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Abstract. We present a series of recent results on the well-posedness of very singular
parabolic stochastic partial differential equations. These equations are such that the
question of what it even means to be a solution is highly non-trivial. This problem
can be addressed within the framework of the recently developed theory of “regularity
structures”, which allows to describe candidate solutions locally by a “jet”, but where the
usual Taylor polynomials are replaced by a sequence of custom-built objects. In order
to illustrate the theory, we focus on the particular example of the Kardar-Parisi-Zhang
equation, a popular model for interface propagation.
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1. Introduction

In this article, we report on a recently developed theory [23] allowing to give a
robust meaning to a large class of stochastic partial differential equations (SPDEs)
that have traditionally been considered to be ill-posed. The general structure of
these equations is

Lu = F (u) +G(u)ξ , (1)

where the dominant linear operator L is of parabolic (or possibly elliptic) type, F
and G are local nonlinearities depending on u and its derivatives of sufficiently low
order, and ξ is some driving noise. Problems arise when ξ (and therefore also u) is
so singular that some of the terms appearing in F and / or the product between
G and ξ are ill-posed. For simplicity, we will consider all of our equations in a
bounded spatial region with periodic boundary conditions.

One relatively simple example of an ill-posed equation of the type (1) is that
of a system of equations with a nonlinearity of Burgers type driven by space-time
white noise:

∂tu = ∂2xu+ F (u) ∂xu+ ξ . (2)

(See Section 2.2 below for a definition of the space-time white noise ξ.) Here,
u(x, t) ∈ Rn and F is a smooth matrix-valued function, so that one can in general
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not rewrite the nonlinearity as a total derivative. In this example, which was
originally studied in [20] but then further analysed in the series of articles [24,
29, 25], solutions at any fixed instant of time have exactly the same regularity
(in space) as Brownian motion. As a consequence, ∂xu is expected to “look like”
white noise. It is of course very well-known from the study of ordinary stochastic
differential equations (SDEs) that in this case the product F (u) ∂xu is “unstable”:
one can get different answers depending on the type of limiting procedure used to
define it. This is the reason why one has different solution theories for SDEs: one
obtains different answers, depending on whether they are interpreted in the Itô or
in the Stratonovich sense [30, 43, 44].

Another example is given by the KPZ equation [32] which can formally be
written as

∂th = ∂2xh+ (∂xh)2 − C + ξ , (3)

and is a very popular model of one-dimensional interface propagation. As in the
case of (2), one expects solutions to this equation to “look like” Brownian motion
(in space) for any fixed instant of time. Now the situation is much worse however:
the nonlinearity looks like the square of white noise, which really shouldn’t make
any sense! In this particular case however, one can use a “trick”, the Cole-Hopf
transform, to reduce the problem to an equation that has an interpretation within
the framework of classical SPDE theory [4]. Furthermore, this “Cole-Hopf solu-
tion” was shown in [4] to be the physically relevant solution since it describes the
mesoscopic fluctuations of a certain microscopic interface growth model, see also
[17]. On the other hand, the problem of interpreting these solutions directly at
the level of (3) and to show their stability under suitable approximations had been
open for a long time, before being addressed in [21].

Both examples mentioned so far have only one space dimension. This particular
feature (together with some additional structure in the case of the KPZ equation,
see Remark 5.17 below) allowed to treat them by borrowing estimates and tech-
niques from the theory of (controlled) rough paths [34, 18, 15]. This approach
breaks down in higher spatial dimensions. More recently, a general theory of “reg-
ularity structures” was developed in [23], which unifies many previous approaches
and allows in particular to treat higher dimensional problems.

Two nice examples of equations that can be treated with this new approach
are given by

∂tΦ = ∆Φ + CΦ− Φ3 + ξ , (4a)

∂tΨ = −∆
(
∆Ψ + CΨ−Ψ3

)
+ div ξ , (4b)

in space dimension d = 3. These equations can be interpreted as the natural
“Glauber” and “Kawasaki” dynamics associated to Euclidean Φ4 field theory in
the context of stochastic quantisation [40]. It is also expected to describe the
dynamical mesoscale fluctuations for phase coexistence models that are “almost
mean-field”, see [5]. These equations cease to have function-valued solutions in
dimension d ≥ 2, so that the classical interpretation of the cubic nonlinearity
loses its meaning there. In two dimensions, a solution theory for these equations
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was developed in [1], which was later improved in [10, 11, 12], see Section 3.1
below. The case d = 3 (which is the physically relevant one in the interpretation
as dynamical fluctuations for phase coexistence models) had remained open and
was eventually addressed in [23].

A final example of the kind of equations that can be addressed by the theory
exposed in these notes (but this list is of course not exhaustive) is a continuous
analogue to the classical parabolic Anderson model [8]:

∂tu = ∆u+ u η + Cu , (5)

in dimensions d ∈ {2, 3}. In this equation, η denotes a noise term that is white in
space, but constant in time. This time, the problem is that in dimension d ≥ 2,
the product u η ceases to make sense classically, as a consequence of the lack of
regularity of u.

The following “meta-theorem” (formulated in a somewhat vague sense, precise
formulations differ slightly from problem to problem and can be found in the
abovementioned articles) shows in which sense one can give meaning to all of these
equations.

Theorem 1.1. Consider the sequence of classical solutions to any of the equations
(2)–(5) with ξ (resp. η) replaced by a smooth regularised noise ξε and C = Cε
depending on ε. Then, there exists a choice Cε → ∞ such that this sequence of
solutions converges to a limit in probability, locally in time. Furthermore, this limit
is universal, i.e. does not depend on the details of the regularisation ξε.

Besides these convergence results, the important fact here is that the limit is
independent of the precise details of the regularisation mechanism. In addition,
the theory of regularity structures also yields rates of convergence, as well as an
intrinsic description of these limits. It also provides automatically a very detailed
local description of these limits.

The aim of this article is to give an overview of the ingredients involved in the
proof of a result like Theorem 1.1. We structure this as follows. In Section 2,
we recall a number of properties and definitions of Hölder spaces of positive (and
negative!) order that will be useful for our argument. In Section 3, we then explain
how, using only standard tools, it is possible to provide a robust solution theory
for not-so-singular SPDEs, like for example (4) in dimension d = 2. Section 4 is
devoted to a short overview of the main definitions and concepts of the abstract
theory of regularity structures which is a completely general way of formalising the
properties of objects that behave “like Taylor polynomials”. Section 5 then finally
shows how one can apply this general theory to the specific context of the type of
parabolic SPDEs considered above, how renormalisation procedures can be built
into the theory, and how this affects the equations.

Throughout the whole article, our argumentation will remain mostly at the
heuristic level, but we will make the statements and definitions as precise as pos-
sible.

1.1. An alternative approach. A different approach to building solution
theories for singular PDEs was developed simultaneously to the one presented
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here by Gubinelli & Al in [19]. That approach is based on the properties of Bony’s
paraproduct [7, 3, 2], in particular on the paralinearisation formula. One advantage
is that in the paraproduct-based approach one generally deals with globally defined
objects rather than the “jets” used in the theory of regularity structures. This
comes at the expense of achieving a less clean break between the analytical and
the algebraic aspects of a given problem and obtaining less detailed information
about the solutions. Furthermore, its scope is not as wide as that of the theory of
regularity structures, see also Remark 5.17 below for more details.

2. Some properties of Hölder spaces

We recall in this section a few standard results from harmonic analysis that are
very useful to have in mind. Note first that the linear part of all of the equations
described in the introduction is invariant under some space-time scaling. In the
case of the heat equation, this is the parabolic scaling. In other words, if u is a
solution to the heat equation, then ũ(t, x) = u(λ−2t, λ−1x) is also a solution to the
heat equation.

This suggests that we should look for solutions in function / distribution spaces
respecting this scaling. Given a smooth compactly supported test function ϕ and a
space-time coordinate z = (t, x), we henceforth write ϕλz (s, y) = λ−d−2ϕ

(
λ−2(s−

t), λ−1(y − x)
)
, where d denotes the spatial dimension and the factor λ−d−2 is

chosen so that the integral of ϕλz is the same as that of ϕ. In the case of the
stochastic Cahn-Hilliard equation (4b), we would naturally use instead a temporal
scaling of λ−4 and the prefactor would then be λ−d−4.

