
AMPLITUDE EQUATIONS FOR SPDES: APPROXIMATE
CENTRE MANIFOLDS AND INVARIANT MEASURES
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Abstract. We review recent results on the approximation of transient dynamics of
SPDEs by amplitude equations. As an application we derive the flow along an approx-
imate centre manifold, and we study the dynamics of random fixed points. To discuss
the long-time behaviour we give an approximation result for invariant measures.

Key words. Amplitude equation, SPDE, separation of time scales, approximate
centre manifold, bifurcation, multiple scale analysis, invariant measures

AMS(MOS) subject classifications. 60H10, 60H15.

1. Introduction. In systems near a change of stability, the essential
dynamics is given by the evolution of the dominant eigenfunctions of the
linearisation, and the effect of small noise is visible if the strength of the
noise is comparable to the size of the linear instability. It is of course
well-known how to linearise nonlinear equations to get a linear equation
describing the essential stochastic dynamics close to an equilibrium. In
this article we will also take into account the effect of nonlinearities on
weakly unstable systems, allowing to describe the essential dynamics for
much larger radii than the linearisation. Actually, we will see that under
weak non-degeneracy conditions, this even allows to describe the long-time
behaviour of the system under consideration, i.e. the invariant measures of
the original system and the approximating system are close.

We also describe several byproducts of this method. One result is the
existence of an approximate centre manifold around a weakly (un)stable
equilibrium (cf. Theorem 4.1). This is a deterministic vector space on which
the stochastic flow can be described by a suitable approximation. We also
give results for dynamics of random attractors.

Our main tool is the approximation by amplitude equations. This
theory is mathematically very well understood in the deterministic case,
even for extended systems [12, 13, 34, 39]. It was first rigorously used
for stochastic systems in [5] and later extended in [4, 7, 8]. We give a
survey of this method, together with new results on the dynamics of random
attractors and approximate centre manifolds.

The general methodology follows two main steps. For the first step,
we have two options. The first is to prove a local result, where one only
considers the dynamics in a small neighbourhood of a weakly (un)stable
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equilibrium. Here one can allow for blow ups of solutions far away from
the equilibrium, but one then only gets estimates of the type “The rest
term is small with high probability”. If one takes into account stabilising
properties of the nonlinearity, one can control all trajectories to get bounds
on arbitrary p-th moments of the error term.

In the second step, one combines that approximation result with er-
godic properties of the aproximating system to show that the long-time
dynamics of the two systems are also close to each other. This is obviously
only possible for nonlinear stable equations.

On finite domains a main assumption is the existence of a well-defined
spectral gap separating the dominant modes that are subject to a weak
instability or stability from the stable modes. In the deterministic setting, it
is now well-known (e.g. [2]) how to derive invariant manifolds characterising
the dominant flow of the equation. For the stochastic equation this is not
clear. Recently the concept of random invariant manifolds for SPDE was
developed (see [21] or [35]), but we are far from a complete understanding.

In this paper we take a different approach describing the flow around
a fixed deterministic vector space spanned by the dominant eigenfunctions
(or modes) of the linearisation. We neglect all the trajectories far away
from that space, as they only have very small probability. This concept
will be called approximate centre manifold.

This is in sharp contrast to the case of unbounded domains, where
a whole band of modes gets unstable, and no spectral gap exists. For
deterministic equations there exists a theory that replaces centre manifold
theory (see [39] and the references therein). A similar situation occurs
already if the size of the domain is of order ε−1 for a noise and a linear
instability of size ε2 (see for example [33] for the unperturbed equation).
For the stochastic equation this situation is currently under investigation
in [9].

The paper is organised as follows. First, we state the general problem
and make the formal multi-scale analysis in section 2. In section 2.1, we
then summarise all technical assumptions required for the proofs, and we
give some examples of such equations in section 2.2. The main results
for the approximation will be stated in section 3. In Section 4 we give
the applications to approximate centre manifolds and random fixed points,
while section 5 discusses approximation of invariant measures. The final
section 6 gives a brief survey what results one expects for more general
classes of nonlinearities, and we give a detailed discussion of the special
case of quadratic nonlinearities.

2. General setting. We consider parabolic nonlinear SPDEs with
additive forcing near a stability change, where the noise is of the order of
the distance from the change of stability.

The general prototype is an equation of the type

∂tu = Lu + ε2Au + F(u) + ε2ξ ,(2.1)
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where L is a dissipative operator with finite dimensional kernel, ε2Au is
a small (linear) deterministic perturbation, F is a nonlinearity, and ξ =
ξ(t, x) is a Gaussian noise which will be taken to be white in time and
can be either white or coloured in space. In other words, ξ(t) = ∂tQW (t),
where W = {W (t)}t≥0 is a standard cylindrical Wiener process and QQ∗ is
the covariance operator (in space) of the noise. We will work with solutions
in some Hilbert space H.

One standard example of such an equation is given by the Swift–
Hohenberg equation

∂tu = −(1 + ∆)2u + ε2u − u3 + ε2ξ ,(2.2)

with periodic boundary conditions on the domain [0, 2πl]d for dimension
d ∈ N and integer length l > 0. After slight modification we can also treat
non-integer length l > 0. For more examples see section 2.2.

