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Abstract
There are many Markov chains on infinite dimensional spaces whose one-step transition kernels are mutu-
ally singular when starting from different initial conditions. We give results which prove unique ergodicity
under minimal assumptions on one hand and the existence of a spectral gap under conditions reminiscent
of Harris’ theorem.

The first uses the existence of couplings which draw the solutions together as time goes to infinity. Such
“asymptotic couplings” were central to [EMS01, Mat02b, Hai02, BM05] on which this work builds. As
in [BM05] the emphasis here is on stochastic differential delay equations.

Harris’ celebrated theorem states that if a Markov chain admits a Lyapunov function whose level sets
are “small” (in the sense that transition probabilities are uniformly bounded from below), then it admits
a unique invariant measure and transition probabilities converge towards it at exponential speed. This
convergence takes place in a total variation norm, weighted by the Lyapunov function.

A second aim of this article is to replace the notion of a “small set” by the much weaker notion of a
“d-small set,” which takes the topology of the underlying space into account via a distance-like function
d. With this notion at hand, we prove an analogue to Harris’ theorem, where the convergence takes place
in a Wasserstein-like distance weighted again by the Lyapunov function.

This abstract result is then applied to the framework of stochastic delay equations. In this framework,
the usual theory of Harris chains does not apply, since there are natural examples for which there exist
no small sets (except for sets consisting of only one point). This gives a solution to the long-standing
open problem of finding natural conditions under which a stochastic delay equation admits at most one
invariant measure and transition probabilities converge to it.

Keywords: Stochastic delay equation, invariant measure, Harris’ theorem, weak convergence, spectral
gap, asymptotic coupling.
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1 Introduction

There are many Markov chains on infinite dimensional spaces whose one-step transition kernels are
mutually singular when starting from different initial conditions. Many standard techniques used in
the study of Markov chains as exposed for example in [MT93] can not be applied to such a singular
setting. In this article, we provide two sets of results which can be applied to general Markov processes
even in such a singular setting. The first set of results gives minimal, verifiable conditions which are
equivalent to the existence of at most one invariant measure. The second set of results gives a general
form of Harris’ theorem which proves the existence of a spectral gap under the existence of a Lyapunov
function and a modified “small set” condition.

The study of the ergodic theory for stochastic partial differential equations (SPDEs) has been one of
the principal motivations to develop this theory. While even simple, formally elliptic, linear SPDEs can
have transition probabilities which are mutually singular, the bulk of recent work has been motivated
by equations driven by noise which is “degenerate” to varying degrees [EH01, BKL01, EMS01, KS02,
Mat02b, HM06, HM08a]. The current article focuses on stochastic delay differential equations (SD-
DEs) and makes use of the techniques developed in the SPDE context. That the SPDE techniques are
applicable to the SDDE setting is not surprising since [EMS01] reduced the original SPDE, the stochas-
tic Navier-Stokes equations, to an SDDE to prove unique ergodicity. In [BM05], the same ideas were
applied directly to SDDEs. There the emphasis was on additive noise, here we generalize the results to
the setting of state dependent noise. The works [EMS01, Mat02b, Hai02, BM05] all share the central
idea of using a shift in the driving Wiener process to force solutions starting at different initial conditions
together asymptotically as time goes to infinity. In [EMS01, Mat02b, BM05], the asymptotic coupling
was achieved by driving a subset of the degrees of freedom together in finite time. Typically these were
the dynamically unstable directions, which ensured the remaining degrees of freedom would converge
to each other asymptotically. In [Hai02, HM06] the unstable directions were only stabilized sufficiently
by shifting the driving Wiener processes to ensure that all of the degrees of freedom converged together
asymptotically. This broadens the domain of applicability and is the tact taken in Section 2 to prove a
very general theorem which gives verifiable conditions which are equivalent to unique ergodicity. In
particular, this result applies to the setting when the transition probabilities are mutually singular for
many initial conditions.

A simple, instructive example which motivates our discussion is the following SDDE:

dX(t) = −cX(t) dt+ g(X(t− r)) dW (t) , (1.1)

where r > 0, W is a standard Wiener process, c > 0, and g : R → R is a strictly positive, bounded
and strictly increasing function. This can be viewed as a Markov process {Xt}t≥0 on the space X =
C([−r, 0],R) which possesses an invariant measure for sufficiently large c. However, in this particular
case, given the solutionXt for any t > 0, the initial conditionX0 ∈ X can be recovered with probability
one, exploiting the law of the iterated logarithm for Brownian motion (see [Sch05], Section 2). Thus, if
the initial conditions in C([−r, 0],R) do not agree, then the transition probabilities for any step of this
chain are always mutually singular. In particular, the corresponding Markov semigroup does not have
the strong Feller property and, even worse, the only “small sets” for this system are those consisting of
one single point. The results in Section 2 nevertheless apply and allow us to show that (1.1) can have at
most one invariant measure and that convergence toward it happens at exponential rate.

While the main application considered in this article is that of stochastic delay equations, the prin-
cipal theorems are also applicable to a large class of stochastic PDEs driven by degenerate noise. In
particular, Theorem 5.4 in [HM08c] yields a very large class of degenerate SPDEs (essentially semilin-
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ear SPDEs with polynomial nonlinearities driven by additive noise, satisfying a Hörmander condition)
for which it is possible to find a contracting distance d, see Section 5.3 below.

1.1 Overview of main results
We now summarise the two principal results of this article. The first is an abstract ergodic theorem
which is useful in a number of different settings and gives conditions equivalent to unique ergodicity.
The second result gives a general form of Harris’ theorem which ensures the existence of a spectral gap
if there exists an appropriate Lyapunov function.

1.1.1 Asymptotic coupling and unique ergodicity

Let X be a Polish space with metric d and let X∞ = XN0 be the associated space of one-sided infinite
sequences. Given a Markov transition kernel P on X, we will write P[∞] : X →M(X∞) as the prob-
ability kernel defined by stepping with the Markov kernel P . HereM(X∞) is the space of probability
measures on X∞. If µ is a probability measure on X, then we write P[∞]µ for the measure inM(X∞)
defined by

∫
X P[∞](x, · )µ(dx) .

In general, we will denote byM(Y) the set of probability measures over a Polish space Y. Given
µ1, µ2 ∈M(Y), C(µ1, µ2) will denote the set of all couplings of the two measures. Namely,

C(µ1, µ2) =
{

Γ ∈M(Y× Y) : Π(i)
# Γ = µi for i = 1, 2

}
,

where Π(i) is the projection defined by Π(i)(y1, y2) = yi and f#µ is the push-forward of the measure µ
defined by (f#µ)(A) = µ(f−1(A)). We define the diagonal at infinity

D =
{

(x(1), x(2)) ∈ X∞ × X∞ : lim
n→∞

d(x(1)
n , x

(2)
n ) = 0

}
as the set of paths which converge to each other asymptotically. Given two measures m1 and m2 on
X∞, we say that Γ ∈ C(m1,m2) is an asymptotic coupling of m1 and m2 if Γ(D) = 1.

It is reasonable to expect that if two invariant measure µ1 and µ2 are such that there exists an
asymptotic coupling of P[∞]µ1 and P[∞]µ2 then in fact µ1 = µ2. We will see that on the infinite
product structure a seemingly weaker notion is sufficient to prove µ1 = µ2.

To this end we define

C̃(µ1, µ2) =
{

Γ ∈M(Y× Y) : Π(i)
# Γ� µi for i = 1, 2

}
, (1.2)

where Π(i)
# Γ� µi means that Π(i)

# Γ is absolutely continuous with respect to µi.
To state the main results of this section, we recall that an invariant measure µ for P is said to be

ergodic if for any invariant ϕ : X→ R (Pϕ = ϕ), ϕ is µ-almost surely constant.

Theorem 1.1 Let P be a Markov operator on a Polish space X admitting two ergodic invariant mea-
sures µ1 and µ2. The following statements are equivalent:

1. µ1 = µ2.

2. There exists an asymptotic coupling of P[∞]µ1 and P[∞]µ2.

3. There exists Γ ∈ C̃(P[∞]µ1,P[∞]µ2) such that Γ(D) > 0.
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Remark 1.2 In (1.2), we could have replaced absolute continuity by equivalence. If we have a ‘cou-
pling’ Γ satisfying the current condition, the measure 1

2 (Γ + P[∞]µ1 ⊗ P[∞]µ2) satisfies that stronger
condition.

Remark 1.3 At first, it might seem surprising that it is sufficient to have a measure which couples
asymptotically which is only equivalent and not equal to the law of the Markov process. However, it is
important to recall that equivalence on an infinite time horizon is a much stronger statement than on a
finite one. The key observation is that the time average of any function along a typical infinite trajectory
gives almost surely the value of the integral of the function against some invariant measure. This was
the key fact used in related results in [EMS01] and will be central to the proof below.

Remark 1.4 This theorem was formulated in discrete time for simplicity. Since it only concerns unique-
ness of the invariant measure, this is not a restriction since one can apply it to a continuous time system
simply by subsampling it at integer times.

1.1.2 A general form of Harris’ Theorem

We now turn to an extension of the usual Harris theorem on the exponential convergence of Harris
chains under a Lyapunov condition. Recall that, given a Markov semigroup {Pt}t≥0 over a measurable
space X, a measurable function V : X → R+ is called a Lyapunov function for Pt if there exist strictly
positive constants CV , γ,KV such that

PtV (x) ≤ CV e−γtV (x) +KV , (1.3)

holds for every x ∈ X and every t ≥ 0. Another omnipresent notion in the theory of Harris chains is
that of a small set. Recall that A ⊂ X is small for a Markov operator Pt if there exists δ > 0 such that

‖Pt(x, · )− Pt(y, · )‖TV ≤ 1− δ , (1.4)

holds for every x, y ∈ A.1 (This is actually a slightly weaker notion of a small set than that found in
[MT93], but it turns out to be sufficient for the results stated in this article.) With these definitions at
hand, Harris’ theorem states that:

Theorem 1.5 Let {Pt}t≥0 be a Markov semigroup over a measurable space X admitting a Lyapunov
function V and a time t? > γ−1 logCV such that the level sets {x ∈ X : V (x) ≤ C} are small for
Pt? for every C > 0. Then, there exists a unique probability measure µ? on X that is invariant for
Pt. Furthermore, there exist constants C̃ > 0 and γ̃ > 0 such that the transition probabilities Pt(x, · )
satisfy

‖Pt(x, · )− µ?‖TV ≤ C̃(1 + V (x))e−γ̃t ,

for every t ≥ 0 and every x ∈ X.

Remark 1.6 The definition of a Lyapunov function given in (1.3) is slightly different from the one
usually given in the monograph [MT93], where KV is replaced by KV 1C for some small set C. Since
our aim is to precisely study situations where one does not wish to rely on small sets, (1.3) seems natural.
Furthermore, in many situations, C can be taken as a level set of V , in which case (1.3) coincides with
the definition in [MT93].

1In this article, we normalise the total variation distance in such a way that mutually singular probability measures are at
distance 1 of each other. This differs by a factor 2 from the definition sometimes found in the literature.



