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Abstract
We present a theory of hypoellipticity and unique ergodicity for semilinear parabolic
stochastic PDEs with “polynomial” nonlinearities and additive noise, considered as
abstract evolution equations in some Hilbert space. It is shown that if Hörmander’s
bracket condition holds at every point of this Hilbert space, then a lower bound on
the Malliavin covariance operator Mt can be obtained. Informally, this bound can be
read as “Fix any finite-dimensional projection Π on a subspace of sufficiently regular
functions. Then the eigenfunctions of Mt with small eigenvalues have only a very
small component in the image of Π.”

We also show how to use a priori bounds on the solutions to the equation to obtain
good control on the dependency of the bounds on the Malliavin matrix on the initial
condition. These bounds are sufficient in many cases to obtain the asymptotic strong
Feller property introduced in [HM06].

One of the main novel technical tools is an almost sure bound from below on the size
of “Wiener polynomials,” where the coefficients are possibly non-adapted stochastic
processes satisfying a Lipschitz condition. By exploiting the polynomial structure of
the equations, this result can be used to replace Norris’ lemma, which is unavailable in
the present context.

We conclude by showing that the two-dimensional stochastic Navier-Stokes equa-
tions and a large class of reaction-diffusion equations fit the framework of our theory.
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1 Introduction

The overarching goal of this article is to prove the unique ergodicity of a class of non-
linear stochastic partial differential equations (SPDEs) driven by a finite number of
Wiener processes. The present greatly extends the articles [MP06, HM06, BM07] al-
lowing one to consider general polynomial nonlinearities and more general forcing.
To the best of our knowledge, this is the first infinite-dimensional generalization of
Hörmander’s “sum of squares” hypoellipticity theorem for a general class of parabolic
SPDEs. Our goal is not to present any particularly compelling examples from the
applied perspective, but rather give a sufficiently general framework which can be ap-
plied in many settings. At the end, we do give some examples to serve as roadmaps
for the application of the results in this article. In this section, we give an overview
of the setting and the results to come later without descending into all of the technical
assumptions required to make everything precise. This imprecision will be rectified
starting with Section 3 where the setting and basic assumptions will be detailed.
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In this article we will investigate non-linear equations of the form

∂tu(x, t) + Lu(x, t) = N(u)(x, t) +

d∑
k=1

gk(x)Ẇk(t) . (1.1)

Here L will be some positive selfadjoint operator. Typical examples arising in applica-
tions are L = −∆ or L = ∆2. N will be assumed to be a “polynomial” nonlinearity in
the sense that N (u) =

∑m
k=1Nk(u), where Nk is k-multilinear. Examples of admissi-

ble nonlinearities are the Navier-Stokes nonlinearity (u ·∇)u or a reaction term such as
u−u3. The gk are a collection of smooth, time independent functions which dictate the
“directions” in which the randomness is injected. The {Ẇk : k = 1, . . . , d} are a col-
lection of mutually independent one-dimensional white noises which are understood as
the formal derivatives of independent Wiener processes through the Itô calculus. We
assume that the possible loss of regularity due to the nonlinearity is controlled by the
smoothing properties of the semigroup generated by L. See Assumption A.1 below for
a precise meaning.

On one hand, our concentration on a finite number of driving Wiener processes
avoids technical difficulties generated by spatially rough solutions since W (x, t) =∑
gk(x)Wk(t) has the same regularity in x as the gk which we take to be relatively

smooth. On the other hand, the fact that W contains only a finite number of Wiener
processes means that our dynamic is very far from being uniformly elliptic in any sense
since for fixed t, u( · , t) is an infinite-dimensional random variable and the noise acts
only onto a finite number of degrees of freedom. To prove an ergodic theorem, we must
understand how the randomness injected by W in the directions {gk : k = 1, . . . , d}
spreads through the infinite dimensional phase space. To do this, we prove the non-
degeneracy of the Malliavin covariance matrix under an assumption that the linear span
of the successive Lie brackets1 of vector fields associated to N and the gk is dense in
the ambient (Hilbert) space at each point. This is very reminiscent of the condition
in the “weak” version of Hörmander’s “sum of squares” theorem. It ensures that the
randomness spreads to a dense set of direction despite being injected in only a finite
number of directions. This is possible since although the randomness is injected in a
finite number of directions it is injected over the entire interval of time from zero to the
current time. The conditions which ensure the spread of randomness is closely related
to Chow’s theorem and controllability, open or solid. As such Section 6 is related to
recent work on controllability of projections of PDEs studied in [AS05, AS08] and
results proving the existence of densities for projections in [AKSS07] which build on
these ideas. However, these results do not seem to be sufficient to prove an ergodic
result which is the principal aim of this work. One seems to need quantitative control
of the spectrum of the Malliavin matrix (or the Gramian matrix in control theory terms).

In finite dimensions, bounds on the norm of the inverse of the Malliavin matrix are
the critical ingredient in proving ergodic theorems for diffusions which are only hy-
poelliptic rather than uniformly elliptic. This then shows that the system has a smooth
density with respect to Lebesgue measure. In infinite dimensions, there is no mea-
sure which plays the “universal” role of Lebesgue measure. One must therefore pass
through a different set of ideas. Furthermore, it is not so obvious how to generalise the
notion of the ‘inverse’ of the Malliavin matrix. In finite dimension, a linear map has
dense range if and only if it admits a bounded inverse. In infinite dimensions, these two

1Recall that, when it is defined, the Lie bracket [G,H](u) = (DH)(u)G(u) − (DG)(u)H(u) for two
functions G,H from the ambient Hilbert spaceH to itself. Here D is the Fréchet derivative.
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notions are very far from equivalent and, while it is possible in some cases to show that
the Malliavin matrix has dense range, it is hardly ever possible in a hypoelliptic setting
to show that it is invertible, or at least to characterise its range in a satisfactory manner
(See [MSVE07] for a linear example in which it is possible).

The important fact which must be established is that nearby points act similarly
from a “measure theoretic perspective.” One classical way to make this precise is to
prove that the Markov process in question has the strong Feller property. For a contin-
uous time Markov process this is equivalent to proving that the transition probabilities
are continuous in the total variation norm. While this concept is useful in finite dimen-
sions, it is much less useful in infinite dimensions. In particular, there are many natural
infinite dimensional Markov processes whose transition probabilities do not converge
in total variation to the system’s unique invariant measure. (See examples 3.14 and
3.15 from [HM06] for more discussion of this point.) In these settings, this fact also
precludes the use of “minorization” conditions such as infx∈C Pt(x, · ) ≥ cν( · ) for
some fixed probability measure ν and “small set” C. (see [MT93, GM06] for more and
examples were this can be used.)

1.1 Ergodicity in infinite dimensions and main result
In [HM06], the authors introduced the concept of an Asymptotic Strong Feller diffusion.
Loosely speaking, it ensures that transition probabilities are uniformly continuous in a
sequence of 1-Wasserstein distances which converge to the total variation distance as
time progresses. For the precise definitions, we refer the reader to [HM06]. For our
present purpose, it is sufficient to recall the following proposition:

Proposition 1.1 (Proposition 3.12 from [HM06]) Let tn and δn be two positive se-
quences with {tn} non-decreasing and {δn} converging to zero. A semigroup Pt on a
Hilbert space H is asymptotically strong Feller if, for all ϕ : H → R with ‖ϕ‖∞ and
‖Dϕ‖∞ finite one has

‖DPtnϕ(u)‖ ≤ C(‖u‖)(‖ϕ‖∞ + δn‖Dϕ‖∞) (1.2)

for all n and u ∈ H, where C : R+ → R is a fixed non-decreasing function.

The importance of the asymptotic strong Feller property is given by the following
result which states that in this case, any two distinct ergodic invariant measures must
have disjoint topological supports. Recalling that u belongs to the support of a measure
µ (denoted supp(µ)) if µ(Bδ(u)) > 0 for every δ > 02, we have:

Theorem 1.2 (Theorem 3.16 from [HM06]) Let Pt be a Markov semigroup on a Pol-
ish space X admitting two distinct ergodic invariant measures µ and ν. If Pt has the
asymptotic strong Feller property, then supp(µ) ∩ supp(ν) is empty.

To better understand how the asymptotic strong Feller property can be used to connect
topological properties and ergodic properties of Pt, we introduce the following form
of topological irreducibility.

Definition 1.3 We say that a Markov semigroup Pt is weakly topologically irreducible
if for all u1, u2 ∈ H there exists a v ∈ H so that for any A open set containing v there
exists t1, t2 > 0 with Pti (ui, A) > 0.

2Here Bδ(u) = {v : ‖u− v‖ < δ}
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Also recall that Pt is said to be Feller if Ptϕ is continuous whenever ϕ is bounded and
continuous. We then have the following corollary to Theorem 1.2 whose proof is given
in Section 2.

Corollary 1.4 Any Markov semigroupPt on Polish space which is Feller, weakly topo-
logically irreducible and asymptotically strong Feller admits at most one invariant
probability measure.

The discussion of this section shows that unique ergodicity can be obtained for a
Markov semigroup by showing that:

1. It satisfies the asymptotic strong Feller property.
2. There exists an “accessible point” which must belong to the topological support

of every invariant probability measure.
It turns out that if one furthermore has some control on the speed at which solution
return to bounded regions of phase space, one can prove the existence of spectral gaps
in weighted Wasserstein-1 metrics [HM08, HMS10, HM10].

The present article will mainly concentrate on the first point. This is because, by
analogy with the finite-dimensional case, one can hope to find a clean and easy way to
verify condition along the lines of Hörmander’s bracket condition that ensures a reg-
ularisation property like the asymptotic strong Feller property. Concerning the acces-
sibility of points however, although one can usually use the Stroock-Varadhan support
theorem to translate this into a deterministic question of approximate controllability, it
can be a very hard problem even in finite dimensions. While geometric control theory
can give qualitative information about the set of reachable points [Jur97, AS04], the
verification of the existence of accessible points seems to rely in general on ad hoc
considerations, even in apparently simple finite-dimensional problems. We will how-
ever verify in Section 8.4 below that for the stochastic Ginzburg-Landau equation there
exist accessible points under very weak conditions on the forcing.

With this in mind, the aim of this article is to prove the following type of ‘meta-
theorem’:

Meta-Theorem 1.5 Consider the setting of (1.1) on some Hilbert space H and define
a sequence of subsets ofH recursively by A0 = {gj : j = 1, . . . , d} and

Ak+1 = Ak ∪ {Nm(h1, . . . , hm) : hj ∈ Ak} .

Under additional stability and regularity assumptions, if the linear span of A∞
def
=⋃

n>0 An is dense in H, then the Markov semigroup Pt associated to (1.1) has the
asymptotic strong Feller property.