Before we proceed to give detailed assumptions, we present a short
formal derivation via multi-scale analysis of the amplitude equation, which
was already discussed in [7]. Assume F to be cubic (i.e. trilinear) and
denote the kernel of L by N . Denote the orthogonal projection onto N by
Pc and define Ps = I − Pc. Then we make the following ansatz:

u(t) = εa(ε2t) + ε2b(ε2t) + ε2ψ(t) + O(ε3) ,(2.3)

with a, b, c ∈ N and φ, ψ ∈ S = PsH. This ansatz is motivated by the
fact that, due to the linear damping of order one in S, the modes in S are
expected to evolve on time scales of order one, whereas the modes in N
are expected to evolve on much slower time scales of order ε−2.

Plugging the ansatz (2.3) back into (2.1), setting T = ε2t, and ex-
panding in orders of ε, we obtain first, by collecting all terms of order ε3

in N ,

∂T a(T ) = Aca(T ) + Fc(a(T )) + ∂T β(T ) .(2.4)

Here, β(T ) = εPcQW (ε−2T ) is a Wiener process in N with distribu-
tion independent of ε, and we write Ac = PcA and Fc = PcF for short.
This approximation is called amplitude equation, and it is well-known for
many examples in the physics and applied mathematics literature (e.g. [15,
(4.31),(5.11)]). Moreover, there are numerous variants of this method. See
for example [24]. For a modulation equation of highly oscillatory solutions
see for example [28], but there are many more examples. However, these
are all non-rigorous approximations using formal multi-scale analysis.

Let us now turn to higher order corrections. Collecting terms of order
ε2 in S yields for ψ the linear equation

∂tψ(t) = Lsψ(t) + Psξ(t) ,(2.5)

where we defined Ls = PsL. One can show furthermore that b = 0 (see [7]
for a detailed argument).
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2.1. Assumptions. Let us summarise all assumptions necessary for
our results. We do not focus on the highest possible level of generality, but
stick to some simpler cases which cover all our examples.

Assumption 1. Let H be a separable Hilbert space and ∆ (subject to
some boundary conditions) be a selfadjoint version of the Laplacian on H.
Suppose L = P (−∆) for some function P such that L is non-positive.
Furthermore let the kernel N = kerL of L be non-empty and suppose
P (k) → −∞ as k → ∞.

We denote by Pc be the orthogonal projection onto N , which is finite-
dimensional by assumption on P . Define dim(N ) = n ∈ N and Ps = 1−Pc.
We also denote the range of Ps by S, so that H = N ⊕ S.

It is clear that there exists ω > 0 such that

‖etL‖L(H,H) ≤ 1 , ‖etLPs‖L(H,H) ≤ e−tω for any t ≥ 0.(2.6)

We define the fractional space Hα for α ≥ 0 as usual by Hα = D((1−
L)α) with norm ‖u‖α = ‖(1−L)αu‖. The space H−α = (Hα)′ is the dual of
Hα with respect to the pairing 〈·, ·〉 (see for example [30] or [36]). It is well-
known that etL extends to an analytic semigroup on all Hα, α ∈ R. Note
furthermore that obviously N ⊂ Hα for any α ≥ 0, since (1 − L)αN = N .

It is also a well-known fact that for α ∈ [0, 1) there is a constant
Mα ≥ 1 such that

‖etL‖L(H−α,H) ≤ Mα(1 + t−α)(2.7)

and for some 0 < ω̃ < ω

‖Pse
tL‖L(H−α,H) ≤ Mα(1 + t−α)e−tω̃ for all t > 0 .(2.8)

Assumption 2. The function F is locally Lipschitz from H to H−α

for some α ∈ [0, 1). Assume we can split F(x) = f(x) + g(x), where
f : H×H×H → H−α is continuous, trilinear, and symmetric. The function
g is higher order, which means ‖g(x)‖−α ≤ C‖x‖4 provided ‖x‖ ≤ 1.

Furthermore assume that Pcf is stable on N , which means |Pcf(ϕ +
a) · a| ≤ Cδ‖ϕ‖4 − δ‖a‖4 for some small δ > 0 and all a, ϕ ∈ N , where we
use the canonical scalar product in N ≈ R

n.
Finally, we assume A : H → H−α is a bounded linear operator.
We will use the shorthand notations f(u) = f(u, u, u) and Fc = PcF ,

Moreover Ac = PcA and fc = Pcf .
In the following we make a somewhat stronger assumption ensuring

global nonlinear stability of our SPDE (2.1). For simplicity, we restrict
ourselves to cubic nonlinearities. This assumption is responsible for the
global existence of solutions (cf. Proposition 2.1) and for uniform (in t)
bounds on E‖u(t)‖p for solutions of (2.1) (cf. Theorem 3.2). Note that
these bounds are independent of the initial condition.
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Assumption 3. Let Assumption 2 be true and assume that the linear
operator A belongs to L(H1,H). Moreover, there exists a constant CA > 0
such that

〈Av, v〉 ≤ CA

(‖v‖2 + 〈−Lv, v〉) for all v ∈ H1 .(2.9)

We also assume that F is trilinear, F : (H1)3 → H is continuous and that

〈Fc(vc, vc, wc), wc〉 < 0(2.10)

for all vc, wc ∈ N \ {0}. We finally assume that there exist constants K
and γL ∈ [0, 1) such that, for some δ > 0,

〈F(v + φ), v〉 ≤ K‖φ‖4 − δ‖v‖4 − γL〈Lv, v〉 ,(2.11)

for any φ, v ∈ H1.
Concerning the stochastic perturbation we will always assume that

the following is true. (For a detailed discussion of Q-Wiener processes and
stochastic convolutions see [18].)