INTRODUCTION 5

Remark 1.7 The convergence actually takes place in a stronger total variation norm weighted by V , in
which the Markov semigroup then admits a spectral gap, see [MT93, HM08b].

While this result has been widely applied in the study of the long-time behaviour of Markov pro-
cesses [MT93], it does not seem to be very suitable for the study of infinite-dimensional evolution
equations because the notion of small sets requires that the transition measure not be mutually singular
for nearby points.

This suggests that one should seek for a version of Harris’ theorem that makes use of a relaxed
notion of a small set, allowing for transition probabilities to be mutually singular. To this effect, we will
introduce the notion of a d-small set for a given function d : X× X→ [0, 1] used to measure distances
between transition probabilities. This will be the content of Definition 4.4 below. If we lift d to the
space of probability measures in the same way that one defines Wasserstein-1 distances, then this notion
is just (1.4) with the total variation distance replaced by d.

However, we can of course not use any distance function d and expect to obtain a convergence result
by combining it simply with Lyapunov stability. We therefore introduce the concept of a distance d that
is contracting for Pt if there exists α < 1 such that

d(Pt(x, · ),Pt(y, · )) ≤ αd(x, y) , (1.5)

holds for any two points x, y ∈ X such that d(x, y) < 1. This seems to be a very stringent condition at
first sight (one has the impression that (1.5) alone is already sufficient to give exponential convergence of
Ptµ to µ? when measured in the distance d), but it is very important to note that (1.5) is not assumed to
hold when d(x, y) = 1. Therefore, the interesting class of distance functions d will consist of functions
that are equal to 1 for “most” pairs of points x and y. Compare this with the fact that the total variation
distance can be viewed as the Wasserstein-1 distance corresponding to the trivial metric that is equal to
1 for any two points that are not identical.

With these definitions at hand, a slightly simplified version of our main abstract theorem states that:

Theorem 1.8 Let {Pt}t≥0 be a Markov semigroup over a Polish space X that admits a Lyapunov
function V . Assume furthermore that there exists t? > γ−1 logCV and a lower semi-continuous metric
d : X× X→ [0, 1] such that
• d2 is contracting for Pt? ,
• level sets of V are d-small for Pt? .

Then there exists a unique invariant measure µ? for Pt and the convergence d(Pt(x, · ), µ?) → 0 is
exponential for every x ∈ X.

1.2 Structure of paper
In Section 2, we give the proof of Theorem 1.1 as well as a result which under related hypotheses
ensures that the transition probabilities starting from any point converge to the invariant measure. In
Section 3, we apply the results of the preceding theorems to prove the unique ergodicity and convergence
of transition probabilities for a wide class of SDDE, including those with state dependent coefficients. In
Section 4, we prove a general form of Harris’ ergodic theorem which implies exponential convergence
in a type of weighted Wasserstein-1 distance on measures and an associated spectral gap. In Section 5,
we apply these results to the SDDE setting under the additional assumption of a Lyapunov function in
order to obtain a spectral gap result. Lastly, in Section 5.3, we show how to apply the results to the
SPDE setting, thus providing an alternative proof to the results in [HM08a].
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2 Asymptotic coupling

This section contains the proof of Theorem 1.1 and a number of results which use related ideas. The
goal throughout this section is to use minimal assumptions. We also provide a criterion that yields
convergence rates toward the invariant measure using a coupling argument. However, in the case of
exponential convergence, a somewhat cleaner statement will be provided by the general form of Harris’
theorem in Section 4.

2.1 Proof of Theorem 1.1: Unique ergodicity through asymptotic coupling
The proof given below abstracts the essence of the arguments given in [EMS01, BM05]. A version of
this theorem is presented in [Mat07]. The basic idea is to leverage the fact that if the initial condition
is distributed as an ergodic invariant measure, then Birkhoff’s ergodic theorem implies that the average
along a trajectory of a given function is an almost sure property of the trajectories.

Proof of Theorem 1.1. Throughout this proof we will use the shorthand notation mi = P[∞]µi for
i = 1, 2. Clearly 1. implies 2. because if µ1 = µ2, then we can take the asymptotic coupling to be the
measure m1 (which then equals m2) pushed onto the diagonal of X∞×X∞. Clearly 2. implies 3. since
C(P[∞]µ1,P[∞]µ2) ⊂ C̃(P[∞]µ1,P[∞]µ2) and the definition of asymptotic coupling implies that there
exists a Γ ∈ C(P[∞]µ1,P[∞]µ2) with Γ(D) = 1. We now turn to the meat of the result, proving that 3.
implies 1.

Defining the shift θ : X∞ → X∞ by (θx)k = xk+1 for k ∈ N0, we observe that θ#mi = mi for
i = 1, 2. Or in other words mi is an invariant measure for the map θ. In addition, one sees that mi is an
ergodic invariant measure for the shift θ since µi was ergodic for P .

Fixing any bounded, globally Lipschitz ϕ : X→ R we extend it to a bounded function ϕ̃ : X∞ → R
by setting ϕ̃(x) = ϕ(x0) for x ∈ X∞. Now Birkhoff’s ergodic theorem and the fact that the mi are
ergodic for θ ensure the existence of sets Aϕi ⊂ X∞ with mi(A

ϕ
i ) = 1 so that if x ∈ Aϕi then

lim
n→∞

1
n

n−1∑
k=0

ϕ(xk) = lim
n→∞

1
n

n−1∑
k=0

ϕ̃(θkx) =
∫

X∞
ϕ̃(x)mi(dx) =

∫
X
ϕ(z)µi(dz) . (2.1)

Here, the first and last implications follow from the definition of ϕ̃. Now let Γ ∈ C̃(m1,m2) with
Γ(D) > 0. Since Π(i)

# Γ � mi and both are probability measures we know that (Π(i)
# Γ)(Aϕi ) =

mi(A
ϕ
i ) = 1 for i = 1, 2. This in turn implies that Γ(X∞ × Aϕ2 ) = Γ(Aϕ1 × X∞) = 1, so that
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Γ(Aϕ1 ×A
ϕ
2 ) = 1. Hence if D̃ = D∩ (Aϕ1 ×A

ϕ
2 ), we have that Γ(D̃) > 0. In particular, this implies that

D̃ is not empty. Observe that for any (x(1), x(2)) ∈ D̃ we know that for i = 1, 2

lim
n→∞

1
n

n−1∑
k=0

ϕ(x(i)
k ) =

∫
X
ϕ(z)µi(dz) .

On the other hand, since (x(1), x(2)) ∈ D̃ ⊂ D, we know that limn d(x(1)
n , x

(2)
n ) = 0. Combining these

facts gives ∣∣∣∣∫ ϕ(x)µ1(dx)−
∫
ϕ(x)µ2(dx)

∣∣∣∣ =
∣∣∣ lim
n→∞

( 1
n

n−1∑
k=0

ϕ(x(1)
k )− 1

n

n−1∑
k=0

ϕ(x(2)
k )
)∣∣∣

≤ lim
n→∞

Lipϕ
n

n−1∑
k=0

d(x(1)
k , x

(2)
k ) = 0 ,

where both the first equality and the second inequality follow from the fact that we choose (x(1), x(2)) in
D̃. Therefore, ∫

ϕ(x)µ1(dx) =
∫
ϕ(x)µ2(dx)

for any Lipschitz and bounded ϕ which implies that µ1 = µ2.

Remark 2.1 Note that it is not true in general that the uniqueness of the invariant measure implies that
there exist asymptotic couplings for any two starting points! See for example [Lin92, CW00] for a
discussion on the relation between coupling, shift coupling, ergodicity, and mixing.

Corollary 2.2 Let P be a Markov operator on a Polish space. If there exists a measurable set A ⊂ X
with the following two properties:
• µ(A) > 0 for any invariant probability measure µ of P ,
• there exists a measurable mapA×A 3 (x, y) 7→ Γx,y ∈ C̃(P[∞]δx,P[∞]δy) such that Γx,y(D) >

0 for every x, y ∈ A.
then P has at most one invariant probability measure.

Remark 2.3 The measurability of the map Γ means that the map (x, y) 7→
∫
ϕdΓx,y is measurable for

every bounded continuous function ϕ : X∞ × X∞ → R.

Proof of Corollary 2.2. Assume that there are two invariant measures µ1 and µ2. By the ergodic decom-
position, we can assume that µ1 and µ2 are both ergodic since any invariant measure can be decomposed
into ergodic invariant measures. We extend the definition of Γ to X × X by Γx,y = P[∞]δx × P[∞]δy
for (x, y) 6∈ A×A. For measurable sets B ⊂ X∞ × X∞ define the measure Γ by

Γ(B) =
∫

X×X
Γx,y(B)µ1(dx)µ2(dy)

and notice that Γ ∈ C̃(P[∞]µ1,P[∞]µ2) by construction. Furthermore by the assumption that Γx,y(D) >
0 for (x, y) ∈ A×A, we see that Γ(D) > 0. Hence Theorem 1.1 implies that µ1 = µ2.
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2.2 Convergence of transition probabilities
In this section, we give a simple criterion for the convergence of transition probabilities towards an
invariant measure under extremely weak conditions that essentially state that:

1. There exists a point x0 ∈ X such that the process returns “often” to arbitrarily small neighbour-
hoods of x0.

2. The coupling probability between trajectories starting at x and y converges to 1 as y → x.
More precisely, we have the following result:

Theorem 2.4 Let P be a Markov kernel over a Polish space X with metric d that admits an ergodic
invariant measure µ?. Assume that there exist B ⊂ X with µ?(B) > 1

2 and x0 ∈ X such that, for every
neighbourhood U of x0 there exists k > 0 such that infy∈B Pk(y, U ) > 0. Assume furthermore that
there exists a measurable map

Γ: X× X→M(X∞,X∞)
(y, y′) 7→ Γy,y′ ,

with the property that Γy,y′ ∈ C(P[∞]δy,P[∞]δy′ ) for every (y, y′) and such that, for every ε > 0 and
every x ∈ X, there exists a neighbourhood U of x such that infy,y′∈U Γy,y′ (D) ≥ 1− ε.

Then, Pn(z, · )→ µ? weakly as n→∞ for every z ∈ suppµ?.

Remark 2.5 This convergence result is valid even in situations where the invariant measure is not
unique. If the process is irreducible however, then suppµ? = X and the convergence holds for ev-
ery z ∈ X (implying in particular that µ? is unique).

Proof. We denote by DεN the subset of X∞ × X∞given by

DεN = {(X,Y ) : d(Xn, Yn) ≤ ε ∀n ≥ N} ,

so that D =
⋂
ε>0

⋃
N>0DεN .

