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Abstract
We study a model of two interacting Hamiltonian particles subject to a common po-
tential in contact with two Langevin heat reservoirs: one at finite and one at infinite
temperature. This is a toy model for ‘extreme’ non-equilibrium statistical mechanics.
We provide a full picture of the long-time behaviour of such a system, including the
existence / non-existence of a non-equilibrium steady state, the precise tail behaviour
of the energy in such a state, as well as the speed of convergence toward the steady
state.

Despite its apparent simplicity, this model exhibits a surprisingly rich variety of
long time behaviours, depending on the parameter regime: if the surrounding potential
is ‘too stiff’, then no stationary state can exist. In the softer regimes, the tails of
the energy in the stationary state can be either algebraic, fractional exponential, or
exponential. Correspondingly, the speed of convergence to the stationary state can be
either algebraic, stretched exponential, or exponential. Regarding both types of claims,
we obtain matching upper and lower bounds.

Keywords: Hypocoercivity, subexponential convergence, nonequilibrium, Lyapunov
functions
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1 Introduction

The aim of this work is to provide a detailed investigation of the dynamic and the
long-time behaviour of the following model. Consider two point particles moving in a
potential V1 and interacting through a harmonic force, that is the Hamiltonian system
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with Hamiltonian

H(p, q) =
p2
0 + p2

1

2
+ V1(q0) + V1(q1) + V2(q0 − q1) , V2(q) =

α

2
q2 . (1.1)

We assume that the first particle is in contact with a Langevin heat path at temperature
T > 0. The second particle is also assumed to have a stochastic force acting on it, but
no corresponding friction term, so that it is at ‘infinite temperature’. The corresponding
equations of motion are

dqi = pi dt , i = {0, 1} , (1.2)

dp0 = −V ′1 (q0) dt+ α(q1 − q0) dt− γ p0 dt+
√

2γT dw0(t) ,

dp1 = −V ′1 (q1) dt+ α(q0 − q1) dt +
√

2γT∞ dw1(t) ,

where w0 and w1 are two independent Wiener processes. Although we use the symbol
T∞ in the diffusion coefficient appearing in the second oscillator, this should not be
interpreted as a physical temperature since the corresponding friction term is missing,
so that detailed balance does not hold, even if T∞ = T . We also assume without
further mention throughout this article that the parameters α, γ, T and T∞ appearing
in the model (1.2) are all strictly positive.

The equations of motion (1.2) determine a diffusion on R4 with generator L given
by

L = XH − γp0∂p0 + γ(T0∂
2
p0 + T∞∂

2
p1) , (1.3)

where XH is the Liouville operator associated to H , i.e. the first-order differential
operator corresponding to the Hamiltonian vector field. It is easy to show that (1.2)
has a unique global solution for every initial condition since the evolution of the total
energy is controlled by

LH = γ(T0 + T∞)− γp2
0 , (1.4)

and so EH(t) ≤ H(0) exp(γ(T0 + T∞)t). Schematically, the system under considera-
tion can thus be depicted as follows, where we show the three terms contributing to the
change of the total energy:

γT γT∞

−γp2
0

q0 q1

This model is very closely related to the toy model of heat conduction previously
studied by various authors in [EPR99b, EPR99a, EH00, RT00, RT02, EH03, Car07,
HM08a] consisting of a chain of N anharmonic oscillators coupled at its endpoints
to two heat baths at possibly different temperatures. The main difference is that the
present model does not have any friction term on the second particle. This is similar
in spirit to the system considered in [MTVE02, DMP+07], where the authors study
the stationary state of a ‘resonant duo’ with forcing on one degree of freedom and
dissipation on another one. Because of this lack of dissipation, even the existence of a
stationary state is not obvious at all in such a system. Indeed, if the coupling constant
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α is equal to zero, one can easily check that the invariant measure for (1.2) is given by
exp(−(p2

0/2 + V1(q0))/T ) dp0 dp1 dq0 dq1, which is obviously not integrable.
One of the main questions of interest for such a system is therefore to under-

stand the mechanism of energy dissipation. In this sense, this is a prime example of a
‘hypocoercive’ system where the dissipation mechanism does not act on all the degrees
of freedom of the system directly, but is transmitted to them indirectly through the dy-
namic [Vil07, Vil08]. This is somewhat analogous to ‘hypoelliptic’ systems, where it
is the smoothing mechanism that is transmitted to all degrees of freedom through the
dynamic. The system under consideration happens to be hypoelliptic as well, but this is
not going to cause any particular difficulty and will not be the main focus of the present
work.

Furthermore, since one of the heat baths is at ‘infinite’ temperature, even if a sta-
tionary state exists, one would not necessarily expect it to behave even roughly like
exp(−βH) for some effective inverse temperature β. It is therefore of independent
interest to study the tail behaviour of the energy of (1.2) in its stationary state.

In order to simplify our analysis, we are going to limit our investigation to one of
the simplest possible cases, where V1 is a perturbation of a homogeneous potential.
More precisely, we assume that V1 is an even function of class C2 such that

V1(x) =
|x|2k

2k
+R1(x) ,

with a remainder term R1 such that

sup
x∈R\[−1,1]

sup
m≤2

|R(m)
1 (x)|

|x|2k−1−m <∞ .

Here, k ∈ R is a parameter describing the ‘stiffness’ of the individual oscillators. (In
the case k = 0, we assume that V1(x) = C +R1(x) for some constant C.)

γT0 γT1

−γp2
0 −γp2

1

q0 q1

In the case where both ends of the chain are
at finite temperature (which would correspond to
the situation depicted on the right), it was shown
in [EPR99b, EH00, RT02, Car07] that, provided
that the coupling potential V2 grows at least as
fast at infinity as the pinning potential V1 and
that the latter grows at least linearly (i.e. pro-
vided that 1

2 ≤ k ≤ 1 with our notations), the
Markov semigroup associated to the model has a unique invariant measure µ? and its
transition probabilities converge to µ? at exponential speed. One can actually show
even more, namely that the Markov semigroup consists of compact operators in some
suitably weighted space of functions.

Intuitively, the condition that V2 grows at least as fast as V1 can be understood by
the fact that in this case, at high energies, the interaction dominates so that no energy
can get ‘trapped’ in the system. Therefore, the system is sufficiently stiff so that if the
energy of any one of its oscillators is large, then the energy of all of the oscillators
must be large after a very short time. As a consequence, the system behaves like a
‘molecule’ at some effective temperature that moves in the global potential V1. While
the arguments presented in [RT02, Car07] do not cover the case of one of the heat baths
being at infinite temperature, it is nevertheless possible to show that in this case, the
Markov semigroup Pt generated by solutions to (1.2) behave qualitatively like in the
case of finite temperature. In particular, if V1 grows at least linearly at infinity, the
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system possesses a spectral gap in a space of functions weighted by a weight function
‘close to’ exp(β0H) for some β0 > 0.

This discussion suggest that:
1. If V2 � V1 � 1, our toy model can sustain arbitrarily large energy currents.
2. In this case, even though the heat bath to the right is at infinite temperature, the

system stabilises at some finite ‘effective temperature’, as expressed by the fact
that H has finite exponential moments under the invariant measure.

This is in stark contrast with the behaviour encountered when V1 grows faster than
V2 at infinity. In this case, the interaction between neighbouring particles is suppressed
at high energies, which precisely favours the trapping of energy in the bulk of the chain.
It was shown in [HM08a] that this can lead in many cases to a loss of compactness of
the semigroup generated by the dynamic and the appearance of essential spectrum at 1.
This is a manifestation of the fact that energy transport is very weak in such systems,
due to the appearance of ‘breathers’, localised structures that only decay very slowly
[MA94]. In this case, one expects that the long-time behaviour of (1.2) depends much
more strongly on the fine details of the model. For example, regarding the finiteness of
the ‘temperature’ of the second oscillator, one may introduce the following notions by
increasing order of strength:

1. There exists an invariant probability measure µ? for (1.2), that is a positive
solution to L∗µ? = 0.

2. There exists an invariant probability measure µ? and the average energy of the
second oscillator is finite under µ?.

3. There exists an invariant probability measure µ? and the energy of the second
oscillator has some finite exponential moment under µ?.

We will show that it is possible to find parameters such that the second oscillator does
not have finite temperature according to any of these notions of finiteness. On the other
hand, it is also possible to find parameters such that it does have finite temperature
according to some notions and not to others.

It turns out that, maybe rather surprisingly for such a simple model, there are five
different critical value for the strength k of the pinning potential V1 that separate be-
tween qualitatively different behaviours regarding both the integrability properties of
the invariant measure µ? and the speed of convergence of transition probabilities to-
wards it. These critical values are k = 0, k = 1

2 , k = 1, k = 4
3 , and k = 2. More

precisely, there exists a constant Ĉ > 0 such that, setting

ζ? =
3
4
α2Ĉ − T∞

T∞
, κ =

2
k
− 1 , (1.5)

the results in this article can be summarised as follows:

Theorem 1.1 The integrability properties of the invariant measure µ? for (1.2) and the
speed of convergence of transition probabilities of (1.2) toward µ? can be described by
the following table:



INTRODUCTION 5

Parameter range Integrability of µ? Convergence speed Prefactor

k > 2 — — —
k = 2, T∞ > α2Ĉ — — —
k = 2, T∞ < α2Ĉ Hζ?±ε t−ζ?±ε Hζ?+ε+1

4
3 ≤ k < 2 exp(γ±Hκ) exp(−γ±tκ/(1−κ)) exp(δHκ)
1 < k ≤ 4

3 exp(γ±Hκ) exp(−γ±t) exp(δH1−κ)

k = 1 exp(γ±H) exp(−γ±t) Hε

1
2 ≤ k < 1 exp(γ±H) exp(−γ±t) exp(δH

1
k−1)

0 < k ≤ 1
2 exp(γ±H) exp(−γ±tk/(1−k)) exp(δH)

k ≤ 0 — — —

Here, the symbol ‘—’ means that no invariant probability measure exists for the corre-
sponding range of parameters. Whenever there exists a (necessarily unique) invariant
measure µ?, we indicate integrability functions I±(H), convergence speeds ψ±(t) and
a prefactorK(H). The constant ε can be made arbitrarily small, whereas the constants
γ+, γ− and δ are fixed and depend on the fine details of the model. For each line in
this table, the following statements hold:
• One has

∫
R4 I+(H(x))µ?(dx) = +∞, but

∫
R4 I−(H(x))µ?(dx) < +∞.

• There exists a constant C such that

‖Pt(x, · )− µ?‖TV ≤ CK(H(x))ψ+(t) , (1.6)

for every initial condition x ∈ R4 and every time t ≥ 0.
• For every initial condition x ∈ R4, there exits a constant Cx and a sequence of

times tn increasing to infinity such that

‖Ptn (x, · )− µ?‖TV ≥ Cxψ−(tn) ,

for every n.

Remark 1.2 The case k = 2 and T∞ = α2Ĉ is not covered by these results. We
expect that the system admits no invariant probability measure in this case.

Remark 1.3 For k ∈ (0, 1
2 ), even the gradient dynamic fails to exhibit a spectral gap.

It is therefore not surprising (see for example [HN05]) that in this case we see again
subexponential relaxation speeds.

Remark 1.4 This table exhibits a symmetry κ ↔ k and Hκ ↔ H around k = 1
(indicated by a grayed row in the table). The reason for this symmetry will be explained
in Section 2 below. If we had chosen V1(x) = K logx+R1(x) in the case k = 0, this
symmetry would have extended to this case, via the correspondence ζ? ↔ K

T+T∞
− 1

2 .

Remark 1.5 It follows from (1.6) that the time it takes for the transition probabilities
starting from x to satisfy ‖Pt(x, · ) − µ?‖TV ≤ 1

2 , say, is bounded by H(x)2−
2
k for

k ∈ (1, 2) and by H(x)
1
k−1 for k ∈ (0, 1). These bounds are expected to be sharp in

view of the heuristics given in Section 2 below.
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Remark 1.6 Instead of considering only distances in total variation between proba-
bility measures, we could also have obtained bounds in weighted norms, similarly to
[DFG06].

Remark 1.7 The operator (1.3) appears very closely related to the kinetic Fokker-
Planck operator

LV,2 = p ∂q −∇V (q) ∂p − γp ∂p + ∂2
p ,

for the potential V (q0, q1) = V1(q0)+V1(q1)+ α
2 (q0−q1)2. The fundamental difference

however is that there is a lack of friction on the second degree of freedom. The effect
of this is dramatic, since the results from [HN04] (see also [DV01]) show that one has
exponential return to equilibrium for the kinetic Fokker-Planck operator in the case
k ≥ 1, which is clearly not the case here.

Finally, the techniques presented in this article also shed some light on the mech-
anisms at play in the Helffer-Nier conjecture [HN05, Conjecture 1.2], namely that the
long-time behaviour of the Fokker-Planck operator without inertia

LV,1 = −∇V (q) ∂q + ∂2
q ,

is qualitatively the same as that of the kinetic Fokker-Planck operator. If V grows
faster than quadratically at infinity (so that in particular LV,1 has a spectral gap), then
the deterministic motion on the energy levels gets increasingly fast at high energies,
so that the angular variables get washed out and the heuristics from Section 2.1 below
suggests that the total energy of the system behaves like the square of an Ornstein-
Uhlenbeck process, thus leading to a spectral gap for LV,2 as well.

If on the other hand V grows slower than quadratically at infinity, then the motion
of the momentum variable happens on a faster timescale at high energies than that of
the position variable. The heuristics from Section 2.2 below then suggests that the
dynamic corresponding to LV,2 is indeed very well approximated at high energies by
that corresponding to LV,1.

These considerations suggest that any counterexample to the Helffer-Nier conjec-
ture would come from a potential that has very irregular (oscillating) behaviour at in-
finity, so that none of these two arguments quite works. On the other hand, any proof
of the conjecture would have to carefully glue together both arguments.

The structure of the remainder of this article is the following. First, in Section 2,
we derive in a heuristic way reduced equations for the energies of the two oscillators.
While this section is very far from rigorous, it allows to understand the results presented
above by linking the behaviour of (1.2) to that of the diffusion

dX = −ηXσ dt+
√

2 dW (t) , X ≥ 1 ,

for suitable constants η and σ.
The remainder of the article is devoted to the proof of Theorem 1.1, which is broken

into five sections. In Section 3, we introduce the technical tools that are used to obtain
the above statements. These tools are technically quite straightforward and are all based
on the existence of test functions with certain properties. The whole art is to construct
suitable test functions in a relatively systematic manner. This is done by refining the
techniques developed in [HM08a] and based on ideas from homogenisation theory.

In Section 4, we proceed to showing that k = 2 and T∞ = α2Ĉ is the borderline
case for the existence of an invariant measure. In Section 5, we then show sharp inte-
grability properties of the invariant measure for the regime k > 1 when it exists. This
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will imply in particular that even though the effective temperature of the first oscillator
is always finite (for whatever measure of finiteness), the one of the second oscillator
need not necessarily be. In particular, note that it follows from Theorem 1.1 that the
borderline case for the integrability of the energy of the second oscillator in the invari-
ant measure is given by k = 2 and T∞ = 7

3α
2Ĉ. These two sections form the ‘meat’

of the paper.
In Section 6, we make use of the integrability results obtained previously in order

to obtain bounds both from above and from below on the convergence of transition
probabilities towards the invariant measure. The upper bounds are based on a recent
criterion from [DFG06, BCG08], while the lower bounds are based on a simple crite-
rion that exploits the knowledge that certain functions of the energy fail to be integrable
in the invariant measure. Finally, in Section 7, we obtain the results for the case k ≤ 1.
While these final results are based on the same techniques as the remainder of the
article, the construction of the relevant test functions in this case in inspired by the
arguments presented in [RT02, Car07].