Assumption 4. The noise process is formally given by ξ = Q∂tW ,
where W is a standard cylindrical Wiener process in H with the identity as
a covariance operator and Q ∈ L(H,H) is symmetric. Furthermore, there
exists a constant α̃ < 1

2 such that

‖(1 − L)−α̃Q‖HS(H) < ∞ ,(2.12)

where ‖ · ‖HS(H) denotes the Hilbert-Schmidt norm of an operator from H
to H.

Remark 2.1. Straightforward computations, combined with the prop-
erties of analytic semigroups allow to check that Assumption 4 implies the
following (see [18, Section 5.4] for the first assertion):

• The stochastic convolution WL(t) =
∫ t

0 eL(t−s)Q dW (s) is an H-
valued process with Hölder continuous sample paths.

• There exist positive constants C and γ such that

‖Pse
LtQ‖HS ≤ C(1 + t−γ)e−ωt ,(2.13)

holds for every t > 0.
Remark 2.2. Note that we do not assume that Q and L commute.

Hence, it is in general not true that Q and Pc commute. Therefore, the
noise processes PcQW and PsQW will not necessarily be independent,
which implies that the amplitude equation (2.4) and equation (2.5) for the
second order correction are coupled through the noise.

It is straightforward to verify that

Ps[WL(t)] =
∫ t

0

e(t−τ)LdPsQW (τ) and Pc[WL(t)] = PcQW (t).
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Therefore, the stochastic convolution is a Wiener process on N and it is a
stable Ornstein-Uhlenbeck process on S. This means that the noise acts in
two completely different ways on Pcu and Psu for some mild solution u.

To give a meaning to (2.1) we will always consider mild solutions,
which are given by the following proposition.

Proposition 2.1. Under Assumption 1, 2, and 4, for any (stochastic)
initial condition u0 ∈ H equation (2.1) has a unique local mild solution u.
This means we have a stopping time t∗ > 0 and a stochastic process u such
that u : [0, t∗] → H is a solution of

u(t) = etLu0 +
∫ t

0

e(t−τ)L[ε2Au + F(u)](τ)dτ + ε2WL(t)(2.14)

for t ≤ t∗.
Suppose additionally that Assumption 3 is true, then the solutions are

global, which means t∗ = ∞.
For the proof note that the existence and uniqueness of local solutions

is standard since we consider locally Lipschitz-continuous nonlinearities.
See for example [18, Section 7] we can also apply the deterministic approach
of [25, Thm. 3.3.3] path-wise. For Lp-theory with application to Navier-
Stokes eq. see for example [10, 11].

The global existence follows from standard a-priori estimates for v =
u − WL, as v is a weak solution of the following PDE with random coeffi-
cients:

∂tv = Lv + ε2A(v + WL) + F(v + WL).(2.15)

The formal idea is to take the scalar product with v, in order to derive
estimates for ‖v‖2 and hence ‖u‖2.

2.2. Examples of equations. In the literature there are many ex-
amples of equations of the type given by Assumptions 1, 2 or 3, and 4. For
instance, the well-known Ginzburg-Landau equation (see [20] for a standard
proof of existence)

∂tu = ∆u + νu − u3 + σξ

and the Swift-Hohenberg equation

∂tu = −(∆ + 1)2u + νu − u3 + σξ ,

which was first used as a toy model for the convective instability in a
Rayleigh-Bénard problem (see [26] or [15]), fall into the scope of our work
when the parameters ν and σ are small and of comparable order of mag-
nitude. Both equations are considered on bounded domains with suitable
boundary conditions (e.g. periodic, Dirichlet, Neumann, etc.).

Other equations could involve nonlinearities of the type ∂2
x(u3) or

∂x((∂xu)3). The first nonlinearity is considered with the Sobolev space
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H = H−1, while the second one has to be considered in L2, provided we
have the following Poincare type inequality ‖u‖ ≤ C‖∂xu‖ for u ∈ D(L).

Another example arising in the theory of surface growth is

∂tu = −∆2u − µ∆u + ∇(|∇u|2∇u) + σξ ,(2.16)

subject to periodic boundary conditions and moving frame
∫

G u dx = 0,
which will ensure a Poincare type inequality. The deterministic equation
was rigorously treated in [27]. Here we can consider µ = µ0 + ε2 and
σ = O(ε2), where µ0 is such that L = −∆2u − µ0∆u fulfils Assumption 1.

3. Amplitude equations, main results. We review the two main
approaches to verify the approximation via amplitude equations. One relies
on a purely local picture and uses Assumption 2, while the other takes into
account the global nonlinear stability of the equation given by Assumption
3.

3.1. Attractivity. The attractivity justifies the ansatz for the formal
computation. It shows that after a comparably short time the solution is
of the form of the ansatz (2.3).