The precise formulation of Meta-Theorem 1.5 will be given in Theorem 8.1 below,
which in turn will be a consequence of the more general results given in Theorems 5.5
and 6.7. Note that our general results are slightly stronger than what is suggested in
Meta-Theorem 1.5 since it also allows to consider arbitrary “non-constant” Lie brack-
ets between the driving noises and the drift, see (1.4) below. As further discussed in
Section 1.5 or 3.1, Nm(h1, . . . , hm) is proportional to Dh1 · · ·DhmN (u) where Dh is
the Fréchet derivative in the direction h. In turn, this is equal to the successive Lie-
brackets of N with the constant vector fields in the directions h1 to hm.

Under the same structural assumtpions as Meta-Theorem 1.5, the existence of den-
sities for the finite dimensional projections of Pt(x, · ) was proven in [BM07]. The



INTRODUCTION 6

smoothness of these densities was also discussed in [BM07], but unfortunately there
were two errors in the proof of that article. While the arguments presented in the
present article are close in sprit to those in [BM07], they diverge at the technical level.
Our results on the smoothness of densities will be given in Sections 6 and 7.

The remainder of this section is devoted to a short discussion of the main techniques
used in the proof of such a result and in particular on how to obtain a bound of the type
1.2 for a parabolic stochastic PDE.

1.2 A roadmap for the impatient
Readers eager to get to the heart of this article but understandably reluctant to dig
into too many technicalities may want finish reading Section 1, then jump directly
to Section 5 and read up to the end of Section 5.3 to get a good idea of how (1.2)
is obtained from bounds on the Malliavin matrix. Then they may want to go to the
beginning of Section 6 and read to the end of Section 6.4 to see how these bounds can
be obtained.

1.3 How to obtain a smoothing estimate
A more technical overview of the techniques will be given in Section 5.2 below. In a
nutshell, our aim is to generalise the arguments from [HM06] and the type of Malli-
avin calculus estimates developed in [MP06] to a large class of semilinear parabolic
SPDEs with polynomial nonlinearities. Both previous works relied on the particular
structure of the Navier-Stokes equations. The technique of proof can be interpreted as
an “infinitesimal” version of techniques developed in [EMS01, KS00] and extended in
[BKL01, MY02, Mat02, Hai02, BM05] combined with detailed lower bounds on the
Malliavin covariance matrix of the solution.

In [EMS01] the idea was the following: take two distinct initial conditions u0 and
u′0 for (1.1) and a realisation W for the driving noise. Try then to find a shift v belong-
ing to the Cameron-Martin space of the driving process and such that ‖u(t)−u′(t)‖ →
0 as t→∞, where u′ is the solution to (1.1) driven by the shifted noise W ′ = W + v.
Girsanov’s theorem then ensures that the two initial conditions induce equivalent mea-
sures on the infinite future. This in turn implies the unique ergodicity of the system.
(See also [Mat08] for more details.)

The idea advocated in [HM06] is to consider an infinitesimal version of this con-
struction. Fix again an initial condition u0 and Wiener trajectory W but consider now
an infinitesimal perturbation ξ to the initial condition instead of considering a second
initial condition at distance O(1). This produces an infinitesimal variation in the so-
lution ut given by its Fréchet derivative Dξut with respect to u0. Similarly to before,
one can then consider the “control problem” of finding an infinitesimal variation of the
Wiener process in a direction h from the Cameron-Martin space which, for large times
t, compensates the effect of the variation ξ. Since the effect on ut of an infinitesimal
variation in the Wiener process is given by the Malliavin derivative of ut in the direction
h, denoted by Dhut, the problem in this setting is to find an h(ξ,W ) ∈ L2([0,∞],Rd)
with

E‖Dξut −Dhut‖ → 0 as t→∞ , (1.3)

and such that the expected “cost” of ht is finite. Here, the Malliavin derivative Dhut
is given by the derivative in ε at ε = 0 of ut(W + εv), with v(t) =

∫ t
0
h(s) ds.

If h is adapted to the filtration generated by W , then the expected cost is simply∫∞
0

E‖hs‖2ds. If it is not adapted, one must estimate directly lim sup E‖
∫ t

0
hsdWs‖

where the integral is a Skorokhod integral. As will be explained in detail in Section 5.2,
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once one establishes (1.3) with a finite expected cost h, the crucial estimate given in
(1.2) (used to prove the asymptotic strong Feller property) follows by a fairly general
procedure.

As this discussion makes clear, one of our main tasks will be to construct a shift h
having the property (1.3). We will distinguish three cases of increasing generality (and
technical difficulty). In the first case, which will be referred to as strongly contracting
(see Section 5.1.1), the linearised dynamics contracts pathwise without modification
(all Lyapunov exponents are negative). Hence h can be taken to be identically zero.
The next level of complication comes when the system possesses a number of direc-
tions which are unstable on average. The simplest way to deal with this assumption
is to assume that the complement of the span of the forced directions (the gk’s) is
contracting on average. This was the case in [EMS01, KS00, BKL01, MY02, Mat02,
Hai02, BM05]. We refer to this as the “essentially elliptic” setting since the directions
essential to determine the system’s long time behavior, the unstable directions, are di-
rectly forced. This is a reflection of the maxim in dynamical systems that the long
time behavior is determined by the behavior in the unstable directions. Since the noise
affects all of these directions, it is not surprising that the system is uniquely ergodic,
see Section 4.5 of [HM06] for more details.

The last case (i.e. when the set of forced directions does not contain all of the
unstable directions) is the main concern of the present paper. In this setting, we study
the interaction between the drift and the forced directions to understand precisely how
randomness spreads to the system. The condition ensuring that one can gain sufficient
control over the unstable directions, requires that the gk together with a collection of
Lie brackets (or commutators) of the form

[F, gk], [[F, gk], gj], [[F, gk], F ], [[[F, gk], gj], gl], · · · (1.4)

span all of the unstable direction. This condition will be described more precisely in
Section 6.2 below. In finite dimensions, when this collection of Lie brackets spans the
entire tangent space at every point, the system is said to satisfy the “weak Hörmander”
condition. When this assumption holds for the unstable directions (along with some
additional technical assumptions), we can ensure that the noise spreads sufficiently to
the unstable directions to find a h capable of counteracting the expansion in the unstable
directions and allowing one to prove (1.3) with a cost whose expectation is finite.

We will see however that the control h used will not be adapted to the filtration
generated by the increments of the driving Wiener process, thus causing a number of
technical difficulties. This stems from the seemingly fundamental fact that because we
need some of the “bracketed directions” (1.4) in order to control the dynamic, we need
to work on a time scale longer than the instantaneous one. In the “essentially elliptic”
setting, on the other hand, we were able to work instantaneously and hence obtain an
adapted control h and avoid this technicality.

1.4 The role of the Malliavin matrix
Since the Malliavin calculus was developed in the 1970’s and 1980’s mainly to give a
probabilistic proof of Hörmander’s “sum of squares” theorem under the type of bracket
conditions we consider, it is not surprising that the Malliavin matrixMt = DutDu∗t
plays a major role in the construction of the variation h in the “weak Hörmander” set-
ting. A rapid introduction to Malliavin calculus in our setting is given in Section 4. In
finite dimensions, the key to the proof of existence and smoothness of densities is the
finiteness of moments of the inverse of the Malliavin matrix. This estimate encapsu-
lates the fact the noise effects all of the directions with a controllable cost. In infinite
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dimensions while it is possible to prove that the Malliavin matrix is almost surely non-
degenerate it seems very difficult to characterise its range. (With the exception of the
linear case [DPZ96]. See also [DPEZ95, FM95, Cer99, EH01] for situations where the
Malliavin matrix can be shown to be invertible on the range of the Jacobian.) However,
in light of the preceding section, it is not surprising that we essentially only need the
invertibility of the Malliavin matrix on the space spanned by the unstable directions,
which is finite dimensional in all of our examples. More precisely, we need information
about the likelihood of eigenvectors with sizable projections in the unstable directions
to have small eigenvalues. Given a projection Π whose range includes the unstable
directions we will show that the Malliavin matrixMt satisfies an estimate of the form

P
(

inf
ϕ∈H

‖Πϕ‖≥ 1
2‖ϕ‖

〈Mtϕ,ϕ〉 > ε‖ϕ‖2
)

= o(εp) (1.5)

for all p ≥ 1. Heuristically, this means we have control of the probabilistic cost to cre-
ate motion in all of the directions in the range of Π without causing a too large effect in
the complementary directions. We will pair such an estimate with the assumption that
the remaining directions are stable in that the Jacobian (the linearization of the SPDE
about the trajectory ut) satisfies a contractive estimate for the directions perpendicular
to the range of Π. Together, these assumptions will let us build an infinitesimal Wiener
shift h which approximately compensates for the component of the infinitesimal shift
caused by the variation in the initial condition in the unstable directions. Once the vari-
ation in the unstable directions have been decreased, the assumed contraction in the
stable directions will ensure that the variation in the stable directions will also decrease
until it is commiserate in size with the remaining variation in the unstable directions.
Iterating this argument we can drive the variation to zero.

Note that one feature of the bound (1.5) is that all the norms and scalar products
appearing there are the same. This is a strengthening of the result from [MP06] which
fixes an error in [HM06], see Section 6 for more details.

The basic structure of the sections on Malliavin calculus follows the presentation in
[BM07] which built on the ideas and techniques from [MP06, Oco88]. As in all three
of these works, as well as the present article, the time reversed adjoint linearization is
used to develop an alternative representation of the Malliavin Covariance matrix. In
[Oco88], only the case of linear drift and linear multiplicative noise was considered.
In [MP06], a nonlinear equation with a quadratic nonlinearity and additive noise was
considered. In [BM07], the structure was abstracted and generalized so that it was
amenable to general polynomial nonlinearities. We follow that structure and basic
line of argument here while strengthening the estimates and correcting some important
errors.

Most existing bounds on the inverse of the Malliavin matrix in a hypoelliptic situa-
tion make use of some version of Norris’ lemma [KS84, KS85a, Nor86, MP06, BH07].
In its form taken from [Nor86], it states that if a semimartingale Z(t) is small and
one has some control on the roughness of both its bounded variation part A(t) and its
quadratic variation process Q(t), then both A and Q taken separately must be small.
While the versions of Norris’ lemma given in [MP06, BM07, BH07] are not precisely
of this form (in both cases, one cannot reduce the problem to semimartingales, either
because of the infinite-dimensionality of the problem or because one considers SDEs
driven by processes that are not Wiener processes), they have the same flavour in that
they state that if a process is composed of a “regular” part and an “irregular” part,
then these two parts cannot cancel each other. This harkens back to the more explicit
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estimates based on estimates of modulus of continuity found in [KS85b, Str83]. The
replacement for Norris’ lemma used in the present work covers the case where one
is given a finite collection of Wiener process Wj and a collection of not necessarily
adapted Lipschitz continuous processes Aα(t) (for α a multi-index) and considers the
process

Z(t) = Aφ(t) +

M∑
`=1

∑
|α|=`

Aα(t)Wα1
(t) · · ·Wα` (t) .