1.1 Notations
In the remainder of this article, we will use the symbol C to denote a generic strictly
positive constant that, unless stated explicitly, depends only on the details of the model
(1.2) and can change from line to line even within the same block of equations.

Acknowledgements
The author would like to thank Jean-Pierre Eckmann, Xue-Mei Li, Jonathan Mattingly, and Eric
Vanden-Eijnden for stimulating discussions on this and closely related problems. This work was
supported by an EPSRC Advanced Research Fellowship (grant number EP/D071593/1).

2 Heuristic derivation of the main results

In this section, we give a heuristic derivation of the results of Theorem 1.1. Since we
are interested in the tail behaviour of the energy in the stationary state, an important
ingredient of the analysis is to isolate the ‘worst-case’ degree of freedom of (1.2), that
would be some degree of freedom X which dominates the behaviour of the energy at
infinity. The aim of this section is to argue that it is always possible to find such a degree
of freedom (but what X really describes depends on the details of the model, and in
particular on the value of k) and that, for large values of X , it satisfies asymptotically
an equation of the type

dX = −ηXσ dt+
√

2 dW (t) , (2.1)

for some exponent σ and some constant η > 0. Before we proceed with this pro-
gramme, let us consider the model (2.1) on the set {X ≥ 1} with reflected boundary
conditions at X = 1. The invariant measure µ? for (2.1) then has density proportional
to exp(−ηXσ+1/(σ + 1)) for σ > −1 and to X−η for σ = −1. In particular, (2.1)
admits an invariant probability measure if and only if σ > −1 or σ = −1 and η > 1.
For such a model, we have the following result, which is a slight refinement of the
results obtained in [Ver00, VK04, Ver06].

Theorem 2.1 The long-time behaviour of (2.1) is described by the following table:
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Parameter range Integrability of µ? Convergence speed Prefactor

σ < −1 — — —
σ = −1, η ≤ 1 — — —
σ = −1, η > 1 Xη−1±ε t

1−η
2 ±ε Xη+1+ε

−1 < σ < 0 exp(γ±Xσ+1) exp(−γ±t(1+σ)/(1−σ)) exp(δXσ+1)
0 ≤ σ < 1 exp(γ±Xσ+1) exp(−γ±t) exp(δX1−σ)
σ = 1 exp(γ±Xσ+1) exp(−γ±t) Xε

σ > 1 exp(γ±Xσ+1) exp(−γ±t) 1

The entries of this table have the same meaning as in Theorem 1.1, with the exception
that the lower bounds on the convergence speed toward the invariant measure hold for
all t > 0 rather than only for a subsequence.

Proof. The case 0 ≤ σ ≤ 1 is very well-known (one can simply apply Theorem 3.4
below with either V (X) = exp(δX1−σ) for δ small enough in the case σ < 1 or with
Xε in he case σ = 1). The case σ > 1 follows from the fact that in this case one can
find a constant C > 0 such that EX(1) ≤ C, independently of the initial condition.

The bounds for σ = −1 and η > 1 can be found in [Ver00, FR05, Ver06] (a slightly
weaker upper bound can also be found in [RW01]). However, as shown in [BCG08],
the upper bound can also be retrieved by using Theorem 3.5 below with a test function
behaving likeXη+1+ε for an arbitrarily small value of ε. The lower bound on the other
hand can be obtained from Theorem 3.6 by using a test function behaving like Xα,
but with α � 1. (These bounds could actually be slightly improved by choosing test
functions of the form Xη+1(logX)β for the upper bound and exp((logX)β) for the
lower bound.)

The upper bound for the case σ ∈ (−1, 0) can be found in [VK04] and more re-
cently in [DFG06, BCG08]. This and the corresponding lower bound can be obtained
similarly to above from Theorems 3.5 and 3.6 by considering test functions of the form
exp(aXσ+1) for suitable values of a. (Small for the upper bound and large for the
lower bound.)

Returning to the problem of interest, it was already noted in [EH00, RT02] that
k = 1 is a boundary between two types of completely different behaviours for the
dynamic (1.2). The remainder of this section is therefore divided into two subsections
where we analyse the behaviour of these two regimes.

2.1 The case k > 1k > 1k > 1

When k > 1, the pinning potential V1 is stronger than the coupling potential V2. There-
fore, in this regime, one would expect the dynamic of the two oscillators to approxi-
mately decouple at very high energies [HM08a]. This suggests that one should be able
to find functions H0 and H1 describing the energies of the two oscillators such that H0

is distributed approximately according to exp(−H0/T ), while the distribution of H1

has heavier tails since that oscillator is not directly damped.
In order to guess the behaviour of H1 at high energies, note first that since H0 is

expected to have exponential tails, the regime of interest is that where H1 is very large,
while H0 is of order one. In this regime, the second oscillator feels mainly its pinning
potential, so that its motion is well approximated by the motion of a single free oscil-
lator moving in the potential |q|2k/2k. A simple calculation shows that such a motion
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is periodic with frequency proportional to H
1
2−

1
2k

1 and with amplitude proportional to

H
1
2k
1 . In other words, one can find periodic functions P and Q such that in the regime

of interest, one has (up to phases)

q1(t) ≈ H
1
2k
1 Q(H

1
2−

1
2k

1 t) , p1(t) ≈ H
1
2
1 P (H

1
2−

1
2k

1 t) . (2.2)

Let now Ψp and Ψq be the unique solutions to Ψ̇q = Ψp, Ψ̇p = Q that average out
to zero over one period. It is apparent from the equations of motion (1.2) that if we
assume that (2.2) is a good model for the dynamic of the second oscillator, then the
motion of the first oscillator can, at least to lowest order, be described by

p0(t) = p̃0(t)− αH
1
k−

1
2

1 Ψp(H
1
2−

1
2k

1 t) , q0(t) = q̃0(t)− αH
3
2k−1
1 Ψq(H

1
2−

1
2k

1 t) ,
(2.3)

where the functions p̃0 and q̃0 do not show any highly oscillatory behaviour anymore.
Furthermore, they then satisfy, at least to lowest order, the decoupled Langevin equa-
tion

dq̃0 ≈ p̃0 dt , dp̃0 ≈ −V ′1 (q̃0) dt− αq̃0 dt− γp̃0 dt+
√

2γT dw0(t) , (2.4)

that indeed has exp(−H0/T ) as invariant measure, provided that we set

H0 =
p̃2
0

2
+ V1(q̃0) +

α

2
q̃20 .

Let us now return to the question of the behaviour of energy dissipation. The aver-
age rate of change of the total energy of our system is described by (1.4). Plugging
our ansatz (2.3) into this equation and using the fact that Ψp is highly oscillatory and
averages out to 0, we obtain

LH ≈ γ(T + T∞)− γp̃2
0 − γα2H

2
k−1
1 〈Ψ2

p〉 .

On the other hand, it follows from (2.4) that one has

LH0 ≈ γT − γp̃2
0 ,

so that one expects to obtain for the energy of the second oscillator the expression

LH1 ≈ γT∞ − γα2〈Ψ2
p〉H

2
k−1
1 .

This suggests that, at least in the regime of interest, and since the p-dependence of H1

probably goes like p21
2 , the energy of the second oscillator follows a decoupled equation

of the type

dH1 ≈ (γT∞ − γα2〈Φ2
p〉H

2
k−1
1 ) dt+

√
2γT∞KH1 dw1(t) , (2.5)

where K is the average of p2
1 over one period of the free dynamic at energy 1, which

will be shown in (5.10) below to be given by K = 2k/(1 + k).
In order to analyse (2.5), it is convenient to introduce the variable X given by

X2 = 4H1/(γT∞K), so that its evolution is given by

dX =
( 2
K
− 1
) 1
X
−
√
γα2〈Φ2

p〉√
T∞K

(γT∞KX2

4

) 2
k−

3
2

+
√

2 dw1(t) . (2.6)
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This shows that there is a transition at k = 2. For k > 2, we recover (2.1) with σ = −1
and η = 1 − 2

K < 1, so that one does not expect to have an invariant measure, thus
recovering the corresponding statement in Theorem 1.1.

At k = 2, we still have σ = −1, but we obtain

η = 1− 2
K

+
2α2〈Φ2

p〉
T∞K

=
3
2
α2〈Φ2

p〉
T∞

− 1
2

,

so that one expects to have existence of an invariant probability measure if and only
if T∞ < α2〈Φ2

p〉. Furthermore, we recover from Theorem 2.1 the integrability results
and convergence rates of Theorem 1.1, noting that one has the formal correspondence
ζ = (η − 1)/2. This correspondence comes from the fact that H ≈ X2 in the regime
of interest and that Xη−1 is the borderline for non-integrability with respect to µ? in
Theorem 2.1.

In the regime k ∈ (1, 2), the first term in the right hand side of (2.6) is negligible,
so that we have the case σ = 4

k − 3. Applying Theorem 2.1 then immediately allows
to derive the corresponding integrability and convergence results from Theorem 1.1,
noting that one has the formal correspondence κ = (σ + 1)/2.

2.2 The case k < 1k < 1k < 1

This case is much more straightforward to analyse. When k < 1, the coupling potential
V2 is stiffer than the pinning potential V1. Therefore, one expects the two particles to
behave like a single particle moving in the potential V1. This suggests that the ‘worst
case’ degree of freedom should be the centre of mass of the system, thus motivating
the change of coordinates

Q =
q0 + q1

2
, q =

q1 − q0
2

.

Fixing Q and writing y = (q, p0, p1) for the remaining coordinates, we see that there
exist matrices A and B and a vector v such that y approximately satisfies the equation

dy ≈ Ay dt+ V ′1 (Q)v dt+B dw(t) .

Here, we made the approximation V ′1 (q0) ≈ V ′1 (q1) ≈ V ′1 (Q), which is expected to be
justified in the regime of interest (Q large and y of order one). This shows that for Q
fixed, the law of y is approximately Gaussian with covariance of order one and mean
proportional to V ′1 (Q). Since dQ = (p0+p1)/2 dt, we thus expect that over sufficiently
long time intervals, the dynamic of Q is well approximated by

dQ ≈ −C1V
′
1 (Q) dt+ C2 dW (t) ≈ −C1Q|Q|2k−2 dt+ C2 dW (t) ,

for some positive constants C1, C2 and some Wiener process W . We are therefore
reduced again to the case of Theorem 2.1 with X ∝ |Q| and σ = 2k − 1. Since in
the regime considered here one has H ≈ X2k, this immediately allows to recover the
results of Theorem 1.1 for the case k < 1.

3 A potpourri of test function techniques

In this section, we present the abstract results on which all the integrability and non-
integrability results in this article are based, as well as the techniques allowing to ob-
tain upper and lower bounds on convergence rates toward the invariant measure. All of
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these results without exception are based on the existence of test functions with certain
properties. In this sense, we follow to its bitter end the Lyapunov function-based ap-
proach advocated in [BCG08, CGWW07, CGGR08] and use it to derive not only upper
bounds on convergence rates, but also lower bounds.

While most of these results from this section are known in the literature (except for
the one giving the lower bounds on the convergence of transition probabilities which
appears to be new despite its relative triviality), the main interest of the present article
is to provide tools for the construction of suitable test functions in problems where
different timescales are present at the regimes relevant for the tail behaviour of the
invariant measure.

The general framework of this section is that of a Stratonovich diffusion on Rn
with smooth coefficients:

dx(t) = f0(x) dt+
m∑
i=1

fi(x) ◦ dwi(t) , x(0) = x0 ∈ Rn . (3.1)

Here, we assume that fj : Rn → Rn are C∞ vector fields on Rn and the wi are in-
dependent standard Wiener processes. Denote by L the generator of (3.1), that is the
differential operator given by

L = X0 +
1
2

m∑
i=1

X2
i , Xj = fj(x)∇x .

We make the following two standing assumptions which can easily be verified in the
context of the model presented in the introduction:

Assumption 1 There exists a smooth function H : Rn → R+ with compact level sets
and a constant C > 0 such that the bound LH ≤ C(1 +H) holds.

This assumption ensures that (3.1) has a unique global strong solution. We further-
more assume that:

Assumption 2 Hörmander’s ‘bracket condition’ holds at every point in Rn. In other
words, consider the families Ak (with k ≥ 0) of vector fields defined recursively by
A0 = {f1, . . . , fm} and

Ak+1 = AK ∪ {[fj , g] , g ∈ Ak , j = 0, . . . ,m} .

Define furthermore the subspaces A∞(x) = span{g(x) : ∃k > 0 with g ∈ Ak}. We
then assume that A∞(x) = Rn for every x ∈ Rn.

As a consequence of Hörmander’s celebrated ‘sums of squares’ theorem [Hör67,
Hör85], this assumption ensures that transition probabilities for (3.1) have smooth den-
sities pt(x, y) with respect to Lebesgue measure. In our case, Assumption 2 can be
seen to hold because the coupling potential is harmonic.

Assumption 3 The origin is reachable for the control problem associated to (3.1).
That is, given any x0 ∈ Rn and any r > 0 there exists a time T > 0 and a smooth
control u ∈ C∞([0, T ],Rm) such that the solution to the ordinary differential equation

dz

dt
= f0(z(t)) +

m∑
i=1

fi(z(t))ui(t) , z(0) = x0 ,

satisfies ‖z(T )‖ ≤ r.
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The fact that Assumption 3 also holds in our case is an immediate consequence of
the results in [EPR99a, Hai05]. Assumptions 2 and 3 taken together imply that:

1. The operator L satisfies a strong maximum principle in the following sense. Let
D ⊂ Rn be a compact domain with smooth boundary such that 0 6∈ D. Let
furthermore u ∈ C2(D) be such that Lu(x) ≤ 0 for x in the interior of D and
u(x) ≥ 0 for x ∈ ∂D. Then, one has u(x) ≥ 0 for all x ∈ D, see [Bon69,
Theorem 3.2].

2. The Markov semigroup associated to (3.1) admits at most one invariant proba-
bility measure [DPZ96]. Furthermore, if such an invariant measure exists, then
it has a smooth density with respect to Lebesgue measure.

3.1 Integrability properties of the invariant measure
We are going to use throughout the following criterion for the existence of an invariant
measure with certain integrability properties:

Theorem 3.1 Consider the diffusion (3.1) and let Assumptions 2 and 3 hold. If there
exists a C2 function V : Rn → [1,∞) such that lim sup|x|→∞ LV (x) < 0, then there
exists a unique invariant probability measure µ? for (3.1). Furthermore, |LV | is inte-
grable against µ? and

∫
LV (x)µ?(dx) = 0.

Proof. The proof is a continuous-time version of the results in [MT93, Chapter 14].
See also for example [HM08a].

