is H1(0, T ; R`). It follows from the results
in section 4 of [HSVW05] that, for almost every observation y, the mean of the
Kalman-Bucy smoother belongs to the Sobolev space H3/2−ε for any ε > 0. Even
better, the map y 7→ m is continuous from C([0, T ],R`) into H1, so that there
exists a constant C satisfying |m−m′|C0 ≤ C‖y − y′‖L∞ .

Hence µy0 and µy
′

0 are equivalent Gaussian measures denoted N (m, C0) and
N (m′, C0). From this it follows that

‖µy − µy′‖TV =

∫ ∣∣∣dµy
dµy0

(v)− dµy
′

dµy
′

0

(v)
dµy

′

0

dµy0
(v)
∣∣∣dµy0(v)

≤
∫

exp(−Φ(v))
∣∣∣1− dµy

′

0

dµy0
(v)
∣∣∣dµy0(v)

≤
∫

exp(ε‖v‖2
E −M )

∣∣∣1− dµy
′

0

dµy0
(v)
∣∣∣dµy0(v)

≤
(∫

exp(2ε‖v‖2
E − 2M )dµy0(v)

) 1
2
(∫ ∣∣∣1− dµy

′

0

dµy0
(v)
∣∣∣2dµy0(v)

) 1
2

≤ C
(∫ (dµy′0

dµy0
(v)
)2

dµy0(v)− 1
) 1

2
.

On the other hand, one has the identity

dµy
′

0

dµy0
= exp(〈C−

1
2

0 (m′ −m), C−
1
2

0 (v −m)〉 − 1

2
|C−

1
2

0 (m′ −m)|2) ,

so that∫ (dµy′0
dµy0

(v)
)2

dµy0(v) =

∫
exp
(

2〈m′ −m, v −m〉C0 − |m′ −m|2C0
)
dµy0(v)

= exp(|m−m′|2C0)
∫

exp
(
〈2(m′ −m), v −m〉C0 −

1

2
|2(m′ −m)|2C0

)
dµy0(v)

= exp(|m−m′|2C0) .
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It follows that

‖µy − µy′‖TV ≤ C
(

exp(|m−m′|2C0)− 1
) 1

2 ≤ C
(

exp(C‖y − y′‖2
L∞)− 1

) 1
2
,

and the desired result follows.

Theorem 3.20 Let k ≥ 1. Assume that, further to satisfying the assumptions
of Theorem 3.19, F ∈ Ck+2(Rn,R+) Then the potential Φ given by (3.32b) is
Ck(Rn,R).

4 Theme B. Langevin Equations

In this section we construct S(P)DEs which are reversible with respect to the mea-
sure µy introduced in section 3. These equations are interesting in their own right;
they also form the basis of efficient Metropolis-Hastings methods for sampling
µy, the topic of section 5. In this context and in the finite dimensional case, the
SDEs are often referred to as Langevin equations in the statistics and statistical
physics literature [RC99] and we will use this terminology.

For economy of notation, in this and the next section, we drop explicit refer-
ence to the data y and consider the measure

dµ

dµ0

(x) = Z−1 exp(−Φ(x)) , (4.1)

for some potential function Φ(·) and normalisation constant Z. We will assume
that the reference measure µ0 is a entred Gaussian measure with covariance oper-
ator C0 : E∗ → E on some separable Banach space E. Note that this includes the
case where µ0 is not centred, provided that its mean m0 belongs to the Cameron-
Martin space. We may then simply shift coordinates so that the new reference
measure has mean zero, and change the potential to Φm(x) := Φ(m0 + x). Hence
in this section we simply work with (1.1), assume that µ0 = N (0, C0) and that the
four conditions on Φ hold as stated in Assumptions 2.1. We furthermore use the
notation L to denote the inverse C−1

0 of the covariance, sometimes called the ‘pre-
cision operator’. Note that while C0 is always a bounded operator, L is usually an
unbounded operator. Additional assumptions on the structure of Φ, the covariance
C0 and the space E will be stated when required.

