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COUPLING STOCHASTIC PDES
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We consider a class of parabolic stochastic PDEs driven by white noise in time, and

we are interested in showing ergodicity for some cases where the noise is degenerate,
i.e. acts only on part of the equation. In some cases where the standard Strong

Feller - Irreducibility argument fails, one can nevertheless implement a coupling

construction that ensures uniqueness of the invariant measure. We focus on the
example of the complex Ginzburg-Landau equation driven by real space-time white

noise.

1. Introduction

In this work, we consider the long-time behaviour of stochastic partial differential equations
of the type

dX(t) = AX(t) dt + F (X) dt + QdW (t) , (1)

where A is the generator of an analytic semigroup on a Hilbert space H, W is a cylindrical
Wiener process on H, Q : H → H is a bounded operator, and F : D(F ) → H is a suitable
nonlinearity. We refer to the monograph by Da Prato and Zabczyk [2] for a number of
conditions on A, Q and F that ensure the well-posedness of (1), as well as the existence of a
unique stochastic flow Φt(X) that yields the solution of (1) at time t with initial condition
X ∈ H.

One associates to (1) a semigroup Pt acting on bounded measurable functions ϕ : H →
R, as well as its dual semigroup P∗

t acting on Borel probability measures µ by(
Ptϕ

)
(X) = E

(
ϕ(Φt(X))

)
,

(
P∗

t µ
)
(A) = E

(
µ(Φ−1

t (A))
)

.

From an intuitive point of view, Ptϕ describes the evolution of the observable ϕ, whereas
P∗

t µ describes the evolution of a distribution of initial conditions. An invariant measure
for (1) is a probability measure µ? on H satisfying P∗

t µ? = µ? for every t ≥ 0. We do
not wish to deal with the question of the existence of an invariant measure in this paper.
We therefore take it for granted that the dissipativity properties of A and of F are strong
enough to provide tightness for the ergodic averages

RT µ =
1
T

∫ T

0

P∗
t µdt ,
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and thus guarantee the existence of an invariant measure (since every accumulation point
of RT µ is an invariant measure under some minimal regularity assumptions, see e.g. [3]).

The present paper focuses on the question of the uniqueness of the invariant measure
for (1). We start in Section 2 by giving a very short review of two of the main methods
used to tackle this question. We then proceed in Section 3 by describing how several kinds
of coupling methods have recently been applied to this problem. We conclude by explaining
in detail how to apply some of the results explained in Section 3 to the complex Ginzburg-
Landau equation driven by real-valued space-time white noise.

2. Two general methods

Until recently, two general methods dominated the literature about ergodicity results for the
type of parabolic SPDEs considered here. We refer to these two methods as the “dissipativity
method” and the “overlap method”. The reader interested in a more detailed overview of
these two methods is referred to the excellent review paper by Maslowski and Seidler [14],
which also contains a more complete list of references.

2.1. The dissipativity method

In its most crude form, this method assumes that A and F satisfy the dissipativity condition〈
X − Y,A(X − Y ) + F (X)− F (Y )

〉
≤ −c‖X − Y ‖2 , (2)

for some positive constant c and for all X and Y in the domain of A. Under further (rather
weak) regularity assumptions on F , (2) implies that any two solutions X(t) and Y (t) of (1)
driven by the same realisation of the noise process W converge exponentially toward each
other. This immediately implies that if µ? is an invariant measure for (1) and µ is any
measure on H with sufficiently good decay properties, one has P∗

t µ → µ? in the topology of
weak convergence.

Of course, many variants of this method are available, in particular one may wish to
measure the distance between solutions by a Lyapunov function V which is different from
‖·‖2 and more adapted to the problem at hand [13]. It is also possible to formulate conditions
analogous to (2) that imply exponential convergence in the case where H has only a Banach
space structure [2]. Unfortunately, there seems to be no way of applying the dissipativity
method to situations where the deterministic part of the equation induces chaotic behaviour
of the solutions, which is the situation of interest in the study of most problems related to
turbulence.

2.2. The overlap method

The “overlap method” is based on the following classical theorem by Doob [5]:

Theorem 2.1. Let Pt be a Markov semigroup which is irreducible and has the Strong Feller
property. Then Pt admits at most one invariant measure.