It then states that if Z is small, this implies that all of theAα’s with |α| ≤M are small.
For a precise formulation, see Section 7 below. It is in order to be able to use this
result that we are restricted to equations with polynomial nonlinearities. This result on
Wiener polynomials is a descendant of the result proven in [MP06] for polynomials of
degree one. In [BM07], a result for general Wiener polynomials was also proven. Is
was show there that if Z(t) = 0 for t ∈ [0, T ] then then Aα(t) = 0 for t ∈ [0, T ].
This was used to prove the existence of a density for the finite dimensional projections
of the transition semigroup. In the same article, the same quantitative version of this
result as proven in the present article was claimed. Unfortunately, there was a error in
the proof. Nonetheless the techniques used here are built on and refine those developed
in [BM07].

1.5 Satisfying the Hörmander-like assumption
At first glance the condition that the collection of functions given in (1.4) are dense
in our state space may seem hopelessly strong. However, we will see that it is of-
ten not difficult to ensure. Recall that the nonlinearity N is a polynomial of order
m, and hence, it has a leading order part which is m-homogeneous. We can view
this leading order part as a symmetric m-linear map which we will denote by Nm.
Then, at least formally, the Lie bracket of N with m constant vector fields is pro-
portional to Nm, evaluated at the constant vector fields, that is Nm(h1, · · · , hm) ∝
[· · · [[F, h1], · · · ], hm], which is again a constant vector field. While the collection
of vector fields generated by brackets of this form are only a subset of the possible
brackets, it is often sufficient to obtain a set of dense vector fields. For example, if
N (u) = u−u3 then N3(v1, v2, v3) = v1v2v3 and if the forced directions {g1, · · · , gd}
are C∞ then N3(h1, h2, h3) ∈ C∞ for hi ∈ {g1, · · · , gd}. As observed in [BM07], to
obtain a simple sufficient criteria for the brackets to be dense, suppose that Λ ⊂ C∞
is a finite set of functions that generates, as a multiplicative algebra, a dense subset
of the phase space. Then, if the forced modes A0 = {g1, · · · , gd} contain the set
{h, hh̄ : h, h̄ ∈ Λ}, the set A∞ constructed as in Meta-Theorem 1.5 will span a dense
subset of phase space.

1.6 Probabilistic and dynamical view of smoothing
Implicit in (1.3) is the “transfer of variation” from the initial condition to the Wiener
path. This is the heart of “probabilistic smoothing” and the source of ergodicity when it
is fundamentally probabilistic in nature. The unique ergodicity of a dynamical system
is equivalent to the fact that it “forgets its initial condition” with time. The two terms
appearing on the right-hand side of (1.2) represent two different sources of this loss of
memory. The first is due to the randomness entering the system. This causes nearby
points to end up at the same point at a later time because they are following different
noise realisations. The fact that different stochastic trajectories can arrive at the same
point and hence lead to a loss of information is the hallmark of diffusions and unique
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ergodicity due to randomness. From the coupling point of view, since different realiza-
tions lead to the same point yet start at different initial conditions, one can couple in
finite time.

The second term in (1.2) is due to “dynamical smoothing” and is one of the sources
of unique ergodicity in deterministic contractive dynamical systems. If two trajectories
converge towards each other over time then the level of precision needed to determine
which initial condition corresponds to which trajectory also increases with time. This
is another type of information loss and equally leads to unique ergodicity. However,
unlike “probabilistic smoothing”, the information loss is never complete at any finite
time. Another manifestation of this fact is that the systems never couples in finite time,
only at infinity. In Section 5.1.1 about the strongly dissipative setting, the case of pure
dynamical smoothing is considered. In this case one has (1.2) with only the second
term present. When both terms exist, one has a mixture of probabilistic and dynamical
smoothing leading to a loss of information about the initial condition. In Section 2.2
of [HM08] it is shown how (1.2) can be used to construct a coupling in which nearby
initial conditions converge to each other at time infinity. The current article takes a
“forward in time” perspective, while [EMS01, BM05] pull the initial condition back
to minus infinity. The two points of view are essentially equivalent. One advantage to
moving forward in time is that it makes proving a spectral gap for the dynamic more
natural. We provide such an estimate in Section 8.4 for the stochastic Ginzburg-Landau
equation.

1.7 Structure of the article
The structure of this article is as follows. In Section 2, we give a few abstract er-
godic results both proving the results in the introduction and expanding upon them. In
Section 3, we introduce the functional analytic setup in which our problem will be for-
mulated. This setup is based on Assumption A.1 which ensures that all the operations
that will be made later (differentiation with respect to initial condition, representation
for the Malliavin derivative, etc) are well-behaved. Section 4 is a follow-up section
where we define the Malliavin matrix and obtain some simple upper bounds on it. We
then introduce some additional assumptions in Section 6.1 which ensure that we have
suitable control on the size of the solutions and on the growth rate of its Jacobian.

In Section 5, we obtain the asymptotic strong Feller property under a partial invert-
ibility assumption on the Malliavin matrix and some additional partial contractivity
assumptions on the Jacobian. Section 6.3 then contains the proof that assumptions on
the Malliavin matrix made in Section 5 are justified and can be verified for a large class
of equations under a Hörmander-type condition. The main ingredient of this proof, a
lower bound on Wiener polynomials, is proved in Section 7. Finally, we conclude in
Section 8 with two examples for which our conditions can be verified. We consider
the Navier-Stokes equations on the two-dimensional sphere and a general reaction-
diffusion equation in three or less dimensions.

Acknowledgements
We are indebted to Hakima Bessaih who pushed us to give a clean formulation of Theorem 8.1.

2 Abstract ergodic results

We now expand upon the abstract ergodic theorems mentioned in the introduction
which build on the asymptotic strong Feller property. We begin by giving the proof
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of Corollary 1.4 from the introduction and then give a slightly different result (but with
the same flavour) which will be useful in the investigation of the Ginzburg-Landau
equation in Section 8.4. Throughout this section, Pt will be a Markov semigroup on a
Hilbert spaceH with norm ‖ · ‖.

Proof of Corollary 1.4. Since Pt is Feller, we know that for any u ∈ H and open set A
with Pt(u,A) > 0 there exists an open set B containing u so that

inf
u∈B
Pt(u,A) > 0 .

Combining this fact with the weak topological irreducibility, we deduce that for all
u1, u2 ∈ H there exists v ∈ H so that for any ε > 0 there exists a δ, t1, t2 > 0 with

inf
z∈Bδ(ui)

Pti (z,Bε(v)) > 0 (2.1)

for i = 1, 2.
Now assume by contradiction that we can find two distinct invariant probability

measures µ1 and µ2 for Pt. Since any invariant probability measure can be written as a
convex combination of ergodic measures, we can take them to be ergodic without loss
of generality. Picking ui ∈ supp(µi), by assumption there exists a v so that for any
ε > 0 there exists t1, t2 and δ > 0 so that (2.1) holds. Since ui ∈ supp(µi) we know
that µi(Bδ(ui)) > 0 and hence

µi(Bε(v)) =

∫
H
Pti (z,Bε(v))µi(dz) ≥

∫
Bδ(ui)

Pti (z,Bε(v))µi(dz)

≥ µi(Bδ(ui)) inf
z∈Bδ(ui)

Pti (z,Bε(v)) > 0 .

Since ε was arbitrary, this shows that v ∈ supp(µ1) ∩ supp(µ2), which by Theorem 1.2
gives the required contradiction.

We now give a more quantitative version of Theorem 1.2. It shows that if one has
access to the quantitative information embodied in (1.2), as opposed to only the asymp-
totic strong Feller property, then not only are the supports of any two ergodic invariant
measures disjoint but they are actually separated by a distance which is directly related
to the function C from (1.2).

Theorem 2.1 Let {Pt} be a Markov semigroup on a separable Hilbert space H such
that (1.2) holds for some non-decreasing function C. Let µ1 and µ2 be two dis-
tinct ergodic invariant probability measures for Pt. Then, the bound ‖u1 − u2‖ ≥
1/C(‖u1‖ ∨ ‖u2‖) holds for any pair of points (u1, u2) with ui ∈ suppµi.

Proof. The proof is a variation on the proof of Theorem 3.16 in [HM06]. We begin
by defining for u, v ∈ H the distance dn(u, v) = 1 ∧ (

√
δn ‖u − v‖) where δn is the

sequence of positive numbers from (1.2). As shown in the proof of Theorem 3.12 in
[HM06], one has

dn(P∗t δu1 ,P∗t δu2 ) ≤ ‖u1 − u2‖C(‖u1‖ ∨ ‖u2‖)(1 +
√
δn) (2.2)

where dn is the 1-Wasserstein distance3 on probability measures induced by the metric
dn. Observe that for all u, v ∈ H, dn(u, v) ≤ 1 and lim dn(u, v) = 1{u}(v). Hence by

3dn(ν1, ν2) = sup
∫
ϕdν1 −

∫
ϕdν2 where the supremum runs over functions ϕ : H → R which have

Lipschitz constant one with respect to the metric dn.
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in Lemma 3.4 of [HM06], for any probability measures µ and ν, limn→∞ dn(µ, ν) =
dTV(µ, ν) where dTV(µ, ν) is the total variation distance4.

Let µ1 and µ2 be two ergodic invariant measures with µ1 6= µ2. By Birkhoff’s
ergodic theorem, we know that they are mutually singular and thus dTV(µ1, µ2) = 1.
We now proceed by contradiction. We assume that there exists a pair of points (u1, u2)
with ui ∈ supp(µi) such that ‖u1 − u2‖ < C(‖u1‖ ∨ ‖u2‖). We will conclude by
showing that this implies that dTV(µ1, µ2) < 1 and hence µ1 and µ2 are not singular
which will be a contradiction.

Our assumption on u1 and u2 implies that there exists a set A containing u1 and
u2 such that α def

= min(µ1(A), µ2(A)) > 0 and β def
= sup{‖u− v‖ : u, v ∈ A}C(‖u1‖ ∨

‖u2‖) < 1. As shown in the proof of Theorem 3.16 in [HM06], for any n one has

dn(µ1, µ2) ≤ 1− α(1− sup
vi∈A

dn(P∗t δv1 ,P∗t δv2 ))

≤ 1− α(1− β(1 +
√
δn))

where the last inequality used the bound in equation (2.2). Taking n → ∞ pro-
duces dTV(µ1, µ2) ≤ 1 − α(1 − β). Since α ∈ (0, 1) and β < 1 we concluded that
dTV(µ1, µ2) < 1. This implies a contradiction since µ1 and µ2 are mutually singular
measures.