4.1 The finite-dimensional case
Consider the finite dimensional probability measures on the initial condition u
for (3.1) which we have constructed in sections 3.1, 3.2 and 3.3. Recall that the
posterior measure is µ given by (4.1). By use of the Fokker-Planck equation it is
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straightforward to check that, for every strictly positive-definite symmetric matrix
A the following SDE is µy invariant

dx = −ALx dt−ADΦ(x) dt+
√

2A dW (t) . (4.2)

Actually one has even more: the Markov semigroup generated by (4.2) consists
of operators that are selfadjoint in L2(Rn, µy). One of the most general theorems
covering this situation is given by [Che73, Li92]:

Theorem 4.1 Let Φ(·) belong to C2(Rn) and be such that exp(−Φ) is integrable
with respect to the symmetric Gaussian measure µ0 with covariance C0 = L−1.
Then, (4.2) has a unique global strong solution which admits µy as an invariant
measure. Furthermore, the semigroup

Ptϕ(x) = E(ϕ(x(t)) : x(0) = x)

can be extended to a semigroup consisting of selfadjoint contraction operators on
L2(E, µy).

One approach to approximately sampling from µ given by (4.1) is thus to solve
this equation numerically and to rely on ergodicity of the numerical method, as
well as approximate preservation of µ under discretization, to obtain samples from
µ, see [Tal90]. Typical numerical methods will require draws from N (0,A) in
order to simulate (4.2). In low dimensions, a good choice for A is A = C0 as
this equalizes the convergence rates to equilibrium in the case Φ ≡ 0, C0 is cheap
to calculate, and draws from µ0 = N (0, C0) are easily made. We refer to this as
‘preconditioning’.

For a given accuracy, there will in general be an optimal stepsize that pro-
vides a suitable approximation to the desired i.i.d. sequence at minimal computa-
tional cost. Too large stepsizes will result in an inaccurate approximation to (4.2),
whereas small stepsizes will require many steps before approximate independence
is achieved.

4.2 The Infinite Dimensional Case
The problems in sections 3.4, 3.5 and 3.6 give rise to measures on infinite dimen-
sional spaces. The infinite dimensional prior reference measure involves either a
stationary OU process or Wiener measure. Thus draws from µ0 (or rather from an
approximation thereof) are relatively straightforward to make. Furthermore, in a
number of situations, the precision operator L = C−1

0 is readily characterized as a
second order differential operator, see for example [HSVW05].

Even though there exists no infinite-dimensional analogue of Lebesgue mea-
sure, we have seen in the previous section that it happens in many situations that
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the posterior µy possesses a density with respect to some fixed Gaussian measure
µ0. It is therefore tempting to carry over (4.2) mutatis mutandis to the infinite-
dimensional case. It is however much less clear in general what classes of drifts
result in (4.2) being a well-posed stochastic PDE (or infinite-dimensional SDE)
and, if it is well-posed, whether µy is indeed an invariant measure for it. The re-
mainder of this section is devoted to a survey of some rigorous results that have
been obtained in this direction.

Remark 4.2 In principle, some of these questions could be answered by invok-
ing the theory of symmetric Dirichlet forms, as described in [RM92] or [FOT94].
However, we stay away from this course for two reasons. First, it involves a heavy
technical machinery that does not seem to be justified in our case since the result-
ing processes are not that difficult to understand. Second, and more importantly,
while the theory of Dirichlet forms allows to ‘easily’ construct a large family
of µy-reversible processes (that contains as special cases the SDE’s described in
(4.2)), it is more difficult to characterize them as solutions to particular SDEs or
SPDEs. Therefore, if we wish to approximate them numerically, we are back to
the kind of analysis performed here.

We are going to start with a survey of the results obtained for the Gaussian case
(that is when Φ vanishes or is itself quadratic in the x variable), before turning to
the nonlinear case.

4.2.1 The Gaussian Case

In this section, we consider the situation of a Gaussian measure µ with covariance
operator C0 and mean m on a separable Hilbert space H. At a formal level, the
‘density’ of µ with respect to the (non-existent, of course) Lebesgue measure is
proportional to

exp
(
−1

2
〈x−m, C−1(x−m)〉

)
,

so that one would expect the evolution equation

dx = Lmdt− Lx dt+
√

2 dW (t) , (4.3)

where, recall, we set L = C−1
0 , to have µ as its invariant measure. Since, if H is

infinite-dimensional, L is always an unbounded operator, it is not clear a priori
how to interpret solutions to (4.3). The traditional way of interpreting (4.3) is to
solve it by the variation of constants formula and to define the solution to (4.3) as
being the process given by

x(t) = S(t)x0 + (1− S(t))m+
√

2

∫ t

0

S(t− s) dW (s) ,
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(here S(t) denotes the semigroup on H generated by −L; see [Hen81], [Paz83]
and [Rob01] for background on semigroups) provided that the stochastic integral
appearing on the right hand side takes values inH.