The condition given in Theorem 3.1 is actually an if and only if condition, but
the other implication does not appear at first sight to be directly useful. However, it
is possible to combine the strong maximum principle with a Lyapunov-type criterion
to rule out in certain cases the existence of a function V as in Theorem 3.1. This is
the content of the next theorem which provides a constructive criterion for the non-
existence of an invariant probability measure with certain integrability properties:

Theorem 3.2 Consider the diffusion (3.1) and let Assumptions 1, 2 and 3 hold. Let
furthermore F : Rn → [1,∞) be a continuous weight function. Assume that there exist
two C2 functions W1 and W2 such that:
• The function W1 grows in some direction, that is lim sup|x|→∞W1(x) =∞.
• There exists R > 0 such that W2(x) > 0 for |x| > R.
• The function W2 is substantially larger than W1 in the sense that there exists a

positive function H with lim|x|→∞H(x) = +∞ and such that

lim sup
R→∞

supH(x)=RW1(x)
infH(x)=RW2(x)

= 0 .

• There exists R > 0 such that LW1(x) ≥ 0 and LW2(x) ≤ F (x) for |x| > R.
Then the Markov process generated by solutions to (3.1) does not admit any invariant
measure µ? such that

∫
F (x)µ?(dx) <∞.

Proof. The existence of an invariant measure that integrates F is equivalent to the
existence of a positive C2 function V such that LV ≤ −F outside of some compact set
[MT93, Chapter 14]. The proof of the claim is then a straightforward extension of the
proof given for the case F ≡ 1 by Wonham in [Won66].
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Remark 3.3 If one is able to choose F ≡ 1 in Theorem 3.2, then its conclusion is that
the system under consideration does not admit any invariant probability measure.

3.2 Convergence speed toward the invariant measure: upper bounds
We still assume in this section that we are in the same setting as previously and that
Assumptions 2–3 hold. The strongest kind of convergence result that one can hope
to obtain is exponential convergence toward a unique invariant measure. In order to
formulate a result of this type, given a positive function V , we define a weighted norm
on measurable functions by

‖ϕ‖V = sup
x∈Rn

|ϕ(x)|
1 + V (x)

.

We denote the corresponding Banach space by Bb(Rn;V ). Furthermore, given a Mar-
kov semigroup Pt over Rn, we say that Pt has a spectral gap in Bb(Rn;V ) if there
exists a probability measure µ? on Rn and constants C and γ > 0 such that the bound

‖Ptϕ− µ?(ϕ)‖V ≤ Ce−γt‖ϕ− µ?(V )‖V ,

holds for every ϕ ∈ Bb(Rn;V ). We will also say that a C2 function V : Rn → R+ is a
Lyapunov function for (3.1) if lim|x|→∞ V (x) = ∞ and there exists a strictly positive
constant c such that

LV ≤ −cV ,

holds outside of some compact set.
With this notation, we have the following version of Harris’ theorem [MT93] (see

also [HM08b] for an elementary proof):

Theorem 3.4 Consider the diffusion (3.1) and let Assumptions 2 and 3 hold. If there
exists a Lyapunov function V for (3.1), then Pt admits a spectral gap in Bb(Rn;V ).
In particular, (3.1) admits a unique invariant measure µ?,

∫
V dµ? <∞, and conver-

gence of transition probabilities towards µ? is exponential with prefactor V .

However, there are situations where exponential convergence does simply not take
place. In such situations, one cannot hope to be able to find a Lyapunov function as
above, but it is still possible in general to find a ϕ-Lyapunov function V in the following
sense. Given a function ϕ : R+ → R+, we say that a C2 function V : Rn → R+ is a
ϕ-Lyapunov function if the bound

LV ≤ −ϕ(V ) ,

holds outside of some compact set and if lim|x|→∞ V (x) = ∞. If such a ϕ-Lyapunov
function exists, upper bounds on convergence rates toward the invariant measure can be
obtained by applying the following criterion from [DFG06, BCG08] (see also [FR05]):

Theorem 3.5 Consider the diffusion (3.1) and let Assumptions 2 and 3 hold. Assume
that there exists a ϕ-Lyapunov function V for (3.1), where ϕ is some increasing smooth
concave function that is strictly sublinear. Then (3.1) admits a unique invariant mea-
sure µ? and there exists a positive constant c such that for all x ∈ Rn, the bound

‖Pt(x, ·)− µ?‖TV ≤ cV (x)ψ(t) ,

holds, where ψ(t) = 1/(ϕ ◦H−1
ϕ )(t) and Hϕ(t) =

∫ t
1
(1/ϕ(s)) ds.



A POTPOURRI OF TEST FUNCTION TECHNIQUES 14

3.3 Convergence speed toward the invariant measure: lower bounds
In order to obtain lower bounds on the rate of convergence towards the invariant mea-
sure µ?, we are going to make use of the following mechanism. Suppose that we know
of some function G that on the one hand it has very heavy (non-integrable) tails under
the invariant measure of some Markov process but, on the other hand, its moments do
not grow to fast. Then, this should give a lower bound on the speed of convergence
towards the invariant measure since the moment bounds prevent the process from ex-
ploring its heavy tails too quickly. This is made precise by the following elementary
result:

Theorem 3.6 LetXt be a Markov process on a Polish space X with invariant measure
µ? and let G : X → [1,∞) be such that:
• There exists a function f : [1,∞) → [0, 1] such that the function Id · f : y 7→
yf (y) is increasing to infinity and such that µ?(G ≥ y) ≥ f (y) for every y ≥ 1.

• There exists a function g : X ×R+ → [1,∞) increasing in its second argument
and such that E(G(Xt) |X0 = x0) ≤ g(x0, t).

Then, one has the bound

‖µtn − µ?‖TV ≥
1
2
f((Id · f )−1(2g(x0, tn))) , (3.2)

where µt is the law of Xt with initial condition x0 ∈ X .

Proof. It follows from the definition of the total variation distance and from Cheby-
shev’s inequality that, for every t ≥ 0 and every y ≥ 1, one has the lower bound

‖µt − µ?‖TV ≥ µ?(G(x) ≥ y)− µt(G(x) ≥ y) ≥ f (y)− g(x0, t)
y

.

Choosing y to be the unique solution to the equation yf (y) = 2g(x0, t), the result
follows.

The problem is that in our case, we do not in general have sufficiently good informa-
tion on the tail behaviour of µ? to be able to apply Theorem 3.6 as it stands. However,
it follows immediately from the proof that the bound (3.2) still holds for a subsequence
of times tn converging to∞, provided that the bound µ?(G ≥ yn) ≥ f (yn) holds for
a sequence yn converging to infinity. This observation allows to obtain the following
corollary that is of more use to us:

Corollary 3.7 LetXt be a Markov process on a Polish spaceX with invariant measure
µ? and let W : X → [1,∞) be such that

∫
W (x)µ?(dx) =∞. Assume that there exist

F : [1,∞)→ R and h : [1,∞)→ R such that:
• h is decreasing and

∫∞
1
h(s) ds <∞.

• F · h is increasing and lims→∞ F (s)h(s) =∞.
• There exists a function g : X ×R+ → R+ increasing in its second argument and

such that E((F ◦W )(Xt) |X0 = x0) ≤ g(x0, t).
Then, for every x0 ∈ X , there exists a sequence of times tn increasing to infinity such
that the bound

‖µtn − µ?‖TV ≥ h((F · h)−1(g(x0, tn)))

holds, where µt is the law of Xt with initial condition x0 ∈ X .
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Proof. Since
∫
W (x)µ?(dx) = ∞, there exists a sequence wn increasing to infinity

such that µ?(W (x) ≥ wn) ≥ 2h(wn), for otherwise we would have the bound∫
W (x)µ?(dx) = 1 +

∫ ∞
1

µ?(W (x) ≥ w) dw ≤ 1 + 2
∫ ∞

1

h(w) dw <∞ ,

thus leading to a contradiction. Applying Theorem 3.6 with G = F ◦ W and f =
2h ◦ F−1 concludes the proof.

4 Existence and non-existence of an invariant probability measure

4.1 Non-existence of an invariant measure
The aim of this section is to show that (1.2) does not admit any invariant probability
measure if k > 2 or k = 2 and T∞ > α2Ĉ. Note first that one has an upper bound on
the evolution of the total energy of the system given by

LH = γT + γT∞ − γp2
0 ,

which suggests that H is a natural choice for the function W2 in Wonham’s criterion
for the non-existence of an invariant probability measure.

It therefore remains to find a function W1 that grows to infinity in some direction
(not necessarily all), that is dominated by the energy in the sense that

lim
E→∞

1
E

sup
H(p,q)=E

W1(p, q) = 0 , (4.1)

and such that LW1 ≥ 0 outside of some compact region K.
In order to construct W1, we use some of the ideas introduced in [HM08a]. The

technique used there was to make a change of variables such that, in the new variables,
the motion of the ‘fast’ oscillator decouples from that of the ‘slow oscillator’. In the
situation at hand, we wish to show that the energy of the second oscillator grows, so
that the relevant regime is the one where that energy is very high.

One is then tempted to set

W1 = H−ζ(H −H0) , (4.2)

for some (typically small) exponent ζ ∈ (0, 1), whereH0 is a multiple of the energy of
the first oscillator, expressed in the ‘right’ set of variables. In order to compute LW1,
we make use of the following ‘chain rule’ for L:

L(f ◦ g) = (∂if ◦ g)Lgi + (∂2
ijf ◦ g)Γ(gi, gj) , (4.3)

(summation over repeated indices is implied), where we defined the ‘carré du champ’
operator

Γ(gi, gj) = γT∂p0gi∂p0gj + γT∞∂p1gi∂p1gj .

(Note that it differs by a factor two from the usual definition in order to keep expres-
sions as compact as possible.) This allows us to obtain the identity

LW1 = H−ζ(γT + γT∞ − γp2
0 − LH0)

− γζH−ζ−1(H −H0)(T + T∞ − p2
0)

− 2γζH−ζ−1(Tp0(p0 − ∂p0H0) + T∞p1(p1 − ∂p1H0))
+ γζ(ζ + 1)H−ζ−2(H −H0)(Tp2

0 + T∞p
2
1) .

(4.4)



EXISTENCE AND NON-EXISTENCE OF AN INVARIANT PROBABILITY MEASURE 16

Following our heuristic calculation in Section 2.1, we expect that at high energies,
one has LH0 ≈ γT − γp̃2

0, were p̃0 denotes the correct variable in which to express
the motion of the oscillator. One would then like to first choose our compact set K
sufficiently large so that the expression on the first line of (4.4) is larger than δH−ζ(1+
p2
0) for some δ > 0. Then, by choosing ζ sufficiently close to zero, one would like to

make the remaining terms sufficiently small so that LW1 > 0 outside of a compact set.
This is made precise by the following lemma:

Lemma 4.1 If there exist a C2 function H0 : R4 → R and strictly positive constants c
and C such that, outside of some compact subset of R4, it satisfies the bounds

LH0 ≤ γ(T + T∞ − p2
0)− c(1 + p2

0) , |H0|+ |∂p0H0|2 + |∂p1H0|2 ≤ CH ,

and such that furthermore

lim sup
E→∞

1
E

inf
H(x)=E

H0(x) < 1 , (4.5)

then (1.2) admits no invariant probability measure.

Proof. Setting W1 as in (4.2), we see from (4.4) and the assumptions on H0 that there
exists a constant C > 0 independent of ζ ∈ (0, 1) such that the bound

LW1 ≥ cH−ζ(1 + p2
0)− ζCH−ζ(1 + p2

0)

holds outside of some compact set. Choosing ζ < c/C, it follows that LW1 > 0
outside of some compact subset of R4. Assumption (4.5) makes sure that W1 grows to
+∞ in some direction and rules out the trivial choice H0 ∝ H . Since it follows fur-
thermore from the assumptions thatW1 ≤ CH1−ζ , (4.1) holds so that the assumptions
of Wonham’s criterion are satisfied.

The remainder of this section is devoted to the construction of such a function H0,
thus giving rise to the following result:

Theorem 4.2 There exists a constant Ĉ such that, if either k > 2, or k = 2 and
T∞ > α2Ĉ, the model (1.2) admits no invariant probability measure.

Remark 4.3 As will be seen from the construction, the constant Ĉ is really equal to
the constant 〈Φ2

p〉 from Section 2.1.

Proof. As in [HM08a], we define the Hamiltonian

Hf (P,Q) =
P 2

2
+
|Q|2k

2k

of a ‘free’ oscillator on R2 and its generator

L0 = P∂Q −Q|Q|2k−1∂P . (4.6)

These definitions will be used for all of the remainder of this article, except for Sec-
tion 7. The variables (P,Q) should be thought of as ‘dummy variables’ that will be
replaced by for example (p1, q1) or (p0, q0) when needed.
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We also define Φ as the unique centred1 solution to the Poisson equation

L0Φ = Q−R(P,Q) ,

whereR : R2 → R is a smooth function averaging out to zero on level sets of Hf , and
such that R = 0 outside of a compact set and R = Q inside an open set containing
the origin. The reason for introducing the correction term R is so that the function Φ
is smooth everywhere including the origin, which would not be the case otherwise. It
follows from [HM08a, Prop. 3.7] that Φ scales like H

1
k−

1
2

f in the sense that, outside

a compact set, it can be written as Φ = H
1
k−

1
2

f Φ0(ω), where ω is the angle variable
conjugate to Hf .

Inspired by the formal calculation from Section 2.1, we then define p̃0 = p0 −
αΦ(p1, q1), so that the equations of motion for the first oscillator turn into

dq0 = p̃0 dt+ αΦ dt (4.7)
dp̃0 = −q0|q0|2k−2 dt− αq0 dt− γ p0 dt+

√
2γT dw0(t)

+ αR dt− α2(q0 − q1)∂PΦ dt− α
√

2γT∞∂PΦ dw1(t)− αγT∞∂2
PΦ dt

+ αR′1(q1)∂PΦ dt−R′1(q0) dt .

Here, we omitted the argument (p1, q1) from Φ, its partial derivatives, and R in order
to make the expressions shorter. Setting

H̃0 =
p̃2
0

2
+ Veff (q0) + θp̃0q0 , Veff (q) = V1(q) + α

q2

2
, (4.8)

we obtain the following identity:

LH̃0 = γT − (γ − θ)p2
0 − θ|q0|2k − αθ|q0|2 − γθp0q0

+ α2(γ − θ)Φ2 + α(γ − θ)Φp̃0 + αΦV ′eff (q0) (4.9)

+ αp̃0R− α2p̃0(q0 − q1)∂PΦ− αγT∞p̃0∂
2
PΦ + α2γT∞(∂PΦ)2

+ θq0(αR− α2(q0 − q1)∂PΦ− αγT∞∂2
PΦ)

+ (p̃0 + θq0)αR′1(q1)∂PΦ

All the terms on lines 3 to 5 (and also the terms on line 2 provided that k > 2) are
of the form f (p0, q0)g(p1, q1) with g a function going to 0 at infinity and f a function
such that f (p0, q0)/Hf (p0, q0) goes to 0 at infinity. It follows that, for every ε > 0,
there exists a compact set Kε ⊂ R4 such that, outside of Kε, one has the inequality

LH̃0 ≤ γT − γp2
0 + ε+

(
θ +

θγ2

4α
+ ε
)
p2
0 − (θ − ε)|q0|2k

+ α2(γ − θ)Φ2 + α(γ − θ)Φp̃0 + αΦV ′eff (q0) .
(4.10)

Here, we also used the fact that γθp0q0 ≤ αθ|q0|2 + γ2θ
4α p

2
0. If k > 2, then the function

Φ also converges to 0 at infinity, so that the bound

LH̃0 ≤ γT − γp2
0 + ε+

(
θ +

θγ2

4α
+ ε
)
p2
0 − (θ − ε)|q0|2k ,

1We say that a function on R2 is centred if it averages to 0 along orbits of the Hamiltonian system with
Hamiltonian Hf .
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holds outside of a sufficiently large compact set. It follows that the conditions of
Lemma 4.1 are satisfied by H0 = (1 + δ)H̃0 for δ > 0 sufficiently small whenever
T∞ > 0, provided that one also chooses both θ and ε sufficiently small.