With these notations at hand, we define spaces of distributions Cα for α < 0 in
the following way. Denoting by Bα the set of smooth test functions ϕ : Rd+1 → R
that are supported in the centred ball of radius 1 and such that their derivatives
of order up to 1 + |α| are uniformly bounded by 1, we set

Definition 2.1. Let η be a distribution on d + 1-dimensional space-time and let
α < 0. We say that η ∈ Cα if the bound

∣∣η(ϕλz )
∣∣ . λα holds uniformly over all

λ ∈ (0, 1], all ϕ ∈ Bα, and locally uniformly over z ∈ Rd+1.

For α ≥ 0, we say that a function f : Rd+1 → R belongs to Cα if, for every
z ∈ Rd+1 there exists a polynomial Pz of (parabolic) degree at most α and such
that the bound

|f(z′)− Pz(z′)| . |z − z′|α ,

holds locally uniformly over z and uniformly over all z′ with |z′− z| ≤ 1. Here, we
say that a polynomial P in z = (t, x) is of parabolic degree n if each monomial is of
the form zk with |k| = 2|k0|+

∑
i 6=0 ki| ≤ n. In other words, the degree of the time

variable “counts double”. For z = (t, x), we furthermore write |z| = |t|1/2 + |x|.
(When treating (4b), powers of t count four times and one writes |z| = |t|1/4 + |x|.)

We now collect a few important properties of the spaces Cα.
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2.1. Analytical properties. First, given a function and a distribution (or
two distributions) it is natural to ask under what regularity assumptions one can
give an unambiguous meaning to their product. It is well-known, at least in the
Euclidean case but the extension to the parabolic case is straightforward, that
the following result yields a sharp criterion for when, in the absence of any other
structural knowledge, one can multiply a function and distribution of prescribed
regularity [2, Thm 2.52].

Theorem 2.2. Let α, β 6= 0. Then, the map (f, g) 7→ f · g defined on all pairs
of continuous functions extends to a continuous bilinear map from Cα × Cβ to the
space of all distributions if and only if α + β > 0. Furthermore, if α + β > 0, the
image of the multiplication operator is Cα∧β.

Another important property of these spaces is given by how they transform
under convolution with singular kernels. Let K : Rd+1 → R be a function that is
smooth away from the origin and supported in the centred ball of radius 1. One
should think of K as being a truncation of the heat kernel G in the sense that
G = K + R where R is a smooth space-time function. We then say that K is of
order β (in the case of a truncation of the heat kernel one has β = 2) if one can
write K =

∑
n≥0Kn for kernels Kn which are supported in the centred ball of

radius 2−n and such that

sup
z
|DkKn(z)| . 2((d+2)+|k|−β)n , (6)

for any fixed multiindex k, uniformly in n. Multiplying the heat kernel with a
suitable partition of the identity, it is straightforward to verify that this bound is
indeed satisfied.

With these notations at hand, one has the following very general Schauder
estimate, see for example [41, 42] for special cases.

Theorem 2.3. Let β > 0, let K be a kernel of order β, and let α ∈ R be such
that α+ β 6∈ N. Then, the convolution operator η 7→ K ? η is continuous from Cα
into Cα+β.

Remark 2.4. The condition α+β 6∈ N seems somewhat artificial. It can actually
be dispensed with by slightly changing the definition of Cα.

2.2. Probabilistic properties. Let now η be a random distribution, which
we define in general as a continuous linear map ϕ 7→ η(ϕ) from the space of
compactly supported smooth test functions into the space of square integrable
random variables on some fixed probability space (Ω,P). We say that it satisfies
equivalence of moments if, for every p ≥ 1 there exists a constant Cp such that the
bound

E|η(ϕ)|2p ≤ Cp
(
E|η(ϕ)|2

)p
,

holds for uniformly over all test functions ϕ. This is of course the case if the
random variables η(ϕ) are Gaussian, but it also holds if they take values in an
inhomogeneous Wiener chaos of fixed order [39].
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Given a stationary random distribution η and a (deterministic) distribution C,
we say that η has covariance C if Eη(ϕ)η(ψ) = 〈C ? ϕ, ψ〉, where 〈·, ·〉 denotes
the L2-scalar product. With this notation at hand, space-time white noise ξ is
the Gaussian random distribution on Rd+1 with covariance given by the delta
distribution. In other words, ξ(ϕ) is centred Gaussian for every ϕ and Eξ(ϕ)ξ(ψ) =
〈ϕ,ψ〉L2 .

Similarly to the case of stochastic processes, a random distribution η̃ is said
to be a version of η if, for every fixed test function ϕ, η̃(ϕ) = η(ϕ) almost surely.
One then has the following Kolmogorov criterion, a proof of which can be found
for example in [23].

Theorem 2.5. Let η be a stationary random distribution satisfying equivalence of
moments and such that, for some α < 0, the bound

E|η(ϕλz )|2 . λ2α ,

holds uniformly over λ ∈ (0, 1] and ϕ ∈ Bα. Then, for any κ > 0, there exists a
Cα−κ-valued random variable η̃ which is a version of η.

From now on, we will make the usual abuse of terminology and not distinguish
between different versions of a random distribution.

Remark 2.6. It follows immediately from the scaling properties of the L2 norm
that one can realise space-time white noise as a random variable in C− d2−1−κ for
every κ > 0. This is sharp in the sense that it can not be realised as a random
variable in C− d2−1. This is akin to the fact that Brownian motion has sample paths
belonging to Cα for every α < 1

2 , but not for α = 1
2 .

Let now K be a kernel of order β as before, let ξ be space-time white noise,
and set η = K ? ξ. It then follows from either Theorem 2.5 directly, or from
Theorem 2.3 combined with Remark 2.6, that η belongs almost surely to Cα for
every α < β− d

2 − 1. We now turn to the question of how to define powers of η. If

β ≤ d
2 + 1, η is not a random function, so that its powers are in general undefined.

Recall that if ξ is space-time white noise and L2(ξ) denotes the space of square-
integrable random variables that are measurable with respect to the σ-algebra gen-
erated by ξ, then L2(ξ) can be decomposed into a direct sum L2(ξ) =

⊕
m≥0Hm(ξ)

so that H0 contains constants, H1 contains random variables of the form ξ(ϕ) with
ϕ ∈ L2, and Hm contains suitable generalised Hermite polynomials of order m in
the elements of H1, see [37, 39] for details. Elements of Hm have a representation
by square-integrable kernels of m variables, and this representation is unique if we
impose that the kernel is symmetric under permutation of its arguments. In other
words, one has a surjection I(m) : L2(Rd+1)⊗m → Hm and I(m)(L) = I(m)(L′) if
and only if the symmetrisations of L and L′ coincide.

In the particular case where K is non-singular, η is a random function and its
nth power ηn can be represented as

ηn(ϕ) =
∑

2m<n

Pm,nC
m I(n−2m)(K(n−2m)

ϕ ) , (7)
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where

K(r)
ϕ (z1, . . . , zr) :=

∫
K(z − z1) · · ·K(z − zr)ϕ(z) dz ,

for some combinatorial factors Pm,n. Here we have set C =
∫
K2(z) dz. A simple

calculation then shows that

Proposition 2.7. If K is compactly supported, then K
(n)
ϕ is square integrable if

the function (K ? K̂)n, where K̂(z) = K(−z), is integrable.

We now define the nth Wick power η�n of η as the random distribution given
by only keeping the dominant term in (7):

η�n(ϕ) = I(n)(K(n)
ϕ ) .

By Proposition 2.8, this makes sense as soon as K ? K̂ ∈ Ln(Rd+1). One then has
the following result, a version of which can be found for example in [14].

Proposition 2.8. Let K be a compactly supported kernel of order β ∈ (d+2
2 (1 −

1
n ), d+2

2 ) and let η = K ? ξ as above. Then, η�n is well-defined and belongs almost
surely to Cα for every α < (2β − d− 2)n2 .

Proof. A simple calculation shows that∣∣(K ? K̂
)
(z)
∣∣n . |z|(2β−d−2)n ,

so that ‖K(n)

ϕλz
‖2L2 . λ(2β−d−2)n. The claim then follows from Theorem 2.5, noting

that random variables belonging to a Wiener-Itô chaos of finite order satisfy the
equivalence of moments.