Note first that by the ergodicity of µ? and Birkhoff’s ergodic theorem, there exists a set A with
µ?(A) = 1 and such that

lim
T→∞

1
T

T∑
t=0

1B(Xt) = µ?(B) >
1
2

,

holds almost surely for every process Xt with X0 ∈ A.
Fix now z ∈ A and ε > 0 and let x0 be as in the first assumption of the statement. Fix furthermore

a neighbourhood U of x0 such that Γy,y′ (D) ≥ 1− ε for y, y′ ∈ U . Define the function (y, y′) 7→ Ny,y′

by
Ny,y′ = inf{N > 0 : Γy,y′ (DεN ) ≥ 1− 2ε} . (2.2)

It follows from the choice of U and the fact that D ⊂
⋃
N>0DεN that one has Ny,y′ <∞ for every pair

y, y′ ∈ U . Let now Yt be a Markov process generated by P with initial distribution µ? and let Zt be an
independent process with initial condition z. Since one has the bound 1B(x)1B(z) ≥ 1B(x)+1B(z)−1,
it follows from the definition of A that

lim
T→∞

1
T

T∑
t=0

1B(Yt)1B(Zt) ≥ 2µ?(B)− 1 > 0 , (2.3)



ASYMPTOTIC COUPLING 9

almost surely. Let now τ = inf{t ≥ 0 : Yt ∈ U & Zt ∈ U}. Before we proceed, let us argue that τ
is almost surely finite. We know indeed by assumption that there exists TU > 0 and α > 0 such that
PTU (y, U ) ≥ α for every y ∈ B. Furthermore, setting τ0 = 0 and defining τk recursively by

τk = inf{t ≥ τk−1 + TU : Yt ∈ B & Zt ∈ B} ,

we have the bound

P(τ ≥ T ) ≤ P(τ ≥ T | τk < T − TU )P(τk < T − TU ) + P(τk ≥ T − TU )
≤ P(τ 6= τ1 + TU & · · · & τ 6= τk + TU ) + P(τk ≥ T − TU )
≤ (1− α)k + P(τk ≥ T − TU ) ,

where the last inequality follows from the strong Markov property. Since we know from (2.3) that the
τk are almost surely finite, we can make P(τk ≥ T − TU ) arbitrarily small for fixed k by making T
large.

It follows that there exists T0 > 0 with P(τ ≤ T0) ≥ 1 − ε. Let now µ0 be the law of the stopped
process at time T0, that is µ0 = Law(YT0∧τ , ZT0∧τ ). It follows from the definitions of T0 and τ that
µ0(U × U ) ≥ 1− ε.

Since Ny,y′ is finite on U × U , we can find a sufficiently large value T1 > 0 such that

µ0({(y, y′) ∈ U × U : Ny,y′ ≤ T1}) ≥ 1− 2ε .

Let now Γ̃y,z be the coupling between P[∞]µ? and P[∞]δz obtained by first running two independent
copies (Yt, Zt) up to the stopping time τ and then running them with the coupling ΓYτ ,Zτ . This is
indeed a coupling by the strong Markov property (recall that we are in the discrete time case). Setting
T = T0 + T1, it follows immediately from the construction that under the coupling Γ̃y,z , we have
P(d(Yt, Zt) ≤ ε) ≥ 1− 4ε for each n ≥ T , thus yielding the convergence of Pn(z, · ) to µ? as required.

Let us now extend this argument to more general starting points and fix an arbitrary z ∈ suppµ? and
ε > 0. Since A is dense in suppµ?, it follows from our assumption on Γ that there exists z′ ∈ X such
that Γz,z′ (D) ≥ 1− ε. In particular, we can find a time T2 such that Γz,z′ (DεT2

) ≥ 1− 2ε. Since on the
other hand, we know that Pn(z′, · )→ µ? weakly, it immediately follows that we can find T3 ≥ T2 and
for each n ≥ T3 a coupling Γ between Pn(z, · ) and µ? such that Γ({(y, y′) : d(y, y′) ≤ 2ε}) > 1− 3ε,
thus concluding the proof.

2.3 More convergence results: rates and convergence for all initial conditions
In this section, we continue to develop the ideas of the previous sections to show how to obtain the
convergence of the transition probabilities for every initial condition and how to obtain a rate of con-
vergence. We essentially follow the ideas laid out in [Mat02b]. They are sufficent to give exponential
convergence, but not a convergence in any operator norm. Here we will not attempt to apply the results
to our SDDE setting since Theorem 1.5 provides stronger results in our setting of interest. Nonetheless,
the ideas and imagery presented in this section is useful to build intuition. It is also a useful technique
in situations where exponential convergence doesn’t hold.

Define the 1-Wasserstein distance for two probability measures µi on X by

d1(µ1, µ2) = sup
f∈Lip1

(∫
f (x)µ1(dx)−

∫
f (x)µ2(dx)

)
,
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where Lip1 are the Lipschitz functions f : X→ R with Lipschitz constant one.
Let µ1, µ2 be two probability measures on X and Γ ∈ C(P[∞]µ1,P[∞]µ2) and let Z ∈ X∞ × X∞,

with Zn = (Z (1)
n , Z (2)

n ), be the stochastic process on X × X with paths distributed as Γ. Let Gn be the
σ-algebra generated by Zn and Πn be the projection on X∞ × X∞ defined by (Πnx)k = xk+n.

We say that Γ ∈ C(P[∞]µ1,P[∞]µ2) is a marginally Markovian coupling if for any stopping time τ
(adapted to Gn), the conditional distribution Law(ΠτZ | Gτ ) of ΠτZ given Gτ belongs almost surely to
C(P[∞]δZ(1)

τ
,P[∞]δZ(2)

τ
), where Zn = (Z (1)

n , Z (2)
n ). Notice that this is weaker than assuming that Zn is a

Markov process.
Let % : N → (0,∞) be a strictly decreasing function with limn %(n) = 0. We define the “neighbor-

hood” of the diagonal

∆% = {(x(1), x(2)) ∈ X∞ × X∞ : d(x(1)
n , x

(2)
n ) < %(n)} .

For any stochastic process Z on X× X with Zn = (Z (1)
n , Z (2)

n ), we define the stopping time

τ%(Z) = inf{n ≥ 1 : d(Z (1)
n , Z (2)

n ) ≥ %(n)} (2.4)

and for B ∈ X× X we define the hitting time

σB(Z) = inf{n ≥ 0 : Zn ∈ B} . (2.5)

Theorem 2.6 Consider a Markov operator P as before over a Polish space X with distance function
d ≤ 1.

Fix a strictly decreasing rate function % and a setB ⊂ X×X. Assume that there exists a measurable
map z0 7→ Γz0 ∈ C(P[∞]δz(1)

0
,P[∞]δz(2)

0
) where z0 = (z(1)

0 , z(2)
0 ) ∈ X × X, which is a marginally

Markovian coupling such that, if Z with Zn = (Z (1)
n , Z (2)

n ), is distributed as Γz0 then the following
assumptions hold:

1. If z0 6∈ B, then σB(Z) is finite almost surely.

2. There exists an α > 0 so that if z0 ∈ B then Γz0 (∆%) ≥ α.

Then for all (z(1)
0 , z(2)

0 ) ∈ X× X,

d1(Pnδz(1)
0
,Pnδz(2)

0
)→ 0 as n→ 0 .

Proof. To prove the result, we will construct a new coupling on X∞×X∞ from the coupling Γ. We will
do this by constructing a process on excursions from B. The state space of our process of excursions
will be given by:

X =
∞⋃
k=0

((Xk × Xk)×B)) and X = (X∞ × X∞) ∪ X .

In words, X is the space of finite (but arbitrary) length trajectories taking values in the product space
X× X and ending in B. The space X furthermore contains trajectories in X× X of infinite length.

To build the process on excursions, we begin by constructing a Markov transition kernel Q : B →
M(X) from the Γ’s in the following way. For any z ∈ B, letZ ′ be a (X∞×X∞)-valued random variable
distributed according to the measure Γz and set τ = τ%(Z ′) with τ% as in (2.4). If τ = ∞, then we set
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Z = Z ′. If τ <∞ and Z ′τ ∈ B, then we set Z = (Z ′1, · · · , Z ′τ ). Otherwise, let Z ′′ be the (X∞ ×X∞)-
valued random variable distributed according to the measure ΓZ′τ . Since Γ is marginally Markovian and
τ is a stopping time, we know that the law of ΠτZ

′
τ is a coupling of P[∞]δZ′(1)

τ
, and P[∞]δZ′(2)

τ
almost-

surely. Hence we can replace the trajectory of Z ′ after time τ with the piece of trajectory Z ′′ and the
combined trajectory will still be a coupling starting from the initial data. Setting σ = σB(Z ′′) (which is
finite almost surely) we define Z by Z = (Z ′1, · · · , Z ′τ , Z ′′1 , · · · , Z ′′σ ).

In all cases, Z is either a trajectory of infinite length contained in ∆% or it is a segment of finite length
ending in the setB. HenceZ is a X-valued random variable and we defineQz( · ) to be the distribution of
Z. To extend the definition to a kernel Q : X→M(X), we simply define Qz for z = (z1, · · · , zk) ∈ X
by Qz = Qzk since all trajectories in X terminate in B.

We now construct our Markov process on X which we will denote by Zn = (Z (1)
n , Z (2)

n ). We
use Q which was constructed in the preceding paragraph as the Markov transition kernel. If ever the
segment drawn is of infinite length, then the process simply stops. The only missing element is the
initial condition. If z0 ∈ B then we take Z0 = z0. If z0 6∈ B, then we take Z0 = (z0, Z

′
1, · · · , Z ′σ)

where Z ′ is an X-valued random variable distributed according to Γz0 and σ = σB(Z ′).
Now we define ln to be the length of Zn. Let n∗ = inf{n : ln = ∞}. Since for all z ∈ B,

Γz(∆%) ≥ α > 0 the P(n∗ > n) ≤ (1 − α)n and thus n∗ is almost surely finite. Lastly we define
t∗ =

∑n∗−1
k=0 lk. Since n∗, and the lk are all almost surely finite, one sees that t∗ is almost surely finite.

Finally, we are ready to perform the desired calculation. We will denote by Zt = (Z (1)
t , Z (2)

t )
the trajectory in X∞ × X∞ obtained by concatenating together the segments produced by running the
Markov chain Zn constructed in the preceding paragraph. For any f ∈ Lip1(X) one has

Ef (Z (1)
t )− Ef (Z (2)

t ) ≤ Ed(Z (1)
t , Z (2)

t )(1t∗>t/2 + 1t∗≤t/2)
≤ P(t∗ > t/2) + %(t/2) . (2.6)

Observe that the right hand side is uniform for any f ∈ Lip1. By assumption %(t/2)→ 0 as t→∞ and
since t∗ is almost surely finite P(t∗ > t/2)→ 0 as t→∞.

The following corollary gives a rate of convergence assuming one can control a appropriate moment
of t∗. As in [Hai02, Mat02b], this is often done by assuming an appropriate Lyapunov structure. This
result does not prove convergence in any operator norm. In this way, it is inferior to Theorem 1.5 which
we prefer. (The fact that the norm does not allow test functions f ≤ V can be rectified with more work
under additional assumptions.)