Paired with this stronger version of Theorem 1.2, we have the following version
of Corollary 1.4 which uses an even weaker form of irreducibility. This is a general
principle. If one has a stronger from of the asymptotic strong Feller property, one
can prove unique ergodicity under a weaker form of topological irreducibility. The
form of irreducibility used in Corollary 2.2 allows the point where two trajectories
approach to move about, depending on the degree of closeness required. To prove
unique ergodicity, the trade-off is that one needs some control of the “smoothing rate”
implied by asymptotic strong Feller at different points in phase space.

Corollary 2.2 Let {Pt} be as in Theorem 2.1. Suppose that, for every R0 > 0, it is
possible to find R > 0 and T > 0 such that, for every ε > 0, there exists a point v with
‖v‖ ≤ R such that PT (u,Bε(v)) > 0 for every ‖u‖ ≤ R0. Then, Pt can have at most
one invariant probability measure.

Proof. Assume by contradiction that there exist two ergodic invariant probability mea-
sures µ1 and µ2 for Pt. Then, choosing R0 large enough so that the open ball of radius
R0 intersects the supports of both µ1 and µ2, it follows form the assumption, by similar
reasoning as in the proof of Corollary 1.4, that suppµi intersects Bε(v). Since ‖v‖ is
bounded uniformly in ε, making ε sufficiently small yields a contradiction with Theo-
rem 2.1 above.

3 Functional analytic setup

In this section, we introduce the basic function analytic set-up for the rest of the paper.
We will develop the needed existence and regularity theory to place the remainder of
the paper of a firm foundation. We consider semilinear stochastic evolution equations

4Different communities normalize the total variation distance differently. Our dTV is half of the total
variation distance as defined typically in analysis. The definition we use is common in probability as it is
normalised in such a way that dTV(µ, ν) = 1 for mutually singular probability measures.
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with additive noise in a Hilbert space H (with norm ‖ · ‖ and innerproduct 〈 · , · 〉 ) of
the form

du = −Ludt+N (u) dt+

d∑
k=1

gk dWk(t) , u0 ∈ H . (3.1)

Here, the Wk are independent real-valued standard Wiener processes over some prob-
ability space (Ω,P,F). Our main standing assumption throughout this article is that L
generates an analytic semigroup and that the nonlinearity N results in a loss of regu-
larity of a powers of L for some a < 1. More precisely, we have:

Assumption A.1 There exists a ∈ [0, 1) and γ?, β? > −a (either of them possibly
infinite) with γ? + β? > −1 such that:

1. The operator L : D(L) → H is selfadjoint and satisfies 〈u, Lu〉 ≥ ‖u‖2. We
denote byHα, α ∈ R the associated interpolation spaces (i.e. Hα with α > 0 is
the domain of Lα endowed with the graph norm andH−α is its dual with respect
to the pairing in H). Furthermore, H∞ is the Fréchet space H∞ =

⋂
α>0Hα

andH−∞ is its dual.

2. There exists n ≥ 1 such that the nonlinearityN belongs to Polyn(Hγ+a,Hγ) for
every γ ∈ [−a, γ?) (see the definition of Poly in Section 3.1 below). In particular,
from the definition of Poly(Hγ+a,Hγ), it follows that it is continuous from H∞
toH∞.

3. For every β ∈ [−a, β?) there exists γ ∈ [0, γ? + 1) such that the adjoint (in H)
DN∗(u) of the derivative DN of N at u (see again the definition in Section 3.1
below) can be extended to a continuous map fromHγ to L(Hβ+a,Hβ).

4. One has gk ∈ Hγ?+1 for every k.

Remark 3.1 If γ? ≥ 0, then the range β ∈ [−a, 0] for Assumption A.1.3 follows
directly from Assumption A.1.2, since A.1.3 simply states that for u ∈ Hγ , DN (u) is
a continuous linear map fromH−β toH−β−a.

Remark 3.2 The assumption 〈u, Lu〉 ≥ ‖u‖2 is made only for convenience so that
Lγ is well-defined as a positive selfadjoint operator for every γ ∈ R. It can always be
realized by subtracting a suitable constant to L and adding it to N .

Similarly, non-selfadjoint linear operators are allowed if the antisymmetric part
is sufficiently “dominated” by the symmetric part, since one can then consider the
antisymmetric part as part of the nonlinearity N .

Remark 3.3 It follows directly from the Calderón-Lions interpolation theorem [RS80,
Appendix to IX.4] that ifN ∈ Poly(H0,H−a)∩Poly(Hγ?+a,Hγ? ) for some γ? > −a,
then N ∈ Poly(Hγ+a,Hγ) for every γ ∈ [−a, γ?]. This can be seen by interpreting N
as a sum of linear maps fromH⊗nγ+a toHγ for suitable values of n.

It will be convenient in the sequel to define F by

F (u) = −Lu+N (u) . (3.2)
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Note that F is in Polyn(Hγ+1,Hγ) for every γ ∈ [−1, γ?). We also define a linear
operator G : Rd → H∞ by

Gv =

d∑
k=1

vkgk ,

for v = (v1, . . . , vd) ∈ Rd. With these notations, we will sometimes rewrite (3.1) as

du = F (u) dt+GdW (t) , u0 ∈ H , (3.3)

for W = (W1, . . . ,Wd) a standard d-dimensional Wiener process.

3.1 Polynomials
We now describe in what sense we mean that N is a “polynomial” vector field. Given
a Fréchet space X , we denote by Lns (X) the space of continuous symmetric n-linear
maps fromX to itself. We also denote by L(X,Y ) the space of continuous linear maps
from X to Y . For the sake of brevity, we will make use of the two equivalent notations
P (u) and P (u⊗n) for P ∈ Ln(X).

Given Q ∈ Lks , its derivative is given by the following n− 1-linear map from X to
L(X,X):

DQ(u)v = kQ(u⊗(k−1) ⊗ v) .

We will also use the notation DQ∗ : X → L(X ′, X ′) for the dual map given by

〈w,DQ∗(u)v〉 = 〈v,DQ(u)w〉 = k〈v,Q(u⊗(k−1) ⊗ w)〉 .

Given P ∈ Lks and Q ∈ L`s, we define the derivative DQP of Q in the direction P
as a continuous map from X ×X to X by

DQ(u)P (v) = `Q(u⊗(`−1) ⊗ P (v)) .

Note that by polarisation, u 7→ DQ(u)P (u) uniquely defines an element on Lk+`−1
s .

This allows us to define a “Lie bracket” [P,Q] ∈ Lk+`−1
s between P and Q by

[P,Q](u) = DQ(u)P (u)−DP (u)Q(u) .

We also define Polyn(X) as the set of continuous maps P : X → X of the form

P (u) =

n∑
k=0

P (k)(u) ,

with P (k) ∈ Lks (X) (here L0
s(X) is the space of constant maps and can be identified

with X). We also set Poly(X) =
⋃
n≥0 Polyn(X). The Lie bracket defined above

extends to a map from Poly(X)× Poly(X)→ Poly(X) by linearity.

3.1.1 Polynomials overH

We now specialize to polynomials over H. We begin by choosing X equal to the
Fréchet space H∞, the intersection of Ha over all a > 0. Next we define the space
Poly(Ha,Hb) ⊂ Poly(H∞) as the set of polynomials P ∈ Poly(H∞) such that there
exists a continuous map P̂ : Ha → Hb with P̂ (u) = P (u) for all u ∈ H∞. Note
that in general (unlike Poly(H∞)), P,Q ∈ Poly(Ha,Hb) does not necessarily imply
[P,Q] ∈ Poly(Ha,Hb). We will make an abuse of notation and use the same symbol
for both P and P̂ in the sequel.
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3.1.2 Taylor expansions and Lie brackets

We now consider the Taylor expansion of a polynomial Q in a direction g belonging to
span{g1, · · · , gd} ⊂ Hγ?+1. Fix Q ∈ Polym(Hγ ,Hβ) for some γ ≤ γ? + 1 and any
β ∈ R. For v ∈ Hγ and w = (w1, . . . , wd) ∈ Rd, observe that there exist polynomials
Qα such that

Q
(
v +

d∑
k=1

gkwk

)
=
∑
α

Qα(v)wα , wα = wα1
· · ·wα` , (3.4)

where the summation runs over all multi-indices α = (α1, . . . , α`), ` ≥ 0 with
values in the index set {1, . . . , d}. It can be checked that the polynomials Qα ∈
Polym−|α|(Hγ ,Hβ) are given by the formula

Qα(v) =
1

α!
[[. . . [Q, gα1

] . . .], gα` ] =
1

α!
D|α|Q(v)(gα1

, . . . , gα` ) . (3.5)

Here, α! is defined by α! = α(1)! · · ·α(d)!, where α(j) counts the number of oc-
curences of the index j in α. (By convention, we set Qφ = Q and Qα = 0 if |α| > m.)

We emphasize that multi-indices are unordered collections of {1, . . . , d} where
repeated elements are allowed. As such, the union of two multi-indices is a well-
defined operation, as is the partial ordering given by inclusion.5

3.2 A priori bounds on the solution
This section is devoted to the proof that Assumption A.1 is sufficient to obtain not only
unique solutions to (3.1) (possibly up to some explosion time), but to obtain further
regularity properties for both the solution and its derivative with respect to the initial
condition. We do not claim that the material presented in this section is new, but while
similar frameworks can be found in [DPZ92, Fla95], the framework presented here
does not seem to appear in this form in the literature. Since the proofs are rather
straightforward, we choose to present them for the sake of completeness, although in a
rather condensed form.

We first start with a local existence and uniqueness result for the solutions to (3.1):

Proposition 3.4 For every initial condition u0 ∈ H, there exists a stopping time τ > 0
such that (3.1) has a unique mild solution u up to time τ , that is to say u almost surely
satisfies

ut = e−Ltu0 +

∫ t

0

e−L(t−s)N (us) ds+

∫ t

0

e−L(t−s)GdW (s) , (3.6)

for all stopping times t with t ≤ τ . Furthermore u is adapted to the filtration generated
by W and is in C([0, τ ),H) with probability one.

Remark 3.5 Since we assume that N is locally Lipschitz continuous from H to H−a
for some a < 1 and since the bound ‖e−Lt‖H−a→H ≤ Ct−a holds for t ≤ T , the first
integral appearing in (3.6) does converge in H. Therefore the right hand side of (3.6)
makes sense for every continuousH-valued process u.