It is important to note that this result is stable: replacing K by a smoothened
kernel Kε and letting ε → 0 yields convergence in probability of η�nε to η�n in Cα
(with α as in the statement of the proposition) for most “reasonable” choices of
Kε. Furthermore, for fixed ε > 0, one has an explicit formula relating η�nε to ηε:

η�nε (z) = Hn(ηε(z), Cε) , (8)

where the rescaled Hermite polynomials Hn(·, C) are related to the standard
Hermite polynomials by Hn(u,C) = Cn/2Hn(C−1/2u) and we have set Cε =∫
K2
ε (z) dz.

3. General methodology

The general methodology for providing a robust meaning to equations of the type
presented in the introduction is as follows. We remark that the main reason why
these equations seem to be ill-posed is that there is no canonical way of multiply-
ing arbitrary distributions. The distributions appearing in our setting are however
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not arbitrary. For instance, one would expect solutions to semilinear equations of
this type to locally “look like” the solutions to the corresponding linear problems.
This is because, unlike hyperbolic or dispersive equations, parabolic (or elliptic)
equations to not transport singularities. This gives hope that if one could somehow
make sense of the nonlinearity, when applied to the solution to the linearised equa-
tion (which is a Gaussian process and therefore amenable to explicit calculations),
then one could maybe give meaning to the equations themselves.

3.1. The Da Prato-Debussche trick. In some situations, one can apply
this idea directly, and this was originally exploited in the series of articles [10, 11,
12]. Let us focus on the example of the dynamical Φ4 model in dimension 2, which
is formally given by

∂tΦ = ∆Φ + CΦ− Φ3 + ξ ,

where ξ is (spatially periodic) space-time white noise in space dimension 2.
Let now ξε denote a smoothened version of ξ given for example by ξε = ρε ? ξ,

where ρε(t, x) = ε−4ρ(ε−2t, ε−1x), for some smooth compactly supported space-
time mollifier ρ. In this case, denoting again by K a cut-off version of the heat
kernel and noting that K is of order 2 (and therefore also of every order less than
2), it is immediate that η = K ? ξ satisfies the assumptions of Proposition 2.8 for
every integer n.

In view of (8), this suggests that it might be possible to show that the solutions
to

∂tΦε = ∆Φε + 3CεΦε − Φ3
ε + ξε

= ∆Φε −H3(Φε, Cε) + ξε ,
(9)

with Cε =
∫
K2
ε (z) dz as above, where Kε = ρε ? K, converge to a distributional

limit as ε→ 0. This is indeed the case, and the argument goes as follows. Writing
ηε = Kε ? ξ and vε = Φε− ηε with Φε the solution to (9), we deduce that vε solves
the equation

∂tvε = ∆vε −H3(ηε + vε, Cε) +Rε ,

for some smooth function Rε that converges to a smooth limit R as ε → 0. We
then use elementary properties of Hermite polynomials to rewrite this as

∂tvε = ∆vε −
(
H3(ηε, Cε) + 3vεH2(ηε, Cε) + 3v2ε ηε + v3ε

)
+Rε

= ∆vε −
(
η�3ε + 3vεη

�2
ε + 3v2ε ηε + v3ε

)
+Rε .

By Proposition 2.8 (and the remarks that follow), we see that η�nε converges in
probability to a limit η�n in every space Cα for α < 0. We can then define a
random distribution Φ by Φ = η + v, where v is the solution to

∂tv = ∆v −
(
η�3 + 3vη�2 + 3v2 η + v3

)
+R . (10)

As a consequence of Theorem 2.3 (combined with additional estimates showing
that the Cγ-norm of K ? (f1t>0) is small over short times provided that f ∈ Cα
for α ∈ (−2, 0) and γ < α + β), it is relatively easy to show that (10) has local
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solutions, and that these solutions are robust with respect to approximations of η�n

in Cα for α sufficiently close to 0. In particular, this shows that one has Φε → Φ
in probability, at least locally in time for short times.

Remark 3.1. The dynamical Φ4 model in dimension 2 was previously constructed
in [1] (see also the earlier work [31] where a related but different process was
constructed), but that construction relied heavily on a priori knowledge about
its invariant measure and it was not clear how robust the construction was with
respect to perturbations.

3.2. Breakdown of the argument and a strategy to rescue it.
While the argument outlined above works very well for a number of equations,
it unfortunately breaks down for the equations mentioned in the introduction.
Indeed, consider again (4a), but this time in space dimension d = 3. In this case,

one has η ∈ C− 1
2−κ for every κ > 0 and, by Proposition 2.8, one can still make

sense of η�n for n < 5. One could therefore hope to define again a solution Φ by
setting Φ = η + v with v the solution to (10). Unfortunately, this is doomed to

failure: since η�3 ∈ C− 3
2−κ (but no better), one can at best hope to have v ∈ C 1

2−κ.
As a consequence, both products v · η�2 and v2 · η fall outside of the scope of
Theorem 2.2 and we cannot make sense of (10).

One might hope at this stage that the Da Prato-Debussche trick could be
iterated to improve things: identify the “worst” term in the right hand side of
(10), make sense of it “by hand”, and try to obtain a well-posed equation for the
remainder. While this strategy can indeed be fruitful and allows us to deal with
slightly more singular problems, it turns out to fail in this situation. Indeed, no
matter how many times we iterate this trick, the right hand side of the equation for
the remainder v will always contain a term proportional to v·η�2. As a consequence,
one can never hope to obtain a remainder of regularity better than C1−κ which,
since η�2 ∈ C−1−κ, shows that it is not possible to obtain a well-posed equation
by this method. See also Remark 5.17 below for a more systematic explanation of
when this trick fails.

In some cases, one does not even know how to get started: consider the class
of “classical” one-dimensional stochastic PDEs given by

∂tu = ∂2xu+ f(u) + g(u)ξ , (11)

where ξ denotes space-time white noise, f and g are fixed smooth functions from
R to R, and the spatial variable x takes values on the circle. Then, we know
in principle how to use Itô calculus to make sense of (11) by rewriting it as an
integral equation and interpreting the integral against ξ as an Itô integral, see [13].
However, this notion of solution is not very robust under approximations since
space-time regularisations of the driving noise ξ typically destroy the probabilistic
structure required for Itô integration. This is in contrast to the solution theory
sketched in Section 3.1 which was very stable under approximations of the driving
noise, even though it required suitable adjustments to the equation itself. Unfor-
tunately, the argument of Section 3.1 (try to find some function / distribution η
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so that v = u − η has better regularity properties and then obtain a well-posed
equation for v) appears to break down completely.

The main idea now is that even though we may not be able to find a global
object η so that u − η has better regularity, it might be possible to find a local
object that does the trick at any one point. More precisely, setting η = K ? ξ
as above (this time η is a Hölder continuous function in C 1

2−κ for every κ > 0 by
Theorems 2.3 and 2.5), one would expect solutions to (11) to be well approximated
by

u(z′) ≈ u(z) + g(u(z))
(
η(z′)− η(z)

)
. (12)

The intuition is that since K is regular everywhere except at the origin, convolution
with K is “almost” a local operator, modulo more regular parts. Since, near any
fixed point z, we would expect g(u)ξ to “look like” g(u(z))ξ this suggests that near
that point z, the function K ? (g(u)ξ) should “look like” g(u(z))η, which is what
(12) formalises.

Note that this looks very much like a first-order Taylor expansion, but with
η(z′)− η(z) playing the role of the linear part z′− z. If we assume that (12) yields
a good approximation to u, then one would also expect that

g(u(z′)) ≈ g(u(z)) + g′(u(z))g(u(z))
(
η(z′)− η(z)

)
,

so that g(u) has again a “first-order Taylor expansion” of the same type as the one
for u. One could then hope that if we know somehow how to multiply η with ξ, this
knowledge could be leveraged to define the product between g(u) and ξ in a robust
way. It turns out that this is not quite enough for the situation considered here.
However, this general strategy turns out to be very fruitful, provided that we also
control higher-order local expansions of u, and this is precisely what the theory of
regularity structures formalises [23, 26]. In particular, besides being applicable to
(11), it also applies to all of the equations mentioned in the introduction.

4. Regularity structures

We now describe a very general framework in which one can formulate “Taylor
expansions” of the type (12). We would like to formalise the following features
of Taylor expansions. First, the coefficients of a Taylor expansion (i.e. the value
and derivatives of a given function in the classical case or the coefficients u(z) and
g(u(z)) in the case (12)) correspond to terms of different degree / homogeneity and
should therefore naturally be thought of as elements in some graded vector space.
Second, an expansion around a given point can be reexpanded around a different
point at the expense of changing coefficients, like so:

a · 1 + b · x+ c · x2 =
(
a+ bh+ ch2

)
· 1 +

(
b+ 2ch

)
· (x− h) + c · (x− h)2 ,

u · 1 + g(u) ·
(
η(z′)− η(z)

)
=
(
u+ g(u)(η(z′′)− η(z))

)
· 1 + g(u) ·

(
η(z′)− η(z′′)

)
.