This turns out to be always the case in the situation at hand. Furthermore, one
has the stronger statement that this process is also the unique weak solution to
(4.3) in the sense that it is the onlyH-valued process such that the identity

d〈x(t), h〉 = 〈Lh,m− x(t)〉 dt+
√

2〈h, dW (t)〉 , (4.4)

holds for every h in the domain of L. Combining the results from [IMM+90] and
[DPZ92], one obtains that:

Lemma 4.3 Let L and µ be as above. Then the evolution equation (4.3) has
continuousH-valued mild solutions. Furthermore, it has µ as its unique invariant
measure and there exists a constantK such that for every initial condition x0 ∈ H
one has

‖Law(x(t))− µ‖TV ≤ K (1 + ‖x0 −m‖H) exp(−‖C0‖−1
H→Ht),

where ‖ · ‖TV denotes the total variation distance between probability measures.

Remark 4.4 The convergence in total variation obtained in Lemma 4.3 is very
strong and does not hold in general if one replaces (4.3) by its ‘preconditioned’
version as in (4.2). For example, in the particular case

dx = mdt− x dt+
√

2C0 dW (t) , (4.5)

it is known that convergence in total variation does not hold, unless x0 belongs
to the Cameron-Martin space of µ, that is unless ‖L1/2x0‖ < ∞. However, one
does still have convergence of arbitrary solutions to (4.5) to µ in the p-Wasserstein
distance for arbitrary p.

4.2.2 The Nonlinear Case

This case is much less straightforward than the Gaussian case and we will not
give a complete treatment here. One problem that often occurs in the infinite-
dimensional case is that Φ is naturally defined on a Banach space E (typically
the space of continuous functions) rather than on a Hilbert space H. It is then
tempting to work with a scale of spaces

E ↪→ H = H∗ ↪→ E∗ ,

where all inclusions are dense. We are going to make the following assumptions
for the precision operator L of our reference Gaussian measure µ0:
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(A1) The semigroup S(t) = e−Lt generated by L on H can be restricted to a
strongly continuous semigroup of contraction operators on E.

(A2) There exists α ∈ (0, 1/2) such that D(Lα) ⊂ E (densely), L−2α is trace
class inH, and the measure N (0,L−2α) is concentrated on E.

The first assumption ensures that E is a ‘good choice’ of a space to work with.
The second assumption is a slight strengthening of the statement that µ0(E) = 1,
since the statement with α = 1

2
is implied by µ0(E) = 1. Regarding the density

Φ: E → R, we make the following assumptions:

(A3) For every ε > 0, there exists M > 0 such that Φ(x) ≥ M − ε‖x‖2
E for

every x ∈ E.
(A4) The function Φ: E → R is twice Fréchet differentiable and its derivatives

are polynomially bounded.
(A5) There exists a sequence of Fréchet differentiable functions Fn : E → E

such that
lim
n→∞
‖L−α(Fn(x)−DΦ(x))‖H = 0

for all x ∈ E. For every C > 0 there exists aK > 0 such that for all x ∈ E
with ‖x‖E ≤ C and all n ∈ N we have ‖L−αFn(x)‖H ≤ K. Furthermore,
there is a γ > 0, C > 0 and N > 0 such that the dissipativity bound

〈x∗, Fn(x+ y)〉 ≤ −γ‖x‖E (4.6)

holds for every x∗ ∈ ∂‖x‖E ⊂ E∗ and every x, y ∈ E with ‖x‖E ≥
C(1 + ‖y‖E)N . Here, ∂‖x‖E denotes the subdifferential of the norm at x
(see for example [DPZ92]).

Assumption (A3) just makes sure that exp(−Φ) is integrable with respect to µ0.
The next assumption (A4) provides a minimum of regularity so that the equation

dx = −Lx dt−DΦ(x) dt+
√

2 dW (t) , (4.7)

is well-posed (in its mild formulation). The last condition seems rather compli-
cated, but it should just be thought of as a version of the dissipativity condition

〈x∗, DΦ(x+ y)〉 ≤ −γ‖x‖E

that survives approximating DΦ by E-valued functions. With these conditions at
hand, we have the following result from [HSV07]:

Theorem 4.5 Assume that conditions (A1)–(A5) hold and define the probability
measure

µ(dx) = Z−1 exp(−Φ(x))µ0(dx) ,
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for a suitable normalisation constant Z. Then the stochastic PDE (4.7) has
a unique continuous E-valued global mild solution for every initial condition
x0 ∈ E. Furthermore, this solution admits µ as its unique invariant probabil-
ity measure.