Theorem 3.1 (Attractivity-local). Under Assumptions 1, 2, and 4
there are constants ci > 0 and a time tε = O(ln(ε−1)) such that for all
mild solutions u of (2.14) we can write u(tε) = εaε + ε2Rε with aε ∈ N
and Rε ∈ S, where

P

(
‖aε‖ ≤ δ, ‖Rε‖ ≤ ε−κ

)
≥ P

(
‖u0‖ ≤ c3δε

)
− c1e

−c2ε−2κ

,(3.1)

for all δ > 0 and ε ∈ (0, 1).
The proof of this result is a straightforward modification of Theorem

3.3 of [4]. It relies on the fact that small solutions of order O(ε) are on
small time-scales given by the linearised picture, which is dominated by
the semigroup estimates (2.7) and (2.8).

Theorem 3.2 (Attractivity-global). Let Assumptions 1, 2, and 4 be
satisfied. Then for all T0 > 0 and p ≥ 1 there are constants cp > 0 such
that

E‖u(T0 · ε−2)‖p ≤ cpε
p(3.2)

for all H-valued mild solutions u of equation 2.1 independent of the initial
condition.

Furthermore, there is a time tε = O(ln(ε−1)) such that given a family
of positive constants {δp}p≥1 there are positive constants {Cp}p≥1, such
that for all H-valued mild solutions u of equation (2.1) with E‖u(0)‖p ≤
δpε

p we have

E‖u(t)‖p ≤ Cpε
p and E‖Psu(t + tε)‖p ≤ Cpε

2p(3.3)

for all t ≥ 0 and ε ∈ (0, 1).
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The proof is given by a-priori estimates. This was not directly proved
in [7], but under our somewhat stronger assumptions this is similar to
Lemma 4.3 of [7]. It relies on a-priori estimates for vδ = u − WL−δ with
δ = O(ε2), which fulfils a random PDE similar to (2.15). We omit the
proof, as it is technical but straightforward.

3.2. Approximation. For a solution a of (2.4) and ψ of (2.5) we
define the approximations εwk of order k by

εw1(t) := εa(ε2t) and εw2(t) := εa(ε2t) + ε2ψ(t).

The residual of εw is given by

Res(εw(t)) = −εw(t) + etLεw(0) + ε2WL(t)(3.4)

+
∫ t

0

e(t−τ)L[ε3Aw + F(εw)](τ)dτ.

In order to show that εw is a good approximation of a solution u of (2.14),
the main step is to control the residual. The main idea is to obtain bounds
on PcRes(εw) via the amplitude equation and to bound PsRes(εw) by us-
ing the stability of the equation which is ensured by our spectral gap (cf.
(2.6) or (2.7)). These estimates require good a-priori bounds on the ap-
proximation εwk, but do not require any a-priori knowledge on the solution
u of the original equation.

Bounds on the residual easily imply approximation results, as we can
establish bounds on the difference of εwk and u using (3.4) and (2.14).

Theorem 3.3 (Approximation-local). Suppose Assumptions 1, 2, and
4 are true. Fix the time T0 > 0 and some small κ ∈ (0, 1). Then there
are constants Catt > 0 and ci > 0 such that for ε ∈ (0, 1) we obtain for all
solutions u of (2.14) and all solutions a of (2.4) (with fc instead of Fc)

P

(
sup

t∈[0,T0ε−2]

‖u(t) − εw1(t)‖X ≤ Cattε
2−κ

)

≥ 1 − P

(
‖u0 − εa(0)‖X ≥ c1ε

2−κ
)
− P

(
‖u0‖X ≥ c2ε

)
− c3e

−c4 ln(ε−1)2 .

The proof of this result is a straightforward modification of Theorems
4.1 and 4.3 of [4]. We use ideas of [9] to allow for weaker bounds on
supT∈[0,T0] |a(T )| by c∗ ln(ε−1), which were not present in [4] or [5]. There
the probability was bounded by terms of order o(1) in ε without any further
information on the smallness. Nevertheless, we can easily improve these
proofs.

In that situation, we can use the following large deviation bound

P

(
sup

T∈[0,T0]

|a(T )| ≥ C ln(ε−1)
)
≤ Ce−c ln(ε−1)2 ,
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which is not exponentially small, but smaller than any power of ε. This
relies on the fact that the amplitude equation is nonlinear stable, which fol-
lows from Assumption 3. This stability allows to carry over large deviation
results for the Brownian motion β in N ≈ R

n to results for a.
Under the stronger Assumption 3 we can prove a much better result.
Theorem 3.4 (Approximation-global). Let Assumptions 1, 3, and 4

hold and let u be the mild solution of (2.1) with (random) initial value u0

satisfying (3.3).
Then for all p > 0, 1 
 κ > 0 and T0 > 0 there is a constant Capp

explicitly depending on p and T0 such that the estimate

E

(
sup

t∈[0,T0ε−2]

‖u(t) − εw2(t)‖p
)
≤ Cappε3p−κ

holds for ε ∈ (0, 1).
The proof is Corollary 3.9 of [7].

4. Applications. We give results for approximate centre manifolds
and the dynamics of random fixed points.

4.1. Approximate Centre Manifold. This section uses the approx-
imation results of the previous section. We rely especially on Theorem 3.4
to extend the results, which were briefly sketched in [4] or [5], by using sec-
ond order corrections introduced in [7]. That is why we restrict ourselves
to nonlinear stable equations given by Assumption 3.