Lastly, we see from these expressions that if we order coefficients by increasing
homogeneity, then the linear transformation performing the reexpansion has an
upper triangular structure with the identity on the diagonal.



Singular stochastic PDEs 11

4.1. Basic definitions. The properties just discussed are reflected in the
following algebraic structure.

Definition 4.1. A regularity structure T = (A, T,G) consists of the following
elements:

1. A discrete index set A ⊂ R such that 0 ∈ A and A is bounded from below.
2. A model space T =

⊕
α∈A Tα, with each Tα a Banach space; elements in Tα

are said to have homogeneity α. Furthermore T0 is one-dimensional and has
a distinguished basis vector 1. Given τ ∈ T , we write ‖τ‖α for the norm of
its component in Tα.

3. A structure group G of (continuous) linear operators acting on T such that,
for every Γ ∈ G, every α ∈ A, and every τα ∈ Tα, one has

Γτα − τα ∈ T<α :=
⊕
β<α

Tβ . (13)

Furthermore, Γ1 = 1 for every Γ ∈ G.

The prime example of a regularity structure one should keep in mind is the one
associated to Taylor polynomials on space-time Rd+1. In this case, the space T is
given by all polynomials in d+ 1 indeterminates X0, . . . , Xd, with X0 representing
the “time” coordinate. It comes with a canonical basis given by all monomials of
the type Xk = Xk0

0 · · ·X
kd
d with k an arbitrary multiindex. The basis vector 1 is

the one corresponding to the zero multiindex. The space T has a natural grading
by postulating that the homogeneity of Xk is |k| = 2k0 +

∑
i 6=0 ki and a natural

norm by postulating that ‖Xk‖ = 1. In the case of the polynomial regularity
structure, the structure group G is simply given by Rd+1, endowed with addition,
and acting on monomials by

Γ̂hX
k = (X − h)k = (X0 − h0)k0 · · · (Xd − hd)kd . (14)

It is immediate that all axioms of a regularity structure are satisfied in this case.
In the case of polynomials, there is a natural “realisation” of the structure T

at each space-time point z, which is obtained by turning an abstract polynomial
into the corresponding concrete polynomial (viewed now as a real-valued function
on Rd+1) based at z. In other words, we naturally have a family of linear maps
Πz : T → C∞(Rd) given by(

ΠzX
k
)
(z′) = (z′0 − z0)k0 · · · (z′d − zd)kd . (15)

It is immediate that the group G transforms these maps into each other in the
sense that ΠzΓ̂h = Πz+h. It is furthermore an immediate consequence of the
scaling properties of monomials that the maps Πz and the representation h 7→ Γ̂h
of Rd+1 are “compatible” with our grading for the model space T . More precisely,
one has

〈ϕλz ,ΠzX
k〉 = λ|k|〈ϕ,Π0X

k〉 , ‖Γ̂hXk‖` = Ck,`|h||k|−` ,
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for some constants Ck,` and every ` ≤ |k|. Here, 〈·, ·〉 denotes again the usual
L2-scalar product.

These observations suggest the following definition of a “model” for T , where
we impose properties similar to the ones we just found for the polynomial model.
A model always requires the specification of an ambient space, together with a
possibly inhomogeneous scaling. For definiteness, we will fix our ambient space to
be Rd+1 endowed with the parabolic scaling as above. We also denote by S ′ the
space of all distributions (the letter D is reserved for a different usage below). We
also denote by L(E,F ) the set of all continuous linear maps between the topological
vector spaces E and F .

Definition 4.2. Given a regularity structure T , a model for T consists of maps

Rd+1 3 z 7→ Πz ∈ L(T,S ′) , Rd+1 ×Rd+1 3 (z, z′) 7→ Γzz′ ∈ G ,

satisfying the algebraic compatibility conditions

ΠzΓzz′ = Πz′ , Γzz′ ◦ Γz′z′′ = Γzz′′ , (16)

as well as the analytical bounds

|〈Πzτ, ϕ
λ
z 〉| . λα‖τ‖ , ‖Γzz′τ‖β . |z − z′|α−β‖τ‖ . (17)

Here, the bounds are imposed uniformly over all τ ∈ Tα, all β < α ∈ A, and all
test functions ϕ ∈ Br with r = inf A, and locally uniformly in z and z′.

Remark 4.3. These definitions suggest a natural topology for the space M of
all models for a given regularity structure, generated by the following family of
pseudo-metrics indexed by compact sets K:

sup
z∈K

(
sup

ϕ,λ,α,τ
λ−α|〈Πzτ−Π̄zτ, ϕ

λ
z 〉|+ sup

|z−z′|≤1
sup
α,β,τ

|z−z′|β−α‖Γzz′τ−Γ̄zz′τ‖β
)
. (18)

Here the inner suprema run over the same sets as before, but with ‖τ‖ = 1.

4.2. Hölder classes. It is clear from the above discussion that if T is the
polynomial structure, Π is defined as in (25), and Γzz′ = Γ̂z′−z with Γ̂h as in (14),
then (Π,Γ) is a model for T in the sense of Definition 4.2. Given an arbitrary
regularity structure T and an arbitrary model (Π,Γ), it is now natural to define
the corresponding “Hölder spaces” as spaces of distributions that can locally (near
any space-time point z) be approximated by Πzτ for some τ ∈ T . This would be
the analogue to the statement that a smooth function is one that can locally be
approximated by a polynomial.

There is however one major difference with the case of smooth functions. It is of
course the case that if f is smooth, then the coefficients of the Taylor expansion of
f at any point are uniquely determined by the behaviour of f in the vicinity of that
point. This is in general not the case anymore in the context of the framework
we just described. To appreciate this fact, consider the following example. Fix
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α ∈ (0, 1) and m ∈ N, and take for T the regularity structure where A = {0, α},
T0 ∼= R with basis vector 1, Tα ∼= Rm with basis vectors (ei)i≤m, and structure

group G ∼= Rm acting on T via Γ̂hei = ei − hi1. Let then W be an Rm-valued
α-Hölder continuous function defined on the ambient space and set

Πz1 = 1 ,
(
Πzei

)
(z′) = Wi(z

′)−Wi(z) , Γzz′ = Γ̂W (z)−W (z′) .

Again, it is straightforward to verify that this does indeed define a model for T .
In fact, setting m = 1 and W = η, this is precisely the structure one would use to
formalise the expansion (12).

Let now F : Rm → R be a smooth function and consider the function f on the
ambient space given by f(z) = F (W (z)). For any z, we furthermore set

T 3 f̂(z) = F (W (z)) 1 +

m∑
i=1

(∂iF )(W (z)) ei .

It then follows immediately from the usual Taylor expansion of F and the definition
of the model (Π,Γ) that one has the bound∣∣f(z′)−

(
Πz f̂(z)

)
(z′)
∣∣ . |z − z′|2α , (19)

so that in this context and with respect to this specific model, the function f
behaves as if it were of class C2α with “Taylor series” given by f̂ . In the case where
the underlying space is one-dimensional, this is precisely the insight exploited in
the theory of rough paths [35, 36, 16] in order to develop a pathwise approach to
stochastic calculus. More specifically, the perspective given here (i.e. controlling
functions via analogues to Taylor expansion) is that of the theory of controlled
rough paths developed in [18].

It is now very natural to ask whether, just like in the case of smooth functions,
a bound of the type (19) is sufficient to uniquely specify f̂(z) for every point z.
Unfortunately, the answer to this question is that “it depends”. The reason is
that while (17) imposes an upper bound on the behaviour of Πz in the vicinity
of z, it does not impose any corresponding lower bound. For example, W ≡ 0
is an α-Hölder continuous function that we could have used to build our model.
In that case, the value of the ei-component in f̂ is completely irrelevant for (19),
so that uniqueness of the “Taylor series” fails. Suppose on the other hand that
the underlying space is one-dimensional, that α ∈ ( 1

4 ,
1
2 ), and that W is a typical

sample path of a Brownian trajectory. In this case it was shown in [27, Thm 3.4]
that a bound of the type (19) is indeed sufficient to uniquely determine all the

coefficients of f̂ (at least for almost all Brownian trajectories).