Under a very weak additional assumption (essentially, Φ should admit approx-
imations that have bounded support and that are Fréchet differentiable, which is
not completely automatic if the norm on E is not differentiable), it is again pos-
sible to show that transition probabilities converge to the invariant measure at
exponential speed and that the law of large numbers holds.

5 Theme C. MCMC Methods

In this section we describe a range of effective Metropolis-Hastings based (see
[Has70, MRTT53]) MCMC methods (see [Liu01, RC99]) for sampling the target
distributions constructed in Section 3. As in the previous section we drop explicit
reference to the data y and work with a posterior distribution µ given by (4.1).
The methods we describe are motivated by the µ-reversible stochastic evolution
equations derived in the previous section. We work with measures µ given by
(1.1). We assume that m0 = 0 which can always be achieved by a shift of origin,
provided the mean of µ0 belongs to its Cameron-Martin space. Our aim is to draw
samples from the measure µ on E given by (4.1).

The idea of MCMC methods for target µ is to construct a discrete time Markov
chain {xn} on E that has µ as its invariant measure and that has good mixing
properties. One can then take as an approximation to i.i.d. samples the sequence
k 7→ xN0+kN1 with k ≥ 0 and N0, N1 ‘sufficiently large’. In order to compute
integrals of the form I =

∫
f (x)µ(dx) for some test function f , one can then use

the fact that, by Birkhoff’s ergodic theorem, one has the almost sure identity

I = lim
N→∞

1

N

N∑
k=1

f (xk) .

Metropolis-Hastings methods work by proposing a move from the current state
xk to y from a Markov transition kernel on E, and then accepting or rejecting in a
fashion which ensures that the resulting composite Markov chain is µ reversible.

In section 5.1 we first explain the idea in finite dimensions, with application to
the problems formulated in sections 3.1–3.3 and, of course, to finite dimensional
approximation of the problems formulated in sections 3.4–3.6. We focus on the
theory related to random walk and Langevin proposals for these problems, build-
ing on the material in the previous section. Then, in section 5.2, we generalize
these methods to the infinite dimensional setting.
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5.1 Metropolis-Hastings in Finite Dimensions
In finite dimensions the measure µ given by (1.1) on E = Rd has density π with
respect to Lebesque measure which is given by

π(x) ∝ exp
(
−1

2
|x|2C0 − Φ(x)

)
.

The Metropolis-Hastings method of constructing a µ reversible Markov chain is
the following. Fix a Markov transition kernel P (x, dy) with density q(x, y)dy.
The measure µ(dx)P (x, dy) on E × E then has density π(x)q(x, y). Define the
function

a(x, y) = 1 ∧ π(y)q(y, x)
π(x)q(x, y)

,

where we write a ∧ b for the minimum between a and b.
Assume that xk is known (start for example with x0 = 0). To determine xk+1

draw y ∼ q(xk, y) and proceed as follows:
1. xk+1 = y (step accepted) with probability a(xk, y).
2. xk+1 = xk (step rejected) otherwise.

The resulting Markov chain is π-reversible.
A frequently used class of methods are the symmetric random walk proposals

where
y = xk +

√
2∆tξk (5.1)

where the ξk are i.i.d. symmetric random variables (for example N (0, I)) on Rd.
This may be viewed as a discretization of the Brownian motion

dx =
√

2dW.

As such the proposal contains no information about the target However, by sym-
metry,

a(x, y) = 1 ∧ π(y)
π(x)

.

This has the advantage of being simple to implement.
Typically, the mixing time for a Metropolis-Hastings chain will depend both

on the proportion of steps that are rejected and on the variance of y − xk: the
higher the number of rejections and the lower the variance, the longer it will take
for the Markov chain to explore the whole state space. In general, there is a com-
petition between both effects: steps with a large variance have a high probability
of rejections; on the other hand small moves are less likely to be rejected but ex-
plore the state space slowly. Roughly speaking the competition between these two



THEME C. MCMC METHODS 31

effect is measured by the mean square jumping distance of the Markov chain in
stationarity. Specifically, if we define

Sd,i = Eµ|xk+1,i − xk,i|2 (5.2)

then this quantity measures the mean square jumping distance in the ith component
of the vector xk. Maximizing this quantity will enhance the mixing of functionals
heavily dependent on the ith component of x ∼ µ. We will optimize algorithms
according to this criterion.