The case k = 2 is slightly more subtle and we assume that k = 2 for the remainder
of this proof. In particular, this implies that Φ scales like a constant outside of some
compact set. This suggests that the term Φ2 should average out to a constant, whereas
the terms Φp̃0 and ΦV ′eff (q0) should average out to zero, modulo some lower-order
corrections. It turns out that these corrections will have the unfortunate property that
they grow faster thanHf in the (p0, q0) variables. On the other hand, we notice that both
p̃0 and V ′eff (q0) do grow slower than Hf at infinity. As a consequence, it is sufficient to
compensate these terms for ‘low’ values of (p0, q0).

Before giving the precise expression for a functionH0 that satisfies the assumptions
of Lemma 4.1 for the case k = 2, we make some preliminary calculations. We denote
by ψ : R → R+ a smooth decreasing ‘cutoff function’ such that ψ(x) = 1 for x ≤ 1
and ψ(x) = 0 for x ≥ 2. Given a positive constant E, we also set

ψE(p̃0, q0) = ψ
(Hf (p̃0, q0)

E

)
, ψ′E =

1
E
ψ′
(Hf
E

)
, ψ′′E =

1
E2

ψ′′
(Hf
E

)
.

Definition 4.4 We will say that a function f : R+ ×R4 → R is negligible if, for every
ε > 0, there existsEε > 0 and, for everyE > Eε there exists a compact setKE,ε b R4

such that the bound |f (E; p, q)| ≤ ε(1 +Hf (p̃0, q0)) holds for every (p, q) 6∈ KE,ε.

With this definition at hand, we introduce the notations

f . g , f ∼ g , (4.11)

to mean that there exists a negligible function h such that f ≤ g + h or f = g + h
respectively. With this notation, we can rewrite (4.10) as

LH̃0 . γT − γθp2
0 − θ|q0|2k + α2(γ − θ)Φ2 + fθΦ , (4.12)

where we introduced the constant γθ = γ − θ(1 + γ2

4α ) and the function fθ = α(γ −
θ)p̃0 + αV ′eff (q0).

Lemma 4.5 Let a, b ≥ 0 and let f, g : R2 → R be functions that scale like Ha
f and

H−bf respectively. Then, the following functions are negligible:
i) f (p̃0, q0)g(p1, q1)ψE(p̃0, q0), provided that b > 0.

ii) f (p̃0, q0)g(p1, q1)ψ′E(p̃0, q0), provided that b > 0 or a < 2.

ii’) f (p̃0, q0)g(p1, q1)(ψ′E(p̃0, q0))2, provided that b > 0 or a < 3.
iii) f (p̃0, q0)g(p1, q1)ψ′′E(p̃0, q0), provided that b > 0 or a < 3.
iv) f (p̃0, q0)g(p1, q1)(1− ψE(p̃0, q0)), provided that a < 1.

Proof. We assume without loss of generality that the bounds f (p, q) ≤ 1 ∨ Ha
f (p, q)

and g(p, q) ≤ 1 ∧H−bf (p, q) hold for every (p, q) ∈ R2.
In the case i), we take Eε = 1 and choose for KE,ε the set of points such that

either Hf (p̃0, q0) ≥ 2E, in which case the expression vanishes, or Hf (p1, q1) ≥
(2E)a/bε−1/b in which case the expression is smaller than ε.
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The case ii) with b > 0 follows exactly like the case i), so we consider the case
a < 2 and b = 0. Since ψ′E = 0 if Hf (p̃0, q0) ≥ 2E and is smaller than 1/E
otherwise, we have the bounds

|f (p̃0, q0)g(p1, q1)ψ′E(p̃0, q0)| ≤ (1 +Hf (p̃0, q0))E(0∨a−1)−1 .

Since the exponent of E appearing in this expression is negative provided that a < 2,
this is shown to be negligible by choosing Eε sufficiently large and setting KE,ε = φ.
Cases ii’) and iii) follow in a nearly identical manner.

In the case iv), we use the fact that since a < 1, for fixed ε > 0, we can find a
constantCε such that |f (p̃0, q0)| ≤ ε

2Hf (p̃0, q0)+Cε. We then setEε = 2Cε/ε, so that
Hf (p̃0, q0) ≥ Eε implies Hf (p̃0, q0) ≥ 2Cε

ε . Since g is bounded by 1 by assumption
and since 1 − ψE vanishes for Hf (p̃0, q0) ≤ E, it follows that the expression iv) is
uniformly bounded by εHf (p̃0, q0) for E ≥ Eε.

Remark 4.6 In the case where both b > 0 and a < 1, the function f (p̃0, q0)g(p1, q1)
is negligible, which can be seen from cases i) and ii) above.

Corollary 4.7 In the setting of Lemma 4.5, the following functions are negligible:
v) f (p̃0, q0)g(p1, q1)∂p0ψE(p̃0, q0) provided that b > 0 or a < 3/2.

vi) f (p̃0, q0)g(p1, q1)∂p1ψE(p̃0, q0)
vii) f (p̃0, q0)g(p1, q1)LψE(p̃0, q0) provided that b > 1

2 −
1
k or b = 1

2 −
1
k and a < 1.

Proof. We can write

f (p̃0, q0)g(p1, q1)∂p0ψE(p̃0, q0) = p̃0f (p̃0, q0)g(p1, q1)ψ′E ,
f (p̃0, q0)g(p1, q1)∂p1ψE(p̃0, q0) = p̃0f (p̃0, q0)g(p1, q1)∂PΦ(p1, q1)ψ′E ,

so that the first two cases can be reduced to case ii) of Lemma 4.5. For case vii), we
use the fact that

LψE = ψ′ELHf + γ(T0 + T∞(∂PΦ)2)p̃2
0ψ
′′
E , (4.13)

and that LHf consists of terms that all scale like Hc
f (p̃0, q0)Hd

f (p1, q1) with c ≤ 1 and
d ≤ 1

k −
1
2 (see (4.9)) to reduce ourselves to cases ii) and iii) of Lemma 4.5.

Before we proceed with the proof of Theorem 4.2, we state two further preliminary
results that will turn out to be useful also for the analysis of the case k ∈ (1, 2):

Lemma 4.8 Let k ∈ (1, 2] and let f : R2 → R be a function that scales like Ha
f for

some a ∈ R. Then, the function g = L(f (p̃0, q0)) consists of terms that are bounded by
multiples of Hc

f (p̃0, q0)Hd
f (p1, q1) with either c ≤ a+ 1

2 −
1
2k and d ≤ 0 or c ≤ a− 1

2

and d ≤ 1
k −

1
2 .

Proof. It follows from (4.7) that

g = (−αq0 − γ(p̃0 + αΦ) + αR− α2(q0 − q1)∂PΦ− αγT∞∂2
PΦ)∂P f

+ (αR′1(q1)∂PΦ−R′1(q0))∂P f
+ γ(T + T∞(∂PΦ)2)∂2

P f + (p̃0 + αΦ)∂Qf − q0|q0|2k−2∂P f ,

from which the claim follows by simple powercounting.
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Lemma 4.9 Let k ∈ (1, 2] and let f : R2 → R be a function that scales like H−bf for
some b ∈ R. Then, the function g = L(f (p1, q1))− (L0f )(p1, q1) consists of terms that
are bounded by multiples of Hc

f (p̃0, q0)Hd
f (p1, q1) with either c ≤ 1

2k and d ≤ −b− 1
2

or c ≤ 0 and d ≤ −b− 1
2 + 1

2k .

Proof. It follows from (1.2) that

g = α(q0 − q1)∂P f −R′1(q1)∂P f + γT∞∂
2
P f , (4.14)

from which the claim follows.

We now return to the proof of Theorem 4.2. We define Ψ as the unique centred
solution to the equation L0Ψ = Φ. One can see in a similar way as before that Ψ
scales like H−

1
4

f . Since Φ scales like a constant, there exists some constant Ĉ such that
Φ2 averages to Ĉ outside a compact set. While the constant Ĉ can not be expressed in
simple terms, it is easy to compute it numerically: Ĉ ≈ 0.63546992.

In particular, there exists a function R̂ : R+ → R+ with compact support and such
that Φ2−Ĉ+R̂(Hf (P,Q)) is centred. Denote by Ξ the centred solution to the equation

L0Ξ = Φ2 − Ĉ + R̂(Hf (P,Q)) , (4.15)

so that Ξ scales like H−
1
4

f , just like Ψ does. With these definitions at hand, we set

H0 = H̃0 − (α2(γ − θ)Ξ(p1, q1) + fθΨ(p1, q1))ψE(p̃0, q0) , (4.16)

where we used the function fθ introduced in (4.12). Recalling that fθ consists of terms
scaling like Ha

f (p̃0, q0) with a ≤ 3
4 , we obtain from Lemmas 4.9 and 4.5 that

fθL(Ψ(p1, q1))ψE = fθΦ− fθΦ(1− ψE) + fθ(LΨ− L0Ψ)ψE ∼ fθΦ .

Similarly, we obtain that

L(Ξ(p1, q1))ψE = Φ2 − Ĉ + (Φ2 − Ĉ)(1− ψE) + R̂ψE ∼ Φ2 − Ĉ .

It therefore follows from (4.12), the facts that ∂p0 p̃0 = 1 and ∂p1 p̃0 = −α∂PΦ(p1, q1),
and the multiplication rule for L, that one has the bound

LH0 . γT − γθp2
0 − θ|q0|2k + α2(γ − θ)Ĉ

− (α2(γ − θ)Ξ + fθΨ)LψE − LfθΨψE
+ C|∂PΞ∂p1ψE |+ C|fθ∂PΨ∂p1ψE |
+ C|Ψ∂P fθ(1 + (∂PΦ)2)ψ′E |+ C|∂PΨ∂P fθ∂PΦψE | .

The terms on the second and third line are negligible by Lemma 4.8 and Corollary 4.7.
The terms on the last line are negligible by Lemma 4.5, so that we finally obtain the
bound

LH0 . γ(T + α2Ĉ)− γθp2
0 − θ|q0|2k − α2θĈ . (4.17)

Since the constant γθ can be made arbitrarily close to γ by choosing θ sufficiently
small, we see as before that, provided that T∞ > α2Ĉ, it is possible to choose θ small
enough and E large enough so that the choiceH0 = (1 + δ)H0 with δ > 0 sufficiently
small again allows to satisfy the conditions of Lemma 4.1. This concludes the proof of
Theorem 4.2.

2All displayed digits are accurate.
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4.2 Existence of an invariant measure
Theorem 4.2 has the following converse:

Theorem 4.10 If either 1 < k < 2, or k = 2 and T∞ < α2Ĉ, the model (1.2)
admits a unique invariant probability measure µ?. The constant Ĉ is the same as in
Theorem 4.2.

Proof. Somewhat surprisingly given that the two statements are almost diametrically
opposite, it is possible to prove this positive result in very similar way to the previous
negative result by constructing the right kind of Lyapunov function. As before, the case
k = 2 will be treated somewhat differently.

The case k = 2k = 2k = 2. Similarly to what we did in (4.2), the idea is to look at the function
V = H − cH0 for a suitable constant c, but this time we choose it in such a way that
lim|(p,q)|→∞ V =∞ and lim sup|(p,q)|→∞ LV < 0, so that we can apply Theorem 3.1.
Note that, with the same notations as in the proof of Theorem 4.2, one has from (4.9)

LH̃0 ∼ γT − (γ − θ)p2
0 − θ|q0|2k − αθ|q0|2 − γθp0q0

+ α2(γ − θ)Φ2 + fθΦ ,

so that, provided this time that we choose θ < 0 in the definition of H̃0 (and therefore
of H0), we have the bound

LH0 ∼ γT + α2(γ − θ)Ĉ − (γ − θ)p2
0 − θ|q0|2k − αθ|q0|2 − γθp0q0

& γT + α2(γ − θ)Ĉ − γθp2
0 − θ|q0|2k ,

where we set γθ = γ − θ(1 + γ2

4α ) as before. Here, the function H0 is as in (4.16) and
depends on a large parameter E as above. If we choose c < 1, the function

V = H − cH0 (4.18)

does then indeed grow to infinity in all directions and we have

LV . γT (1− c) + γT∞ − cα2(γ − θ)Ĉ − c|θ||q0|2k − (γ − cγθ)|p0|2 .

If the assumption α2Ĉ > T∞ is satisfied, we can find a constant β > 0 such that

γT (1− c) + γT∞ − cα2(γ − θ)Ĉ ≤ −β

for all θ sufficiently small and all c sufficiently close to 1. By fixing c and making θ
sufficiently small, we can furthermore ensure that γ−cγθ > 0. This shows that, by first
choosing c sufficiently close to 1, then making θ very small and finally choosingE very
large, we have constructed a function V satisfying the assumptions of Theorem 3.1,
thus concluding the proof in the case k = 2.

The case k < 2k < 2k < 2. Even though one would expect this to be the easier case, it turns
out to be tricky because of the fact that the approximate decoupling of the oscillators
at high energies is not such a good description of the dynamic anymore. The idea is
to consider again the variable p̃0 introduced previously but, because of the fact that the
function Φ is now no longer bounded, we are going to multiply certain correction terms
by a ‘cutoff function’.

Since we are following a similar line of proof to the non-existence result and since
we expect from (2.5) to be able to find a function V close to H and such that it asymp-
totically satisfies a bound of the type LV ≈ −Hf (p̃0, q0)−H

2
k−1

f (p1, q1), this suggests
that we should introduce the following notion of a negligible function suited to this par-
ticular case:
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Definition 4.11 A function f : R4 → R is negligible if, for every ε > 0, there exists
a compact set Kε such that the bound |f (p, q)| ≤ ε(Hf (p̃0, q0) +H

2
k−1

f (p1, q1)) holds
for every (p, q) 6∈ Kε.

We also introduce the notations ∼ and . similarly to before. For θ > 0, we then
set V̂ = H + θp̃0q0, so that (4.7) yields

LV̂ = γ(T + T∞)− γp2
0 + αθp̃0Φ + θp̃2

0 − θ|q0|2k − αθ|q0|2 − γθp0q0

+ θαq0(R− α(q0 − q1)∂PΦ− γT∞∂2
PΦ)

+ θq0(αR′1(q1)∂PΦ−R′1(q0)) .