Remark 4.4. The fact that f̂ is uniquely determined by f in the Brownian case
can be interpreted as an analogue to the fact that the Doob-Meyer decomposition
of a semimartingale is unique. Since the statement given in [27] is quantitative, it
can be interpreted as a deterministic analogue to Norris’s lemma, of which various
incarnations can be found in [6, 33, 38].
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Consider now a sequence W ε of smooth (random) functions so that W ε con-
verges to Brownian motion in Cα as ε→ 0. For definiteness, take for Wε piecewise
linear interpolations on a grid of size ε. Then, if we know a priori that we have a
bound of the type (19) with a proportionality constant of order 1, this determines

the coefficients of f̂ “almost uniquely” up to an error of order about ε2α−
1
2 .

What this discussion suggests is that we should really reverse our point of view
from what we are used to: instead of fixing a function and asking whether it has
a certain Hölder regularity by checking whether it is possible to find a “Taylor
expansion” at each point satisfying a bound of the type (19), we should take the
candidate expansion as our fundamental object and ask under which condition it
does indeed approximate one single function / distribution around each point at
the prescribed order. More precisely, fix some γ > 0 (the order of our “Taylor
expansion”) and consider a function f : Rd+1 → T<γ . Under which assumptions
can we find a distribution ζ such that ζ “looks like” the distribution Πzf(z) (in a
suitable sense) near every point z? We claim that the “right” answer is given by
the following definition.

Definition 4.5. Given a regularity structure T and a model (Π,Γ) as above, we
define Dγ as the space of functions f : Rd+1 → T<γ such that the bound

‖f(z)− Γzz′f(z′)‖α . |z − z′|γ−α . (20)

holds for every α < γ, locally uniformly in z and z′.

Remark 4.6. This definition makes sense and is non-empty even for negative γ,
as long as γ > inf A.

Remark 4.7. The notation Dγ is really an abuse of notation, since even for a
given regularity structure there isn’t one single space Dγ , but a whole collection of
them, one for each model (Π,Γ) ∈M . More formally, one should really consider
the space M nDγ consisting of pairs ((Π,Γ), f) such that f belongs to the space
Dγ based on the model (Π,Γ). The space M n Dγ also comes with a natural
topology.

In the case where T is the polynomial regularity structure and (Π,Γ) are the
usual Taylor polynomials as above, one can see that this definition coincides with
the usual definition of Cγ (except at integer values where D1 describes Lipschitz
continuous functions, etc). In this case, the component f0(z) = 〈1, f(z)〉 of f(z) in
T0 (here we write 〈1, ·〉 for the basis element of T ∗ dual to 1) is the only reasonable
candidate for the function represented by f . Furthermore, 〈1,Γzz′f(z′)〉 is nothing
but the candidate Taylor expansion of f around z′, evaluated at z. The bound
(20) with α = 0 is then just a statement of the fact that f0 is of class Cγ and that
f(z) is its Taylor series of order γ at z. The corresponding bounds for α > 0 then
follow immediately, since they merely state that the αth derivative of f0 is of class
Cγ−α.

4.3. The reconstruction operator. The situation is much less straight-
forward when the model space T contains components of negative homogeneity. In
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this case, the bounds (17) allow the model Πz to consist of genuine distributions
and we do not anymore have an obvious candidate for the distribution represented
by f . The following result shows that such a distribution nevertheless always exists
and is unique as soon as γ > 0. This also provides an a posteriori justification for
our definition of the spaces Dγ .

Theorem 4.8. Consider a regularity structure T = (A, T,G) and fix γ > r =
inf A. Then, there exists a continuous map R : M nDγ → S ′ (the “reconstruction
map”) with the property that∣∣(R(Π,Γ, f)−Πzf(z)

)
(ϕλz )

∣∣ . λγ , (21)

uniformly over λ ∈ (0, 1] and ϕ ∈ Br, and locally uniformly over z ∈ Rd+1.
Furthermore, for any given model (Π,Γ), the map f 7→ R(Π,Γ, f) is linear. If
γ > 0, the map R is uniquely specified by the requirement (21).

Remark 4.9. In the sequel, we will always consider (Π,Γ) as fixed and view R as
a linear map, writing Rf instead of R(Π,Γ, f). The above notation does however
make it plain that the full map R is not a linear map.

Remark 4.10. An important special case is given by situations where Πzτ hap-
pens to be a continuous function for every τ ∈ T and every z. Then, it turns out
that Rf is also a continuous function and one simply has(

Rf
)
(z) =

(
Πzf(z)

)
(z) . (22)

In the general case, this formula makes of course no sense since Πzf(z) is a distri-
bution and cannot be evaluated at z.

Remark 4.11. We made a slight abuse of notation here since there is really a
family of operators Rγ , one for each regularity. However, this abuse is justified
by the following consistency relation. Given f ∈ Dγ and γ̃ < γ, one can always
construct f̃ by projecting f(z) onto T<γ̃ for every z. It turns out that one then

necessarily has f̃ ∈ Dγ̃ and Rf̃ = Rf , provided that γ̃ > 0. This is also consistent
with (22) since, if Πzτ is a continuous function and the homogeneity of τ is strictly
positive, then

(
Πzτ

)
(z) = 0.

We refer to [23, Thm 3.10] for a full proof of Theorem 4.8 and to [22] for a
simplified proof that only gives continuity in each “fiber” Dγ . The main idea is
to use a basis of compactly supported wavelets to construct approximations Rn in
such a way that our definitions can be exploited in a natural way to compare Rn+1

with Rn and show that the sequence of approximations is Cauchy in a suitable
space of distributions Cα. In the most important case when γ > 0, it turns out
that while the existence of a map R with the required properties is highly non-
trivial, its uniqueness is actually quite easy to see. If γ ≤ 0 on the other hand, it
is clear that R cannot be uniquely determined by (21), since this bound remains
unchanged if we add to R any distribution in Cγ . The existence of R in the case
γ < 0 is however still a non-trivial result since in general one has Rf 6∈ Cγ !
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5. Regularity structures for SPDEs

We now return to the problem of providing a robust well-posedness theory for
stochastic PDEs of the type (2), (4), (3), or even just (11). Our aim is to build
a suitable regularity structure for which we can reformulate our SPDE as a fixed
point problem in Dγ for a suitable value of γ.

Remark 5.1. Actually, it turns out that since we are interested in Cauchy prob-
lems, there will always be some singularity at t = 0. This introduces additional
technical complications which we do not wish to dwell upon.

5.1. General construction of the model space. Our first task is
to construct the model space T . Since we certainly want to be able to represent
arbitrary smooth functions (for example in order to be able to take into account
the contribution of the initial condition), we want T to contain the space T̄ of
abstract polynomials in d+ 1 indeterminates endowed with the parabolic grading
described in Section 4.1. Since the noise ξ cannot be adequately represented by
polynomials, we furthermore add a basis vector Ξ to T , which we postulate to have
some homogeneity α < 0 such that ξ ∈ Cα. In the case of space-time white noise,
we would choose α = −d2 − 1− κ for some (typically very small) exponent κ > 0.

At this stage, the discussion following (12) suggests that if our structure T
contains a basis vector τ of homogeneity β representing some distribution η in-
volved in the description of the right hand side of our equation, then it should
also contain a basis vector of homogeneity β+ 2 (the “2” here comes from the fact
that convolution with the heat kernel yields a gain of 2 in regularity) representing
the distribution K ? η involved in the description of the solution to the equation.
Let us denote this new basis vector by I(τ), where I stands for “integration”. In
the special case where τ ∈ T̄ , so that it represents an actual polynomial, we do
not need any new symbol since K convolved with a polynomial yields a smooth
function. One way of formalising this is to simply postulate that I(Xk) = 0 for
every multiindex k.

Remark 5.2. For consistency, we will also always assume that
∫
K(z)Q(z) dz = 0

for all polynomials Q of some fixed, but sufficiently high, degree. Since K is an
essentially arbitrary truncation of the heat kernel, we can do this without loss of
generality.

If the right hand side of our equation involves the spatial derivatives of the
solution, then, for each basis vector τ of homogeneity β representing some distri-
bution η appearing in the description of the solution, we should also have a basis
vector Diτ of homogeneity β−1 representing ∂iη and appearing in the description
of the derivative of the solution in the direction xi.