In an attempt to maximize (5.2), proposals which contain information about
the target distribution can be useful. A class of proposals which does contain such
information arises from discretizing the Langevin SDE (4.2). A linearly implicit
Euler discretization gives rise to the following family of proposals:

y − xk = −∆tAL
(
θy + (1− θ)xk

)
− α∆tADΦ(xk) +

√
2∆tAξk (5.3)

where the ξk are i.i.d N (0, I) random variables on Rd, θ ∈ [0, 1] and α ∈ {0, 1}.
If α = 0 the proposal contains information only about the reference measure µ0,
via its precision operator L. If α = 1 it contains information information about µ
itself. Two natural choices for A are I and C0.

The formula for the proposal rearranges to give

y =
(
I+∆tθAL

)−1(
(I−∆t(1−θ)AL)xk−α∆tADΦ(x)+

√
2∆tAξk

)
. (5.4)

In the case α = 0 this generalizes the symmetric Random Walk to allow y to be
a more complex linear combination of xk and ξk. When α = 1 the proposal also
contains information which tends to make proposals which decrease Φ. Roughly
speaking we expect proposals with α = 1 to explore the state space more rapidly
than those with α = 0. However there is a cost involved in evaluating DΦ and the
trade-off between cost-per-step and number of steps will be different for different
problems.

A natural question of interest for these algorithms is how to choose the time-
step ∆t. We now study this question in the limit where the state space dimension
d→∞. We define the norm

|x|s =
( d∑
i=i

i2sx2
i

) 1
2
.

We make the following assumptions:

Assumption 5.1 The following hold for the family of reference measures µ0 =
µ0(d), the family of target measures µ = µ(d) and their interrelations.
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1. There are constants c± ∈ (0,∞) such that the eigenvalues λ2
i,d of the co-

variance C0 satisfy

c−i−k ≤ λi,d ≤ c+i−k ∀1 ≤ i ≤ d. (5.5)

2. Assumptions 2.1 (1)–(3) hold, generalized to include the case ε = 0, with
E = (Rd, | · |s), s < k − 1

2
and with constants independent of dimension d.

We now state three theorems, all proved in [BRS], which quantify the effi-
ciency of the various proposals described above in the high dimensional setting,
and under the preceding assumptions.

The first theorem shows that, for the symmetric random walk the optimal
choice of ∆t is of O(d−(2k+1)), giving rise to a maximal mean square jump of
the same magnitude.

Theorem 5.2 Consider the symmetric random walk proposal (5.1). Assume that
∆t = `2d−ρ. Then the following dichotomy holds, for any fixed i:

• If ρ ≥ 2k + 1 then

lim inf
d→∞

dρSd,i > 0, lim sup
d→∞

dρSd,i <∞.

• If ρ < 2k + 1 then
lim sup
d→∞

dqSd,i = 0

for any q ≥ 0.

The next theorem shows that, for the basic version of the Langevin proposal,
the optimal choice of ∆t is ofO(d−(2k+1/3)), giving rise to a maximal mean square
jump of the same magnitude. The improvement in the exponent by 2/3 comes as
the price of evaluating the application of the precision operator L at each step; the
cost of doing this will be problem dependent.

Theorem 5.3 Consider the proposal (5.4) with θ = α = 0 and A = I . Assume
that ∆t = `2d−ρ. Then the following dichotomy holds, for any fixed i:

• If ρ ≥ 2k + 1
3

then

lim inf
d→∞

dρSd,i > 0, lim sup
d→∞

dρSd,i <∞.

• If ρ < 2k + 1
3

then
lim sup
d→∞

dqSd,i = 0

for any q ≥ 0.
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The final theorem shows that, at the cost of making samples
√
C0ξk from the

prior measure at each step of the algorithm, the optimal choice of ∆t = O(d−1/3),
gives rise to a maximal mean square jump of the same magnitude.

Theorem 5.4 Consider the proposal (5.4) with θ = α = 0 and A = C. Assume
that ∆t = `2d−ρ. Then the following dichotomy holds, for any fixed i:

• If ρ ≥ 1
3

then

lim inf
d→∞

dρSd,i > 0, lim sup
d→∞

dρSd,i <∞.

• If ρ < 1
3

then
lim sup
d→∞

dqSd,i = 0

for any q ≥ 0.