Corollary 2.7 In the setting of Theorem 2.6, let t∗(z0) be the stopping time defined in the proof of
Theorem 2.6 when starting from z0 = (z(1)

0 , z(2)
0 ) ∈ X × X. If E(1/%(t∗(z0))) < Φ(z0) for some

Φ : X× X→ (0,∞), then

d1(Ptδz(1)
0
,Ptδz(2)

0
) ≤ (1 + Φ(z0))%(t/2)

Proof. First observe that the Markov inequality implies that P(t∗ > t/2) = P(1/%(t∗) > 1/%(t/2)) ≤
%(t/2)E(1/%(t∗)) ≤ %(t/2)Φ(z0). Returning to (2.6), we see that this estimate completes the proof of
the desired result.

Remark 2.8 For this result to be useful, one needs control over E(1/%(t∗(z0))). First observe that
since t∗ =

∑n∗−1
k=0 lk and P(n∗ > k) ≤ (1 − α)k the main difficulty is controlling the appropriate
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moment of ln. ln consists of two parts. The first is τ , the time to exit ∆%, and the second is σ the
time to return to B. The moments of τ depend on how quickly Γ(∆n

% ) − Γ(∆%) goes to zero as a
function of n where ∆n

% = {(x(i), x(2)) ∈ X∞ × X∞ : d(x(1)
k , x

(2)
k ) < %(k) for all k ≤ n}. This gives

information about how long it takes for Z to leave ∆% when it is conditioned not to stay in inside
∆% for all times. If this exit time has heavy tails, then it can retard the convergence rate. The return
times to B also influences the convergence rate. Such a return time is often controlled by a Lyapunov
function. In the context of obtaining exponential convergence, some of these points are explored in
[Mat02b, Hai02]. Subexponential convergence rates via Lyapunov functions has been explored for
Harris chains in [MT93, Ver99, BCG08, DFG09, Hai09].

3 Application of the uniqueness and convergence criteria to SDDEs

3.1 Application of the uniqueness criterion to SDDEs
Fix r > 0 and let C = C([−r, 0],Rd) denote the phase space of a general finite-dimensional delay
equation with delay r endowed with the sup-norm ‖ · ‖. For a function or a process X defined on
[t − r, t] we write Xt(s) := X(t + s), s ∈ [−r, 0]. Consider the following stochastic functional
differential equation:

dX(t) = f (Xt) dt+ g(Xt) dW (t),
X0 = η ∈ C,

(3.1)

where f : C → Rd and g : C → Rm × Rd and Wt = (W (1)
t , · · · ,W (m)

t ) is a standard Wiener process.
We will provide conditions on f and g which ensure that, for every initial condition X0 = η ∈ C,

equation (3.1) has a unique pathwise solution which can then be viewed as a C-valued strong Markov
process. The problem of existence and/or uniqueness of an invariant measure of such a process (or
similar processes) has been addressed by a number of authors, see for example [IN64, Sch84, BM05,
RRG06, EGS09].

While existence of an invariant measure has been proven under natural sufficient conditions on the
functionals f and g, the uniqueness question, as already mentioned in the introduction, has not been
answered up to now even in such simple cases as

f (x) = −c x(0) , g(x) = ψ(x(−r)) , d = m = 1 ,

for some c > 0 and ψ a strictly positive, bounded and strictly increasing function [RRG06]. One
difficulty is that the corresponding Markov process on C is not strong Feller. Even worse: given the
solution Xt for any t > 0, the initial condition X0 can be recovered with probability one [Sch05].
Another peculiarity of such equations is that while they do in general generate a Feller semigroup
on C, they often do not admit a modification which depends continuously on the initial condition –
even if g is linear (see e.g. [Moh86] and [MS97]), so that they do not generate a stochastic flow of
homeomorphisms. We do nevertheless have the following uniqueness result:

Theorem 3.1 Assume that m ≥ d > 0 and that, for every η ∈ C, g(η) admits a right inverse
g−1(η) : Rd → Rm. If f is continuous and bounded on bounded subsets of C, and for some K ≥ 1, f
and g satisfy

sup
η∈C
‖g−1(η)‖ <∞ ,

and
2〈f (x)− f (y), x(0)− y(0)〉+ + |||g(x)− g(y)|||2 ≤ K‖x− y‖2 ,
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where |||M |||2 = Tr(MM∗), then the equation (3.1) has at most one invariant measure.

Remark 3.2 This assumption is sufficient to ensure the existence of (unique) global solutions (see
[RS08] for even weaker hypotheses).

Remark 3.3 Notice that Theorem 3.1 does not ensure that there exists an invariant measure, only that
there exists at most one. Even when there is no invariant (probability) measure, the ideas in Theorem 3.1
can be used to show that solutions with nearby initial conditions behave asymptotically the same with a
positive probability.

Remark 3.4 It is not true in general that one has exponential convergence under the assumptions of The-
orem 3.1 (plus the existence of an invariant measure) alone. Consider for example the one-dimensional
SDE

dx = − x

(1 + x2)α
dt+ dW (t) ,

then it is known that for α ∈ ( 1
2 , 1) it has a unique invariant measure, but that convergence of transition

probabilities is only stretched exponential [Hai09]. However, it does satisfy the one-sided Lipschitz
condition of Theorem 3.1.

We will use the following two lemmas which are proven at the end of the section. The first one is
similar to Proposition 7.3 in [DZ92].

Lemma 3.5 Let W (t), t ≥ 0 be a standard Wiener process and fix T > 0 and p > 2. There exists a
function % : [0,∞) → [0,∞) satisfying limλ→∞ %(λ) = 0 such that the following holds: let Y satisfy
the equation

dY (t) = −λY (t) dt+ h(t) dW (t), (3.2)
Y (0) = 0,

where h is an adapted process with almost surely càdlàg sample paths. Then for any stopping time τ
we have

E
(

sup
0≤t≤τ∧T

|Y (t)|p
)
≤ %(λ)E

(
sup

0≤t≤τ∧T
|h(t)|p

)
.

Lemma 3.6 Let λ > 0, consider the coupled set of equations:

dX(t) = f (Xt) dt+ g(Xt) dW (t) , X0 = η ,

dX̃(t) = f (X̃t) dt+ λ(X(t)− X̃(t)) dt+ g(X̃t) dW (t) , X̃0 = η̃ ,
(3.3)

and define Z(t) := X(t) − X̃(t), t ≥ −r. Then, for every γ0 > 0 there exist λ > 0 and C > 0 such
that the bound E(supt≥0 eγ0t‖Zt‖)8 ≤ (C‖Z0‖)8 holds for any pair of initial conditions X0 and X̃0.

Proof of Theorem 3.1. We begin by fixing two initial conditions η, η̃ ∈ C of (3.3). We furthermore
define the “Girsanov shift” v by

v(t) = λg(X̃t)−1(X(t)− X̃(t)) ,

where λ > 0 is chosen as in Lemma 3.6 for γ0 = 1 (say) and we set τ = inf{t ≥ 0 :
∫ t

0
|v(s)|2 ds ≥

ε−1‖η − η̃‖2}, where ε > 0 is a small constant to be determined. Thanks to the non-degeneracy
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assumption on g and Lemma 3.6, we obtain limε→0 P{τ = ∞} = 1 and limt→∞ |X(t) − X̃(t)| = 0
almost surely. In particular, there exist some ε > 0 independent of the initial conditions such that
P{τ =∞} > 0. We will fix such a value of ε from now on.

Setting W̃ (t) = W (t) +
∫ t∧τ

0
v(s) ds, we observe that the Cameron-Martin-Girsanov Theorem im-

plies that there exists a measure Q on Ω := C([0,∞),Rm) so that under Q, W̃ is a standard Wiener
process on the time interval [0,∞). Let X be the solution of

dX(t) = f (Xt) dt+ g(Xt) dW̃ (t) X0 = η̃ .

Since
∫ τ

0
v2(s) ds ≤ ε−1‖η−η̃‖2 by construction, the law ofX is equivalent on C([0,∞),Rd) to the law

of a solution to (3.1) with initial condition η̃. This means that the law of the pair (X,X) has marginals
which are equivalent on C([0,∞),Rd) to solutions to (3.1) starting respectively from η and η̃. Since
X = X̃ on {τ =∞}, we have

lim
t→∞

|X(t)−X(t)| = lim
t→∞

|X̃(t)−X(t)| = 0 on {τ =∞} a.s.

Therefore Corollary 2.2 implies that the discrete-time chain (Xrn)n∈N has at most one invariant prob-
ability measure and hence the same is true for the Markov process (Xt)t≥0. SinceM(Ω,Ω) endowed
with the topology of weak convergence is a Polish space [Vil03] and since all of the constants appearing
in our explicit construction can be chosen independently of the initial conditions, the map (x, y) 7→ Γx,y
is indeed measurable.

We now give the proof of Lemma 3.5 which was given at the start of the section.

Proof of Lemma 3.5. We begin by noticing that we need only prove the theorem for the supremum over
a deterministic time interval [0, T ]. The version over the random time interval follows by considering
the function h̃(s) = h(s)1[0,τ∧T )(s). Observe that h̃(s) again almost surely has càdlàg paths and if Ỹ (t)
is the solution to (3.2) with h replaced by h̃ then

sup
t≤τ∧T

|Y (s)|p = sup
t≤T
|Ỹ (s)|p and sup

t≤τ∧T
|h(s)|p = sup

t≤T
|h̃(s)|p .

The second identity is clear from the definition of h̃. The first follows from the observation that Y (s) =
Ỹ (s) for s ≤ τ ∧ T and, for s > τ ∧ T , |Ỹ (s)| only decreases since h̃ is identically zero. Hence it is
enough to prove the lemma over a deterministic time interval.

We begin by observing that the solution Y can be represented in the form

Y (t) = e−λt
∫ t

0

eλsh(s) dW (s) . (3.4)

Therefore, using Burkholder’s inequality and abbreviating h∗ := sup0≤t≤T |h(t)|, we obtain

E|Y (t)|p = e−λtp E
∣∣∣ ∫ t

0

eλsh(s) dW (s)
∣∣∣p

≤ Cp e−λtp E
∣∣∣ ∫ t

0

e2λsh2(s) ds
∣∣∣p/2 (3.5)

≤ CpE(h∗)p(2λ)−p/2.
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Let N ∈ N and define tk := tk(N ) := kT/N for k = 0, ..., N and

Ik(t) :=
∫ t

tk

h(s) dW (s), tk ≤ t ≤ tk+1, k = 0, ..., N − 1.

Notice that Ik(t) is a local martingale with respect to the filtration it generates. Integrating (3.4) by parts,
we get

Y (t) = Y (tk) e−λ(t−tk) + Ik(t)− λ
∫ t

tk

e−λ(t−s)Ik(s) ds, tk ≤ t ≤ tk+1.

Hence,

sup
0≤t≤T

|Y (t)|p = max
k=0,...,N−1

sup
tk≤t≤tk+1

|Y (t)|p

≤ 2p−1 max
k=0,...,N−1

(
|Y (tk)|p + 2 sup

tk≤t≤tk+1

|Ik(t)|p
)
.