Our main result will show that the flow along N is well approximated
by the solution a of the amplitude equation on a slow time scale. The
distance from N is given by a fast oscillation ψ, which is a stationary
Ornstein–Uhlenbeck process. And everything is valid only up to errors of
order O(ε3−κ) and with high probability.

The flow given by (2.1) is approximated with high probability as
sketched in Figure 1. There the typical behaviour of solutions is given.

Theorem 4.1. Suppose Assumptions 1, 3, and 4 are true, then there
is a logarithmic time tε = O(ln(ε−1)) such that the following is true. For
an arbitrary mild solution u(t) of (2.1) with (random) initial condition u0,
such that E‖u0‖p ≤ δpε

p for some fixed family of constants {δp}p≥1, we
denote by a(t) the solution of (2.4) with a(tε) = ε−1Pcu(tε). Furthermore
let ψ∗(t) be the stationary Ornstein–Uhlenbeck process solving (2.5) given
by (4.1).

Finally, fix the time T0 > 0, some small κ ∈ (0, 1), and any p > 0.
Then there exists a constant C > 0 such that

E

(
sup

t∈[tε,T0ε−2]

‖u(t) − εa(tε2) − ε2ψ∗(t)‖p
X

)1/p

≤ Cε3−κ

holds for ε ∈ (0, 1).
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O(ε2)

N
in X

O(ε)

εa(0)
ε2ψ(0)

u(0)

u(t)εa(ε2t)
ε2ψ(t)

O(ε3−κ)-ball

Fig. 1. Typical trajectory on the approximate centre manifold.

Proof. First we use global nonlinear attractivity in logarithmic time
t
(1)
ε for arbitrary initial conditions (cf. Theorem 3.2). Then we approximate

with solution ã(t) of (2.4) and ψ̃(t) of (2.5) for times t ∈ [t(1)ε , T0ε
−2]. Define

a version of the stationary Ornstein-Uhlenbeck process by

ψ�(t) =
∫ t

−∞
e−L(t−s) dPsQW̃ (s) ,(4.1)

where W̃ (s) = W (s) for s > 0 and it is an independent Wiener process
for s < 0. For β in the amplitude equation, we need only the rescaling
β(T ) = εPcQW (Tε−2).

The difference between ψ̃ and ψ∗ is trivially small in any p-th moment,
if we wait another sufficiently large logarithmic time t

(2)
ε . Define now tε :=

t
(1)
ε + t

(2)
ε .

The difference between ã(t) and a(t) is small by the approximation
result, because first ‖ã(tε) − a(tε)‖ = O(ε3−κ) by Theorem 3.4. Then,
by the same theorem ‖ã(t) − a(t)‖ ≤ ‖ã(t) − Pcu(t)‖ + ‖Pcu(t) − a(t)‖ =
O(ε3−κ).

4.2. Dynamics of the random attractor. We can determine the
dynamics of random fixed points by the approximation result over a very
long time-scale with high probability. It suffices indeed to apply the results
of the previous section by starting the equation in the random fixed point.
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Let us first fix some notation. If we consider a two sided Wiener
process W = {W (t)}t∈R, then it is well known that solutions of (2.14)
define a random dynamical system (e.g. via transformation to (2.15)).
Here ϕ(t, u0, W ) is the solution u(t) given initial condition u0 and two-
sided noise path W . A random fixed point a0(W ) is a random variable
such that ϕ(t, a0(W ), W ) = a0(ϑtW ), where ϑtW (s) = W (t + s) − W (t).
For a detailed discussion of random dynamical systems see [1]. For the
existence of random (set) attractors see for example [14, 40, 38].

Corollary 4.1. Under the assumptions of Theorem 4.1 let ao be a
random fixed point of the random dynamical system generated by (2.14).
Then

E

(
sup

t∈[tε,T0ε−2]

‖ao(ϑt·) − εa(tε2) − ε2ψ∗(t)‖p
X

)1/p

≤ Cε3−κ ,

where a(0) = Pcao, and a is a solution of (2.4).
The proof is basically just a simpler case of Theorem 4.1. We start the

system in the random fixed point a0. In this case, we do not need time for
attractivity, as due to the stationarity of a0 and Theorem 3.2 u(0) := a0

already fulfils the assumptions of Theorem 3.4.
Remark 4.1. We do not use uniformity in the initial condition.

Hence, we can only prove results for random fixed points, and not for ran-
dom set attractors but it would be an interesting result, whether we have

dist(PsA(ϑt·), ψ∗(t)) = O(ε3−κ)

on time intervals of order O(ε−2) with high probability.
Remark 4.2. The restriction to random fixed points still covers

several cases. For example for dissipative nonlinearities ε2A + F (e.g.
−ε2u− u3) it is well known, that the random attractor is just a single ran-
dom fixed point. For non-dissipative nonlinearities (e.g. ε2u − u3) it is in
most cases completely open what the topology of the random attractor is.
But, nevertheless, in many examples of non-trivial random attractors for
SPDEs these attractors contain random fixed points.

If the attractor for the amplitude equation is a single stable fixed point
a∗, which is exponentially attracting, then we can proof a much stronger
result. We suppose the following.