Finally, if the right hand side of our equation involves a product between two
terms F and F̄ , and if basis vectors τ and τ̄ respectively are involved in their
description, then we should also have a basis vector τ τ̄ which would be involved
in the description of the product. If τ and τ̄ represent the distributions η and
η̄ respectively, then this new basis vector represents the distribution ηη̄, what-
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ever this actually means. Regarding its homogeneity, by analogy with the case of
polynomials, it is natural to impose that the homogeneity of τ τ̄ is the sum of the
homogeneities of its two factors.

This suggests that we should build T by taking as its basis vectors some formal
expressions built from the symbols X and Ξ, together with the operations I(·), Di,
and multiplication. Furthermore, the natural way of computing the homogeneity
of a formal expression in view of the above is to associate homogeneity 2 to X0, 1 to
Xi for i 6= 0, α to Ξ, 2 to I(·), and −1 to Di, and to simply add the homogeneities
of all symbols appearing in any given expression. Denote by F the collection of
all formal expressions that can be constructed in this way and denote by |τ | the
homogeneity of τ ∈ F , so we have for example∣∣XiΞ

∣∣ = α+ 1 ,
∣∣I(Ξ)2I(XiDjI(Ξ))

∣∣ = 3α+ 8 , etc.

We note however that if we simply took for T the space of linear combinations of
all elements in F then, since α < 0, there would be basis vectors of arbitrarily
negative homogeneity, which would go against Definition 4.1. What saves us is
that most formal expressions are not needed in order to formulate our equations
as fixed point problems. For example, the expression Ξ2 is useless since we would
never try to square the driving noise. Similarly, if we consider (4a), then I(Ξ) is
needed for the description of the solution, which implies that I(Ξ)2 and I(Ξ)3 are
needed to describe the right hand side, but we do not need I(Ξ)4 for example.

5.2. Specific model spaces. This suggests that we should take T as the
linear combinations of only those formal expressions τ ∈ F that are actually ex-
pected to appear in the description of the solution to our equation or its right
hand side. Instead of trying to formulate a general construction (see [23, Sec. 8.1]
for such an attempt), let us illustrate this by a few examples. We first focus on
the case of the KPZ equation (3) and we construct subsets U and V of F that
are used in the description of the solution and the right hand side of the equation
respectively. These are defined as the smallest subsets of F with the following
properties:

T ⊂ U ∩ V , {I(τ) : τ ∈ V \ T } ⊂ U , {Ξ} ∪ {Dτ1 ·Dτ2 : τi ∈ U} ⊂ V . (23)

where we used the notation T = {Xk} with k running over all multiindices, so
that the space of Taylor polynomials T̄ is the linear span of T . We then define
T as the space of all linear combinations of elements of U ∪ V. We also denote
by TU the subspace of T spanned by U . This construction is such that if we have
any function H : Rd+1 → TU , then we can define in a natural way a function Ξ−
(DH)2 : Rd+1 → T by the last property. Furthermore, by the second property, one
has again I(Ξ− (DH)2) : Rd+1 → TU , which suggests that T is indeed sufficiently
rich to formulate a fixed point problem mimicking the mild formulation of (3).
Furthermore, one has

Lemma 5.3. If U and V are the smallest subsets of F satisfying (23) and one has
|Ξ| > −2 then, for every γ > 0, the set {τ ∈ U ∪ V : |τ | < γ} is finite.
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The condition α > −2 corresponds to the restriction d < 2, which makes sense
since 2 is the critical dimension for the KPZ equation [32]. The other example we
would like to consider is the class of SPDEs (11). In this case, the right hand side
is not polynomial. However, we can apply the same methodology as above as if
the nonlinear functions f and g were simply polynomials of arbitrary degree. We
thus impose T ⊂ U ∩V and {I(τ) : τ ∈ V \T } as before, and then further impose
that {

Ξ

m∏
i=1

τi : m ≥ 1 & τi ∈ U
}
∪
{ m∏
i=1

τi : m ≥ 1 & τi ∈ U
}
⊂ V .

Again, we have U ⊂ V and we define T as before. Furthermore, it is straightforward
to verify that the analogue to Lemma 5.3 holds, provided that |Ξ| > −2.

5.3. Construction of the structure group. Now that we have some
idea on how to construct T for the problems that are of interest to us (with a
slightly different construction for each class of models but a clear common thread),
we would like to build a corresponding structure group G. In order to give a
motivation for the definition of G, it is very instructive to simultaneously think
about the structure of the corresponding models. Let us first consider some smooth
driving noise, which we call ξε to distinguish it from the limiting noise ξ. At this
stage however, this should be thought of as simply a fixed smooth function. In view
of the discussion of Section 5.1, for each of the model spaces built in Section 5.2,
we can associate to ξε a linear map Π : T → C∞(Rd+1) in the following way. We
set (

ΠXi

)
(z) = zi ,

(
ΠΞ
)
(z) = ξε(z) , (24a)

and we then define Π recursively by

ΠI(τ) = K ?Πτ , ΠDiτ = ∂iΠτ , Π(τ τ̄) =
(
Πτ
)
·
(
Πτ̄
)
, (24b)

where · simply denotes the pointwise product between smooth functions. At this
stage, it is however not clear how one would build an actual model in the sense of
Definition 4.2 associated to ξε. It is natural that one would set(

ΠzXi

)
(z′) = z′i − zi ,

(
ΠzΞ

)
(z′) = ξε(z

′) , (25a)

and then

ΠzDiτ = ∂iΠzτ , Πz(τ τ̄) =
(
Πzτ

)
·
(
Πz τ̄

)
. (25b)

It is less clear a priori how to define ΠzI(τ). The problem is that if we simply set
ΠzI(τ) = K ? Πzτ , then the bound (17) would typically no longer be compatible
with the requirement that |I(τ)| = |τ |+ 2. One way to circumvent this problem is
to simply subtract the Taylor expansion of K ? Πzτ around z up to the required
order. We therefore set

(
ΠzI(τ)

)
(z′) =

(
K ?Πzτ

)
(z′)−

∑
|k|<|τ |+2

(z′ − z)k

k!

(
D(k)K ?Πzτ

)
(z) . (25c)
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It can easily be verified (simply proceed recursively) that if we define Πz in this
way and Π as in (24) then, for every z, one can find a linear map Fz : T → T
such that Πz = ΠFz. In particular, one has Πz′ = ΠzF

−1
z Fz′ . Furthermore, Fz

is “upper triangular” with the identity on the diagonal in the sense of (13). It is
also easily seen by induction that the matrix elements of Fz are all given by some
polynomials in z and in the quantities

(
D(k)K ?Πzτ

)
(z).

This suggests that we should take for G the set of all linear maps that can
appear in this fashion. It is however not clear in principle how to describe G more
explicitly and it is also not clear that it even forms a group. In order to describe G,
it is natural to introduce a space T+ which is given by all possible polynomials in
d+1 commuting variables {Zi}di=0 as well as countably many additional commuting
variables {Jk(τ) : τ ∈ (U ∪ V) \ T & |k| < |τ | + 2}. One should think of Zi as
representing zi and Jk(τ) as representing

(
D(k)K ? Πzτ

)
(z), so that the matrix

elements of Fz are represented by elements of T+. There are no relations between
these coefficients, which suggests that elements of G are described by an arbitrary
morphism f : T+ → R, i.e. an arbitrary linear map which furthermore satisfies
f(σσ̄) = f(σ) f(σ̄), so that it is uniquely determined by f(Zi) and f(Jk(τ)).

Given any linear map ∆: T → T ⊗ T+ and a morphism f as above, one can
then define a linear map Γ̂f : T → T by

Γ̂fτ =
(
I ⊗ f

)
∆τ .

(Here we identify T with T ⊗R in the obvious way.) The discussion given above
then suggests that it is possible to construct ∆ in such a way that if we define fz
by

fz(Zi) = zi , fz(Jk(τ)) =
(
D(k)K ?Πzτ

)
(z) , (26)

then one has Γ̂fz = Fz. The precise definition of ∆ is irrelevant for our discussion,
but a recursive description of it can easily be recovered simply by comparing (25)
to (24). In particular, it is possible to show that ∆τ is of the form

∆τ = τ ⊗ 1 +
∑
i

cτi τi ⊗ σi , (27)

for some expressions τi ∈ T with |τi| < |τ | and for some non-empty monomials
σi ∈ T+ such that |σi|+ |τ |i = |τ |. Here, we associate a homogeneity to elements
in T+ by setting |Z0| = 2, |Zi| = 1 for i 6= 0, and |Jk(τ)| = |τ |+ 2− |k|.