Using Burkholder’s inequality and (3.5), we get

E sup
0≤t≤T

|Y (t)|p ≤ 2p−1NCpE(h∗)p(2λ)−p/2 + 2pN max
k=0,...,N−1

E sup
tk≤t≤tk+1

|Ik(t)|p

≤ 2p−1CpE(h∗)p
(
N (2λ)−p/2 + 2T p/2N1− p2

)
.

For each ε > 0, we can chooseN large enough such that the coefficient of E(h∗)p becomes smaller than
ε for all sufficiently large λ.

We conclude with the proof of Lemma 3.6:

Proof of Lemma 3.6. First observe that the pair of equations (3.3) admits a unique global solution (see
[RS08]). Setting Z(t) = X(t)− X̃(t), we see that

d|Z(t)|2 = 2〈f (Xt)− f (X̃t), Z(t)〉 dt+ |||g(Xt)− g(X̃t)|||2 dt− 2λ|Z(t)|2 dt+ dM (t)

≤ K‖Zt‖2 dt− 2λ|Z(t)|2 dt+ dM (t)

where M (0) = 0 and dM (t) = 2〈Z(t), (g(Xt) − g(X̃t)) dW (t)〉. Define now Y (t) = eαt|Z(t)|2 for a
constant α > 0 to be determined later. Then

dY (t) = αY (t) dt+ eαt d|Z(t)|2

≤ (α− 2λ)Y (t) dt+K eαt‖Zt‖2 dt+ eαt dM (t)

≤ (α− 2λ)Y (t) dt+K eαr‖Yt‖ dt+ eαt dM (t) .

Setting N (t) =
∫ t

0
e−κ(t−s) eαs dM (s) and κ = 2λ− α, the variation of constants formula thus yields

Y (t) ≤ e−κtY (0) +Keαr
∫ t

0

e−κ(t−s)‖Ys‖ ds+N (t)

≤ e−κtY (0) +
Keαr

κ
sup
s∈[0,t]

‖Ys‖+N (t) .
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For ε > 0, let now τε be the stopping time defined by τε = 2r ∧ inf{t ≥ 0 : ‖Yt‖ ≥ ε−1}. It follows
that there exists a constant K̄ independent of α, λ and ε such that

E sup
s∈[0,τε]

‖Ys‖4 ≤ K̄‖Y0‖4 +
K̄e4αr

κ4
E sup
s∈[0,τε]

‖Ys‖4 + K̄E sup
s∈[0,τε]

|N (s)|4 .

Now observe that by Lemma 3.5, we have for N the bound

E sup
s∈[0,τε]

|N (s)|4 ≤ %(κ) 24E sup
s∈[0,τε]

( e4αs|Z(s)|4|||g(Xs)− g(X̃s)|||4) ≤ Ce2αr%(κ)E sup
s∈[0,τε]

‖Ys‖4 ,

for a constant C independent of α and λ. This shows that we can find a function α 7→ Λ(α) such that
both K̄e4αr/(Λ(α)− α)4 ≤ 1

4 and K̄Ceαr%(2Λ(α)− α) ≤ 1
4 , thus obtaining

E sup
s∈[0,τε]

‖Ys‖4 ≤ K̄‖Y0‖4 +
1
2

E sup
s∈[0,τε]

‖Ys‖4 ,

provided that we choose λ = Λ(α), so that E sups∈[0,τε] ‖Ys‖4 ≤ 2K̄‖Y0‖4. Since this bound is
independent of ε > 0, we can take the limit ε → 0, so that the monotone convergence theorem yields
E sups∈[0,2r] ‖Ys‖4 ≤ 2K̄‖Y0‖4. In terms of our original process Z, we conclude that

E‖Zr‖8 ≤ 2K̄‖Z0‖8 and E‖Z2r‖8 ≤ 2K̄e−4αr‖Z0‖8 . (3.6)

Since K̄ is independent of α, we can ensure that 2K̄e−4αr ≤ e−18rγ0 by taking α (and therefore also
λ) sufficiently large. Iterating (3.6), we then obtain

E‖Z2nr‖8 ≤ e−18rγ0n‖Z0‖8 and E‖Z(2n+1)r‖8 ≤ 2K̄e−18rγ0n‖Z0‖8 . (3.7)

Note now that if t ∈ [nr, (n+ 1)r], then ‖Zt‖ ≤ ‖Znr‖+ ‖Z(n+1)r‖. Therefore, there exists a constant
C > 0 such that

sup
t≥0

e8γ0t‖Zt‖8 ≤ C
∞∑
n=0

e8γ0rn‖Zrn‖8 .

Hence using (3.7), we have for a different constant C > 0

E sup
t≥0

e8γ0t‖Zt‖8 ≤ C‖Z0‖8
∞∑
n=0

e−γ0rn .

Since the sum on the right hand side converges, the proof is complete.

This shows the uniqueness of the invariant measure for a large class of stochastic delay equations.
It turns out that under exactly the same conditions, we can ensure that the invariant measure is not only
unique, but that transition probabilities converge to it.

3.2 Convergence of transition probabilities of SDDEs
In this section we will apply the abstract results of Section 2.2 to the C-valued Markov process (Xt)
which we introduced in the previous section. We will denote its transition probabilities by Pt(η, .). We
will prove the following result:
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Theorem 3.7 Let the assumptions of Theorem 3.1 be satisfied. If the Markov process Xt, t ≥ 0 admits
an invariant probability measure µ, then for each η ∈ C we have Pt(η, · )→ µ weakly.

We start with the following lemma (which we will also need in Section 5):

Lemma 3.8 Let the assumptions of Theorem 3.1 be satisfied and denote by BR the closed ball in C with
radius R and center 0. Then for each R, δ > 0 and each t? ≥ 2r,

inf
‖η‖≤R

Pt?(η,Bδ) > 0.

Proof. The proof resembles that of Lemma 2.4 in [SS02]. Fix R ≥ δ > 0. For each y ∈ Rd, |y| ≤
3R/2, let h = hy : [0, t?] → Rd be continuously differentiable with Lipschitz constant at most 2R/r
and satisfy h = 0 on [r, t?], h(0) = y. Define

D(t) := |X(t)− h(t)|2 − (δ/2)2,

where X solves SDDE (3.1) with initial condition η ∈ C, ‖η‖ ≤ R, y := η(0) − (δ/2, 0, ..., 0)T and
h = hy is defined as above. Then

dD(t) = 2〈X(t)− h(t), f (Xt)− h′(t)〉 dt+ 2〈X(t)− h(t), g(Xt) dW (t)〉+
∑
i,j

g2
ij(Xt) dt,

while D(0) = 0. Let τ := inf{t ≥ 0 : |D(t)| > (δ/4)2}. Let now W1 be a Wiener process that is
independent of W and set

Y (t) := D(t ∧ τ ) + (W1(t)−W1(τ ))1t≥τ .

This is a semimartingale with Y (0) = 0 which fulfills the conditions of Lemma I.8.3 of [Bas98] (with
(δ/4)2 in place of ε). Therefore, there exists p > 0 such that for all ‖η‖ ≤ R we have

Pt?(η,Bδ) ≥ P( sup
0≤t≤t?

|Y (t)| ≤ (δ/4)2|X0 = η) ≥ p ,

thus concluding the proof.

Proof of Theorem 3.7. Theorem 2.4 is formulated for discrete time, so we first show that the two condi-
tions are satisfied for the Markov kernel Pt for some t > 0. The previous lemma immediately implies
that the first condition of Theorem 2.4 is satisfied for any t > 0 and any sufficiently large k. The
second condition follows from the fact that there exists (a small value) δ > 0 such that the metric
d(x, y) := 1∧ δ−1‖x− y‖ on C is contracting for Pt (see Definition 4.6) for any sufficiently large t > 0
(which is proved in Section 5.1) and Proposition 4.12. Since the support of µ equals C, it therefore
follows from Theorem 2.4 that for some suitable t, all transition probabilities of the chain associated to
Pt converge to µ weakly. To show that even all transition probabilities of the continuous-time Markov
process (Xt) converge to µ weakly, it suffices to observe that (by Proposition 5.4) there exists a constant
C such that d(Pτν,Pτ ν̃) ≤ C d(ν, ν̃) for all τ ∈ [0, t] and all ν, ν̃.
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4 A general form of Harris’ theorem

In this section, we show that under very mild additional assumptions on the dynamic of (3.1), the
uniqueness result for an invariant measure obtained in the previous section can be strengthened to an
exponential convergence result in a type of weighted Wasserstein distance. Our main ingredient will
be the existence of a Lyapunov function for our system. Recall that a Lyapunov function for a Markov
semigroup {Pt}t≥0 over a Polish space X is a function V : X → [0,∞] such that V is integrable with
respect to Pt(x, · ) for every x ∈ X and t ≥ 0 and such that there exist constants CV , γ,KV > 0 such
that the bound ∫

V (y)Pt(x, dy) ≤ CV e−γtV (x) +KV , (4.1)

holds for every x ∈ X and t ≥ 0.

Remark 4.1 If the generator L of Pt is explicitly known, then a sufficient (but by no means necessary)
condition for a function V in the domain of L to be a Lyapunov function is the existence of positive
constants λ and K such that LV (x) ≤ K − λV (x) for every x ∈ X.

In the usual theory of stability for Markov processes, the notion of a “small set” plays an equally
important role. We say that a set A ⊂ X is small if there exists a time t > 0 and a constant ε > 0 such
that

‖Pt(x, · )− Pt(y, · )‖TV ≤ 1− ε , (4.2)

for every x, y ∈ A. Recall that the total variation distance between two probability measures is equal
to 1 if and only if the two measures are mutually singular. A set is therefore small if the transition
probabilities starting from any two points in the set have a “common part” of mass at least ε. The
classical Harris theorem [MT93, HM08b] then states that:

Theorem 4.2 (Harris) Let Pt be a Markov semigroup over a Polish space X such that there exists a
Lyapunov function V with the additional property that the level sets {x : V (x) ≤ C} are small for
every C > 0. Then, Pt has a unique invariant measure µ? and ‖Pt(x, · )−µ?‖TV ≤ C e−γ?t(1 +V (x))
for some positive constants C and γ?.

The proof of Harris’ theorem is based on the fact that a semigroup satisfying these assumptions has
a spectral gap in a modified total variation distance, where the variation is weighted by the Lyapunov
function V . This theorem can clearly not be applied to Markov semigroups generated by stochastic
delay equations in general. As already mentioned earlier, it is indeed known that even in simple cases
where the diffusion coefficient g only depends on the past of the process, the initial condition can be
recovered exactly from the solution at any subsequent time. This implies that in such a case

‖Pt(x, · )− Pt(y, · )‖TV = 1

for every x 6= y and every t > 0, so that (4.2) fails. We would therefore like to replace the notion of
a small set (4.2) by a notion of “closedness” between transition probabilities that reflects the topology
of the underlying space X. Before we state our modified notion of a d-small set, we introduce another
notation: given a positive function d : X × X → R+, we extend it to a positive function d : M1(X) ×
M1(X)→ R+, whereM1(X) stands for the set of (Borel) probability measures on X, by

d(µ, ν) = inf
π∈C(µ,ν)

∫
X2
d(x, y)π(dx, dy) . (4.3)
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If d is a metric, then its extension toM1(X) is simply the corresponding Wasserstein-1 distance. In this
section, we will be considering functions d : X × X → R+ that are not necessarily metrics but that are
“distance-like” in the following sense:

Definition 4.3 Given a Polish space X, a function d : X × X → R+ is distance-like if it is symmetric,
lower semi-continuous, and such that d(x, y) = 0⇔ x = y.