5To be precise, one could identify a multi-index with its counting function α : {1, . . . , d} → N. With
this identification, the union of two multi-indices corresponds to the sums of their counting functions, while
α ⊂ β means that α(k) ≤ β(k) for every k.
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For notational convenience, we denote by WL(s, t) =
∫ t
s
e−L(t−r)GdW (r) the

“stochastic convolution.” Since we assumed that gk ∈ Hγ?+1, it is possible to obtain
bounds on all exponential moments of sup0≤s<t≤T ‖WL(s, t)‖γ for every T > 0 and
every γ ≤ γ? + 1.

Proof. Given a function ξ : R+ → H and a time T > 0, define a map ΦT,ξ : H ×
C([0, T ],H)→ C([0, T ],H) (endowed with the supremum norm) by

(ΦT,ξ(u0, u))t = e−Ltu0 + ξ(t) +

∫ t

0

e−L(t−s)N (us) ds . (3.7)

Since N ∈ Poly(H,H−a) by setting γ = −a in Assumption A.1.2, and suppressing
the dependence on u0, there exists a positive constant C such that

‖ΦT,ξ(u)− ΦT,ξ(ũ)‖ ≤ sup
t∈[0,T ]

C

∫ t

0

(t− s)−a‖us − ũs‖(1 + ‖us‖+ ‖ũs‖)n−1
ds

≤ C‖u− ũ‖(1 + ‖u‖+ ‖ũ‖)n−1
T 1−a .

Recall that n is the degree of the polynomial nonlinearity N . It follows that, for every
ξ, there exists T > 0 and R > 0 such that ΦT,ξ(u0, · ) is a contraction in the ball
of radius R around e−Ltu0 + ξ(t). Setting ξ(t) = WL(0, t), this yields existence and
uniqueness of the solution to (3.6) for almost every noise path WL(0, t) by the Banach
fixed point theorem. The largest such T is a stopping time since it only depends on the
norm of u0 and on ξ up to time T . It is clear that ΦT,ξ(u0, u)t only depends on the
noise WL up to time t, so that the solution is adapted to the filtration generated by W ,
thus concluding the proof of the proposition.

The remainder of this section is devoted to obtaining further regularity properties
of the solutions.

Proposition 3.6 Fix T > 0. For every γ ∈ [0, γ? + 1) there exist exponents pγ ≥ 1
and qγ ≥ 0 and a constant C such that

‖ut‖γ ≤ Ct−qγ (1 + sup
s∈[ t2 ,t]

‖us‖+ sup
t
2≤s<r≤t

‖WL(s, r)‖γ)
pγ (3.8)

for all t ∈ (0, T ∧ τ ], where τ = sup{t > 0 : ‖ut‖ < ∞}. In particular, if γ =∑k
j=0 δj for some k ∈ N and δj ∈ (0, 1− a) then qγ ≤

∑k
j=1 δjn

j−1.

Proof. The proof follows a standard “bootstrapping argument” on γ in the following
way. The statement is obviously true for γ = 0 with pγ = 1 and qγ = 0. Assume that,
for some α = α0 ∈ [1/2, 1) and for some γ = γ0 ∈ [0, γ? + a), we have the bound

‖ut‖γ ≤ Ct−qγ (1 + sup
s∈[αt,t]

‖us‖+ sup
αt≤s<r≤t

‖WL(s, r)‖γ)
pγ , (3.9)

for all t ∈ (0, T ].
We will then argue that, for any arbitrary δ ∈ (0, 1 − a), the statement (3.9) also

holds for γ = γ0 + δ (and therefore also for all intermediate values of γ) and α = α2
0.

Since it is possible to go from γ = 0 to any value of γ < γ? + 1 in a finite number of
steps (making sure that γ ≤ 1 + a in every intermediate step) and since we are allowed
to choose α as close to 1 as we wish, the claim follows at once.
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Using the mild formulation (3.6), we have

ut = e−(1−α)Ltuαt +

∫ t

αt

e−L(t−s)N (us) ds+WL(αt, t) .

Since γ ∈ [0, γ?+a), one has N ∈ Poly(Hγ ,Hγ−a) by Assumption A.1.2. Hence, for
t ∈ (0, T ],

‖ut‖γ+δ ≤ Ct−δ‖uαt‖γ + ‖WL(αt, t)‖γ + C

∫ t

αt

(t− s)−(δ+a)(1 + ‖us‖γ)n ds

≤ C(t−δ + t1−δ−a) sup
αt≤s≤t

(1 + ‖us‖nγ ) + ‖WL(αt, t)‖γ

≤ Ct−δ sup
αt≤s≤t

(1 + ‖us‖nγ ) + ‖WL(αt, t)‖γ .

Here, the constant C depends on everything but t and u0. Using the induction hypoth-
esis, this yields the bound

‖ut‖γ+δ ≤ Ct−δ−nqγ (1+ sup
s∈[α2t,t]

‖us‖+ sup
α2≤s<r≤t

‖WL(s, r)‖γ)
npγ +‖WL(αt, t)‖γ ,

thus showing that (3.9) holds for γ = γ0 + δ and α = α2
0 with pγ+δ = npγ and

qγ+δ = δ + nqγ . This concludes the proof of Proposition 3.6.

3.3 Linearization and its adjoint
In this section, we study how the solutions to (3.1) depend on their initial conditions.
Since the map from (3.7) used to construct the solutions to (3.1) is Fréchet differen-
tiable (it is actually infinitely differentiable) and since it is a contraction for sufficiently
small values of t, we can apply the implicit functions theorem (see for example [RR04]
for a Banach space version) to deduce that for every realisation of the driving noise,
the map us 7→ ut is Fréchet differentiable, provided that t > s is sufficiently close to
s.

Iterating this argument, one sees that, for any s ≤ t < τ , the map us 7→ ut given
by the solutions to (3.1) is Fréchet differentiable in H. Inspecting the expression for
the derivative given by the implicit functions theorem, we conclude that the derivative
Js,tϕ in the direction ϕ ∈ H satisfies the following random linear equation in its mild
formulation:

∂tJs,tϕ = −LJs,tϕ+DN (ut)Js,tϕ , Js,sϕ = ϕ . (3.10)

Note that, by the properties of monomials, it follows from Assumption A.1.2 that

‖DN (u)v‖γ ≤ C(1 + ‖u‖γ+a)n−1‖v‖γ+a ,

for every γ ∈ [−a, γ?). A fixed point argument similar to the one in Proposition 3.4
shows that the solution to (3.10) is unique, but note that it does not allow us to obtain
bounds on its moments. We only have that for any T smaller than the explosion time
to the solutions of (3.1), there exists a (random) constant C such that

sup
0≤s<t<T

sup
‖ϕ‖≤1

‖Js,tϕ‖ ≤ C . (3.11)

The constant C depends exponentially on the size of the solution u in the interval
[0, T ]. However, if we obtain better control on Js,t by some means, we can then use
the following bootstrapping argument:
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Proposition 3.7 For every γ ∈ (0, γ? + 1), there exists an exponent q̃γ ≥ 0, and
constants C > 0 and γ0 < γ such that we have the bound

‖Jt,t+sϕ‖γ ≤ Cs−γ sup
r∈[ s2 ,s]

(1 + ‖ut+r‖γ0
)
q̃γ‖Jt,t+rϕ‖ , (3.12)

for every ϕ ∈ H and every t, s > 0. If γ < 1 − a, then one can choose γ0 = 0 and
q̃γ = n− 1.

Since an almost identical argument will be used in the proof of Proposition 3.9
below, we refer the reader there for details. We chose to present that proof instead of
this one because the presence of an adjoint causes slight additional complications.

For s ≤ t, let us define operators Ks,t via the solution to the (random) PDE

∂sKs,tϕ = LKs,tϕ−DN∗(us)Ks,tϕ , Kt,tϕ = ϕ , ϕ ∈ H . (3.13)

Note that this equation runs backwards in time and is random through the solution
ut of (3.1). Here, DN∗(u) denotes the adjoint in H of the operator DN (u) defined
earlier. Fixing the terminal time t and setting ϕs = Kt−s,tϕ, we obtain a more usual
representation for ϕs:

∂sϕs = −Lϕs +DN∗(ut−s)ϕs . (3.14)

The remainder of this subsection will be devoted to obtaining regularity bounds on the
solutions to (3.13) and to the proof that Ks,t is actually the adjoint of Js,t. We start
by showing that, for γ sufficiently close to (but less than) γ? + 1, (3.13) has a unique
solution for every path u ∈ C(R,Hγ) and ϕ ∈ H.

Proposition 3.8 There exists γ < γ? + 1 such that, for every ϕ ∈ H, equation (3.13)
has a unique continuous H-valued solution for every s < t and every u ∈ C(R,Hγ).
Furthermore, Ks,t depends only on ur for r ∈ [s, t] and the map ϕ 7→ Ks,tϕ is linear
and bounded.

Proof. As in Proposition 3.4, we define a map ΦT,u : H×C([0, T ],H)→ C([0, T ],H)
by

(ΦT,u(ϕ0, ϕ))t = e−Ltϕ0 +

∫ t

0

e−L(t−s)(DN∗(us))ϕs ds .

It follows from Assumption A.1.3 with β = −a that there exists γ < γ? + 1 such that
DN∗(u) : H → H−a is a bounded linear operator for every u ∈ Hγ . Proceeding as in
the proof of Proposition 3.4, we see that Φ is a contraction for sufficiently small T .

Similarly to before, we can use a bootstrapping argument to show that Ks,tϕ actu-
ally has more regularity than stated in Proposition 3.8.

Proposition 3.9 For every β ∈ (0, β? + 1), there exists γ < γ? + 1, an exponent
q̄β > 0, and a constant C such that

‖Kt−s,tϕ‖β ≤ Cs−β sup
r∈[ s2 ,s]

(1 + ‖ut−r‖γ)
q̄β‖Kt−r,tϕ‖ , (3.15)

for every ϕ ∈ H, every t, s > 0, and every u ∈ C(R,Hγ).
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Proof. Fix β < β? + a and δ ∈ (0, 1 − a) and assume that the bound (3.15) holds for
‖Ks,tϕ‖β . Since we run s “backwards in time” from s = t, we consider again t as
fixed and use the notation ϕs = Kt−s,tϕ. We then have, for arbitrary α ∈ (0, 1),

‖ϕs‖β+δ ≤ Cs−δ‖ϕαs‖β + C

∫ s

αs

(s− r)−(δ+a)‖DN∗(ut−r)ϕr‖β−a dr ,

provided that γ is sufficiently close to γ?+ 1 such that DN∗ : Hγ → L(Hβ ,Hβ−a) by
Assumption A.1.3. Furthermore, the operator norm of DN∗(v) is bounded by C(1 +
‖v‖γ)n−1, yielding

‖ϕs‖β+δ ≤ Cs−δ‖ϕαs‖β + Cs−(δ+a−1) sup
r∈[αs,s]

(1 + ‖ur‖γ)n−1‖ϕr‖β

≤ Cs−δ sup
r∈[αs,s]

(1 + ‖ur‖γ)n−1‖ϕr‖β .