Recall that the strong Feller property means that the semigroup maps bounded measurable
functions into continuous functions. Irreducibility means that

(
P∗

t µ
)
(A) > 0 for every



July 30, 2003 9:16 WSPC/Trim Size: 10in x 7in for Proceedings ICMP

Coupling stochastic PDEs 3

µ, every t > 0, and every non-empty open set A. The conditions of Theorem 2.1 imply
that P∗

t µ and P∗
t ν have a non-zero “overlap” for any two probability measures µ and ν,

i.e. there exists a positive measure δ such that P∗
t µ − δ and P∗

t ν − δ are both positive
measures. Combining this with the well-known fact from ergodic theory that if Pt admits
more than one invariant measure, at least two of them must be mutually singular yields the
result. If one furthermore assumes some bounds on the dissipativity of the equation (in a
much weaker sense than in the previous subsection, one basically needs to get bounds on
the hitting time of some compact set), the techniques exposed in the monograph of Meyn
and Tweedie [17] allow to translate them into bounds on the convergence of an arbitrary
initial measure toward the invariant measure. This convergence then takes place in the total
variation distance, which can be defined between two measures µ1 and µ2 on H by

‖µ1 − µ2‖TV = inf
µ∈C(µ1,µ2)

µ
(
H2 \

{
(x, x) | x ∈ H

})
, (3)

where C(µ1, µ2) is the set of measures on H2 with marginals µ1 and µ2. Notice that this
distance does not take into account the topology of the space H. One can interpret it as
measuring the maximal probability for two random variables with respective laws µ1 and
µ2 to be equal.

For a finite-dimensional SDE with smooth coefficients, the Strong Feller property is a
consequence of the hypoellipticity of the operator ∂t + L, where L is the generator of the
Markov process. A very efficient criteria for hypoellipticity is given by Hörmander’s theorem
[10]. However, no satisfactory formulation of Hörmander’s theorem is available yet in the
infinite-dimensional setting, so the Strong Feller property is usually proved by other means
there.

One efficient tool for proving that the strong Feller property holds for an infinite-
dimensional system is given by the Bismut–Elworthy–Li formula [8]. In one of its for-
mulations, this formula is given by(

DPtϕ
)
(X)h =

2
t
E

((
ϕ ◦ Φt

)
(X)

∫ t

t/2

〈
Q−1

(
DΦs

)
(X)h, dW (s)

〉)
.

Here, the notation (Df)h is used to denote the directional derivative of the function f in
the direction h. The main feature of this formula is that it yields bounds on DPtϕ that
are independent of Dϕ. However, we notice that it requires the range of DΦs to be smaller
than the domain of Q−1 in order to be applicable. This condition can be verified in many
important particular cases [3, 1], but it usually requires the kernel of Q to be {0}.

In the linear case (i.e. when F = 0), a complete understanding of the conditions implying
the strong Feller property is available [2, 19]. In particular, it is known that the strong
Feller property is then equivalent to the exact null controllability of the control system
Ẋ = AX + Qu, with u ∈ L2([0, t],H). This allows for covariance operators Q that are
very degenerate. It intuitively agrees with the definition of the total variation distance,
since it means that under a suitable change of measure (given by the Girsanov transform
dW (t) 7→ dW (t) + u dt), two solutions with different initial conditions will meet after some
time.

Unfortunately, no such characterisation of the strong Feller property is available in the
non-linear case, the closest approximation to it being the coupling method described in the
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next section. However, if the range of the nonlinearity F is contained in the range of Q, the
strong Feller property can in some cases be recovered by performing a Girsanov transform to
eliminate the non-linearity [15]. In some cases, it is also possible to recover the strong Feller
property by adapting Malliavin’s proof of Hörmander’s theorem to the infinite-dimensional
case, but to the knowledge of the author, only the particular case of a reaction-diffusion
type equation with a covariance operator Q having a kernel of finite co-dimension has been
treated by this method so far [7].

3. The coupling method

In this section, we present one way to apply coupling techniques to the problem of ergodicity
for stochastic PDEs. Recall that a coupling for a pair of measures µ1 and µ2 is a measure
µ on the product space with marginals µ1 and µ2. In the context of stochastic PDEs, we
call a coupling for (1) a family of stochastic processes (X(t), Y (t)) indexed by their initial
conditions (X(0), Y (0)) ∈ H2 and such that X(t) and Y (t) both solve (1). The basic idea
of any coupling method is to introduce correlations between X(t) and Y (t) in such a way
that ‖X(t) − Y (t)‖ → 0 as t → ∞. The precise type and speed of this convergence then
determines the topology and the speed of convergence of P∗

t µ to the (unique) invariant
measure µ?. Although coupling methods have been used to prove ergodicity results for
stochastic evolutions since the late thirties (see e.g. [4]), they seem to have been applied
successfully to stochastic PDEs only recently.