Even though we think of d as being a kind of metric, it need not satisfy the triangle inequality.
However, when lifted to the space of probability measures, d provides a reasonable way of measuring
distances between measures in the sense that d(µ, ν) ≥ 0 and d(µ, ν) = 0⇔ µ = ν, the latter property
being a consequence of the lower semi-continuity of d. The lower semicontinuity of d also ensures that
the infimum in (4.3) is always reached by some coupling π. With this notation at hand, we set:

Definition 4.4 Let P be a Markov operator over a Polish space X endowed with a distance-like function
d : X× X→ [0, 1]. A set A ⊂ X is said to be d-small if there exists ε > 0 such that

d(P(x, · ),P(y, · )) ≤ 1− ε , (4.4)

for every x, y ∈ A.

Remark 4.5 If d(x, y) = dTV(x, y) := 1x 6=y , then the notion of a d-small set coincides with the notion
of a small set given in the introduction, since ‖µ− ν‖TV = dTV(µ, ν).

In general, it is clear that having a Lyapunov function V with d-small level sets cannot be sufficient to
imply the unique ergodicity of a Markov semigroup. A simple example is given by the Glauber dynamic
of the 2D Ising model which exhibits two distinct ergodic invariant measures at low temperatures, but
for which every set is d-small if d is a distance function that metrises the product topology on the state
space {0, 1}Z2

, for example d(σ, σ′) =
∑
k∈Z2

1
2|k|
|σk − σ′k|.

This shows that if we wish to make use of the notion of a d-small set, we should impose additional
assumptions on the function d. One feature that distinguishes the total variation distance dTV among
other distance-like functions is that, for any Markov operator P , one always has the contraction property

dTV(Pµ,Pν) ≤ dTV(µ, ν) .

It is therefore natural to look for distance-like functions with a similar property. This motivates the
following definition:

Definition 4.6 Let P be a Markov operator over a Polish space X endowed with a distance-like function
d : X × X → [0, 1]. The function d is said to be contracting for P if there exists α < 1 such that the
bound

d(P(x, · ),P(y, · )) ≤ αd(x, y) (4.5)

holds for every pair x, y ∈ X with d(x, y) < 1.

Remark 4.7 The assumption that d takes values in [0, 1] is not a restriction at all. One can indeed check
that if an unbounded function d is contracting for a Markov operator P and A is a d-small set, then the
same statements are true for d replaced by d ∧ 1.
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It may seem at first sight that (4.5) alone is already sufficient to guarantee the convergence of tran-
sition probabilities toward a unique invariant measure. A little more thought shows that this is not the
case, since the total variation distance dTV is contracting for every Markov semigroup. The point here is
that (4.5) says nothing about the pairs (x, y) with d(x, y) = 1, and this set may be very large. However,
combined with the existence of a Lyapunov function V that has d-small level sets, it turns out that this
contraction property is sufficient not only for the existence and uniqueness of the invariant measure µ?,
but even for having exponential convergence of transition probabilities to µ? in a type of Wasserstein
distance:

Theorem 4.8 Let Pt be a Markov semigroup over a Polish space X admitting a continuous Lyapunov
function V . Suppose furthermore that there exists t? > 0 and a distance-like function d : X×X→ [0, 1]
which is contracting for Pt? and such that the level set {x ∈ X : V (x) ≤ 4KV } is d-small for Pt? .
(Here KV is as in (4.1).)

Then, Pt can have at most one invariant probability measure µ?. Furthermore, defining d̃(x, y) =√
d(x, y)(1 + V (x) + V (y)), there exists t > 0 such that

d̃(Ptµ,Ptν) ≤ 1
2
d̃(µ, ν) , (4.6)

for all pairs of probability measures µ and ν on X.

Remark 4.9 In the special case d = dTV, we simply recover Harris’ theorem, as stated for example in
[HM08b], so that this is a genuinely stronger statement. It is in this sense that Theorem 4.8 is a “weak”
version of Harris’ theorem where the notion of a “small set” has been replaced by the notion of a d-small
set for a contracting distance-like function d. The only small difference is that Harris’ theorem tells us
that the Markov semigroup Pt exhibits a spectral gap in a total variation norm weighted by 1 + V ,
whereas we obtain a spectral gap in a total variation norm weighted by 1 +

√
V . This is because the

proof of Harris’ theorem does not require the “close to each other” step (since if d(x, y) < 1, one has
x = y and the estimate is trivial), so that we never need to apply the Cauchy-Schwarz inequality.

Proof of Theorem 4.8. Before we start the proof itself, we note that we can assume without loss of
generality that t? > log(8CV )/γ, so that

Pt?V ≤
1
8
V +KV . (4.7)

This is a simple consequence of the following two facts that can be checked in a straightforward way
from the definitions:
• If d is contracting for two Markov operators P and Q, then it is also contracting for the product
PQ. (Actually it is sufficient for d to be contracting for P and to have (4.5) with α = 1 for Q.)

• If a set A is d-small for Q and d is contracting for P , then A is also d-small for PQ.
Note also that the function d̃ : M1(X) ×M1(X) → R+ is convex in each of its arguments, so that the
bound

d̃(Ptµ,Ptν) ≤
∫

X×X
d̃(Pt(x, · ),Pt(y, · ))π(dx, dy) ,

is valid for any coupling π ∈ C(µ, ν). As a consequence, in order to show (4.6), it is sufficient to show
that it holds in the particular case where µ and ν are Dirac measures. In other words, it is sufficient to
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show that there exists t > 0 and α′ < 1 such that

d̃(Pt(x, · ),Pt(y, · )) ≤ α′d̃(x, y) , (4.8)

for every x, y ∈ X. Note also that (4.6) is sufficient to conclude that Pt can have at most one invariant
measure by the following argument. Since V is a Lyapunov function for Pt, it is integrable with respect
to any invariant measure so that, if µ and ν are any two such measures, one has d̃(µ, ν) < ∞. It then
follows immediately from (4.6) and from the invariance of µ, ν, that d̃(µ, ν) = 0. It follows from the
lower semicontinuity of d̃ that µ = ν as required.

In order to show that (4.8) holds, we make use of a trick similar to the one used in [HM08a]. For
β > 0 a (small) parameter to be determined later, we set

d̃β(x, y) =
√
d(x, y)(1 + βV (x) + βV (y)) .

Note that, because of the positivity of V , there exist constants c and C (depending on β of course) such
that cd̃(x, y) ≤ d̃β(x, y) ≤ Cd̃(x, y). As a consequence, if we can show (4.8) for d̃β with some value of
the parameter β, then it also holds for d̃ by possibly considering a larger time t. Just as in [HM08a], we
now proceed by showing that β can be tuned in such a way that (4.8) holds, whether x and y are “close
to each other,” “far from the origin” or “close to the origin.”
Close to each other. This is the situation where d(x, y) < 1, so that

d̃2
β(x, y) = d(x, y)(1 + βV (x) + βV (y)) .

In this situation, we make use of the contractivity of d, the fact that V is a Lyapunov function, and the
Cauchy-Schwarz inequality to obtain

(d̃β(Pt? (x, · ),Pt? (y, · )))2 ≤ inf
π

∫
d(x′, y′)π(dx′, dy′)

∫
(1 + βV (x′) + βV (y′))π(dx′, dy′)

≤ αd(x, y)(1 + β
8 (V (x) + V (y)) + 2βKV ) ,

where the infimum runs over all π ∈ C(Pt? (x, · ),Pt? (y, · )). For any given α1 ∈ (α, 1), we can further-
more choose β sufficiently small such that α(1 + 2βKV ) ≤ α1, so that

(d̃β(Pt? (x, · ),Pt? (y, · )))2 ≤ α1d̃
2
β(x, y) .

Far from the origin. This is the situation where d(x, y) ≥ 1 and V (x) + V (y) ≥ 4KV , so that

d̃2
β(x, y) = 1 + β(V (x) + V (y)) ≥ 1 + 3βKV +

β

4
(V (x) + V (y)) .

Using the Lyapunov structure (4.1), we thus get

(d̃β(Pt? (x, · ),Pt? (y, · )))2 ≤ 1 + 2βKV + CV β e−γt? (V (x) + V (y)) ≤ 1 + 2βKV +
β

8
(V (x) + V (y))

≤ max
{1 + 2βKV

1 + 3βKV
,

1
2

}
d̃2
β(x, y) =: α2d̃

2
β(x, y) ,

where we made use again of (4.7). While α2 depends on the choice of β, we see that for any fixed
β > 0, one has α2 < 1.
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Close to the origin. This is the final situation where d(x, y) = 1 and V (x) + V (y) ≤ 4KV , so that
d̃(x, y) ≥ 1. In this case, we make use of the fact that the level set {x : V (x) ≤ 4KV } is assumed to
be small to conclude that there exists a coupling π for Pt? (x, · ) and Pt? (y, · ) and a constant ε > 0 such
that

∫
d dπ ≤ 1− ε, so that

(d̃β(Pt? (x, · ),Pt? (y, · )))2 ≤
∫
d(x′, y′)π(dx′, dy′)

∫
(1 + βV (x′) + βV (y′))π(dx′, dy′)

≤ (1− ε)(1 + 2βKV + 2βCV e−γt?) ≤ (1− ε)(1 + 4βKV )d̃(x, y) ,

where we made again use of (4.7). Here, ε > 0 is independent of β. Therefore, choosing β sufficiently
small (for example β = ε/(4KV )), we can again make sure that the constant appearing in this expression
is strictly smaller than 1, thus concluding the proof of Theorem 4.8.

Remark 4.10 If the assumptions of the theorem hold uniformly for t? belonging to an open interval of
times, then one can check that Theorem 4.8 implies that there exists r > 0 and t0 > 0 such that the
bound

d̃(Ptµ,Ptν) ≤ e−rtd̃(µ, ν) ,

holds for all t > t0, instead of multiples of t? only.

If d is somewhat comparable to a metric, it turns out that we can even infer the existence of an
invariant measure from the assumptions of Theorem 4.8, just like in the case of Harris’ theorem:

Corollary 4.11 If there exists a complete metric d0 on X such that d0 ≤
√
d and such that Pt is Feller

on X, then under the assumptions of Theorem 4.8, there exists a unique invariant measure µ? for Pt.