Iterating these bounds as in Proposition 3.6 concludes the proof.

The following lemma appears also in [MP06, BM07]. It plays a central role in estab-
lishing the representation of the Malliavin matrix given in (4.11) on which this article
as well as [MP06, BM07] rely heavily.

Proposition 3.10 For every 0 ≤ s < t, Ks,t is the adjoint of Js,t in H, that is Ks,t =
J∗s,t.

Proof. Fixing 0 ≤ s < t and ϕ,ψ ∈ H∞, we claim that the expression

〈Js,rϕ,Kr,tψ〉 , (3.16)

is independent of r ∈ [s, t]. Evaluating (3.16) at both r = s and r = t then concludes
the proof.

We now prove that (3.16) is independent of r as claimed. It follows from (3.13)
and Proposition 3.6 that, with probability one, the map r 7→ Kr,tϕ is continuous with
values inHβ+1 and differentiable with values inHβ , provided that β < β?. Similarly,
the map r 7→ Js,rψ is continuous with values in Hγ+1 and differentiable with values
in Hγ , provided that γ < γ?. Since γ? + β? > −1 by assumption, it thus follows that
(3.16) is differentiable in r for r ∈ (s, t) with

∂r〈Js,rϕ,Kr,tψ〉 = 〈(L+DN (ur))Js,rϕ,Kr,tψ〉
− 〈Js,rϕ, (L+DN∗(ur))Kr,tψ〉 = 0 .

Since furthermore both r 7→ Kr,tϕ and r 7→ Js,rψ are continuous in r on the closed
interval, the proof is complete. See for example [DL92, p. 477] for more details.

3.4 Higher order variations
We conclude this section with a formula for the higher-order variations of the solution.
This will mostly be useful in Section 8 in order to obtain the smoothness of the density
for finite-dimensional projections of the transition probabilities.

For integer n ≥ 2, let ϕ = (ϕ1, · · · , ϕn) ∈ H⊗n and s = (s1, · · · , sn) ∈ [0,∞)n

and define ∨s = s1 ∨ · · · ∨ sn. We will now define the n-th variation of the equation
J (n)
s,tϕ which intuitively is the cumulative effect on ut of varying the value of usk in the

direction ϕk.
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If I = {n1 < . . . < n|I|} is an ordered subset of {1, . . . , n} (here |I| means
the number of elements in I), we introduce the notation sI = (sn1

, . . . , sn|I| ) and
ϕI = (ϕn1 , . . . , ϕn|I| ). Now the n-th variation of the equation J (n)

s,tϕ solves

∂tJ
(n)
s,tϕ = −LJ (n)

s,tϕ+DN (u(t))J (n)
s,tϕ+ G(n)

s,t (u(t), ϕ), t > ∨s, (3.17)

J (n)
s,tϕ = 0, t ≤ ∨s,

where

G(n)
s,t (u, ϕ) =

m∧n∑
ν=2

∑
I1,...,Iν

D(ν)N (u)
(
J

(|I1|)
sI1 ,t

ϕI1 , . . . , J
(|Iν |)
sIν ,t

ϕIν

)
, (3.18)

and the second sum runs over all partitions of {1, . . . , n} into disjoint, ordered non-
empty sets I1, . . . , Iν .

The variations of constants formula then implies that

J (n)
s,tϕ =

∫ t

0

Jr,tG(n)
s,r(ur, ϕ)dr , (3.19)

see also [BM07]. We obtain the following bound on the higher-order variations:

Proposition 3.11 If β? > a−1 then there exists γ < γ?+1 such that, for every n > 0,
there exist exponents Nn and Mn such that

‖J (n)
s,tϕ‖ ≤ C sup

r∈[0,t]
(1 + ‖ur‖γ)Nn sup

0≤u<v≤t
(1 + ‖Ju,v‖)Mn ,

uniformly over all n-uples ϕ with ‖ϕk‖ ≤ 1 for every k.

Proof. We proceed by induction. As a shorthand, we set

E(M,N ) = sup
r∈[0,t]

(1 + ‖ur‖γ)N sup
0≤u<v≤t

(1 + ‖Ju,v‖)M .

The result is trivially true for n = 1 with M1 = 1 and N1 = 0. For n > 1, we combine
(3.19) and (3.18), and we use Assumption A.1, part 2., to obtain

‖J (n)
s,tϕ‖ ≤ C

∫ t

0

‖Jr,t‖−a→0

(
1 + ‖ur‖n +

∑
I

‖J |I|sI ,rϕI‖
n
)
dr

≤ CE(nMn−1, n(Nn−1 + 1))
∫ t

0

‖Kr,t‖0→a dr .

To go from the first to the second line, we used the induction hypothesis, the fact that
Kr,t = J∗r,t, and the duality betweenHa andH−a.

It remains to apply Proposition 3.9 with β = a to obtain the required bound.

4 Malliavin calculus

In this section, we show that the solution to the SPDE (3.1) has a Malliavin derivative
and we give an expression for it. Actually, since we are dealing with additive noise, we
show the stronger result that the solution is Fréchet differentiable with respect to the
driving noise. In this section, we will make the standing assumption that the explosion
time τ from Proposition 3.4 is infinite.
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4.1 Malliavin derivative
In light of Proposition 3.4, for fixed initial condition u0 ∈ H there exists an “Itô map”
Φu0
t : C([0, t],Rd)→ H with ut = Φu0

t (W ). We have:

Proposition 4.1 For every t > 0 and every u ∈ H, the map Φut is Fréchet differen-
tiable and its Fréchet derivative DΦut v in the direction v ∈ C(R+,Rd) satisfies the
equation

dDΦut v = −LDΦut v dt+DN (ut)DΦut v dt+Gdv(t) (4.1)

in the mild sense.

Remark 4.2 Note that (4.1) has a uniqueH-valued mild solution for every continuous
function v because it follows from our assumptions that Gv ∈ C(R+,Hγ) for some
γ > 0 and therefore

∫ t
0
e−L(t−s)Gdv(s) = Gv(t)−e−LtGv(0)−

∫ t
0
Le−L(t−s)Gv(s) ds

is a continuousH-valued process.

Proof of Proposition 4.1. The proof works in exactly the same way as the arguments
presented in Section 3.3: it follows from Remark 4.2 that for any given u0 ∈ H and
t > 0, the map

(W,u) 7→ e−Ltu0 +

∫ t

0

e−L(t−s)N (u(s)) ds+

∫ t

0

e−L(t−s)GdW (s)

is Fréchet differentiable in C([0, t],Rd) × C([0, t],H). Furthermore, for t sufficiently
small (depending on u and W ), it satisfies the assumptions of the implicit functions
theorem, so that the claim follows in this case. The claim for arbitrary values of t
follows by iterating the statement.

As a consequence, it follows from Duhamel’s formula and the fact that Js,t is the
unique solution to (3.10) that

Corollary 4.3 If v is absolutely continuous and of bounded variation, then

DΦut v =

∫ t

0

Js,tGdv(s) , (4.2)

where the integral is to be understood as a Riemann-Stieltjes integral and the Jacobian
Js,t is as in (3.10).

In particular, (4.2) holds for every v in the Cameron-Martin space

CM = {v : ∂tv ∈ L2([0,∞),Rd), v(0) = 0} ,

which is a Hilbert space endowed with the norm ‖v‖2CM =
∫∞

0
|∂tv(t)|2Rd dt

def
= |||∂tv|||2.

Obviously, CM is isometric to CM′ = L2([0,∞),Rd), so we will in the sequel use the
notation

DhΦut
def
= DΦut v =

∫ t

0

Js,tGdv(s) =

∫ t

0

Js,tGh(s) ds , if ∂tv = h . (4.3)

The representation (4.2) is still valid for arbitrary stochastic processes h such that h ∈
CM′ almost surely.
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Since G : Rd → Hγ∗+1 is a bounded operator whose norm we denote ‖G‖, we
obtain the bound

‖DhΦut ‖ ≤ ‖G‖
∫ t

0

‖Js,t‖ |h(s)| ds ≤ C‖J·,t‖L2(0,t,H)|||h||| ,

valid for every h ∈ CM′. In particular, by Riesz’s representation theorem, this shows
that there exists a (random) element DΦut of CM′ ⊗H such that

DhΦut = 〈DΦut , h〉CM′ =

∫ ∞
0

DsΦut h(s) ds , (4.4)

for every h ∈ CM′. This abuse of notation is partially justified by the fact that, at least
formally, DsΦut = DhΦut with h(r) = δ(s− r). In our particular case, it follows from
(4.2) that one has

DsΦut = Js,tG ∈ Rd ⊗H , t > s ,

and DsΦut = 0 for s > t. With this notation, the identity (4.2) can be rewritten
as Dhut =

∫ t
0
Dsut h(s)ds. It follows from the theory of Malliavin calculus, see for

example [Mal97, Nua95] that, for any Hilbert spaceH, there exists a closed unbounded
linear operator D : L2(Ω,R) ⊗ H → L2

ad(Ω,Ft, CM′) ⊗ H such that DΦt coincides
with the object described above whenever Φt is the solution map to (3.1). Here, Ft is
the σ-algebra generated by the increments of W up to time t and L2

ad denotes the space
of L2 functions adapted to the filtration {Ft}.

The operatorD simply acts as the identity on the factorH, so that we really interpret
it as an operator from L2(Ω,R) to L2(Ω, CM′). The operatorD is called the “Malliavin
derivative.”

We define a family of random linear operators At : CM′ → H (depending also on
the initial condition u0 ∈ H for (3.1)) by h 7→ 〈DΦut , h〉. It follows from (4.3) that
their adjoints A∗t : H → CM′ are given for ξ ∈ H by

(A∗t ξ)(s) =

{
G∗J∗s,tξ = G∗Ks,tξ for s ≤ t ,
0 for s > t .

(4.5)

Similarly, we define As,t : CM′ → H by At,sh
def
= At(h1[t,s]) = 〈Dut, h1[t,s]〉 =∫ t

s
Jr,tGhrdr. Observe that A∗s,t : H → CM′ is given for ξ ∈ H by (A∗s,tξ)(r) =

G∗J∗r,tξ = G∗Kr,tξ for r ∈ [s, t] and zero otherwise.
Recall that the Skorokhod integral h 7→

∫ t
0
h(s) · dW (s) def

= D∗h is defined as the
adjoint of the Malliavin derivative operator (or rather of the part acting on L2(Ω,Ft,R)
and not onH). In other words, one has the following identity between elements ofH:

EDhΦut = E〈DΦut , h〉 = E
(

Φut

∫ t

0

h(s) · dW (s)
)

, (4.6)

for every h ∈ L2(Ω, CM′) belonging to the domain of D∗.
It is well-established [Nua95, Ch. 1.3] that the Skorokhod integral has the following

two important properties:
1. Every adapted process h with E|||h|||2 <∞ belongs to the domain ofD∗ and the

Skorokhod integral then coincides with the usual Itô integral.
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2. For non-adapted processes h, if h(s) belongs to the domain of D for almost
every s and is such that

E
∫ t

0

∫ t

0

|Dsh(r)|2Rd ds = E
∫ t

0

|||Dsh|||2 ds <∞ ,

then one has the following modification of the Itô isometry:

E
(∫ t

0

h(s) · dW (s)
)2

= E
∫ t

0

|h(s)|2Rd ds

+ E
∫ t

0

∫ t

0

trDsh(r)Drh(s) ds dr . (4.7)

Note here that since h(s) ∈ Rd, we interpret Drh(s) as a d× d matrix.