It is straightforward to check that all of the terms on the second and third lines are
negligible. Using the definition of p̃0 and completing the square for the term α|q0|2 +
γp0q0, we thus obtain the bound

LV̂ . −γθp̃2
0 − θ|q0|2k + cθp̃0Φ− αθΦ2 . (4.19)

Here, we defined the constants

αθ
def= αγ

(
α− γθ

4

)
, cθ

def= (αθ − 2αγ + 1
2γ

2θ) ,

in order to shorten the expressions.
As before, we see that there exists a positive constant C̄ and a function R̄ : R2 →

R+ with compact support such that Φ2−C̄H
2
k−1

f +R̄ is smooth, centred, and vanishes
in a neighbourhood of the origin. Similarly to (4.15), we define Ξ as the unique centred
solution to

L0Ξ(P,Q) = Φ2(P,Q)− C̄H
2
k−1

f (P,Q) + R̄(P,Q) ,

and Ψ as the unique centred solution to L0Ψ = Φ. Note that Ξ scales like H
5
2k−

3
2

f and

that Ψ scales like H
3
2k−1

f .
At this stage, we would like to define V = V̂ +αθΞ(p1, q1)−cθp̃0Ψ(p1, q1) in order

to compensate for the last two terms in (4.19). The problem is that when applying the
generator to p̃0Ψ, we obtain an unwanted term of the type q0|q0|2k−2Ψ, which grows
too fast in the q0 direction. We note however that the term p̃0Φ only needs to be
compensated when |p̃0| � Φ, which is the regime in which the description (4.7) is
expected to be relevant. We therefore consider the same cutoff function ψ as before
and we set

V = V̂ + αθΞ(p1, q1)− cθp̃0Ψ(p1, q1)ψ
( 1 +Hf (p̃0, q0)

(1 +Hf (p1, q1))η

)
, (4.20)

for a positive exponent η to be determined later.
In order to obtain bounds on LV , we make use of the fact that Lemma 4.9 still

applies to the present situation. In particular, we can apply it to the function Ξ, thus
obtaining the bound

LV . −Cθ(Hf (p̃0, q0) +H
2
k−1

f (p1, q1)) + cθ

(
p̃0Φ− L(p̃0Ψ(p1, q1)ψ)

)
,

for some constant Cθ, where it is understood that the function ψ is composed with the
ratio appearing in (4.20). Using the fact that L0Ψ = Φ by definition and applying the
chain rule (4.3) for L, we thus obtain

LV . −Cθ(Hf (p̃0, q0) +H
2
k−1

f (p1, q1))
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− cθ((Lp̃0)Ψψ + p̃0ΨLψ + p̃0(L − L0)Ψ + p̃0LΨ(ψ − 1))) (4.21)
− cθT (∂p1 p̃0∂PΨψ + ∂p1 p̃0Ψ∂p1ψ + p̃0∂PΨ∂p1ψ)− cθT∞Ψ∂p0ψ .

We claim that all the terms appearing on the second and the third line of this expression
are negligible, thus concluding the proof. The most tricky part of showing this is to
obtain bounds on Lψ.

Define E0 = 1 + Hf (p̃0, q0) and E1 = 1 + Hf (p1, q1) as a shorthand. Our main
tool in bounding LV is then the following result which shows that the terms containing
Lψ are negligible:

Proposition 4.12 Provided that η ∈ [2− k, k], there exists a constant C such that∣∣∣Lψ(E0

Eη1

)∣∣∣ ≤ C ,
∣∣∣∂p0ψ(E0

Eη1

)∣∣∣ ≤ CE− η21 ,
∣∣∣∂p1ψ(E0

Eη1

)∣∣∣ ≤ CE− 1
2

1 .

Proof. Define the function f : R2
+ → R+ by f (x, y) = ψ((1 + x)/(1 + y)η). It can

then be checked by induction that, for every pair of positive integers m and n with
m+ n > 0 and for every real number β, there exists a constant C such that the bound

|∂mx ∂ny f | ≤ (1 + x)−m+β(1 + y)−n−ηβ . (4.22)

holds uniformly in x and y. It furthermore follows from (4.7) and (1.2) that

|LE0| ≤ C(E0 + E
1− 1

2k
0 E

1
k−

1
2

1 ) ,

|LE1| ≤ C(E
1
2+ 1

2k
1 + E

1
2k
0 E

1
2
1 ) ,

|∂p0E0| ≤ CE1/2
0 , |∂p0E1| = 0 ,

|∂p1E0| ≤ CE
1
2
0 E

1
k−1
1 , |∂p1E1| ≤ CE

1
2
1 .

Combining these two bounds with (4.22) and the chain rule (4.3), the required bounds
follow.

Let us now return to the bound on LV . It is straightforward to check that

|Lp̃0| ≤ C(E1− 1
2k

0 + E
1
k−

1
2

1 ) ,

for some constant C, so that

|Ψ(p1, q1)Lp̃0| ≤ C(E1− 1
2k

0 E
3
2k−1
1 + E

5
2k−

3
2

1 ) ,

which is negligible. Combining Proposition 4.12 with the scaling behaviours of Φ
and Ψ, one can check in a similar way that the term p̃0ΨLψ, as well as all the terms
appearing on the third line of (4.21) are also negligible. It therefore remains to bound
p̃0(L − L0)Ψ and p̃0LΨ(ψ − 1). It follows from (4.14) that

|(L − L0)Ψ| ≤ CE
3
2k−

3
2

1 (E
1
2k
0 + E

1
2k
1 ) ≤ C(E

1
2k
0 + E

2
k−

3
2

1 ) , (4.23)

so that |p̃0(L−L0)Ψ| is negligible as well. Since we know that L0Ψ scales likeE
1
k−

1
2

1 ,
it follows from (4.23) that

|p̃0LΨ| ≤ CE
1
2
0 E

3
2k−

3
2

1 (E
1
2k
0 + E

1− 1
2k

1 ) .
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This term has of course no chance of being negligible: we have to use the fact that it is
multiplied by 1−ψ. The function 1−ψ is non-vanishing only when E0 ≥ Eη1 , so that
we obtain

|p̃0LΨ(1− ψ)| ≤ C(E
1
2k+ 1

2+ 1
η ( 3

2k−
3
2 )

0 + E
1
2+ 1

η ( 1
k−

1
2 )

0 ) .

We see that both exponents are strictly smaller than 1, provided that η > 2
k − 1.

Combining all of these estimates with (4.21), we see that, provided that η ∈ ( 2
k − 1, k),

there exists a constant C such that

LV . −C(E0 + E
2
k−1
1 ) .

In particular, using the scaling of Φ, we deduce the existence of a constant c such that
the bound

LV ≤ −cV 2
k−1 , (4.24)

holds outside of a sufficiently large compact set (we can choose such a set so that V is
positive outside), thus concluding the proof of Theorem 4.10 by applying Theorem 3.1.

5 Integrability properties of the invariant measure

The aim of this section is to explore the integrability properties of the invariant measure
µ? when it exists. First of all, we show the completely unsurprising fact that:

Proposition 5.1 For all ranges of parameters for which there exists an invariant mea-
sure µ?, one has

∫
exp(βH(x))µ?(dx) =∞ for every β > 1/T .

Proof. Choose β > β2 > 1/T . Setting W2(x) = exp(β2H(x)), we have

LW2 = γβ2W2

(
T + T∞ − p2

0 + β2(Tp2
0 + T∞p

2
1)
)
≤ exp(βH) ,

outside of a sufficiently large compact set. Setting similarly W1 = exp(H(x)/T ), we
see immediately from a similar calculation that LW1 ≥ 0, so that the result follows
from Theorem 3.2.

Remark 5.2 Actually, one can show similarly a slightly stronger result, namely that
there exists some exponent α < 1 such that Hα exp(H/T ) is not integrable against µ?.

5.1 Energy of the first oscillator
What is maybe slightly more surprising is that the tail behaviour of the distribution of
the energy of the first oscillator is not very strongly influenced by the presence of an
infinite-temperature heat bath just next to it, provided that we look at the correct set of
variables. Indeed, we have:

Proposition 5.3 Let either 3
2 ≤ k < 2 or k = 2 and T∞ be such that there exists

an invariant probability measure µ?. Then
∫

exp(βHf (p̃0, q0))µ?(dx) < ∞ for every
β < 1/T .

Remark 5.4 When k = 2, Φ is bounded and the exponential integrability ofHf (p̃0, q0)
is equivalent to that of Hf (p0, q0). This is however not the case when k < 2.
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Remark 5.5 The borderline case k = 3
2 is expected to be optimal if we restrict our-

selves to the variables (p̃0, q0). This is because for k < 3
2 one would have to add

additional correction terms taking into account the nonlinearity of the pinning poten-
tial.

The main ingredient in the proof of Proposition 5.3 is the following proposition,
which is also going to be very useful for the non-integrability results later in this sec-
tion.

Proposition 5.6 For every θ > 0, there exist functions H0, p̂0 : R4 → R and a constant
Cθ such that
• For every ε > 0, there exists a constant Cε such that the bounds

0 ≤ H0 ≤ (1 + ε)H + Cε , (5.1)

hold.
• Provided that k ≥ 3

2 , for every ε > 0 there exists a constant Cε such that the
bound

(1− ε)Hf (p̃0, q0)− Cε ≤ H0 ≤ (1 + ε)Hf (p̃0, q0) + Cε , (5.2)

holds.
• One has the bounds

(∂p0H0 − p̂0)2 ≤ Cθ + θ4H0 , (5.3a)
(∂p1H0)2 ≤ Cθ + θ4H0 . (5.3b)

• If furthermore k ≥ 3
2 , the bound LH0 ≤ Cθ − (γ − 2θ)p̂2

0 − θH0 holds.
• If k ∈ (4/3, 3/2) then, for every δ > (2k − 1)( 3

k − 2), one has the bound
LH0 ≤ Cθ − (γ − 2θ)p̂2

0 − θH0 + θ2Hδ
f (p1, q1).

Remark 5.7 The presence of p̃0 rather than p̂0 in (5.2) is not a typographical mistake.

Proof. We start be defining the differential operatorK acting on functions F : R2 → R
as

KF = γT∞(∂2
PF )(p1, q1) + (α(q̂0 − Φq(p1, q1)− q1)−R′1(q1))(∂PF )(p1, q1) ,

so that KF = L(F (p1, q1))− (L0F )(p1, q1). Setting

p̂0 = p0 + Φp(p1, q1) , q̂0 = q0 + Φq(p1, q1)ψ(E0/E
η
1 ) , (5.4)

for some yet to be defined functions Φp and Φq and forEi and ψ as in Proposition 4.12,
we then obtain

dq̂0 = p̂0 dt+ (L0Φq − Φp) dt
+ ψKΦq dt+ (ψ − 1)L0Φq dt+ ΦqLψ dt+ γT∞∂p1ψ∂PΦq dt

+
√

2γT∞(ψ∂PΦq + Φq∂p1ψ) dw1(t) +
√

2γTΦq∂p0ψ dw0(t) ,

dp̂0 = −V ′eff (q̂0) dt− γp̂0 dt+
√

2γTdw0

+ (L0Φp − αq1 + γΦp) dt

+KΦp dt+ (V ′eff (q̂0)− V ′eff (q0)) dt+
√

2γT∞∂PΦp dw1(t) ,

(5.5)
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where we defined as before the effective potential Veff (q) = V1(q) + α q
2

2 .
Let E > 0 and set Φ(1)

p as the unique centred solution to

L0Φ(1)
p = αQ(1− ψ(Hf (P,Q)/E)) , (5.6)

where ψ is the same cutoff function already used previously. We then define Φ(2)
p by

L0Φ(2)
p = γΦ(1)

p and we set Φp = Φ(1)
p + Φ(2)

p . This ensures that one has the identity

L0Φp − αq1 + γΦp = Rp ,

where the function Rp consists of terms that scale like Ha
f with a ≤ 3

2k − 1. We
furthermore set Φq to be the unique centred solution to L0Φq = Φp. Note that Φp
consists of terms scaling like Ha

f with a ≤ 1
k −

1
2 and that Φq consists of terms scaling

like Ha
f with a ≤ 3

2k − 1. The introduction of the parameter E in (5.6) ensures that
we can make functions scaling like a negative power of Hf arbitrarily small in the
supremum norm. It follows indeed that one has for example |∂PΦp| ≤ CE

1
k−1.

With these definitions at hand, it follows from (5.5) that

dq̂0 = p̂0 dt+
√

2γT∞(ψ∂PΦq + Φq∂p1ψ) dw1(t) +
√

2γTΦq∂p0ψ dw0(t)
+ ψKΦq dt+ (ψ − 1)Φp dt+ ΦqLψ dt+ γT∞∂p1ψ∂PΦq dt ,

dp̂0 = −V ′eff (q̂0) dt− γp̂0 dt+
√

2γTdw0

+Rp dt+KΦp dt+ (V ′eff (q̂0)− V ′eff (q0)) dt+
√

2γT∞∂PΦp dw1(t) .

(5.7)

Let now H0 be defined by

H0 =
p̂2
0

2
+ Veff (q̂0) + θp̂0q̂0 + C0 ,

were C0 is a sufficiently large constant so that H0 ≥ 1. Note that, as a consequence of
the definitions of p̂0 and q̂0, if k ≥ 3/2 then |p̂0− p̃0| and |q̂0− q0| are bounded so that
the two-sided bound (5.2) does indeed hold. Showing that the weaker one-sided bound
(5.1) holds for every k ∈ [ 3

2 , 2] is straightforward to check.
Before we turn to the proof of (5.3), let us define Ê0 in a similar way as in the proof

of the case k < 2 of Theorem 4.10, but using the ‘hat’ variables. If k ≥ 3
2 , then Ê0

and E0 are equivalent in the sense that they are bounded by multiples of each other. If
k < 3

2 , this is not the case, but it follows from the definitions of Φp and Φq that

Ê0 ≤ C(E0 + E3−2k
1 ) , E0 ≤ C(Ê0 + E3−2k

1 ) .

It follows that, provided that we impose the condition η > 3 − 2k, where η is the
exponent appearing in (5.4), then one has the implications

E0 ≤ CEη1 ⇒ Ê0 ≤ C̃Eη1 (5.8a)

E0 ≥ CEη1 ⇒ Ê0 ≥ C̃Eη1 , (5.8b)

for some constant C̃ depending on C. We will assume from now on that the condition
η > 3− 2k is indeed satisfied. Let us now show that (5.3a) holds. We have the identity

∂p0H0 − p̂0 = θq̂0 + (V ′eff (q̂0) + θp̂0)Φq∂p0ψ .

Since the term θq̂0 satisfies the required bound, we only need to worry about the second
term. It follows from Proposition 4.12 and from the scaling of Φq that this term is
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bounded by a multiple of Ê1− 1
2k

0 E
3
2k−1− η2
1 . Since the bounds (5.8) hold on the support

of ∂p0ψ, this in turn is bounded by a multiple of Ê1/2
0 E

3
2k−1− η

2k
1 , so that the requested

bound follows, provided again that the condition η > 3− 2k holds.
Turning to (5.3b), we have the identity

∂p1H0 = (p̂0 + θq̂0)∂PΦp + (V ′eff (q̂0) + θp̂0)∂p1 (Φqψ) .

Making use of the parameter E introduced in (5.6), it follows that the first term is
bounded by Ê1/2

0 E
1
k−1, which can be made sufficiently small by choosingE � θ

2k
1−k .

In order to bound the second term, we expand the last factor into Φq∂p1ψ + ψ∂PΦq .
The first term can be bounded just as we did for ∂p0H0, noting that the bound on ∂p1ψ
in Proposition 4.12 is better than the bound on ∂p0ψ. Using the fact that (5.8a) holds

on the support of ψ, the second term yields a bound of the form Ê
1
2
0 E

η−3
2 (1− 1

k )
1 , which

yields the required bound provided that η < 3.
It therefore remains to show the bound on LH0. It follows from (5.7) that one has

the identity

LH0 = γT − (γ − θ)p̂2
0 − θ|q̂0|2k − αθ|q̂0|2 − γθp̂0q̂0

+ γT∞((∂PΦp)2 + V ′′eff (q̂0)(∂p1 (Φqψ))2 + 2θ∂PΦp∂p1 (Φqψ))

+ γT (V ′′eff (q̂0)(Φq∂p0ψ)2 + 2θΦq∂p0ψ)
+ (p̂0 + θq̂0)(Rp +KΦp + V ′eff (q̂0)− V ′eff (q0))
+ (V ′eff (q̂0) + θp̂0)(ψKΦq + (ψ − 1)Φp + ΦqLψ + γT∞∂p1ψ∂PΦq) .