In particular, we see that if we let e : T+ → R be the trivial morphism for
which e(Zi) = e(Jk(τ)) = 0, so that one only has e(1) = 1 where 1 is the empty
product, then Γ̂eτ = τ . The important fact for our purpose is the following, a
proof of which can be found in [23, Sec. 8]. Here, we denote byM : T+⊗T+ → T+
the multiplication operator M(σ ⊗ σ̄) = σσ̄ and by I the identity.

Theorem 5.4. There exists a map ∆+ : T+ → T+ ⊗ T+ such that the following
identities hold:

∆+(σσ̄) =
(
∆+σ

)
·
(
∆+σ̄

)
, (∆⊗ I)∆ = (I ⊗∆+)∆ ,

(e⊗ I)∆+ = (I ⊗ e)∆+ = I , (∆+ ⊗ I)∆+ = (I ⊗∆+)∆+ .
(28)
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Furthermore, there exists a map A : T+ → T+ which is multiplicative in the sense
that A(σσ̄) = (Aσ)·(Aσ̄), and which is such thatM(I⊗A)∆+ =M(A⊗I)∆+ = e,
with e : T+ → R as above.

Remark 5.5. In technical lingo, this lemma states that (T+, ·,∆+) is a Hopf
algebra with antipode A, and that T is a comodule over T+.

The importance of this result is that it shows that G is indeed a group. For
any two morphisms f and g, we can define a linear map f ◦ g : T+ → R by(
f ◦ g

)
(σ) =

(
f ⊗ g

)
∆+σ. As a consequence of the first identity in (28), f ◦ g

is again a morphism on T+. As a consequence of the second identity, one has
Γ̂f◦g = Γf Γg. The last identity shows that (f1 ◦ f2) ◦ f3 = f1 ◦ (f2 ◦ f3), while the
properties of A ensure that if we set f−1(σ) = f(Aσ), then f ◦ f−1 = f−1 ◦ f = e.
Finally, the third identity in (28) shows that e is indeed the identity element, thus
turning the set of all morphisms of T+ into a group under ◦, acting on T via Γ̂.

Let us now turn back to our models. Given a smooth function ξε, we define Πz

as in (25) and fz by (26). We then also define linear maps Γzz′ by Γzz′ = Γ̂γzz′
with γzz′ = f−1z ◦ fz′ . We then have

Lemma 5.6. For every smooth function ξε, the pair (Π,Γ) defined above is a
model.

Proof. The algebraic constraints (16) are satisfied essentially by definition. The
first bound of (17) can easily be verified recursively by (25). The only non-trivial
fact is that the matrix elements of Γzz′ satisfy the right bound. If one can show
that |γzz′(σ)| . |z− z′||σ|, this in turn follows from (27). This bound is non-trivial
and was obtained in [23, Prop. 8.27].

5.4. Admissible models. Thanks to Lemma 5.6, we now have a large class
of models for the regularity structures built in the previous two subsections. How-
ever, we do not want to restrict ourselves to this class (or even its closure). The
reason is that if we define products in the “näıve” way given by the second identity
in (25b), then there will typically be some situations where the result diverges as
we let ε→ 0 in ξε. Therefore, we do not impose this relation in general but rather
view it as the definition of the product, i.e. we interpret it as(

Πzτ
)
·
(
Πz τ̄

)
:= Πz(τ τ̄) .

However, the remainder of the structure described in (25) is required for Xi, Di

and I to have the correct interpretation. This motivates the following definition.

Definition 5.7. Given a regularity structure T constructed as in Sections 5.2 and
5.3, we say that a model (Π,Γ) is admissible if it satisfies

(
ΠzXi

)
(z′) = z′i − zi,

ΠzDiτ = ∂iΠzτ , as well as (25c) and if furthermore Γzz′ = Γ̂−1fz Γ̂fz′ with fz given
by (26). We will denote the space of all admissible models by M0 ⊂M .

Remark 5.8. In the particular case of admissible models for a regularity structure
of the type considered here, the data of the single linear map Π as above is sufficient
to reconstruct the full model (Π,Γ).
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Note that at this stage, it is not clear whether this concept is even well-defined:
in general, D(k)K ? Πzτ will be a distribution and cannot be evaluated at fixed
points, so (26) might be meaningless for a general model. It turns out that the
definition actually always makes sense, provided that the second identity in (26)
is interpreted as

fz(Jk(τ)) =
∑
n≥0

(
D(k)Kn ?Πzτ

)
(z) ,

where K =
∑
n≥0Kn as in (6). This is because the bound (6), combined with the

bound (17) and the fact that Kn is supported in the ball of radius 2−n imply that∣∣(D(k)Kn ?Πzτ
)
(z)
∣∣ . 2(|k|−|τ |−2)n .

The condition |k| < |τ |+ 2 appearing in (25c) is then precisely what is required to
guarantee that this is always summable.

5.5. Abstract fixed point problem. We now show how to reformulate a
stochastic PDE as a fixed point problem in some space Dγ based on an admissible
model for the regularity structure associated to the SPDE by the construction of
Section 5.2. For definiteness, we focus on the example of the KPZ equation (3),
but all other examples mentioned in the introduction can be treated in virtually
the same way. Writing P for the heat kernel, the mild formulation of (3) is given
by

h = P ? 1t>0

(
(∂xh)2 + ξ

)
+ Ph0 , (29)

where we write Ph0 for the harmonic extension of h0. (This is just the solution to
the heat equation with initial condition h0.) In order to formulate this as a fixed
point problem in Dγ for a suitable value of γ > 0, we will make use of the following
far-reaching extension of Schauder’s theorem.

Theorem 5.9. Fix one of the regularity structures built in the previous section
and fix an admissible model. Then, for all but a discrete set of values of γ > 0,
there exists a continuous operator P : Dγ → Dγ+2 such that the identity

RPf = P ?Rf , (30)

holds for every f ∈ Dγ . Furthermore, one has
(
Pf
)
(z)− If(z) ∈ T̄ .

Remark 5.10. Recall that T̄ ⊂ T denotes the linear span of the Xk, which
represent the usual Taylor polynomials. Again, while P is a linear map when we
consider the underlying model as fixed, it can (and should) also be viewed as a
continuous nonlinear map from M0 nDγ into M0 nDγ+2. The reason why some
values of γ need to be excluded is essentially the same as for the usual Schauder
theorem.

For a proof of Theorem 5.9 and a precise description of the operator P, see [23,
Sec. 5]. With the help of the operator P, it is then possible to reformulate (29)
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as the following fixed point problem in Dγ , provided that we have an admissible
model at our disposal:

H = P1t>0

(
(DH)2 + Ξ

)
+ Ph0 . (31)

Here, the smooth function Ph0 is interpreted as an element in Dγ with values in
T̄ via its Taylor expansion of order γ. Note that in the context of the regularity
structure associated to the KPZ equation in Section 5.2, the right hand side of this
equation makes sense for every H ∈ Dγ , provided that H takes values in TU . This
is an immediate consequence of the property (23).

Remark 5.11. As already mentioned earlier, we cheat here in the sense that Dγ
should really be replaced by a space Dγ,η allowing for a suitable singular behaviour
on the hyperplane t = 0.

It is also possible to show (see [23, Thm 4.7]) that if we set |Ξ| = − 3
2 − κ

for some sufficiently small κ > 0, then one has (DH)2 ∈ Dγ− 3
2−κ for H ∈ Dγ .

As a consequence, we expect to be able to find local solutions to the fixed point
problem (31), provided that we formulate it in Dγ for γ > 3

2 + κ. This is indeed
the case, and a more general instance of this fact can be found in [23, Thm 7.8].
Furthermore, the local solution is locally Lipschitz continuous as a function of both
the initial condition h0 and the underlying admissible model (Π,Γ) ∈M0.

Now that we have a local solution H ∈ Dγ for (31), we would like to know
how this solution relates to the original problem (3). This is given by the following
simple fact:

Proposition 5.12. If the underlying model (Π,Γ) is built from a smooth function
ξε as in (25) and if H solves (31), then RH solves (29).

Proof. As a consequence of (30), we see that RH solves

RH = P ? 1t>0

(
R
(
(DH)2

)
+ ξε

)
+ Ph0 .