4.2 Malliavin derivative of the Jacobian
By iterating the implicit functions theorem, we can see that the map that associates a
given realisation of the Wiener process W to the Jacobian Js,tϕ is also Fréchet (and
therefore Malliavin) differentiable. Its Malliavin derivative DhJs,tϕ in the direction
h ∈ CM′ is given by the unique solution to

∂tDhJs,tϕ = −LDhJs,tϕ+DN (ut)DhJs,tϕ+D2N (ut)(Dhut, Js,tϕ) ,

endowed with the initial conditionDhJs,sϕ = 0. Just as the Malliavin derivative of the
solution was related to its derivative with respect to the initial condition, the Malliavin
derivative of Js,t can be related to the second derivative of the flow with respect to the
initial condition in the following way. Denoting by J (2)

s,t(ϕ,ψ) the second derivative of
ut with respect to u0 in the directions ϕ and ψ, we see that as in (3.17), J (2)

s,t(ϕ,ψ) is
the solution to

∂tJ
(2)
s,t(ϕ,ψ) = −LJ (2)

s,t(ϕ,ψ) +DN (ut)J
(2)
s,t(ϕ,ψ) +D2N (ut)(Js,tψ, Js,tϕ) ,

endowed with the initial condition J (2)
s,s(ϕ,ψ) = 0.

Assuming that h vanishes outside of the interval [s, t] and using the identities
Jr,tJs,r = Js,t and Dhut =

∫ t
s
Jr,tGh(r) dr, we can check by differentiating both

sides and identifying terms that one has the identity

DhJs,tϕ =

∫ t

s

J (2)
r,t (Gh(r), Js,rϕ) dr , (4.8)

which we can rewrite as
DrJs,tϕ = J (2)

r,t (G, Js,rϕ) (4.9)

This identity is going to be used in Section 5.

4.3 Malliavin covariance matrix
We now define and explore the properties of the Malliavin covariance matrix, whose
non-degeneracy is central to our constructions.
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Definition 4.4 Assume that the explosion time τ =∞ for every initial condition inH.
Then, for any t > 0, the Malliavin matrixMt : H → H is the linear operator defined
by

Mtϕ =

d∑
k=1

∫ t

0

〈Js,tgk, ϕ〉Js,tgk ds . (4.10)

Observe that this is equivalent to

Mt = AtA∗t =

∫ t

0

Js,tGG
∗J∗s,t ds =

∫ t

0

Js,tGG
∗Ks,t ds ,

thus motivating the definitionMs,t = As,tA∗s,t for arbitrary time intervals 0 ≤ s < t.
From this it is clear thatMs,t is a symmetric positive operator with

〈Mtϕ,ϕ〉 =

d∑
k=1

∫ t

0

〈Js,tgk, ϕ〉2 ds =

d∑
k=1

∫ t

0

〈gk,Ks,tϕ〉2 ds (4.11)

for all ϕ ∈ H.
The meaning of the Malliavin covariance matrix defined in (4.10) is rather intuitive,

especially for the diagonal elements 〈Mtϕ,ϕ〉. If 〈Mtϕ,ϕ〉 > 0 then there exists
some variation in the Wiener process on the time interval [0, t] which creates a variation
of ut in the direction ϕ.

It is also useful to understand on what spaces the operator norm ofMt is bounded.
As a simple consequence of Proposition 3.7, we have:

Proposition 4.5 For every T > 0 and γ ∈ [0, (1− a) ∧ 1
2 ),MT can be extended to a

bounded (random) linear operator fromH−γ toHγ with probability one. In particular,
MT is almost surely a positive, self-adjoint linear operator onH such that the bound

sup
ϕ,ψ∈H−γ

‖ϕ‖−γ=‖ψ‖−γ=1

〈MTϕ,ψ〉 ≤ T C sup
0≤s<t≤T

sup
k

(1 + ‖ut‖)2n−2‖Js,tgk‖2

holds with some deterministic constant C.

Remark 4.6 If the linear operator L happens to have compact resolvent, which will be
the case in most of the examples to which our theory applies, then the operator MT

is automatically compact, since the embedding Hγ ↪→ H is then compact for every
γ > 0.

Proof. From (4.10) we have that

sup
ϕ,ψ∈H−γ

‖ϕ‖−γ=‖ψ‖−γ=1

〈Mtϕ,ψ〉 ≤
d∑
k=1

∫ t

0

‖Js,tgk‖2γds .

Since the gk belong toH by assumption, the required bound now follows from Propo-
sition 3.7, noting that the singularity at s = t is integrable by the assumption γ < 1

2 .
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5 Smoothing in infinite dimensions

We now turn our study of (3.3) to one of the principal goals of this article. As in the
preceding section, we shall assume that all solutions are global in time and that the
standing assumptions from Assumption A.1 continue to hold. The aim of this section
is to prove “smoothing” estimates for the corresponding Markov semigroup Pt whose
action on bounded test functions ϕ : H → R is defined by

Ptϕ(v) = Evϕ(ut) .

Here, the subscript in the expectation refers to the initial condition for the solution ut
to (3.3). We begin with a brief discussion of the type of estimates we will prove and the
ideas used in their proof. A long discussion on this can be found in [HM06] in which
a number of the tools of this paper were developed or [Mat08] which has a longer
motivating discussion.

Recall also that the Malliavin covariance matrix Mt : H → H for the solution
to (3.3) was defined in (4.10) as Mt = AtA∗t and that it is a random, self-adjoint
operator on H. Since H is assumed to be infinite-dimensional, Mt will in general
not be invertible. However as discussed in the introduction we will only need it to be
“approximately invertible” on some subspace paired with a assumption that the dynam-
ics is counteractive off this subspace. The assumption of “approximate invertibility”
on some subspace is formulated in Assumption B.1 below and the contractivity as-
sumption is formulated in Assumption B.4. These are the two fundamental structural
assumptions needed for this theory. In between the statement of these two assumption
two other assumptions are given. They are more technical in nature and ensure that we
can control various quantities.

Assumption B.1 (Malliavin matrix) There exists a function U : H → [1,∞) and an
orthogonal projection operator Π: H → H such that, for every α > 0, the bound

P
(

inf
‖Πϕ‖≥α‖ϕ‖

〈ϕ,M1ϕ〉
‖ϕ‖2

≤ ε
)
≤ C(α, p)Up(u0) εp , (5.1)

holds for every ε ≤ 1, p ≥ 1 and u0 ∈ H. Furthermore for some q̄ ≥ 2, there exist a
constant CU so that for every initial condition u0 ∈ H, the bound

EU q̄(un) ≤ C q̄UU
q̄(u0) ,

holds uniformly in n ≥ 0.

We are also going to assume in this section that the solutions to (3.3) have the
following Lyapunov-type structure, which is stronger than Assumption C.1 used in the
previous section:

Assumption B.2 (Lyapunov structure) Equation (3.3) has global solutions for every
initial condition. Furthermore, there exists a function V : H → R+ such that there
exist constants CL > 0 and η′ ∈ [0, 1) such that

E exp(V (u1)) ≤ exp(η′V (u0) + CL) . (5.2)

Assumption B.3 (Jacobian) The Jacobian Js,t and the second variation J (2)
s,t satisfy

the bounds

E‖Js,t‖p̄ ≤ exp(p̄ηV (u0) + p̄CJ) ,
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E‖J (2)
s,t‖p̄ ≤ exp(p̄ηV (u0) + p̄C (2)

J ) ,

for all 0 ≤ s ≤ t ≤ 1 and for some constants p̄ ≥ 10 and η > 0 with p̄η < 1− η′ and
2/q̄+ 10/p̄ ≤ 1, where η′ is the constant from Assumption B.2 and q̄ the constant from
Assumption B.1.

Remark 5.1 When we write ‖J (2)‖ we mean the operator norm from H ⊗ H → H,
namely supϕ,ψ∈H ‖J (2)(ϕ,ψ)‖/(‖ϕ‖‖ψ‖).

We finally assume that the Jacobian of the solution has some “smoothing prop-
erties” in the sense that if we apply it to a function that belongs to the image of the
orthogonal complement Π⊥ = 1 − Π of the projection operator Π then, at least for
short times, its norm will on average be reduced:

Assumption B.4 (Smoothing) One has the bound

E‖J0,1Π⊥‖p̄ ≤ exp(p̄ηV (u0)− p̄CΠ) , (5.3)

for some constantCΠ such thatCΠ−CJ > 2κCL where κ = η/(1−η′). The constants
η and p̄ appearing in this bound are the same as the ones appearing in Assumption B.3,
the constant η′ is the same as the one appearing in Assumption B.2, and the projection
Π is the same as the one appearing in Assumption B.1.

Remark 5.2 The condition CΠ −CJ > 2κCL may seem particularly unmotivated. In
the next section, we try to give some insight into its meaning.

Remark 5.3 We will see in the proof of Theorem 8.1 below that if we assume that the
linear operator L has compact resolvent, then Assumption B.4 can always be satisfied
by taking for Π the projection onto a sufficiently large number of eigenvectors of L.

Remark 5.4 Notice that if Range(Π) ⊂ span{g1, . . . , gd}, then in light of the last
representation in (4.11) it is reasonable to expect (5.1) to hold as long as one has some
control over moments the modulus of continuity of s 7→ Ks,t. (This is made more
precise in Lemma 6.18.) We refer to such an assumption on the range as the “essentially
elliptic” setting since all of the directions whose (pathwise) dynamics are not controlled
by Assumption B.4 are directly forced.

Under these assumptions we have the following result which is the fundamental
“smoothing” estimate of this paper. It is the linchpin on which all of the ergodic results
rest.

Theorem 5.5 Let Assumptions A.1 and B.1-B.4 hold. Then for any ζ ∈ [0, (CΠ −
CJ )/2−κCL) there a exist positive constantsC such that for all n ∈ N and measurable
ϕ : H → R

‖D(P2nϕ)(u)‖ ≤ e4κV (u0)
(
CU2(u0)

√
(P2nϕ2)(u) + γ2n

√
(P2n‖Dϕ‖2)(u)

)
(5.4)

where γ = exp(−ζ).