(5.9)

We now use the following notion of a negligible function. A function f : R+×R4 → R
is negligible if, for every ε > 0 there exists a constant Eε and, for every E > Eε, there
exists a constant Cε such that the bound |f (E; p, q)| ≤ Cε + ε(Ê0 +Eδ1) holds, where
δ is as in the statement of the proposition. (Set δ = 0 for k ≥ 3/2.)

With this notation, the required bounds follow if we can show that all the terms
appearing in (5.9) are negligible, except for those on the first line. The terms appearing
in the second line are all smaller than the last term appearing in ∂p1H0 and so they
are negligible. Similarly, the terms appearing in the third line are smaller than those
appearing in ∂p1H0 − p̂0.

It is easy to see that the first term on the fourth line is negligible. Concerning the
second term, we see that |KΦp| ≤ C(Ê

1
2k
0 + E

3
2k−1
1 ), so that this term is also seen to

be negligible by power counting. Note now that the definitions of Veff and q̂0 imply that
one has the bound

|V ′eff (q̂0)− V ′eff (q0)| ≤ C(1 + |q̂0|2k−2 + |q0|2k−2)H
3
2k−1

f (p1, q1)

≤ C(1 + |q̂0|2k−2 + E
(2k−2)( 3

2k−1)
1 )E

3
2k−1
1

≤ C(Ê1− 1
k

0 E
3
2k−1
1 + E

(2k−1)( 3
2k−1)

1 ) .

Furthermore, one has V ′eff (q̂0) = V ′eff (q0), unless Ê0 ≤ Eη1 , so that we have the bound

p̂0|V ′eff (q̂0)− V ′eff (q0)| ≤ C(Ê0E
η( 1

2−
1
k )+ 3

2k−1
1 + Ê

1
2
0 E

(2k−1)( 3
2k−1)

1 ) .

The second term is always negligible. Furthermore, if η > (3 − 2k)/(2 − k) the first
term is also negligible.
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We now turn to the last line in (5.9). In order to bound the term involving KΦq ,
note that the functions Φq∂PΦq , ∂2

PΦq , and Q∂Pϕq are bounded provided that k ≥
4
3 , so that the terms involving these expressions are negligible. Concerning the term
V ′eff (q̂0)q̂0∂PΦq , we use the fact that ∂PΦq can be made arbitrarily small by choosing
E large enough in (5.6) to conclude that it is also negligible. The term involving

Φp is bounded by a multiple of Ê
1− 1

2k+ 1
η ( 1
k−

1
2 )

0 , so that it is negligible provided that
η > 2 − k. The term involving ΦqLψ is bounded similarly, using the fact that Lψ is
bounded by Proposition 4.12 and that Φq scales like a smaller power of Hf than Φp.
Finally, the last term is negligible since ∂p1ψ∂PΦq is bounded, thus concluding the
proof of Proposition 5.6. Note that the choice η = 2 for example allows to satisfy all
the conditions that we had to impose on η in the interval k ∈ [4/3, 2].

We are now able to give the

Proof of Proposition 5.3. It follows from (5.2) that if we can show that exp(βH0) is
integrable with respect to µ? for every β < 1/T , then the same is also true for
exp(βHf (p̃0, q0)), provided that we restrict ourselves to the range k ≥ 3

2 .
Before we proceed, we also note that (5.3a) implies that for θ sufficiently small,

one has the bound

(∂p0H0)2 ≤ (1 + θ)p̂2
0 + C̃θ + θ2H0 ,

for some constant C̃θ. Setting W = exp(βH0), we thus have the bound

LW
βW

= LH0 + γβ(T (∂p0H0)2 + T∞(∂p1H0)2)

≤ Cθ − (γ − 2θ)p̂2
0 − θH0 + γβ(1 + θ)p̂2

0 + Cθ2H0 ,

for some constant C independent of θ. Since we assumed that β < 1/T , we can make
θ sufficiently small so that −(γ − 2θ) + γβ(1 + θ) < 0 and Cθ2 − θ < 0. The claim
then follows from Theorem 3.1.

5.2 Integrability and non-integrability in the case k = 2k = 2k = 2

We next show that if k = 2 and T∞ ≤ α2Ĉ, then the invariant measure is heavy-tailed
in the sense that there exists an exponent ζ such that

∫
Hζ(x)µ?(dx) =∞. Our precise

result is given by:

Theorem 5.8 If k = 2 and T∞ ≤ α2Ĉ, one has
∫
Hζ(x)µ?(dx) =∞ provided that

ζ > ζ?
def=

3
4
α2Ĉ − T∞

T∞
.

Conversely, one has
∫
Hζ(x)µ?(dx) <∞ for ζ < ζ?.

Proof. We first show the positive result, namely thatHζ is integrable with respect to µ?
for any ζ < ζ?. Fixing such a ζ, our aim is to construct a smooth function W bounded
from below such that, for some small value ε > 0, the bound LW ≤ −εHζ holds
outside of some compact set. This then immediately implies the required integrability
by Theorem 3.1.

Consider the function V defined in (4.18). Note that this function depends on
parameters E, θ and c and that, for any given value of ε > 0, it is possible to choose
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first θ sufficiently small and c sufficiently close to 1, and then E sufficiently large, so
that the bound

LV ≤ γT∞ − α2γĈ + ε ,

holds outside of some compact set.
Let us now turn to the behaviour of ∂p0V and ∂p1V . It follows from the definitions,

Lemma 4.5, and Corollary 4.7 that one has the identity

(∂p0V )2 = (1− c)2p2
0 +R0 ,

where the function R0 can be bounded by an arbitrarily small multiple of V outside of
some sufficiently large compact set. Furthermore, it follows from the definition of V
and the construction ofH0 that one has the bound V ≥ 1−c

2 H outside of some compact
set, so that we have the bound

(∂p0V )2 ≤ 4(1− c)V +R0 .

Ensuring first that 1 − c ≤ ε/8 and then choosing E sufficiently large, it follows that
we can ensure that (∂p0V )2 ≤ εV outside of a sufficiently large compact set. It follows
in a similar way that, by possibly choosing E even larger, the bound

(∂p1V )2 ≤ p2
1 + εV

holds outside of some compact set. Note now that since

L0(PQ) = 3P 2 − 4Hf , (5.10)

the function P 2− 4
3Hf is centred. Let furthermore R̃ : R2 → R be a centred compactly

supported function such that P 2− 4
3Hf + R̃ vanishes in a neighbourhood of the origin

and let Ξ̃ be the centred solution to

L0Ξ̃ = P 2 − 4
3
Hf + R̃ ,

so that we have the identity

LΞ̃(p1, q1) = p2
1 −

4
3
Hf (p1, q1) + R̃(p1, q1) + (α(q0 − q1)−R′1(q1))(∂P Ξ̃)(p1, q1) .

Furthermore, it follows at once from the definition of V and the scaling behaviours of
Ξ and Ψ that the bound

Hf (p1, q1) ≤ (1 + ε)V ,

holds outside of some compact set. Since furthermore R̃ is bounded and Ξ scales like
H

3
4
f , it follows that the bound

LΞ̃(p1, q1) ≥ p2
1 −

4
3

(1 + ε)V ,

holds outside of some (possibly larger) compact set. Finally, it follows from the scaling
of Ξ̃ that the bounds

|Ξ̃LV | ≤ εV and |∂p1V ∂p1Ξ̃| ≤ εV , (5.11)

hold outside of some sufficiently large compact set.
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With all these definitions at hand, we consider the function

W = V ζ+1 − γζ(ζ + 1)T∞V ζΞ̃(p1, q1) . (5.12)

Note that V is positive outside of a compact set, so that W is well-defined there. Since
we do not care about compactly supported modifications of W , we can assume that
(5.12) makes sense globally. We then have the identity

LW = (ζ + 1)V ζLV + ζγ(ζ + 1)V ζ−1(T (∂p0V )2 + T∞(∂p1V )2 − T∞LΞ̃)

− γζ2(ζ + 1)T∞V ζ−1(Ξ̃LV + γT∞∂p1V ∂p1Ξ̃) .

Collecting all of the bounds obtained above, this in turn yields the bound

LW ≤ (ζ + 1)V ζ(γT∞ − α2γĈ + ε) + ζγ(ζ + 1)V ζ(Tε+ T∞ε+
4
3
T∞(1 + ε))

− γεζ2(ζ + 1)T∞V ζ

≤ γ(ζ + 1)(T∞ − α2Ĉ +
4
3
ζT∞ +Kε)V ζ ,

holding for some constant K > 0 independent of ε outside of some sufficiently large
compact set. It follows that if ζ < ζ?, it is possible to choose ε sufficiently small so
that the prefactor in this expression is negative, thus yielding the desired result.

We now prove the ‘negative result’, namely that Hζ is not integrable with respect
to µ? if ζ > ζ?. In order to show this, we are going to apply Wonham’s criterion with
W2 = H1+ζ . It therefore suffices to find a function W1 growing to infinity in some
direction, such that LW1 > 0 outside of some compact set, and such that

sup
H(p,q)=E

W1(p, q)E−1−ζ → 0 (5.13)

as E →∞. We are going to construct W1 in a way very similar to the construction in
the proof of the positive result above.

Fix some arbitrarily small ε > 0 as before. Setting V as above, note first that
it follows immediately from (4.17) that, by choosing first θ sufficiently small, then c
sufficiently close to 1 and finally E large enough, we can ensure that the bound

LV ≥ γT∞ − α2γĈ − ε(1 + p2
0)

holds outside of some sufficiently large compact set. Similarly as before, we can also
ensure that the bound

(∂p1V )2 ≤ p2
1 − εV

holds. Fix now some ζ̃ ∈ (ζ?, ζ) and define W0 as in (5.12), but with ζ̃ replacing ζ. It
follows that the bound

LW0 ≥ γ(ζ̃ + 1)(T∞ − α2Ĉ +
4
3
ζ̃T∞ −Kε(1 + p2

0))V ζ̃ ,

holds for some constant K > 0 outside of some compact set. The problem is that the
right hand side of this expression is not everywhere positive because of the appearance
of the term p2

0. This can however be dealt with by setting

W1 = W0 −KεH1+ζ̃ , (5.14)
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so that
LW1 ≥ γ(ζ̃ + 1)(T∞ − α2Ĉ +

4
3
ζ̃T∞ − K̃ε)V ζ̃ ,

for some different constant K̃. Since ζ̃ > ζ?, we can ensure that this term is uniformly
positive by choosing ε sufficiently small. By possibly making ε even smaller, we can
furthermore guarantees that W1 grows in some direction, despite the presence of the
term −KεH1+ζ̃ in (5.14). Finally, the condition (5.13) is guaranteed to hold because
we choose ζ̃ < ζ.

As a corollary of Theorem 5.8, we obtain:

Corollary 5.9 If α2Ĉ > T∞ > 3
7α

2Ĉ, then even though the system admits a unique
invariant measure µ?, the average kinetic energy of the second oscillator is infinite,
that is

∫
p2
1 µ?(dx) =∞.

Proof. Since in this case the expectation of H is infinite and the expectation of ?? is
finite

5.3 Integrability and non-integrability in the case k < 2k < 2k < 2.
In this case, we show that the exponential of a suitable fractional power of H is inte-
grable with respect to the invariant measure. Our positive result is given by:

Theorem 5.10 For every k ∈ (1, 2) there exists δ > 0 such that∫
R4

exp(δH
2
k−1(x))µ?(dx) <∞ , (5.15)

where µ? is the unique invariant measure for (1.2).

Proof. Define W = exp(δV κ) for a (small) constant δ > 0 and an exponent κ ∈ (0, 1]
to be determined later (the optimal exponent will turn out to be κ = 2

k − 1). Here, V
is the function that was previously defined in (4.20). Since V and H are equivalent in
the sense that there exist positive constants C1 and C2 such that

C−1
1 V − C2 ≤ H ≤ C1V + C2 ,

showing the integrability of W implies (5.15) for a possibly different constant δ.
Applying the chain rule (4.3), we obtain outside of a sufficiently large compact set

the bound

LW = δκW (V κ−1LV + (δκV 2κ−2 + (κ− 1)V κ−2)Γ(V, V ))
≤ δκWV κ−1(LV + 2δκV κ−1Γ(V, V )) . (5.16)

Note now that it follows immediately from (4.20) and Proposition 4.12 that, outside of
some compact set, one has the bounds

|∂p0V | ≤ C(E
1
2
0 + E

1
2
0 E

3
2k−1−α2
1 + E

3
2k−1
1 ) ≤ C(E

1
2
0 + E

1
2
1 ) ≤ C

√
V ,

|∂p1V | ≤ C(E
1
2
1 + E

1
2k
0 + E

5
2k−2
1 + E

1
2
0 E

3
2k−

3
2

1 ) ≤ C(E
1
2
0 + E

1
2
1 ) ≤ C

√
V ,

so that Γ(V, V ) ≤ CV . Combining this with (4.24), we obtain the existence of con-
stants c and C (possibly depending on κ, but not depending on δ) such that

LW ≤ δWV κ−1(C + CδV κ − cV 2
k−1) , (5.17)

thus concluding the proof.
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We have the following partial converse to Theorem 5.10:

Theorem 5.11 Let k ∈ ( 4
3 , 2). Then, there exists ∆ > 0 such that∫

R4
exp(∆H

2
k−1(x))µ?(dx) =∞ , (5.18)

where µ? is the unique invariant measure for (1.2).

Proof. We are again going to make use of Wonham’s criterion. Let K̃ be a (sufficiently
large) constant, define κ = 2

k −1 ∈ (0, 1
2 ), set F (x) = exp(∆Hκ(x)), and setW2(x) =

exp(K̃Hκ(x)). We then have the bound

LW2

γκK̃W2

= Hκ−1(T + T∞ − p2
0) +Hκ−2(κ− 1 + κK̃Hκ)(Tp2

0 + T∞p
2
1)

≤ C(1 +H2κ−1) ,

for some constant C > 0. In particular, we have LV ≤ F outside of some compact
set, provided that we choose ∆ > K̃. Let now K be any constant smaller than K̃ and
set

W1 = exp(K(Hκ − 2Hκ−1H0 +H2κ−2Φ)) def= exp(KH1) ,

where H0 is the function from Proposition 5.6. Note that the properties of H0 imply
that, outside of some compact set, one has the bounds

1 ≤ H0 ≤ (1 + ε)H .

It is clear that W2 is much larger than W1 at infinity, so that it remains to show that
LW1 > 0 outside of a compact set for K sufficiently large. We are actually going
to show that there exists a constant C such that (LW1)/W1 ≥ CH2κ−1 outside of
some compact set. Therefore, we call a function f negligible if, for every ε > 0, there
exists a compact set such that |f | ≤ εH2κ−1 outside of this set. Note that since we
consider the range of parameters such that κ < 1

2 , bounded functions are not negligible
in general.

Using the chain rule (4.3), we have the identity

LW1

KW1
= LH1 + γK(T (∂p0H1)2 + T∞(∂p1H1)2)

≥ LH1 + γKT∞(∂p1H1)2 .