The previous two theorems, concerning proposals of the form (5.4), concern
only the cases where θ = α = 0. It is expected that the scaling results will
be identical for θ = 0, α = 1. However the choice of θ can make significant
differences. In the next section we show how, by working in infinite dimensions,
we can in some cases eliminate dimension dependence in Metropolis Hastings
algorithms, by choosing θ = 1

2
.

5.2 Metropolis-Hastings in Infinite Dimensions
The ideas of the previous section can be generalized to infinite dimensions as
follows [Tie98]. Assume that we are given a Polish (i.e. complete, separable,
metric) space E (since we want to allow for the possibility of sampling from a
measure on a space of paths, E should be thought of as a space of functions
in general) and a probability measure µ on E. Assume furthermore that we are
given a Markov transition kernel P over E with the property that the measures
µ(dx)P (x, dy) and µ(dy)P (y, dx) are equivalent so that the quantity

µ(dy)P (y, dx)
µ(dx)P (x, dy)

,

which should be interpreted as the Radon-Nikodym derivative of the two afore-
mentioned measures evaluated at the point (x, y), is well-defined. With these
notations in place, we can construct a new Markov chain in the following way.
Assume again that xk is known and draw a random sample y from the probability
distribution P (xk, · ). Now let

α(x, y) = 1 ∧ µ(dy)P (y, dx)
µ(dx)P (x, dy)

. (5.6)

The algorithm proceeds as follows
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1. xk+1 = y (step accepted) with probability α(xk, y).
2. xk+1 = xk (step rejected) otherwise.

If we denote by Q the transition probabilities of the process xn, it can be checked
that one has

Q(x, dy) = c(x)δx(dy) + P (x, dy) ∧ P (y, dx)
µ(dx)

µ(dy) , (5.7)

for some function c that makes Q a Markov transition kernel. If we define a map
∆: E → E2 by ∆(x) = (x, x) and denote by ∆∗µ the push-forward of µ by ∆,
one can check that (5.7) implies that

µ(dx)Q(x, dy) =
√
c(x)c(y)(∆∗µ)(dx, dy) + µ(dx)P (x, dy) ∧ µ(dy)P (y, dx) .

This expression is symmetric in x ↔ y, so that the Markov kernel Q (or equiva-
lently the Markov chain generated from it) is reversible with respect to the mea-
sure µ. In particular, the measure µ is invariant for Q.

Thus key to making this idea work is the construction of proposals for which
the measure µ(dy)P (y, dx) is absolutely continuous with respect to the measure
µ(dx)P (x, dy). We consider this question in the context of (5.4), basing ideas on
the paper [BRSV08]. Let Pα(x, dy) denote the transition kernel of this proposal.
Then define measures η and η0 by

η(dx, dy) = µ(dx)Pα(x, dy)

and
η0(dx, dy) = µ0(dx)P0(x, dy).

It is straightforward to show that η0(dx, dy) = η0(dy, dx) iff θ = 1
2
. We work

with this assumption henceforth as it enables us to define the MCMC method on
function space.

Using the fact that Pα(x, ·) is absolutely continuous with respect to P0(x, ·) for
both α = 0 and α = 1 we deduce that η is absolutely continuous with respect to
η0 and that, for some ρ(x, y) = ρ(x, y;α,A), we have

dη

dη0

(x, y) ∝ exp(−ρ(x, y)).

Thus the acceptance probability for the Metropolis algorithm is

a(x, y) = 1 ∧ exp(ρ(x, y)− ρ(y, x)). (5.8)

For the proposals (5.4) the function ρ(x, y) is given, up to an additive constant
which we ignore, by the following expressions:
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• for A = I we have

ρ(x, y) = Φ(x) +
α2∆t

4
‖DΦ(x)‖2 +

α

2
〈DΦ(x), y − x〉

+
α∆t

4
〈DΦ(x), C−1

0 (y + x)〉;

• for A = C0 we have

ρ(x, y) = Φ(x) +
α2∆t

4
‖C1/2

0 DΦ(x)‖2 +
α

2
〈DΦ(x), y − x〉

+
α∆t

4
〈DΦ(x), y + x〉.

The four algorithms defined in this section (two choices for both α ∈ {0, 1}
and A ∈ {I, C0}) all lead to well-defined Metropolis-Hastings chains on Banach
space. Thus they give rise to mean square jumping distances which are bounded
independently of dimension d as they are, in particular, non-zero in the infinite
dimensional case.

It is straightforward to prove [BS09] that, for any c > 0, the acceptance prob-
ability (5.8) satisfies

Ea(xk, y) ≥ exp(−c)
(

1− E|ρ(xk, y)− ρ(y, xk)|
c

)
.