Assumption 5. Suppose that the random dynamical system generated
by the amplitude equation (2.4) has a unique random fixed point a∗ that is
exponentially attracting in p-th mean. This means, for any p > 0 there are
constants δ > 0 and Ma > 0 such that

E

(
‖a(T )− a∗(ϑT ·)‖p

)1/p

≤ Mae−δT
E

(
‖a(0) − a∗‖p

)1/p

for any solution a of (2.4).
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For simplicity, we will rescale the equation to the slow time-scale T =
ε2t. Consider the rescaling v(T ) = ε−1u(Tε−2), which is a solution of

∂T v = ε−2Lv + Av + F(v) + ∂T QŴ ,(4.2)

where Ŵ is just a rescaling of W . Let a be a solution of the amplitude
equation with β = PcQŴ and let ψε be the rescaled Ornstein-Uhlenbeck
process

ψε(t) = eε−2TLsψε(0) + ε−1

∫ T

0

e−ε−2L(T−s) dPsQŴ (s) ,(4.3)

Consider now the random dynamical system generated by the triple
(v, a, εψε). It is obvious that random fixed points of this equation are just
rescaled versions of random fixed points for the original system of equation.
We can prove the following theorem.

Theorem 4.2. Suppose Assumptions 1, 3, 4, and 5 with random fixed
point a∗ are true. Let v∗ be any fixed point of the rescaled equation (4.2)
and denote by ψ∗

ε the rescaled stationary OU-process. Then for any small
κ ∈ (0, 1) and any p > 0 there is a constant C such that

E

(
‖v∗ − a∗ − εψ∗

ε‖p
X

)1/p

≤ Cε2−κ.

Proof. For the proof consider first the projection to N . Let a be a
solution of (2.4) with ε−1Pcv

∗. Using stationary

E(‖Pcv
∗ − a∗‖p

X)1/p

= E(‖Pcv
∗(ϑT ·) − a∗(ϑT ·)‖p

X)1/p

≤ E(‖Pcv
∗(ϑT ·) − a(T )‖p

X)1/p + E(‖a(T ) − a∗(ϑT ·)‖p
X)1/p

≤ Cε2−κ + Mae−δT
E(‖Pcv

∗ − a∗‖p
X)1/p

where we used the Approximation and Assumption 5. Given p and κ,
we can take T sufficiently large such that Mae−δT < 1

2 . This yields the
first part of the proof. The second part is completely analogous using the
exponential stability of the Ornstein-Uhlenbeck process.

Remark 4.3. We can also establish an analog of the approximation
result, which implies

E sup
t∈[0,T0]

(
‖v∗(ϑT ·) − a∗(ϑT ·) − εψ∗

ε(ϑT ·)‖p
X

)1/p

≤ Cε2−κ .

This is not an immediate consequence of a rescaled version of Theorem 3.4,
we have to modify this slightly to allow for more general initial conditions
for the amplitude equation.
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5. Approximation of the invariant measure. In this section, we
review the results obtained in [7] on the invariant measure of (2.1). Recall
that if Φt denotes the stochastic flow generated by the solutions to (2.1),
then a measure µ� on H is called an invariant measure if

µ�(A) = Eµ�(Φ−1
t (A)) ,(5.1)

for every t > 0 and for every Borel set A ⊂ H. For a general survey on
invariant measures for SPDEs see [19].

The results of this section will rely on a very mild non-degeneracy
condition for the stochastic forcing in (2.1) (cf. Assumption 4). This is the
content of the next assumption. Note that this condition could be relaxed
for some examples.

Assumption 6. The operator PcQQ∗Pc is invertible as an operator
from N to N .

Remark 5.1. This assumption ensures that the amplitude equation
(2.4) has a unique invariant measure, and that this invariant measure has a
C∞ density with respect to the Lebesgue measure. Furthermore, we have ex-
ponential convergence of distributions of solutions to the invariant measure
(see e.g. [32]).

There are many situations where this assumption also ensures the exis-
tence of a unique invariant measure for the original SPDE, see for example
the recent works [29, 31, 22].

We will make use of two different norms to measure the distances
between invariant measures. The first is the Wasserstein norm (also called
Kantorovich distance), which is defined as the dual norm to the Lipschitz
norm

‖φ‖L = sup
x,y∈H

{
|φ(x)| ,

|φ(x) − φ(y)|
‖x − y‖

}
,(5.2)

i.e. one has

‖µ − ν‖L = sup
‖φ‖L= 1

2

(∫
φdµ −

∫
φdν

)
.(5.3)

This will give us convergence for probabilities and, as we have uniform
bounds on arbitrary moments (cf. Theorem 3.2), convergence of moments
and other statistical quantities.

The second norm is the total variation norm ‖ · ‖TV, which is defined
as the dual norm to the L∞-norm. Since ‖φ‖L ≥ ‖φ‖∞, the total variation
norm is stronger than the Wasserstein norm. Note that the Wasserstein
norm depends strongly on the metric that equips the underlying space,
whereas the total variation norm is independent of that metric. For exam-
ple, the Wasserstein norm between two Dirac measures δx and δy is given
by min{1, ‖x− y‖}, whereas ‖δx − δy‖TV is given by 1 if x �= y and 0 oth-
erwise. (Actually, one can show that the total variation norm is equal to
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the supremum over all possible metrics of the corresponding Wasserstein
norms. See [37] for a beautiful discussion of the relationship and properties
between various metrics on probability measures.)