We first turn to the estimate of LH1. Using again (4.3), we have the identity

LH1 = (κHκ−1 + 2(1− κ)(Hκ−2H0 −H2κ−3Φ))LH − 2Hκ−1LH0 +H2κ−2LΦ
+ γ(2κ− 2)(2κ− 3)H2κ−4(Tp2

0 + T∞p
2
1)Φ + γT∞(2κ− 2)H2κ−3p1∂PΦ

+ γ(κ− 1)Hκ−3(κH + 2(2− κ)H0)(Tp2
0 + T∞p

2
1)

+ 2γ(1− κ)Hκ−2(Tp0∂p0H0 + T∞p1∂p1H0)

We see immediately that all terms except for the ones in the first line are negligible. On
that line, the first term involving Φ is negligible as well since Φ scales like a power of
the energy strictly smaller than one. Furthermore, it follows from (5.1) that

κHκ−1 + 2(1− κ)Hκ−2H0 ≤ (2− κ

2
)Hκ−1 ,
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say. Combining this with Proposition 5.6 and the fact that the inequality κ > (2k −
1)( 3

k − 2) holds in the range of parameters under consideration, we obtain the lower
bound

LH1 & Hκ−1
(
γ(
κ

2
− 2)p2

0 + 2(γ − 2θ)p̂2
0 + 2θH0

)
+H2κ−2LΦ .

Using the definition of p̂0, and choosing θ < γκ/8, we obtain the existence of a con-
stant C such that

LH1 & Hκ−1(2θH0 − CHκ
f (p1, q1)) +H2κ−2L0Φ .

Here, we also made use of the scaling properties of Φ in order to replace LΦ by L0Φ.
Note that the constant C appearing in the expression above can be made independent
of θ provided that we restrict ourselves to θ ≤ γκ/16, say. At this point, we make the
choice M = 2C in the definition of Φ, so that we have the lower bound

LH1 & Hκ−1
(

2θH0 −
M

2
Hκ
f (p1, q1)

)
+MH2κ−2(Hf (p1, q1)− p2

1)

& −M
2
Hκ−1Hκ

f (p1, q1) +MH2κ−2(H0 +Hf (p1, q1)− p2
1) ,

where we made use of the fact that, since κ < 1, for every constant C, there is a
compact set such that Hκ−1H0 ≥ CH2κ−2H0 outside of that compact set. From the
definitions ofH and H0, we see that there exists a constantC and a compact set outside
of which CH0 +Hf (p1, q1) > 3

4H , say, so that we finally obtain the lower bound

LH1 &
M

4
H2κ−1 −MH2κ−2p2

1 . (5.19)

Let us now turn to the term (∂p1H1)2. We have the identity

∂p1H1 = Hκ−2(κH + 2(1− κ)H0)p1 + 2(κ− 1)H2κ−3Φp1

− 2Hκ−1∂p1H0 +H2κ−2∂PΦ .

Using the inequality (a + b)2 ≥ a2

2 − b
2, as well as the bound (5.3b), it follows that

there exists a constant C such that the bound

(∂p1H1)2 ≥ κ2

2
H2κ−2p2

1 − 16θ4H2κ−2H0 − CH2κ−2 ,

holds. Combining this bound with (5.19), we obtain the lower bound

LW1

KW1
&
M

4
H2κ−1 +

(γKT∞κ2

2
−M

)
H2κ−2p2

1 − 16γKT∞θ4H2κ−2H0 ,

We now choose K = 2M/(γT∞κ2) so that the second term is always positive. The
prefactor of the last term is then given by 32Mθ4/κ2. Choosing θ small enough so that
θ4 < κ2/256, say, we finally obtain the lower bound

LW1 ≥
MK

16
H2κ−1W1 > 0 ,

valid outside of some sufficiently large compact set, as required.
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6 Convergence speed towards the invariant measure

In this section, we are concerned with the convergence rates towards the invariant mea-
sure in the case 1 < k ≤ 2 where it exists. Our main result will be that k = 4

3 is
the threshold separating between exponential convergence and stretched exponential
convergence.

6.1 Upper bounds
Our main tool for upper bounds will be the integrability bounds obtained in the previous
section, together with the results recently obtained in [DFG06, BCG08].

The results obtained in Section 5 suggest that it is natural to work in spaces of
functions weighted by exp(δV ε), where V was defined in (4.18). For ε > 0 and δ > 0,
we therefore define the spaceB(ε, δ) as the closure of the space of all smooth compactly
supported functions under the norm

‖ϕ‖(ε,δ) = sup
x∈R4

|ϕ(x)| exp(−δHε(x)) ,

where we used the letter x to denote the coordinates (p0, q0, p1, q1). Note that the dual
norm on measures is a weighted total variation norm with weight exp(δHε(x)). We
also say that a Markov semigroup Pt with invariant measure µ? has a spectral gap in a
Banach space B containing constants if there exist constants C and γ̂ such that

‖Ptϕ− µ?(ϕ)‖B ≤ Ce−γ̂t‖ϕ‖B , ∀ϕ ∈ B .

As a consequence of the bounds of Section 5 , we obtain:

Theorem 6.1 Let k ∈ (1, 2] and set κ = 2
k − 1. Then, the semigroup Pt extends to a

C0-semigroup on the space B(ε, δ), provided that ε ≤ max{ 1
2 , 1− κ}. Furthermore:

a. If 1 < k < 4
3 then, for every ε ∈ [1 − κ, κ) and every δ > 0, the semigroup Pt

has a spectral gap in B(ε, δ). Furthermore, there exists δ0 > 0 such that it has
a spectral gap in B(κ, δ) for every δ ≤ δ0.
In particular, for every δ > 0 there exist constants C > 0 and γ̂ > 0 such that
the bound

‖Pt(x, · )− µ?‖TV ≤ C exp(δH1−κ(x))e−γ̂t , (6.1)

holds uniformly over all initial conditions x and all times t ≥ 0.
b. If k = 4

3 then there exists δ0 > 0 such that the semigroup Pt has a spectral
gap in B( 1

2 , δ) for every δ ≤ δ0. In particular, there exists δ > 0 such that the
convergence result (6.1) holds.

c. For 4
3 < k < 2, there exist positive constants δ, C and γ̂ such that the bound

‖Pt(x, · )− µ?‖TV ≤ C exp(δHκ(x))e−γ̂t
κ/(1−κ)

, (6.2)

holds uniformly over all initial conditions x and all times t ≥ 0.
d. For the case k = 2, set ζ? as in Theorem 5.8. Then, for every T∞ < α2Ĉ and

every ζ < ζ?, there exists C > 0 such that the bound

‖Pt(x, · )− µ?‖TV ≤ CH1+ζ(x)t−ζ , (6.3)

holds uniformly over all initial conditions x and all times t ≥ 0.
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Proof. The set of bounded continuous functions is dense in B(ε, δ) and is mapped into
itself by Pt. Therefore, in order to show that it extends to a C0-semigroup on B(ε, δ), it
remains to verify that:

1. There exists a constant C such that ‖Ptϕ‖(ε,δ) ≤ C‖ϕ‖(ε,δ) for every t ∈ [0, 1]
and every bounded continuous function ϕ.

2. For every ϕ ∈ C∞0 , one has limt→0 ‖Ptϕ− ϕ‖(ε,δ) = 0.
Using the a priori bounds on the solutions given by the bound LH ≤ γ(T + T∞), it is
possible to check that the second statement holds for every (ε, δ). The first claim then
follows from [MT93] and (5.17).

It remains to show claims a to d. Claims a and b follow immediately from (5.17). To
show that claim c also holds, we use the fact that, by using (5.17) in the case ε = 2

k −1,
we can find δ > 0 such that the bound

LW ≤ −δ2V 2κ−1W = −δ
k

2−kW (log(W ))2−
1
κ ,

holds outside of some compact subset of R4. Since we are considering a regular
Markov process, every compact set is petite. This shows that there exists a constant δ
such that, in the terminology of [BCG08], W is a ϕ-Lyapunov function for our model
with

ϕ(t) = δ
k

2−k t(log t)2−
1
κ .

In particular, this yields the identity

Hϕ(t) =
∫ t

1

ds

ϕ(s)
= δ−

k
2−k

∫ log(t)

0

s
1
κ−2ds = C(log t)

1−κ
κ ,

for some constant C depending on δ and κ. It follows from the results in [BCG08] that
the convergence rate to the invariant measure is given by

ψ(t) =
1

(ϕ ◦H−1
ϕ )(t)

= Ct
1−2κ
1−κ e−γt

κ/(1−κ)
,

for some positive constants C and γ, so that (6.2) follows.
The case k = 2 can be treated in a very similar way. It follows from the first part of

the proof of Theorem 5.8 that, there exists β > 0 and a function W growing like H1+ζ

at infinity such that one has the bound LW ≤ −βHζ outside of some sufficiently large
compact set. Therefore, W is a ϕ-Lyapunov function for ϕ(t) = −βt

ζ
1+ζ . Following

the same calculations as before, we obtain ψ(t) = Ct−ζ , so that the required bound
follows at once.

6.2 Lower bounds
In order to be able to use Theorem 3.7, we need upper bounds on the moments of some
observable that is not integrable with respect to the invariant measure. This is achieved
by the following proposition:

Proposition 6.2 For every α > 0 and every κ ∈ [0, 1
2 ] there exist constants Cα and

Cκ such that the bounds

(PtHα)(x) ≤ (H(x) + Cαt)α ,

(Pt expαHκ)(x) ≤ exp(αHκ(x) + Cκ(1 + t)κ/(1−κ)) ,

hold for every t > 0 and every x ∈ R4.
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Proof. Note first that LH ≤ γ(T + T∞) and that

T (∂p0H)2 + T∞(∂p1H)2 = Tp2
0 + T∞p

2
1 ≤ 2(T + T∞)H . (6.4)

It follows that for α ≥ 1, there exists C > 0 such that one has the bound

d

dt
(PtHα)(x) = (Pt(LHα))(x)

= α(Pt(Hα−1LH + γ(α− 1)Hα−2(Tp2
0 + T∞p

2
1)))(x)

≤ C(PtHα−1)(x) ≤ C((PtHα)(x))1−
1
α .

The last inequality followed from the concavity of x 7→ x1− 1
α . Setting Cα = C/α, the

bound on PtHα now follows from a simple differential inequality. The corresponding
bound for α ∈ (0, 1) follows by a simple application of Jensen’s inequality.

The bounds on the exponential of the energy are obtained in a similar way. Set
fκ(x) = x(logx)2−

1
κ and note that there exists a constant Kκ such that, provided that

κ ∈ (0, 1
2 ], fκ is concave for x ≥ exp(αKκ

κ ). It then follows as before from (6.4) and
the bound on LH that there exists a constant C such that

d

dt
(Pt expα(Kκ +H)κ)(x) ≤ C(Pt(Kκ +H)2κ−1 expα(Kκ +H)κ)(x)

= C(Ptfκ(expα(Kκ +H)κ))(x)
≤ Cfκ((Pt expα(Kκ +H)κ)(x)) . (6.5)

The result then follows again from a simple differential inequality.

As a consequence, we have the following result in the case k = 2:

Theorem 6.3 For every ζ > ζ? and every x0 ∈ R4, there exists a constant C and a
sequence tn increasing to infinity such that ‖µ? − µtn‖ ≥ Ct−ζn .

Proof. Let ζ̃ ∈ (ζ?, ζ), and let ε > 0, α > ζ(1 + ε). It then follows from Theo-
rem 5.8 and Proposition 6.2 that the assumptions of Theorem 3.7 are satisfied with
W (x) = H ζ̃(x), h(s) = s−1−ε, F (s) = sα/ζ̃ , and g(x0, t) = (H(x0) + Ct)α. Apply-
ing Theorem 3.7 yields the lower bound

‖µ? − µtn‖ ≥ Ct
− (1+ε)αζ̃
α−ζ̃−εζ̃

n ,

for some C > 0 and some sequence tn increasing to infinity. Choosing ε sufficiently
small and α sufficiently large, we can ensure that the exponent appearing in this ex-
pression is larger than −ζ, so that the claim follows.

Furthermore, we have

Theorem 6.4 Let k ∈ ( 4
3 , 2) and define κ = 2

k − 1. Then, there exists a constant c
such that, for every initial condition x0 ∈ R4 there exists a constant C and a sequence
of times tn increasing to infinite such that ‖µ? − µtn‖ ≥ C exp(−ctκ/(1−κ)

n ).

Proof. We apply Theorem 3.7 in a similar way to above, but it turns out that we don’t
need to make such ‘sharp’ choices for h and F . Take h(s) = s−2, F (s) = s3, and
let W = exp(KHκ) with the constant K large enough so that W is not integrable
with respect to µ?. It then follows from Proposition 6.2 that we can choose g(x, t) =
exp(3KHκ(x) + C(1 + t)κ/(1−κ)) for a suitable constant C. The requested bound
follows at once, noting that h ◦ (F · h) ◦ g = 1/g2.
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7 The case of a weak pinning potential

In this section, we are going to study the case k ≤ 1, that is when we have either V1 ≈
V2 or V1 � V2 at infinity. This case was studied extensively in the previous works
[EH00, RT02, EH03, Car07], but the results and techniques obtained there do not seem
to cover the situation at hand where one of the heat baths is at ‘infinite temperature’.
Furthermore, these works do not cover the case k < 1/2 where one does not have a
spectral gap and exponential convergence fails. One further interest of the present work
is that, unlike in the above-mentioned works, we are able to work with the generator
L instead of having to obtain bounds on the semigroup Pt. This makes the argument
somewhat cleaner.

We divide this part into two subsections. We first treat the case where one can find
a spectral gap, which is relatively easy in the present setting. In the second part, we
then treat the case where the spectral gap fails to hold, which follows more closely the
heuristics set out in Section 2.2. There, we also show that, rather unsurprisingly, no
invariant measure exists in the case where k ≤ 0.

7.1 The case k > 1/2k > 1/2k > 1/2

Our aim is to find a modified version Ĥ of the energy function H such that, for a
sufficiently small constant β0, one has exp(−β0Ĥ)L exp(β0Ĥ)� 0 at infinity. This is
achieved by the following result:

Theorem 7.1 Let k ∈ ( 1
2 , 1) and let δ ∈ [ 1

k − 1, 1]. Then, there exist constants c, C >

0, β0 > 0 and a function Ĥ : R4 → R such that
• The bounds cH ≤ Ĥ ≤ CH hold outside of some compact set.
• For any t > 0, the operator Pt admits a spectral gap in the space of measurable

functions weighted by exp(β0Ĥ
δ).

Remark 7.2 Combining this result with Proposition 5.1 shows the existence of con-
stants c, C > 0 such that

∫
exp(cH) dµ? <∞, but

∫
exp(CH) dµ? =∞.

Remark 7.3 The technique used in the proof of Theorem 7.1 is more robust than that
used in the previous sections. In particular, it applies to chains of arbitrary length. It
would also not be too difficult to modify it to suit the more general class of potentials
considered in [RT02, Car07].