Proof. It only remains to show that an invariant measure exists for Pt. Fix an arbitrary probability
measure µ on X such that

∫
V dµ < ∞ and let t be the time obtained from Theorem 4.8. Since

d̃ ≥
√
d ≥ d0 by assumption and since d̃(µ,Ptµ) <∞ by (4.1), it then follows from (4.8) that

d0(Pntµ,P(n+1)tµ) ≤ d̃(Pntµ,P(n+1)tµ) ≤ d̃(µ,Ptµ)
2n

,

so that the sequence {Pntµ}n≥0 is Cauchy in the space of probability measures on X endowed with the
Wasserstein-1 distance associated to d0. Since this space is complete [Vil03], there exists µ∞ such that
Pntµ → µ∞ weakly. In particular, the Feller property of Pt implies Ptµ∞ = µ∞ so that, defining µ?
by

µ?(A) =
1
t

∫ t

0

(Psµ∞)(A) ds ,

one can check that Prµ? = µ? for every r > 0 as required.

The following result (which we already used in the previous section) relates the contraction property
to the conditions in our main result on the convergence of transition probabilities.

Proposition 4.12 Let (Pt) be a Feller Markov semigroup on X and assume that there exists a continuous
metric d which generates the topology of X and which is contracting for Pt for some t > 0. Then the
second condition in Theorem 2.4 is satisfied for the Markov kernel Pt, i.e. there exists a coupling Γ
giving positive mass to the “diagonal at infinity” D.
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Before we turn to the proof of Proposition 4.12, we give the following result which is essential to
settle the measurability questions arising in the proof:

Lemma 4.13 Let Q be a Feller Markov operator on a Polish space X and let d be a [0, 1]-valued
distance-like function on X × X which is contracting for Q. Then there exists α̃ < 1 and a Markov
operator T on X×X such that transition probabilities of T are couplings of the transition probabilities
for Q and such that the inequality

(T d)(x, y) ≤ α̃d(x, y) ,

holds for every (x, y) such that d(x, y) < 1.

Proof. Denote as before by M(X × X) the set of probability measures on X × X endowed with the
topology of weak convergence, so that it is again a Polish space. Let α̃ ∈ (α, 1), where α is as in
Definition 4.6. For every (x, y) ∈ X× X, denote

F (x, y) = {Γ ∈ C(Q(x, · ),Q(y, · )) : Γ(d) ≤ α̃d(x, y)} ,

and denote by ∆ the closure in X × X of the set {d(x, y) < 1}. We know that F (x, y) is non-empty
by assumption whenever d(x, y) < 1. The Feller property of Q then ensures that this is also true for
(x, y) ∈ ∆.

The proof of the statement is complete as soon as we can show that there exists a measurable map
T̂ : X × X → M(X × X) such that T̂ (x, y) ∈ F (x, y) for every x, y ∈ ∆, since it then suffices to set
for example

T (x, y; · ) =
{

T̂ (x, y) if (x, y) ∈ ∆,
Q(x, · )⊗Q(y, · ) otherwise.

Since the set F (x, y) is closed for every pair (x, y) by the continuity of d, this follows from the Kura-
towski, Ryll-Nardzewski selection theorem [KR65, Wag77] provided we can show that, for every open
set U ⊂M(X× X), the set F−1(U ) = {(x, y) : F (x, y) ∩ U 6= φ} is measurable.

Since on a Polish space every open set is a countable union of closed sets and since F−1(U ∪ V ) =
F−1(U ) ∪ F−1(V ) (the same is not true in general for intersections!), the claim follows if we can show
that F−1(U ) is measurable for every closed set U . Under our assumptions, F−1(U ) actually turns out
to be closed if U is closed. To see this, take a convergent sequence (xn, yn) ∈ F−1(U ). The definition
of F implies that there exist couplings Γn ∈ C(Q(xn, · ),Q(yn, · )) with Γn(d) ≤ α̃d(xn, yn). Since
Q is Feller, the sequence {Γn} is tight, so that there exists a subsequence converging to a limit Γ.
Since Γ belongs to C(Q(x, · ),Q(y, · )) and since, by the continuity of d, we have Γ(d) ≤ α̃d(x, y),
(x, y) ∈ F−1(U ) as claimed.

Proof of Proposition 4.12. By assumption, there exists some α ∈ (0, 1) such that d(Pt(x, .),Pt(y, .)) ≤
αd(x, y) for all x, y ∈ X which satisfy d(x, y) < 1. Consider the Markov operator Q := Pt. Let T be
the Markov operator from Lemma 4.13 so that if, for fixed x, y ∈ X, we denote the corresponding chain
starting at (x, y) by (Xn, Yn), then we have Ed(X1, Y1) ≤ α̃d(x, y) whenever d(x, y) < 1. Let Γx,y be
the law of (Xn, Yn), n ∈ N0. Now we define

Vn := α̃−nd(Xn, Yn)

and τ := inf{n ∈ N : d(Xn, Yn) ≥ 1}. Then Vn∧τ , n ∈ N0 is a non-negative supermartingale and
therefore

P{τ <∞} ≤ P{sup
n≥0

Vn∧τ ≥ 1} ≤ d(x, y) ,
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i.e.
Γx,y{d(Xn, Yn) ≤ α̃n for all n ∈ N0} ≥ 1− d(x, y) .

This shows that the second assumption in Theorem 2.4 is satisfied for the chain associated to Q.

4.1 A consequence of spectral gap results: stability of invariant measures
One may wonder why we made all this effort to ensure that a “spectral gap” result like Theorem 4.8
holds, rather than being content with having simply exponential convergence of transition probabilities
to the invariant measure. One payoff is that it allows to very easily obtain stability results of the invariant
measure with respect to small perturbations in the Markov semigroup, as we will show in this section.

Assume for the sake of the argument that d̃ satisfies the triangle inequality (in general it doesn’t; see
below) and that we have a sequence of “approximating semigroups” Pεt such that the bound

d̃(Pεt (x, ·),Pt(x, ·)) ≤ εC(t)Ṽ (x) ,

holds, where C is a function that is bounded on bounded subsets of R and Ṽ is some positive function
Ṽ : X→ R+.

Let now µ? denote the invariant measure for Pt and µε? an invariant measure for Pεt (which need not
be unique). Choosing t as in (4.6), one then has the bound

d̃(µ?, µε?) = d̃(Ptµ?,Pεt µε?) ≤ d̃(Ptµ?,Ptµε?) + d̃(Ptµε?,Pεt µε?)

≤ 1
2
d̃(µ?, µε?) + εC(t)

∫
X
Ṽ (x)µε?(dx) ,

from which we deduce that d̃(µ?, µε?) ≤ 2εC(t)
∫

X Ṽ (x)µε?(dx). If one can obtain an a priori bound on
µε? that ensures that

∫
X Ṽ (x)µε?(dx) is bounded independently of ε, this shows that the distance between

the invariant measures for Pt and Pεt is comparable to the distance between the transition probabilities
for some fixed time t.

This argument is still valid if the “distance function” d̃ satisfies a weak form of the triangle inequality,
i.e. if there exists a positive constant K > 0 such that

d̃(x, y) ≤ K(d̃(x, z) + d̃(z, y)) , (4.9)

for every x, y, z ∈ X. This turns out to be often satisfied in practice, due to the following result:

Lemma 4.14 Let d : X×X→ [0, 1] be a distance-like function and assume that there exists a constant
Kd such that

d(x, y) ≤ Kd(d(x, z) + d(z, y)) , (4.10)

holds for every x, y, z ∈ X. Assume furthermore that V : X → R+ is such that there exist constants c,
C such that the implication

d(x, z) ≤ c ⇒ V (x) ≤ CV (z) (4.11)

holds. Then, there exists a constant K such that (4.9) holds for d̃ defined as in Theorem 4.8.

Proof. Note first that it is sufficient to show that there exists a constant K such that

d(x, y)(1 + V (x) + V (y)) ≤ K(d(x, z)(1 + V (x) + V (z)) + d(z, y)(1 + V (z) + V (y))) . (4.12)
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Since d is symmetric, we can assume without loss of generality that V (x) ≥ V (y). We consider the
following two cases

If d(x, z) ≥ c, then the boundedness of d implies the existence of a constant C̃ such that

d(x, y)(1+V (x)+V (y)) ≤ C̃(1+V (x)+V (y)) ≤ C̃

c
d(x, z)(1+V (x)+V (y)) ≤ 2C̃

c
d(x, z)(1+V (x)) ,

from which (4.12) follows with K = 2C̃/c.
If d(x, z) ≤ c, we make use of our assumptions (4.10) and (4.11) to deduce that

d(x, y)(1 + V (x) + V (y)) ≤ Kd(d(x, z) + d(z, y))(1 + V (x) + V (y))
≤ 2Kdd(x, z)(1 + V (x)) + 2CKdd(z, y)(1 + V (z)) ,

from which (4.12) follows with K = 2Kd(1 ∨ C).

Remark 4.15 If X is a Banach space and d(x, y) = 1 ∧ ‖x − y‖, then Lemma 4.14 essentially states
that d̃ satisfies (4.9) provided that V (x) grows at most exponentially with ‖x‖.

5 Application of the spectral gap result to SDDEs

In this section, we apply the abstract results from the previous section to the problem of exponential
convergence to an invariant measure for the type of stochastic delay equations considered earlier. The
main problem will turn out to be to find a distance-like function d which is contracting. In order to
obtain an exponential convergence result, we will have to assume, just like in the case of Harris chains
[MT93, HM08b] some Lyapunov structure. We therefore introduce the following assumption:

Assumption 5.1 There exists a continuous function V : C → R+ such that lim‖X‖→∞ V (X) = +∞
and such that there exist strictly positive constants CV , γ and KV such that the bound

EV (Xt) ≤ CV e−γtV (X0) +KV ,

holds for solutions to (3.1) with arbitrary initial conditions X0 ∈ C.

Remark 5.2 If g is bounded, then Assumption 5.1 is satisfied if 〈f (x), x(0)〉 ≤ C − c|x(0)|2 for some
c > 0, by setting V (X) = |X(0)|2. There are however many examples (see for example [RBT02, Hai09]
in the case without delay), where finding an appropriate Lyapunov function is an art by itself that requires
a thorough understanding of the dynamic and has no “one fits all” recipe.

The distance-like function d that we are going to use in this section is given by

d(X,Y ) = 1 ∧ δ−1‖X − Y ‖ , (5.1)

for a suitable (small) constant δ to be determined later. We start by verifying that bounded sets are
d-small for every value of δ and we will then proceed to showing that under suitable assumptions, it is
possible to find δ > 0 such that d is also contracting.
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5.1 Bounded sets are d-small
Proposition 5.3 Let the assumptions of Theorem 3.1 be satisfied, let d be as in (5.1) and let t ≥ 2r be
arbitrary. Then every bounded set is d-small for Pt.

Proof. Fix t ≥ 2r. We show that every closed ball BR ⊂ C with center 0 and radius R is d-small for
Pt. By Lemma 3.8, we know that p := infx∈BR Pt(x,Bδ/4) > 0. Let x, y ∈ BR and let X and Y be
solutions of (3.1) with initial conditions x and y respectively. We couple X and Y independently. Then

d(Pt(x, .),Pt(y, .)) ≤ E(1 ∧ (δ−1‖Xt − Yt‖))

≤ P({Xt /∈ Bδ/4} ∪ {Yt /∈ Bδ/4}) +
1
2

P{Xt ∈ Bδ/4, Yt ∈ Bδ/4} ≤ 1− 1
2
p2 ,

for all x, y ∈ BR, so the claim follows.