Before we state our results, we introduce one more notation. Similar
to the proof of Theorem 4.2, we will rescale the solutions of (2.1) by ε such
that they are concentrated on a set of order 1 instead of a set of order ε.
Furthermore, we will rescale the equation to the slow time-scale T = tε2.

We denote by µε
� the invariant measure of the rescaled version of (2.1).

We furthermore denote by νε
� the invariant measure for the pair of processes

(a, εψ). Note that νε
� depends on ε by the rescaling of ψ and by the fact

that equations (2.4) and (2.5) are coupled through the noise, but do not live
on the same time scale. However, the marginal of νε

� on N is independent
of ε and its marginal on S depends on ε only through the trivial scaling of
εψ. We denote these two marginals by νc

� and νs
�. With these notations,

our result in the Wasserstein distance is the following:
Theorem 5.1. Let Assumptions 1, 3, 4, and 6 hold. Then, for every

κ > 0, one has

‖µε
� − νc

� ⊗ νs
�‖L = O(ε2−κ) .(5.4)

Remark 5.2. Actually, one also has ‖µε
� − νε

�‖L = O(ε2−κ), but the
above formulation is more interesting, since νc

� and νs
� can be characterised

explicitly, whereas νε
� can not, unless the covariance operator Q is block-

diagonal with respect to the splitting H = N ⊕ S.
Idea of proof. Denote by Qt the Markov transition semigroup (acting

on measures) associated to the rescaled version of (2.1), and by Pt the
transition semigroup associated to the evolution of (a(t), εψ(ε−2t)). Then,
the main ingredient for the proof of Theorem 5.1 is that there exists a time
T such that, for every pair (µ, ν) of probability measures with finite first
moment, one has

‖PT µ − PT ν‖L ≤ 1
2
‖µ − ν‖L + ε2

∫
X

(
1 + ‖Psx‖

)(
µ + ν

)
(dx) .(5.5)

In order to prove (5.5), one uses the strong contraction properties of the
linear dynamic in S and that the strong mixing properties of the non-
degenerate noise in N .

Once (5.5) is established, the proof of Theorem 5.1 follows in a rather
straightforward way. One first obtains from Theorem 3.4 that

‖µε
� − νε

�‖L ≤ ‖QT µε
� − PT µε

�‖L + ‖PT µε
� − PT νε

�‖L

≤ O(ε2−κ) +
1
2
‖µε

� − νε
�‖L + O(ε2) ,

and therefore ‖µε
�−νε

�‖L = O(ε2−κ). The bound ‖νε
�−νc

�⊗νs
�‖L = O(ε2−κ)

is then obtained by using the smoothness of the density of νc
� with respect to
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the Lebesgue measure, combined with the separation of time scales between
the dynamics on N and on S.

The first result in the total variation norm only considers the marginals
of the invariant measures on N .

Theorem 5.2. Let Assumptions 1, 3, 4, and 6 hold. Then, for every
κ > 0, one has

‖P ∗
c µε

� − νc
�‖TV ≤ O(ε

3
2−κ) .(5.6)

Idea of proof. We combine the smoothing properties of PcPtPc with
the result previously obtained in Theorem 5.1 to show that

‖PT µε
� − PT νε

�‖L ≤ Cε2−κ

√
T

for all T ∈ (0, 1].(5.7)

Then, we use Girsanov’s theorem to show that

‖QT µε
� − PT µε

�‖L ≤ Cε
√

T for all T ∈ (0, 1].(5.8)

Combining both estimates and optimising for T yields the result.
Remark 5.3. The bound (5.6) is not always optimal. For example,

when L and A are selfadjoint, Q is the identity and F is the gradient of
a potential V , the rescaled invariant measure µε

ε for (2.1) can formally be
written as

µε
�(du) = exp

(
1
2 〈u, Au〉 − V (u)

)
µε

0(du) ,(5.9)

where µε
0 is the product of the Gaussian measure with covariance ε2L−1

s

on S and the Lebesgue measure on N . This explicit expression allows one
to show that the density of P ∗

c µε
� has derivatives of all orders and that

these derivatives are all of order 1. This knowledge can be combined with
Theorem 5.1 to show that in this case ‖P ∗

c µε
�−νc

�‖TV = O(ε2−κ). However,
this argument fails completely if, for example, PsQPs = 0.

Our last result on the convergence of the invariant measures of the
amplitude equation measures the distance between µε

� and νc
� ⊗ νs

� in the
total variation norm. This however requires to impose a much stronger
non-degeneracy assumption on the noise.