Thus if we can show that

E|ρ(xk, y)− ρ(y, xk)| → 0

as ∆t→ 0 then we deduce that we can make the acceptance probability arbitarily
close to 1. In the case α = 0, proving this may be shown by using Assumption 2.1.

6 Discussion and Bibliography

There are several useful sources for background material relevant to both the prob-
lems studied, and methods developed, in this chapter. A general reference con-
cerned with stochastic modelling is [CH06]. Several technical tools are required
to develop the methods described in this chapter. An exhaustive treatment of
Gaussian measures can be found in [Bog98] and moment bounds for SDEs can
be found in [Mao97]. The book [DdFG01] is an excellent source for material
concerned with sequential filtering problems, including the use of particle filters
for non-Gaussian problems. The filtering and smoothing problems for SDEs with
continuous time observations, as arising in section 3.6, is introduced in [Øks03],
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and developed in detail in the Gaussian context (f and g linear) giving rise to
the Kalman-Bucy filter and smoother. This method uses an approach based on
first filtering (0 → T ), and then reversing the process (T → 0) to incorporate
data from time t > s into the probability distribution at me s. Good sources
of signal processing problems arising from data assimilation are [Eve06] and the
volume [JI07]; these problems have motivated a lot of our research in this general
area. Finally note that signal processing may be viewed as an inverse problem to
find a signal from partial, noisy, observations. The Bayesian approach to inverse
problems in general is discussed in [KS05].

In Theme A we considered a range of differing problems arising in signal pro-
cessing, constructing and deriving properties of the posterior distribution. The
posterior distributions constructed in sections 3.2 and 3.3 can both be viewed as
parameter estimation problems for SDEs. They have particular structure, inher-
ited from the way in which the parameter u enters the expression ϕt(u) appearing
in the SDE for y. The general subject of parameter estimation for SDEs is consid-
ered in [BPR80, Kut04]. Incorporating discrete time data into a continuous time
model, as undertaken in sections 3.4 and 3.5, is studied in [AHSV07, HSV09].
Carrying out this program and, at the same time estimating parameters in the
dynamical model, is discussed in [RHCC07], in a non-Bayesian setting. The rela-
tionship between the coloured noise model appearing in section 3.4, and the white
noise model appearing in 3.5, in the limit δ → 0, is part of the theory of homoge-
nization for stochastic processes; see [BLP78, PS08]. The filtering and smoothing
problems for SDEs with continuous time observations, as arising in section 3.6, is
introduced in [Øks03], as mentioned above. In the Gaussian case the mean is char-
acterized by the solution of a two point value problem, defined through inversion
of the precision operator. The approach to smoothing outlined in [Øks03] corre-
sponds to a continuous time analogue of LU factorization, here for the inverse of
the covariance operator, facilitating its action on the data to compute the mean.
The particular formulation of the smoothing problem described here is developed
in [AHSV07].

In Theme B we studied the derivation of Langevin equations (stochastic par-
tial differential equations) which are invariant with respect to a given invariant
measure. This is straightforward in finite dimensions, but is an emerging subject
area in infinite dimensions. The idea is developed in a fairly general setting in
[HSV07], building on the Gaussian case described in [HSVW05]. The first use
of the Langevin equation to solve signal processing problems may be found in
[SVW04] and further applications may be found in [HSV, AJSV08]. On the the-
oretical side many open questions remain concerning the derivation of Langevin
equations. In particular the paper [HSV07] deals with elliptic diffusions with
gradient drift and additive noise. An initial analysis of a particular hypoelliptic
problem may be found in [HSV]. questions relating to the derivation of Langevin
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equations for nongradient drifts, and for multiplicative noise, remain open.
Theme C is concerned with the design and analysis of effective MCMC meth-

ods in high dimension, motivated by the approximation of infinite dimension-
sal problems. This subject is overviewed in the review articles [BS09, BS10],
and full details of the analysis and application of the methods may be found in
[BRS, BRSV08].

Appendix A Some Results from Probability

In this appendix, we collect miscellaneous results from stochastic analysis that
were used in this chapter. Throughout the chapter we use the following notation:
given a Hilbert space (H, 〈·, ·〉, ‖ · ‖), for any positive-definite C we define the
second inner-product and norm

〈a, b〉C = 〈a, C−1b〉, ‖a‖2
C = 〈a, a〉C .