Actually, both the dissipativity and the overlap method can be interpreted as special
cases of couplings. In the dissipativity method, one drives X(t) and Y (t) with the same
realisation of the noise process and relies on the dissipativity of the equation to drive both
processes toward each other. In the overlap method, one first discretises time (by looking at
integer times, say) and then uses the maximal coupling for the transition probabilities. The
transition probabilities P (X, Y, · ) for the coupled process are thus given by the coupling that
realises the infimum in (3) with µ1 = P (X, ·) and µ2 = P (Y, ·). This coupling can easily
be shown to exist and to be unique. (Here, P denotes the time 1 transition probabilities
for (1).) In other words, the maximal coupling will try as hard as it can to force X(t) and
Y (t) to become equal and, once it succeeds, they will be guaranteed to remain equal for all
subsequent times. If one starts X in the invariant measure µ? and Y in an arbitrary measure
µ, one has ‖P∗

t µ− µ?‖TV ≤ P{τ > t}, where τ is the first time at which X(τ) = Y (τ).
In a series of recent papers, E, Mattingly, Sinai [6, 16] and Kuksin, Shirikyan [12, 11]

realised that, loosely speaking, it is possible in certain cases to split the state space of (1) into
two spaces H = H+⊕H− and to combine the dissipativity method on H− with the overlap
method on H+. Let us call H+ the “unstable modes” and H− the “stable modes” and
assume that H+ is finite-dimensional. In both cases, the authors focused on the example
of the 2D Navier-Stokes equation on a torus with periodic boundary conditions, forced
by a noise with a covariance operator Q that has the important property that Π+QΠ+

is invertible on H+. (We denote by Π± the orthogonal projections on H±.) Under this
condition, they constructed a coupling with the following properties. On H+, it behaves
like the maximal coupling, i.e. it maximises the probability for the H+ components X+(t)
and Y+(t) to become equal. On H− on the other hand, it drives X− and Y− with identical
realisations of that component of the noise process. The space H− is chosen in such a
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way that the dynamic then tends to steer X− and Y− toward each other. (In the typical
situation of a semilinear parabolic equation, the space H− would consist of Fourier modes
with sufficiently high wave number.)

The main difficulty of this approach comes from the fact that, unlike in the situation of
the overlap method, having X+(t) = Y+(t) at a certain time does not allow one to ensure
that X+(s) = Y+(s) for all subsequent times s > t. The reason is that one has in general
X−(t) 6= Y−(t) and therefore, if one drives X and Y with the same realisation of the noise,
the influence of the stable modes will tend to drive the unstable modes away from each
other. Call Wx and Wy the noises driving X and Y respectively. The (finite-dimensional)
processes X+ and Y+ are then solutions of SDEs of the following type:

dX+(t) = g(X+, X−) dt + Π+QΠ+ dWx(t) ,

dY+(t) = g(Y+, Y−) dt + Π+QΠ+ dWy(t) .

Since Π+QΠ+ is invertible by assumption, one notices that the Girsanov transform

dWy(t) = dWx(t) + (Π+QΠ+)−1
(
g(X+, X−)− g(Y+, Y−)

)
dt , (4)

allows to have X+(t) = Y+(t) for all times. Of course, dWy as defined by (4) is not a Wiener
process anymore, so this is not an acceptable coupling. It is nevertheless possible to construct
a coupling that gives positive mass to the event (4). Furthermore, as long as it is satisfied,
the difference ‖X− − Y−‖ converges to 0, so the difference between dWx and dWy in (4)
becomes smaller and smaller. The coupling can be constructed in such a way that it therefore
becomes more and more likely for the event (4) to be satisfied. By carefully estimating these
probabilities, one can show that the random time τ = inf{t > 0 |X+(s) = Y+(s)∀s > t}
is almost surely finite. Estimates on τ and on the speed at which ‖X− − Y−‖ → 0 then
immediately translate into estimates on the speed at which P∗

t µ converges to the invariant
measure.