Assumption 7. Let α be as in Assumption 2. There exists a constant
γ0 > 0 such that, for all γ ∈ [0, γ0], F : (Hγ)3 → Hγ−α and A : Hγ →
Hγ−α are continuous. Furthermore, the operator Q−1 is continuous from
Hγ0−α to H and for some α̃ ∈ [0, 1

2 ) we have ‖(1 − L)γ0−α̃Q‖HS(X) < ∞.
Theorem 5.3. Let Assumptions 1, 3, 4, and 7 hold. Then, for every

κ > 0, one has

‖µε
� − νc

� ⊗ νs
�‖TV = O(ε1−κ) .(5.10)
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Idea of proof. We denote by P̂t the transition probabilities associated
to the linear system

du = ε−2Lu dt + Q dW (t) .(5.11)

It is then possible to show as above by Girsanov theorem that

‖P̂T µε
� − µε

�‖TV = ‖P̂T µε
� −QT µε

�‖TV ≤ Cε−κ
√

T + Cε .(5.12)

Furthermore, the fast relaxation of the S-component of the solutions to
(5.11) toward its equilibrium measure, combined with the fact that the N -
marginals of µε

� and of νε
� are close by Theorem 5.2, allows to show that

‖P̂T µε
� − νc

� ⊗ νs
�‖TV ≤ Cε, provided that T 
 ε2. The result then follows

by choosing T of the order ε2−δ for some small value of δ.

6. What is so special about cubic nonlinearities? Cubic non-
linearities are not special, we can extend the method to a lot of different
types of nonlinearities. Suppose we have a multi-linear nonlinearity, which
is homogeneous of degree n. Then the noise strength in the SPDE (2.1)
should be changed to ε(n+1)/(n−1) instead of ε2. Now with the ansatz

u(t) = ε2/(n−1)a(ε2t) + O(ε(n+1)/(n−1))

and a similar formal calculation as in section 2, we derive the amplitude
equation

∂T a = PcAa + PcF(a) + ∂T β ,

which now contains also a nonlinearity that is homogeneous of degree n.
We can verify this result rigorously. After minor changes the local

theorems immediately carry over to these kinds of equations. For example
for stable odd nonlinearities at least the order 1 approximation (local and
global) is completely analogous.

The local approximation results also carry over to even nonlinearities,
but one problem for global results is that we do not have nonlinear stability
of the equations. In some cases, we can however get global results for even
nonlinearities, if we already have good a-priori bounds for the solutions.

But the main problem with quadratic nonlinearities B(u) = B(u, u) is
that in many examples PcB(a) ≡ 0 for a ∈ N . In this case, the previously
mentioned result will give us only the linearisation, meaning that we still
look at solutions that are too small to capture the nonlinear features of the
equation.

To illustrate this problem, we will briefly discuss Burgers equation,
which is given by ∂tu = ∂2

xu + µu − u∂xu + σεξ.
For periodic boundary conditions and µ = O(ε2) we get N = span{1}

but now already B(1) = 0. If we consider Dirichlet boundary conditions
on [0, π], for example, then the linear instability arises for µ = 1 + O(ε2).
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Furthermore, N = span{sin} and Bc(sin) = 0, where we used the short-
hand notation Bc = PcB and Bs = PsB.

There are numerous examples in the physics literature of equations
with quadratic nonlinearities and the same property, as described above.
One example is the growth of rough amorphous surfaces. See for example [6]
and the references therein. Another example is the celebrated Kuramoto-
Sivashinsky equation, but the probably most important example is the
Rayleigh-Bénard problem (see e.g. [23] or [15]) which is the paradigm of
pattern formation in convection problems.

If we want to take into account nonlinear effects, we then have to look
at the coupling of the slow dominant modes to the fast modes. This was
done in [8] for the local result. Let us now briefly comment on these results.

Consider an equation of the type

∂tu = Lu + ε2Au + B(u, u) + ε2ξ

with Bc(a, a) = 0 for a ∈ N , where B is symmetric and bilinear. We make
the ansatz

u(t) = εa(ε2t) + ε2ψ(t),

with a ∈ N(L) and ψ ∈ PsX . This yields in lowest order in ε the following
system of formal approximations. First of order O(ε2) on the fast time-
scale t in PsX .

∂tψ(t) = Lsψ(t) + Bs(a(ε2t), a(ε2t)) + Psξ(t).(6.1)

Secondly of order ε3 in N(L) on the slow time-scale T = ε2t

∂T a(T ) = Aca(T ) + 2Bc(a(T ), ψ(ε−2T )) + Pcξ̂(T ),(6.2)

where ξ̂(T ) = ε−1ξ(ε−2T ) is a rescaled version of the noise.
These equations are on one hand a dominating equation (6.2) on a slow

time-scale coupled to an equation (6.1) on the fast time-scale. Equations
with a similar structure are treated in [3] for stochastic ODEs, or in [16, 17]
where tracers in a fast moving velocity field are considered. The aim is now
to get an effective equation for the slow component completely independent
of the fast modes.

First rescale (6.1) to the slow time-scale T by ψ(t) = Φ(ε2t). Hence,

ε2∂T Φ(T ) = LsΦ(T ) + Bs(a(T ), a(T )) + εPsξ̂(T )

As Ls is invertible on PsX , we get in lowest order of ε that Φ(T ) =
−L−1

s Bs(a(T ), a(T )). This together with (6.2) establishes a single approx-
imation equation.

∂T a(T ) = Aca(T ) − 2Bc

(
a(T ), L−1

s Bs

(
a(T ), a(T )

))
+ Pcξ̂(T ),(6.3)
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Surprisingly, this equation involves a cubic nonlinearity, although the non-
linearity in the original equation was quadratic.

The main results of [8] show that these formal calculations can be
made rigorous in the sense of Theorems 3.1 and 3.3.
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