A.1 Conditional Probabilities
Throughout Theme A of this paper we will be generalizing Bayes formula to an
infinite dimensional setting. There are two components to this: Bayes formula
in finite dimensions, and then the generalization to the Hilbert space setting. We
start in finite dimensions. Assume that we are given a random variable u on Rd

about which we have some prior information in terms of a probability distribution
P(u). Imagine that we now define a random variable y on Rl, which depends upon
u, and for which we have the probability distribution of y given u, namely P(y|u).
By the elementary rules of probability we have

P(u|y) =
1

P(y)
P(u ∩ y),

P(y|u) =
1

P(u)
P(u ∩ y).

Combining these two formulae shows that the posterior probability distribution
for u, given a single observation of y, is given by Bayes formula

P(u|y) =
1

P(y)
P(y|u)P(u). (A.1)

In this Chapter there are many instances where we are interested in condition-
ing probability measures on function space. In this context the following theorem
will be of central importance in constructing the appropriate generalization of
Bayes formula.
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Theorem A.1 Let µ, ν be probability measures on S×T where (S,A) and (T,B)
are measurable spaces and let x : S × T → S and y : S × T → T be the canon-
ical projections. Assume that µ has a density ϕ w.r.t. ν and that the conditional
distribution νx|y exists. Then the conditional distribution µx|y exists and is given
by

dµx|y
dνx|y

(x) =

{
1
c(y)ϕ(x, y), if c(y) > 0, and
1 else,

(A.2)

with c(y) =
∫
S
ϕ(x, y) dνx|y(x) for all y ∈ T .

A.2 A version of Girsanov’s theorem
SDEs which do not have the same diffusion coefficient generate measures which
are mutually singular on pathspace; the same is true of SDEs starting from dif-
ferent deterministic initial conditions. However, if these two possibilities are
ruled out, then two different SDEs generate measures which are absolutely con-
tinuous with respect to one another. The Girsanov formula provides an explicit
expression for the Radon-Nikodym derivative between two such measures on
H = L2([0, T ],Rd).

Consider the SDE
dv

dt
= A(t)v + h(v, t) + γ(v, t)

dW

dt
, v(0) = u. (A.3)

and the same equation with the function h set to zero, namely

dv

dt
= A(t)v + γ(v, t)

dW

dt
, v(0) = v0. (A.4)

The measures generated by these two equations are absolutely continuous. Define
Γ(·, t) = γ(·, t)γ(·, t)T . We then have the following version of Girsanov’s theorem,
that can be found in [Elw82]:

Theorem A.2 Assume that both equations (A.3) and (A.4) have solutions on t ∈
[0, T ] which do not explode almost surely. Then the measures µ and µ0 on H,
generated by the two equations (A.3) and (A.4) respectively, are equivalent with
Radon-Nikodym derivative

dµ

dµ0

(v) = exp
(
−
∫ T

0

1

2
‖h(v, t)‖2

Γ(v,t)dt− 〈h(v, t), dv − A(t)vdt〉Γ(v(t))

)
.
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Figure 1: Illustration of the posterior density for the Lorenz system from Exam-
ple 3.2. Observations y are generated at times 1, 2, 3, . . . , 10 for a trajectory
starting at v(0) = ū ∈ R3. Then u1 7→ Φ(u; y) + 1

2
|u−m0|2 is plotted, where the

last two components of u are fixed to the “exact” values u2 = ū2 and u3 = ū3.
The different lines, from bottom to top, correspond to considering only the first
K = 1, . . . , 10 observations. Up to a constant, the plotted value is − log π where
π is the posterior density of µy. The figure illustrates that the effect of adding
more observations is twofold: Firstly, the additional information allows to get
better estimates of ū, the posterior distribution concentrates around this value.
Second, as more observations are added, the shape of the posterior density gets
more irregular and many local extrema appear.
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Figure 2: Illustration of the posterior density for the initial condition in Exam-
ple 3.11. The system is exactly the same as in Figure 1, except for the presence
of an additional random forcing ψ in the Lorenz equation. The plotted posterior
density of u is obtained by averaging Φ(u, ψ; y) + 1

2
|u −m0|2 over ψ. The sam-

pling is now on an infinite dimensional space, but the figure illustrates that the
posterior for u is much smoother than in the situation without model error from
Figure 1.


	Overview
	General Properties of the Posterior
	Theme A. Bayesian Inference for Signal Processing
	Theme B. Langevin Equations
	Theme C. MCMC Methods
	Discussion and Bibliography
	Some Results from Probability