Proof. Define the variable y = (q, p0, p1) with q = (q0− q1)/2 and let A and B be the
matrices defined by

A
def=

 0 1
2 − 1

2
−2α −γ 0
2α 0 0

 , B
def=
√

2γ

 0 0√
T 0

0
√
T∞

 . (7.1)

With this notation, we can write the equations of motion for y following from (1.2) as

dy = Ay dt+ F (y,Q) dt+B dw(t) , (7.2)

where we defined the centre of mass Q = (q0 + q1)/2 and F : R4 → R3 is a vector-
valued function whose components are all bounded byC+|V ′1 (q0)|+|V ′1 (q0)| for some
constant C.
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Since detA = −γα < 0 and we know from a simple contradiction argument
[RT02, Car07] that the energy of the system converges to zero under the deterministic
equation ẏ = Ay, we conclude that all eigenvalues ofA have strictly negative real part.
As a consequence, there exists γ̃ > 0 such that the strictly positive definite symmetric
quadratic form

〈y, Sy〉 def=
∫ ∞

0

eγ̃t‖eAty‖2 dt (7.3)

is well-defined. A simple change of variable shows that one then has the bound

〈eAt, SeAty〉 ≤ e−γ̃t〈y, Sy〉 . (7.4)

For any given (small) value ε > 0, let now Gε : R → R be a smooth function such
that:
• There exists a constant Cε such that the bounds Gε(q)V ′1 (q) ≤ Cε − |V ′1 (q)|2

and |Gε(q)|2 ≤ Cε + |V ′1 (q)|2 hold for every q ∈ R.
• One has |G′ε(q)| ≤ ε for every q ∈ R.

Since we assumed that k < 1, it is possible to construct a function Gε satisfying these
conditions by choosing Rε sufficiently large, setting Gε(q) = −V ′1 (q) for |q| ≥ 2Rε,
Gε(q) = q|Rε|2k−2 for |q| ≤ Rε, and interpolating smoothly in between. For large
values of Rε, one can then guarantee that |G′ε(q)| ≤ CR2k−2

ε , which does indeed go to
0 for large values of Rε.

We now define, for a (large) constant ξ to be determined,

Ĥ = H + 〈y, Sy〉 − ξ(p0 + p1)(Gε(q0) +Gε(q1)) .

Before we bound LĤ , we note that we have the bound

(Gε(q0) +Gε(q1))(V ′1 (q0) + V ′1 (q1)) = 2(Gε(q0)V ′1 (q0) +Gε(q1)V ′1 (q1))

+
(∫ q1

q0

G′ε(q) dq
)

(V ′1 (q0)− V ′1 (q1))

≤ 2Cε − 2(|V ′1 (q0)|2 + |V ′1 (q1)|2) + Cε(q0 − q1)2 ,

for some constant C independent of ε.
It therefore follows from (7.4), (7.2), (1.2) and the properties of Gε that there exist

constants Ci independent of ξ and ε such that we have the bound

LĤ ≤ C1 − γp2
0 − γ̃〈y, Sy〉+ 2〈y, SF (y,Q)〉

+ ξ(Gε(q0) +Gε(q1))(V ′1 (q0) + V ′1 (q1))
+ γξp0(Gε(q0) +Gε(q1))− ξ(p0 + p1)(G′ε(q0)p0 +G′ε(q1)p1)
≤ C2(Cε + |V ′1 (q0)|2 + |V ′1 (q1)|2)

− γ̃ − C3εξ

2
〈y, Sy〉 − 2ξ(|V ′1 (q0)|2 + |V ′1 (q1)|2) .

It follows that, by first making ξ sufficiently large and then making ε sufficiently small,
it is possible to obtain the bound

LĤ ≤ C − γ̃

2
(1 + 〈y, Sy〉+ |V ′1 (q0)|2 + |V ′1 (q1)|2) , (7.5)
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for some constant C. (The constant C depends of course on the choice of ξ and of ε,
but assume those to be fixed from now on.) Furthermore, it follows immediately from
the definition of Ĥ that

Γ(Ĥ, Ĥ) ≤ C(1 + 〈y, Sy〉+ |V ′1 (q0)|2 + |V ′1 (q1)|2) ≤ CĤ2− 1
k , (7.6)

where we used the scaling behaviour of V1 in order to obtain the second bound. Set
now W = exp(β0Ĥ

δ) for a constant β0 to be determined. It follows from (5.16) that
the bound

LW ≤ β0δWĤδ−1(LĤ + 2β0δĤ
δ−1Γ(Ĥ, Ĥ)) ,

holds outside of some sufficiently large compact set. Combining this with (7.6) and
(7.5), we see that if δ ∈ [ 1

k − 1, 1] and β0 is sufficiently small, then the bound

LW ≤ −CW (Ĥ)δ+1− 1
k ≤ −CW ,

holds outside of some compact set. The claim then follows immediately from Theo-
rem 3.4.

The case k = 1 can be shown similarly, but the result that we obtain is slightly
stronger in the sense that one has a spectral gap in spaces weighted by Hδ for any
δ > 0:

Theorem 7.4 Let k = 1 and let δ > 0. Then, for any t > 0, the operator Pt admits a
spectral gap in the space of measurable functions weighted by Hδ .

Proof. The proof is similar to the above, but this time by setting ỹ = (q0, q1, p0, p1),

Ã
def=


0 0 1 0
0 0 0 1
−α α −γ 0
α −α 0 0

 , B̃
def=
√

2γ


0 0
0 0√
T 0

0
√
T∞

 ,

and noting that
dỹ = Ãỹ dt+ F (ỹ) dt+ B̃ dw(t) ,

for some bounded function F . It then suffices to construct S̃ similarly to above and to
set Ĥ = 〈ỹ, S̃ỹ〉, without requiring any correction term. This yields the existence of
constants C1 and C2 such that one has the bounds

LĤ ≤ −C1Ĥ , Γ(Ĥ, Ĥ) ≤ C2Ĥ ,

outside of some compact set. The existence of a spectral gap in spaces weighted by Ĥδ

follows at once. The claim then follows from the fact that Ĥ is bounded from above
and from below by multiples of H .

7.2 The case k ≤ 1/2k ≤ 1/2k ≤ 1/2

This case is slightly more subtle since the function V ′(q) is either bounded or even
converges to zero at infinity, so that bounds of the type (7.5) are not very useful. We
nevertheless have the following result:

Theorem 7.5 Let k ∈ (0, 1
2 ]. Then, (1.2) admits a unique invariant probability mea-

sure µ? and there exist constants c, C > 0, β0 > 0, and a function Ĥ : R4 → R such
that
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• The bounds cH ≤ Ĥ ≤ CH hold outside of some compact set.
• If k = 1

2 , then Pt admits a spectral gap in the space of measurable functions
weighted by exp(β0Ĥ).

• If k < 1
2 , then there exist positive constants C and γ̂ such that the bound

‖Pt(x, · )− µ?‖TV ≤ C exp(β0H(x))e−γ̂t
k/(1−k)

, (7.7)

holds uniformly over all initial conditions x and all times t ≥ 0.

Proof. Define again y, A and B as in (7.1) but let us be slightly more careful about
the remainder term. We define as before the center of mass Q = (q0 + q1)/2 and the
displacement q = (q0 − q1)/2 and write

V ′1 (q0) = V ′1 (Q) +R0(q,Q) , V ′1 (q1) = V ′1 (Q) +R1(q,Q) .

With this notation, defining furthermore the vector 1 = (0, 1, 1), the equation of motion
for y = (q, p0, p1) is given by

dy = Ay dt−V ′1 (Q)1 dt+R(Q, y) dt+B dw(t) , R = (0,−R0(Q, y),−R1(Q, y)) .

This suggests the introduction, for fixed Q ∈ R, of the reduced generator LQ acting on
functions from R3 to R by

LQ = 〈Ay, ∂y〉 − V ′1 (Q)〈1, ∂y〉+
1
2
〈B∗∂y, B∗∂y〉 .

Following the usual procedure in the theory of homogenisation, we wish to correct
the ‘slow variable’ Q in order to obtain an effective equation that takes into account
the behaviour of the ‘fast variable’ y. Since the equation of motion for Q is given by
Q̇ = (p0 + p1)/2 = 〈1, y〉/2, this can be achieved by finding a function ψ(Q) such
that 〈1, y〉/2 − ψ(Q) is centred with respect to the invariant measure for LQ and then
solving the Poisson equation LQϕQ = 〈1, y〉/2− ψ(Q).

Since all the coefficients of LQ are linear (remember that Q is a constant there),
this can be solved explicitly, yielding

ψ(Q) = − 2
γ
V ′1 (Q) , ϕQ(y) = −〈a, y〉 , a = (1, 1/γ, 1/γ) .

We now introduce the corrected variable Q̂ = Q + 〈a, y〉, so that the equations of
motion for Q̂ are given by

dQ̂ = − 2
γ
V ′1 (Q) dt+ 〈a,R(Q, y)〉 dt+

√
2T
γ
dw0(t) +

√
2T∞
γ

dw1(t) .

Defining γ̂ = 2
γ , the ‘mean temperature’ T̂ = (T + T∞)/2, and

R̂ = 〈a,R(Q, y)〉+ γ̂(V ′1 (Q̂)− V ′1 (Q)) , (7.8)

we thus see that there exists a Wiener process W such that Q̂ satisfies the equation

dQ̂ = −γ̂V ′1 (Q̂) dt+ R̂ dt+
√

2γ̂T̂ dW (t) .
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Setting again S as in (7.3), this suggests that in order to extract the tail behaviour of
the invariant measure for (1.2), a good test function would be V1(Q̂) + 〈y, Sy〉. This
function however turns out not to be suitable in the regime where Q̂ is large and y is
small, because of the constant appearing when applying L to 〈y, Sy〉. In order to avoid
this, let us introduce a smooth increasing function χ : R+ → [0, 1] such that χ(t) = 1

for t ≥ 2 and χ(t) = 0 for χ ≤ 1. We also define the function 〈Q̂〉 =
√

1 + Q̂2, so

that |V ′1 (Q̂)| ≤ C〈Q̂〉2k−1 and similarly for V ′′1 (Q̂).
Note that, since we are considering the regime where V ′1 is a bounded function,

there exists a constant CS such that

−CS − 2γ̃〈y, Sy〉 ≤ L〈y, Sy〉 ≤ CS −
γ̃

2
〈y, Sy〉 ,

where γ̃ is as in (7.4). Furthermore, we note that since all terms contained in R̂ are of
the form V ′1 (Q̂) − V ′1 (Q̂ + 〈b, y〉) for some vector b ∈ R3, there exists a constant C
such that the bound

|R̂| ≤
{

C |Q̂| ≤ C|y| ,
C|y|〈Q̂〉2k−2 |Q̂| ≥ C|y| ,

(7.9)

holds for every pair (Q̂, y). (In particular R̂ is bounded.) We now set

W = exp(β0〈y, Sy〉) + exp(β0λV1(Q̂)) ,

for some positive constants β0 and λ to be determined.
Since we are only interested in bounds that hold outside of a compact set, we use

in the remainder of this proof the notation f . g to signify that there exists a constant
c > 0 such that the bound f ≤ cg holds outside of a sufficiently large compact set.
With this notation, one can check in a straightforward way that there exist constants βi
depending on β0 and λ such that the two-sided bound

exp(β1H) . W . exp(β2H) ,

holds.
It follows then from the chain rule that there exist constants Ci > 0 such that one

has the upper bound

LW ≤ β0

(
CS − (

γ̃

2
− C1β0)〈y, Sy〉

)
exp(β0〈y, Sy〉) (7.10)

+ β0λ(−(1− C2β0λ)|V ′1 (Q)|2 + C3|V ′1 (Q̂)||R̂|+ C4V
′′
1 (Q̂)) exp(β0λV1(Q̂)) .

Choosing β0 sufficiently small, we obtain the existence of a constant C such that the
bound

LW . (C − 〈y, Sy〉) exp(β0〈y, Sy〉) + 〈Q̂〉2k−1(C|R̂| − 〈Q̂〉2k−1) exp(β0λV1(Q̂)) ,

holds.
We now consider three separate cases. In the regime λV1(Q̂) ≥ 〈y, Sy〉 ≥ C, it

follows from (7.9) and our definition of λ that we have the bound

LW . 〈Q̂〉2k−1(C|R̂| − 〈Q̂〉2k−1) exp(β0λV1(Q̂)) . −〈Q̂〉4k−2W .
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In the regime where λV1(Q̂) ≥ 〈y, Sy〉 but 〈y, Sy〉 ≤ C, we similarly have

LW . C exp(β0C)− 〈Q̂〉4k−2 exp(β0λV1(Q̂)) . −〈Q̂〉4k−2W .

Finally, in the regime where λV1(Q̂) ≤ 〈y, Sy〉, we have the bound

LW . −〈y, Sy〉 exp(β0〈y, Sy〉) . −|y|2W .

Combining all of these bounds, we have

LW . −(logW )2−
1
kW ,

so that the upper bounds on the transition probabilities follow just as in the proof of
Theorem 6.1 with κ replaced by k.

Before we obtain lower bounds on the convergence speed, we show the following
non-integrability result:

Lemma 7.6 In the case k < 1
2 there exists β > 0 such that

∫
exp(βV1(Q̂)) dµ? =∞.

Proof. We are going to construct functions W1 and W2 satisfying Wonham’s criterion.
Let Q̂, S and y be as in the proof of the previous result and set

W2 = exp(2βV1(Q̂)) + exp(ε〈y, Sy〉) ,

for constants β > 0 and ε > 0 to be determined. It follows from the boundedness of
V ′1 , V ′′1 and R̂ that, whatever the choice of β, one has

LW2 . exp(βV1(Q̂)) ,

provided that we choose ε sufficiently small. Setting

W1 = exp(βV1(Q̂))− exp(ε〈y, Sy〉) ,

we have similarly to (7.10) the bound

LW1 ≥ β((C2β − 1)|V ′1 (Q̂)|2 − C3|V ′1 (Q̂)||R̂|+ C4V
′′
1 (Q̂)) exp(βV1(Q̂))

+ ε((γ̃/2− C1ε)〈y, Sy〉 − CS) exp(ε〈y, Sy〉) ,

so that an analysis similar to before shows that LW1 ≥ 0 outside of some compact set,
provided that ε < γ̃/(2C1) and β > 1/C2, thus concluding the proof.

Remark 7.7 The proof of Lemma 7.6 does not require k > 0. It therefore shows that
there exists no invariant probability measure for (1.2) if k ≤ 0.

We now use this result in order to obtain the following lower bound on the conver-
gence of the transition probabilities towards the invariant measure:

Theorem 7.8 Let k ∈ (0, 1
2 ). Then, there exists a constant c such that, for every initial

condition x0 ∈ R4 there exists a constant C and a sequence of times tn increasing to
infinite such that ‖µ? − µtn‖ ≥ C exp(−ctk/(1−k)

n ).
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Proof. We use the same notations as above. Let β be sufficiently large so that the
function exp(βV1(Q̂)) is not integrable with respect to the invariant measure. We also
fix some small ε > 0 and we set

W = exp(βV1(Q̂)) + exp(ε〈y, Sy〉) .

We then obtain in a very similar way to before the upper bound

LW ≤ β((C2β − 1)|V ′1 (Q̂)|2 + C3|V ′1 (Q̂)||R̂|+ C4V
′′
1 (Q̂)) exp(βV1(Q̂))

+ ε(CS − (γ̃/2− C1ε)〈y, Sy〉) exp(ε〈y, Sy〉) .

It follows again from a similar analysis that there exists a constant C > 0 such that the
bound

LW ≤ C(logW )2−
1
kW ,

holds outside of some compact set. As in the proof of Proposition 6.2, this implies the
existence of a constant C > 0 such that one has the pointwise bound

PtW ≤W exp(C(1 + t)k/(1−k)) .

Combining this with Lemma 7.6, the rest of the proof is identical to that of Theo-
rem 6.4.
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