Another method for constructing couplings for an equation of the type (1) is to construct
two operator-valued functions G1 and G2 such that

G1G
∗
1 + G2G

∗
2 = Identity , (5)

and to consider the couple of equations

dX(t) = AX(t) dt + F (X) dt + QG1(X, Y ) dW1(t) + QG2(X, Y ) dW2(t) ,

dY (t) = AY (t) dt + F (Y ) dt + QG1(X, Y ) dW1(t)−QG2(X, Y ) dW2(t) ,

where W1 and W2 are two independent cylindrical Wiener processes. It is clear that this
is a coupling for (1) for any choice of the Gi satisfying (5). It was shown in [18] that, for
a certain class of semilinear parabolic equations, it is possible to choose the Gi in such a
way that the stopping time τ = inf{t > 0 |X(t) = Y (t)} is almost surely finite, therefore
obtaining convergence toward the invariant measure in the total variation distance.

We finally turn to the coupling technique developed in [9]. This technique is very close in
spirit to the one exposed in [16, 12, 11]. However it allows in some cases to treat a situation
where the noise acts in a degenerate way on the unstable part of the equation. The idea
exposed in [9] is to look for a Banach space B ⊂ H with norm ‖ · ‖? and for a function
G : B2 → H with the following properties:
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P1 The solutions of (1) are almost-surely B-valued and they satisfy

E‖u(t)‖p
? ≤ C(t)(1 + ‖u(0)‖p

?) .

P2 The function G is bounded by ‖G(u, v)‖ ≤ C‖u − v‖ε(1 + ‖u‖? + ‖v‖?)N for some
positive constants C, ε, N , and for all u and v in B.

P3 If u is the solution of (1) driven by dW and v is the solution of (1) driven by dW ′ =
dW + G(u, v) dt, then ‖u(t)− v(t)‖? → 0 exponentially as t →∞.

The main result of [9] is then:

Theorem 3.1. Consider (1) and assume that there exists a function G and a Banach space
B ⊂ H satisfying P1–P3. Then, (1) has a unique invariant measure and, for every initial
condition in H, the solution converges to the invariant measure at an exponential rate.

Remark 3.1. The convergence takes place in a Wasserstein distance which is the same as
the one usually used in the dissipativity method. The topology defined by this distance is
slightly stronger than the topology of weak convergence.

There does not seem to be a general recipe for finding a suitable function G. On the
other hand, when the nonlinearity is small (not in the sense of “arbitrarily small” like in
perturbation theory, but in the sense that the noise gets transmitted to the whole phase
space through the linear part of the equation and that the nonlinearity does not affect this
behaviour), we will see in the following section that it is not too difficult to find a good
function G.

4. The complex Ginzburg-Landau equation

We now focus on the following equation, which is a stochastic perturbation of the complex
Ginzburg-Landau equation:

du(x, t) =
(
(1 + iα)∆u(x, t) + (1 + iβ)u(x, t)− u(x, t)|u(x, t)|2

)
dt + dW (x, t) . (CGL)

In this equation, α and β are two real-valued parameters, x ∈ [−L,L], ∆ denotes the
Laplace operator, and u(·, t) is assumed to satisfy periodic boundary conditions. Further-
more, dW

dt (x, t) formally denotes space-time white noise, i.e. it is a distribution-valued Gaus-
sian process with covariance

E
(dW

dt
(x, t)

dW

dt
(y, s)

)
= δ(x− y)δ(t− s) .

It is a standard result (see [2]) that (CGL) has a unique H = L2([−L,L])-valued solution.
We denote again by Pt and P∗

t the semigroups associated to it. The remainder of this paper
is devoted to the proof of the following result:

Theorem 4.1. For every pair (α, β) satisfying the conditions

|β| ≥ 3
2

, α2 ≤ 24β2

36β2 + (15− β2)2
, (6)

the equation (CGL) has a unique invariant measure and all solutions converge exponentially
to it.
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Remark 4.1. The conditions on α and on β are not sharp, not even within the framework
of the method of proof presented here.

Proof. All the calculations in this proof will be performed at a formal level. A rigorous
justification is relatively easy by using the regularising properties of the equation (CGL).
It is indeed a standard result that the solutions of (CGL) are almost surely continuous
functions of space and of time. In particular, condition P1 holds for B equal to the space
of continuous functions equipped with the supremum norm.

Denoting the real and imaginary parts of a complex-valued function u by ur and ui,
(CGL) becomes

dur(x, t) =
(
∆ur − α∆ui + ur − βui − ur(u2

r + u2
i )

)
dt + dW (x, t) ,

dui(x, t) =
(
∆ui + α∆ur + ui + βur − ui(u2

r + u2
i )

)
dt .