Combining (25b) with (22), it is not difficult to see that in this particular case,
one has R

(
(DH)2

)
= (∂xRH)2, so that the claim follows.

The results of the previous subsection yield a robust solution theory for (31)
which projects down (via R) to the usual solution theory for (3) for smooth driving
noise ξε. If it were the case that the sequence of models (Π(ε),Γ(ε)) associated to the
regularised noise ξε via (25) converges to a limit in M0, then this would essentially
conclude our analysis of (3).

Unfortunately, this is not the case. Indeed, in all of the examples mentioned
in the introduction except for (2), the sequence of models (Π(ε),Γ(ε)) does not
converge as ε → 0. In order to remedy to this situation, the idea is to look for a
sequence of “renormalised” models (Π̂(ε), Γ̂(ε)) which are also admissible and also

satisfy Π̂
(ε)
z Ξ = ξε, but do converge to a limit as ε → 0. The last section of this

article shows how these renormalised models can be constructed.
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5.6. Renormalisation. In order to renormalise our model, we will build a
very natural group of continuous transformations of M0 that build a new admis-
sible model from an old one. The renormalised model will then be the image of
the “canonical” model (Π(ε),Γ(ε)) under a (diverging) sequence of such transfor-
mations. Since we want the new model to also be admissible, the only defining
property that we are allowed to modify in (25) is the definition of the product. In
order to describe the renormalised model, it turns out to be more convenient to

consider again its representation by a single linear map Π̂
(ε)

: T → S ′ as in (5.3),
which is something we can do by Remark 5.8.

At this stage, we do not appear to have much choice: the only “reasonable”

way of building Π̂
(ε)

from Π(ε) is to compose it to the right with some fixed linear
map Mε : T → T :

Π̂
(ε)

= Π(ε)Mε . (32)

If we do this for an arbitrary map Mε, we will of course immediately lose the
algebraic and analytical properties that allow to associate an admissible model

(Π̂(ε), Γ̂(ε)) to the map Π̂
(ε)

. As a matter of fact, it is completely unclear a priori
whether there exists any non-trivial map Mε that preserves these properties. For-
tunately, these maps do exists and a somewhat indirect characterisation of them
can be found in [23, Sec. 8]. Even better, there are sufficiently many of them so

that the divergencies of Π(ε) can be compensated by a judicious choice of Mε.
Let us just illustrate how this plays out in the case of the KPZ equation already

studied in the last subsection. In order to simplify notations, we now use the
following shorthand graphical notation for elements of U ∪ V. For Ξ, we draw a
small circle. The integration map I is then represented by a downfacing wavy line
and DI is represented by a downfacing plain line. The multiplication of symbols
is obtained by joining them at the root. For example, we have

(DI(Ξ))2 = , (DI(DI(Ξ)2))2 = , I(DI(Ξ)2) = .

In the case of the KPZ equation, it turns out that one can exhibit an explicit four-
parameter group of matrices M which preserve admissible models when used in
(32). These matrices are of the form M = exp(−

∑3
i=0 CiLi), where the generators

Li are determined by the following contraction rules:

L0 : 7→ 1 , L1 : 7→ 1 , L2 : 7→ 1 L3 : 7→ 1 . (33)

This should be understood in the sense that if τ is an arbitrary formal expression,
then L0τ is the sum of all formal expressions obtained from τ by performing a
substitution of the type 7→ 1. For example, one has L0 = 2 , L0 = 2 + ,
etc. The extension of the other operators Li to all of T is given by Liτ = 0 for
i 6= 0 and every τ for which Li wasn’t already defined in (33). We then have the
following result, which is a consequence of [23, Sec. 8] and [28] and was implicit in
[21]:

Theorem 5.13. Let Mε be given as above, let Π(ε) be constructed from ξε as

in (24), and let Π̂
(ε)

= Π(ε)Mε. Then, there exists a unique admissible model
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(Π̂(ε), Γ̂(ε)) such that Π̂
(ε)
z = Π̂

(ε)
F̂

(ε)
z , where F̂

(ε)
z relates to Π̂

(ε)
z as in (26). Fur-

thermore, one has the identity(
Π̂(ε)
z τ

)
(z) =

(
Π(ε)
z Mετ

)
(z) . (34)

Finally, there is a choice of Mε such that (Π̂(ε), Γ̂(ε)) converges to a limit (Π̂, Γ̂)
which is universal in that it does not depend on the details of the regularisation
procedure.

Remark 5.14. Despite (34), it is not true in general that Π̂
(ε)
z = Π

(ε)
z Mε. The

point is that (34) only holds at the point z and not at z′ 6= z.

In order to complete our survey of Theorem 1.1, it remains to identify the solu-
tion to (31) with respect to the renormalised model (Π̂(ε), Γ̂(ε)) with the classical
solution to some modified partial differential equation. The continuity of the ab-
stract solution map then immediately implies that the solutions to the modified
PDE converge to a limit. The fact that the limiting model (Π̂, Γ̂) is universal also
implies that this limit is universal.

Theorem 5.15. Let Mε = exp(−
∑3
i=0 C

(ε)
i Li) be as above and let (Π̂(ε), Γ̂(ε))

be the corresponding renormalised model. Let furthermore H be the solution to
(31) with respect to this model. Then, the function h(t, x) =

(
RH

)
(t, x) solves the

equation

∂th = ∂2xh+ (∂xh)2 − 4C
(ε)
0 ∂xh+ ξε − (C

(ε)
1 + C

(ε)
2 + 4C

(ε)
3 ) . (35)

Remark 5.16. In order to obtain a limit (Π̂, Γ̂), the renormalisation constants

C
(ε)
i should be chosen in the following way:

C
(ε)
0 = 0 , C

(ε)
1 =

c1
ε
, C

(ε)
2 = 4c2 log ε+ c3 , C

(ε)
3 = −c2 log ε+ c4 .

Here, the ci are constants of order 1 that depend on the details of the regularisation

procedure for ξε. The fact that C
(ε)
0 = 0 explains why the corresponding term does

not appear in (3). The fact that the diverging parts of C
(ε)
2 and C

(ε)
3 cancel in (35)

explains why this logarithmic sub-divergence was not observed in [4] for example.

Proof. We first note that, as a consequence of Theorem 5.9 and of (31), one can
write for t > 0

H = I
(
(DH)2 + Ξ

)
+ (...) , (36)

where (...) denotes some terms belonging to T̄ ⊂ T .

By repeatedly using this identity, we conclude that any solution H ∈ Dγ to
(31) for γ greater than (but close enough to) 3/2 is necessarily of the form

H = h1 + + + h′X1 + 2 + 2h′ , (37)
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for some real-valued functions h and h′. Note that h′ is treated as an independent
function here, we certainly do not mean to suggest that the function h is differen-
tiable! Our notation is only by analogy with the classical Taylor expansion. As an
immediate consequence, DH is given by

DH = + + h′ 1 + 2 + 2h′ , (38)

as an element of Dγ for γ close to 1/2. The right hand side of the equation is then
given up to order 0 by

(DH)2 + Ξ = Ξ + + 2 + 2h′ + + 4 + 2h′ + 4h′ + (h′)2 1 . (39)

Using the definition of Mε, we conclude that

MεDH = DH − 4C
(ε)
0 ,

so that, as an element of Dγ with very small (but positive) γ, one has the identity

(MεDH)2 = (DH)2 − 8C
(ε)
0 .

As a consequence, after neglecting again all terms of strictly positive homogeneity,
one has the identity

Mε

(
(DH)2 + Ξ

)
= (MεDH)2 + Ξ− 4C

(ε)
0 MεDH − (C

(ε)
1 + C

(ε)
2 + 4C

(ε)
3 ) .

Combining this with (34) and (22), we conclude that

R
(
(DH)2 + Ξ

)
= (∂xRH)2 + ξε − 4C

(ε)
0 ∂xRH − (C

(ε)
1 + C

(ε)
2 + 4C

(ε)
3 ) ,

from which the claim then follows in the same way as for Proposition 5.12.

Remark 5.17. Ultimately, the reason why the theory mentioned in Section 1.1
(or indeed the theory of controlled rough paths, as originally exploited in [21]) can
also be applied in this case is that in (37), only one basis vector besides those in
T (i.e. besides 1 and X1) comes with a non-constant coefficient, namely the basis
vector . The methodology explained in Section 3.1 on the other hand can be
applied whenever no basis vector besides those in T comes with a non-constant
coefficient.
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