5.2 The distance d is contracting
Before we start, we give the following a priori estimate that shows that trajectories of (3.1) driven by
the same realisation of the noise cannot separate too rapidly. More precisely, we have:

Proposition 5.4 Let the assumptions of Theorem 3.1 be satisfied. There exists κ > 0 such that the
bound

E‖Xt − X̃t‖4 ≤ eκ(1+t)2‖X0 − X̃0‖4 ,

holds for all t ≥ 0 and any pair of initial conditions X0, X̃0 ∈ C.

Proof. The proof is similar to the argument used in the proof of Theorem 3.1. Setting Z(t) = X(t) −
X̃(t), we have the bound

d|Z(t)|2 = 2〈f (Xt)− f (X̃t), Z(t)〉 dt+ |||g(Xt)− g(X̃t)|||2 dt+ dM (t) ≤ K‖Zt‖2 dt+ dM (t) ,

whereM is a martingale with quadratic variation process bounded byC
∫ t

0
‖Zs‖4 ds. DefiningM∗(t) =

sups≤tM (s), we thus obtain the bound

‖Zt‖2 ≤ ‖Z0‖2 +K

∫ t

0

‖Zs‖2 ds+M∗(t) ,

so that

E‖Zt‖4 ≤ 3E
(
‖Z0‖4 +K2

(∫ t

0

‖Zs‖2 ds
)2

+ (M∗(t))2
)

≤ 3
(
‖Z0‖4 +K2t

∫ t

0

E‖Zs‖4 ds+ C

∫ t

0

E‖Zs‖4 ds
)

,

where we used the Burkholder-Davis-Gundy inequality [RY91] in order to bound the expectation of
(M∗)2. The claim follows from Gronwall’s lemma.

In this subsection, we show one possible way of verifying that d is contracting that is suited to
our problem. This is by far not the only one. One can check for example that the procedure followed
in [HM08a] allows to construct a contracting distance for the degenerate 2D stochastic Navier-Stokes
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equations by using a gradient bound on the semigroup. A general version of this argument is presented
in Section 5.3 below. For the problem at hand, it seems however more appropriate and technically
straightforward to consider a “binding construction” in the terminology of [MY02, Hai02, Mat02b].

We fix two initial conditionsX0, X̃0 ∈ C and consider the construction from Section 3. We fix some
γ0 > 0 and choose λ sufficiently large so that the conclusion of Lemma 3.6 holds. As in the proof of
Theorem 3.1, we also introduce the stopping time τ = inf{t > 0 :

∫ t
0
|v(s)|2 ds ≥ ε−1‖X0 − X̃0‖2},

where v is as in the proof of Theorem 3.1. (Note that the value of ε is not necessarily that from Section 3,
but will be determined later.) We also define ṽ by ṽ(s) = v(s)1τ>s.

This defines a map Ψ from Ω := C([0,∞),Rm) to itself by Ψ(w) = w +
∫ ·

0
ṽ(s) ds (the map Ψ

furthermore depends on the initial conditions X0 and X̃0, but we suppress this dependence from the
notation). The image P̃ of Wiener measure P under Ψ has a density D(w) = dP̃/dP.

The aim of introducing the cutoff is that if we define D̃(w) = 1/D(w), we obtain “for free” bounds
of the type∫

(1−D(w))2 P(dw) ≤ Cε−1‖X0 − X̃0‖2 ,
∫

(1− D̃(w))2 P̃(dw) ≤ Cε−1‖X0 − X̃0‖2 ,

for some constant C > 0, provided that we restrict ourselves to pairs of initial conditions such that

‖X0 − X̃0‖2 ≤ ε . (5.2)

Had we not introduced the cut-off, we would need to get exponential integrability of v first.
The map Ψ allows to construct, for any two initial conditions X0 and X̃0, a coupling for P with

itself in the following way. Define the map Ψ̃ : Ω → Ω × Ω by Ψ̃(w) = (w,Ψ(w)), denote by πi the
projection onto the ith component of Ω× Ω, and set

Π0(dw1, dw2) = (1 ∧ D̃(w2))(Ψ̃#P)(dw1, dw2) ,
Π(dw1, dw2) = Π0(dw1, dw2) + Z−1(P− π1

# Π0)(dw1)(P− π2
# Π0)(dw2) ,

Ω

Ω Ω0

Ψ̃

where Z = 1−Π0(Ω×Ω) = 1
2‖P− P̃‖TV is a suitable constant. One can

check that Π as defined above is a coupling for P and P. Furthermore,
it is designed in such a way that it maximises the mass of the set Ω0 =
{(w,w′) : w′ = Ψ(w)}. We claim that this coupling is designed in such
a way that its image under the product solution map of (3.1) allows to
verify that d as in (5.1) is contracting for some sufficiently small value
of δ > 0 to be determined later. Note that, since the bound (4.6) only
needs to be checked for pairs of initial conditions with d(X0, X̃0) < 1,
the constraint (5.2) is satisfied provided that we make sure that δ2 ≤ ε.

In order to see that this is indeed the case, we fix a terminal time t
and we break the space Ω× Ω = Ω1 ∪ Ω2 ∪ Ω3 into three parts:

Ω1 = {(w,w′) : w′ = Ψ(w) & τ (w) ≥ t} ,
Ω2 = {(w,w′) : w′ = Ψ(w) & τ (w) < t} ,
Ω3 = {(w,w′) : w′ 6= Ψ(w)} .

Here, we made use of the stopping time τ defined at the beginning of this section. We consider the set Ω1

as being the set of “good” realisations and we will show that Ω1 has high probability. The contributions
from the other two sets will be considered as error terms.
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Consider now a pair (X0, X̃0) of initial conditions such that d(X0, X̃0) < 1, which is to say that
‖X0 − X̃0‖ < δ. Denote by Xt and X̃t the solutions to (3.1) driven by the noise realisations w and w′

respectively. We then have∫
Ω1

d(Xt(w), X̃t(w′)) Π(dw, dw′) ≤ δ−1

∫
Ω1

‖Xt(w)− X̃t(w′)‖Π(dw, dw′)

≤ δ−1

∫
Ω

‖Xt(w)− X̃t(Ψ(w))‖P(dw) ≤ Cδ−1 e−γ0t‖X0 − X̃0‖

= C e−γ0td(X0, X̃0) ,

where we made use of the bounds obtained in Lemma 3.6. Regarding the integral over Ω2, we combine
Lemma 3.6, Proposition 5.4 and the strong Markov property to conclude that∫

Ω2

d(Xt(w), X̃t(w′)) Π(dw, dw′) ≤ δ−1

∫
τ<t

‖Xt(w)− X̃t(Ψ(w))‖P(dw)

≤ δ−1
(∫

τ<t

‖Xt(w)− X̃t(Ψ(w))‖2 P(dw)
)1/2√

P(τ < t)

≤ δ−1E
(
C e−γ0τ eκ(1+t−τ )2

)
‖X0 − X̃0‖

√
P(τ < t)

≤ C eκ(1+t)2d(X0, X̃0)
√

P(τ < t) .

At this stage, we combine Lemma 3.6 with Chebychev to conclude that

P(τ < t) ≤ P
(∫ ∞

0

|v(s)|2 ds ≥ ε−1‖X0 − X̃0‖2
)
≤ Cε ,

for some constant C independent of t and the pair (X0, X̃0). Finally, we obtain the bound∫
Ω3

d(Xt(w), X̃t(w′)) Π(dw, dw′) ≤ Π(Ω3) =
∫

Ω

(1− 1 ∧ D̃(w)) P̃(dw)

=
∫

Ω

(0 ∨ (1− D̃(w))) P̃(dw) ≤
(∫

Ω

(1− D̃(w))2 P̃(dw)
)1/2

≤ Cε−1/2‖X0 − X̃0‖ ≤ Cδε−1/2d(X0, X̃0) .

The required bound follows by first taking ε small enough and then taking δ small enough.

5.3 Construction of contracting distances for SPDEs
Finally, we want to show how the existence of a contracting distance for a Markov semigroup Pt can be
verified in the case of stochastic PDEs. This is very similar to the calculation performed in [HM08a],
but it has the advantage of not being specific to the Navier-Stokes equations. Recall that [HM08c] yields
conditions under which the Markov semigroup (over some separable Hilbert space H) generated by a
class of stochastic PDEs satisfies the following gradient bound for every function ϕ ∈ C1(H,R):

‖DPtϕ(X)‖ ≤W (X)
(

e−γ̃t
√

(Pt‖Dϕ‖2)(X) + C‖ϕ‖∞
)
. (5.3)

Here, W : H → R+ is some continuous function that controls the regularising properties of Pt and
γ̃, C are some strictly positive constants. It turns out that if the semigroup Pt has sufficiently good
dissipativity properties with respect to W , then one can find a contracting distance function for it.
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Before we state the result, let us define a family of “weighted metrics” %p onH by

%p(X,Y ) = inf
γ : X→Y

∫ 1

0

W p(γ(t)) ‖γ̇(t)‖ dt ,

where the infimum runs over all Lipschitz continuous paths γ : [0, 1] → H connecting X to Y . With
this notation at hand, we have:

Proposition 5.5 Let {Pt}t≥0 be a Markov semigroup over a separable Hilbert space H satisfying the
bound (5.3) for some continuous functionW : H → [1,∞). Assume furthermore that there exists p > 1,
a time t? > 0 and a constant C̃ > 0 such that the bound

PtW 2p ≤ C̃W 2p−2 , (5.4)

holds for every t ≥ t?. (In other words, W is a kind of super-Lyapunov function for Pt.) Then, there
exists δ > 0 and T > 0 such that the metric d(X,Y ) = 1 ∧ δ−1%p(X,Y ) is contracting for PT .

Proof. By Monge-Kantorowitch duality, it is sufficient to show that there exist T > 0 and δ > 0 such
that the bound

|PTϕ(X)− PTϕ(Y )| ≤ %p(X,Y )
2δ

, (5.5)

holds for every C1 function ϕ : H → R which has Lipschitz constant 1 with respect to d. Note now that
such a function ϕ satisfies

|ϕ(X)| ≤ 1
2

, ‖Dϕ(X)‖ ≤ W p(X)
δ

.

In particular, it follows from the gradient bound (5.3) combined with (5.4) that for T ≥ t?, one has

‖DPTϕ(X)‖ ≤W (X)
(
δ−1e−γ̃T

√
C̃W p−1(X) +

C

2

)
.

Choosing T sufficiently large and δ sufficiently small, we see that it is possible to ensure that

‖DPTϕ(X)‖ ≤ W p(X)
2δ

.

Since, on the other hand, for any path γ connecting X to Y we have

|PTϕ(X)− PTϕ(Y )| ≤
∫ 1

0

‖DPTϕ(γ(s))‖ ‖γ̇(s)‖ ds ,

the requested bound (5.5) follows at once.
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