Our aim is to give an explicit expression for a function G satisfying properties P1–P3 of
the previous section. Denote by v = vr + i vi the solution of (CGL) driven by the noise
process dW ′ = dW + G dt and define % = v − u. One then has for %:

d%r =
(
∆%r − α∆%i + %r − β%i − vr(v2

r + v2
i ) + ur(u2

r + u2
i )

)
dt + G(u, v) , (7a)

d%i =
(
∆%i + α∆%r + %i + β%r − vi(v2

r + v2
i ) + ui(u2

r + u2
i )

)
dt . (7b)

The most “dangerous” part of this equation is the linear instability. Before we proceed,
we therefore consider the following simplified equations:

d%̃r

dt
= %̃r − β%̃i + G̃ ,

d%̃i

dt
= %̃i + β%̃r . (8)

Let us introduce the variable ξ = β%̃r + 3%̃i and rewrite the second equation as

d%̃i

dt
= −2%̃i + ξ . (9)

Choosing

G̃ = −5%̃r +
(
β − 6

β

)
%̃i , (10)

we obtain for ξ the equation d
dtξ = −ξ. Therefore, ξ converges exponentially to 0, which in

turn implies by (9) that %i converges exponentially to 0. Since %r is a linear combination
of ξ and %i, it converges exponentially to 0 as well. To characterise this convergence more
precisely, we introduce the norm

|||%̃|||2 = %̃2
r +

15
β2

%̃2
i +

6
β

%̃r%̃i . (11)

A straightforward computation shows that, with the choice (10) for G̃, one has

d|||%̃|||2

dt
= −2%̃2

r −
6
β2

%̃2
i < −γ|||%̃|||2 ,

for some constant γ > 0.
We now turn to the full equation (7), which we rewrite as

d%r

dt
= ∆%r − α∆%i − 4%r −

6
β

%i + G2(u, v) , (12a)
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d%i

dt
= ∆%i + α∆%r + %i + β%r − (ui + %i)

(
ur%r + ui%i + %2

r + %2
i

)
− %i(u2

r + u2
i ) , (12b)

where we defined G = G1 + G2 with

G1 = −5%̃r +
(
β − 6

β

)
%̃i + vr(v2

r + v2
i )− ur(u2

r + u2
i ) .

Notice that G1 satisfies P1–P2 with ‖ · ‖? replaced by the supremum norm. By analogy
with (11), we introduce the norm

|||%̃|||2 = ‖%̃r‖2 + a‖%̃i‖2 + b〈%̃r, %̃i〉 , a =
15
β2

, b =
6
β

,

so that

d|||%̃|||2

dt
≤ −γ|||%|||2 − T1 − T2 ,

where we defined

T1 = (2 + αb)‖∇%r‖2 + (2a− αb)‖∇%i‖2 + 2(b + aα− α)〈∇%r,∇%i〉 ,

and

T2 = −〈2%r + b%i, G2〉+
〈
2a%i + b%r, (ui + %i)

(
ur%r + ui%i + %2

r + %2
i

)
+ %i(u2

r + u2
i )

〉
.

Due to the second condition in (6), T1 is always positive. It thus remains to find a function
G2 satisfying P1–P2 and such that T2 is always positive.

Since G2 is multiplied by 2%r + b%i, we can choose it in such a way to replace every
occurrence of %r by − b

2%i in the above expression, thus yielding

T2 =
4a− b2

3

〈
%i,

(
u2

r + 2u2
i −

b

2
uiur +

(
2 +

b2

4
)
%iui +

(
1 +

b2

4
)
%2

i −
b

2
ur%i

)
%i

〉
.

Since 4a− b2 is positive, positivity of T2 is equivalent to the matrix

Γ =
1
4

 4 −b −b

−b 8 4 + b2

2

−b 4 + b2

2 4 + b2


being positive definite. Since Γ is positive definite for b = 0, it remains so until the first
value of b for which

det Γ =
1
64

(
64 + 12b2 − b4

)
= 0 .

Therefore, under the condition |b| ≤ 4, (i.e. |β| > 3
2 ), one has d

dt |||%̃|||
2 ≤ −γ|||%|||2 almost

surely. Applying Theorem 3.1 concludes the proof of Theorem 4.1.

Remark 4.2. Note that the same proof goes through if one multiplies the cubic term in
(CGL) by a factor (1 + iγ) with γ ∈ R small enough.
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