Remark 5.6 By (Pt‖Dϕ‖2)(u), we simply mean Eu(sup‖ξ‖=1 |(Dϕ)(ut)ξ|2).
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Remark 5.7 If ‖ϕ‖∞ or ‖Dϕ‖∞ are bounded by one then the corresponding terms
under the square root are bounded by one. Furthermore, in light of Assumption B.2, if
ϕ(u)2 ≤ exp(V (u)), then√
P2nϕ2(u) ≤ ‖ϕ‖∞

√
E exp(V (u2n)) ≤ ‖ϕ‖∞ exp(η′V (u0)/2 + CL/(2− 2η′)) .

Of course, the same bound for holds for
√

(P2n‖Dϕ‖2)(u), provided that one has an
estimate of the type ‖Dϕ‖2(u) ≤ exp(V (u)).

5.1 Motivating discussion
We now discuss in what sense (5.4) implies smoothing. When the term “smoothing” is
used in the mathematics literature to describe a linear operator T , it usually means that
Tϕ belongs to a smoother function space than ϕ. This usually means that Tϕ is “more
differentiable” then ϕ. A convenient way to express this fact analytically would be an
estimate of the form

‖D(Tϕ)(u)‖ ≤ C(u)‖ϕ‖∞ . (5.5)

(Of course the “smoothing” property may improve the smoothness by less than a whole
derivative, or one may consider functions ϕ that are not bounded, but let us consider
(5.5) just for the sake of the argument.) This shows in a quantitative way that Tϕ is
differentiable while ϕ need not be. In light of Remark 5.7, this is in line with the first
term on the right hand side of (5.4).

The second term on the right hand side of (5.4) embodies smoothing of a different
type. Suppose that T satisfies the estimate

‖D(Tϕ)‖∞ ≤ C‖ϕ‖∞ + γ‖Dϕ‖∞ (5.6)

for some positive C and some γ ∈ (0, 1). (Note that this is a variation of what is
usually referred to as the Lasota-Yorke inequality [LY73, Liv03] or the Ionescu-Tulcea-
Marinescu inequality [ITM50].) Though (5.6) does not imply that Tϕ belongs to a
smoother function space then ϕ, it does imply that the gradients of Tϕ are smaller
then those of ϕ, at least as long as the gradients of ϕ are sufficiently steep. This is in
line with a more colloquial idea of smoothing, though not in line with the traditional
mathematical definition used.

5.1.1 Strongly dissipative setting

Where does the assumption CΠ > CJ + 2κCL come from? This is easy to understand
if we consider the “trivial” case Π = 0. In this case, Assumption B.1 is empty and the
projection Π⊥ is the identity. Therefore, the left hand sides from Assumptions B.3 and
B.4 coincide, so that one has CJ = −CΠ and our restriction becomes CJ + κCL < 0.

This turns out to be precisely the right condition to impose if one wishes to show
that E‖J0,n‖ → 0 at an exponential rate:

Proposition 5.8 Let Assumptions B.2 and B.3 hold. Then, for any p ∈ [0, p̄/2], one
has the bound

E‖J0,n‖p ≤ exp(pκV (u0) + pCTn) ,

with κ = η/(1− η′) and CT = CJ + κCL.
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Proof. Using the fact that ‖J0,n‖ ≤ ‖Jn−1,n‖‖J0,n−1‖, we have the following recur-
sion relation:

E( exp(pκV (un))‖J0,n‖p) ≤ E
(

E(exp(pκV (un))‖Jn−1,n‖p | Fn−1)‖J0,n−1‖p
)

≤ E
((

E(‖Jn−1,n‖p̄ | Fn−1)
) p
p̄
(

E
(

exp
( pp̄

p̄− p
κV (un)

) ∣∣∣Fn−1

)) p̄−p
p̄ ‖J0,n−1‖p

)
≤ epCT E(exp(pκV (un−1))‖J0,n−1‖p) ,

where we made use of Assumptions B.2 and B.3 in the second inequality. It now
suffices to apply this n times and to use the fact that ‖J0,0‖ = 1. The assumptions
p̄κ < 1 and p ≤ p̄/2 ensure that pp̄ ≤ p̄− p so that the bound (5.2) can be used.

We now use this estimate to prove a version of Theorem 5.5 when the system is
strongly dissipative:

Proposition 5.9 Let Assumptions B.2 and B.3 hold and set CT = CJ + κCL with
κ = η/(1− η′) as before. Then, for any ϕ : H → R and n ∈ N one has

‖D(Pnϕ)(u)‖ ≤ γneκV (u)
√
Pn‖Dϕ‖2(u) .

with γ = eCT . In particular, the semigroup Pt has the asymptotic strong Feller prop-
erty whenever CT < 0.

Proof. Fixing any ξ ∈ H with ‖ξ‖ = 1, observe that

D(Ptϕ)(u)ξ = Eu(Dϕ)(ut)J0,tξ ≤
√

E‖J0,t‖2
√

E‖Dϕ‖2(ut) .

Applying Proposition 5.8 completes the proof.

Comparing this result to the bound (5.4) stated in Theorem 5.5 shows that, the
combination of the smoothing Assumption B.4 with Assumption B.1 on the Malliavin
matrix allows us to consider the system as if its Jacobian was contracting at an average
rate (CΠ − CJ )/2 instead of expanding at a rate CJ . This is precisely the rate that
one would obtain by projecting the Jacobian with Π⊥ at every second step. The addi-
tional term containing P2nϕ

2 appearing in the right hand side of (5.4) should then be
interpreted as the probabilistic “cost” of performing that projection. Since this “pro-
jection” will be performed by using an approximate inverse to the Malliavin matrix,
it makes sense that the larger the lower bound onMt is, the lower the corresponding
probabilistic cost.

Remark 5.10 It is worth mentioning, that nothing in this section required that the
number of Wiener process be finite. Hence one is free to take d =∞, as long as all of
the solutions and linearization are well defined (which places conditions on the gk).

5.2 Transfer of variation
Having analyzed the strongly dissipative setting, we now turn to the general setting.
We would like to mimic the calculation used in Proposition 5.9, but we do not want
to require the system to be “contractive” in the sense of being strongly dissipative.
However, in settings where one can prove (5.5) there is usually no requirement of strong
dissipativity but rather an assumption of hypoellipticity. This is because the variation
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in the initial condition is transferred to a variation in the Wiener space. Mirroring the
discussion in [Mat08, HM06] (where more details can be found), we begin sketching
a proof of (5.5) and then show how to modify it to obtain (5.6). The central idea is
to compensate as much as possible the effect of an infinitesimal perturbation in the
initial condition to an infinitesimal variation in the driving Wiener process. In short, to
transfer one type of variation to another.

Denoting by S = {ξ ∈ H : ‖ξ‖ = 1} the set of possible directions in H, let
there be given a map from S × C([0,∞),Rd) → CM′ denoted by (ξ,W ) 7→ hξ(W ),
mapping variations in the initial condition u to variations in the Wiener path W . We
will worry about constructing a suitable map in the next sections; for the moment we
just explore which properties of hξ might be useful. Fixing t, let us begin by assuming
that the following identity holds:

DξΦut (W ) = 〈DΦut (W ), ξ〉 = 〈DΦut (W ), hξ(W )〉 = DhξΦut (W ) . (5.7)

(The first and last equalities are just changes in notation.) Here, Dξ denotes deriva-
tive with respect to the initial condition in the direction ξ ∈ H, while D denotes the
(Malliavin) derivative with respect to the noise. In words, the middle equality states
that the variation in ut(W ) caused by an infinitesimal shift in the initial condition in the
direction ξ is equal to the variation in ut caused by an infinitesimal shift of the Wiener
process W in the direction hξ(W ). This is the basic reasoning behind smoothness es-
timates proved by Malliavin calculus. We begin as in the proof of Proposition 5.9. For
any ξ ∈ S, one has that

Dξ(ϕ(Φut )) = (Dϕ)(Φut )DξΦut = (Dϕ)(Φut )DhξΦut = Dhξ(ϕ(Φut )) . (5.8)

Taking expectations and using the Malliavin integration by parts formula (4.6) to obtain
the last equality yields

DξPtϕ(u) = EDξ(ϕ(Φut )) = EDhξ(ϕ(Φut )) = Euϕ(Φut )
∫ t

0

hξs · dW (s) .

Applying the Cauchy-Schwartz inequality to the last term produces a term of the form
of the first term on the right-hand side of (5.4) provided E|

∫ t
0
hξs · dW (s)|2 < ∞.

Taken alone, provided one can find a mapping (ξ,W ) 7→ hξ(W ) satisfying (5.7) with
E|
∫ t

0
hξs · dW (s)| <∞, we have proven an inequality of the form (5.5).

In the infinite-dimensional SPDE setting of this paper, finding a map (ξ,W ) 7→
hξ(W ) satisfying (5.7) seems hopeless, unless the noise is infinite-dimensional itself
and acts in a very non-degenerate way on the equation, see [Mas89, DPEZ95, EH01]
or the monograph [DPZ96] for some results in this direction. Instead, we only “ap-
proximately compensate” for the variation due to differentiating in the initial direction
ξ with a shift in the Wiener process. As such, given an mapping (ξ,W ) 7→ hξ(W ), we
replace the requirement in (5.7) with the definition

ρt(W ) = DξΦut (W )−DhξΦut (W ) (5.9)

and hope that we can choose hξ in such a way that ρt → 0 as t → ∞. As before, we
postpone choosing a mapping (ξ,W ) 7→ hξ(W ) until the next section. For the moment
we are content to explore the implications of finding such a mapping with desirable
properties.
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Returning to (5.8) but using (5.9), we now have

Dξ(ϕ(Φut )) = (Dϕ)(Φut )DξΦut = (Dϕ)(Φut )DhξΦut + (Dϕ)(Φut )ρt
= Dhξ(ϕ(Φut )) + (Dϕ)(Φut )ρt .

(5.10)

Taking expectations of both sides and applying the Malliavin integration by parts the
first term on the right-hand side produces

DξPtϕ(u) = EDξ(ϕ(Φut )) = Eϕ(Φut )
∫ t

0

hξs · dW (s) + E(Dϕ)(Φut )ρt

which in turn, after application of the Cauchy-Schwartz inequality twice, yields

‖DPtϕ(u)‖ ≤ C(t)
√

(Ptϕ2)(u) + Γ(t)
√

(Pt‖Dϕ‖2)(u) (5.11)

with C(t) =
√

E|
∫ t

0
hξs · dW (s)|2 and Γ(t) =

√
E|ρt|2. Observe that provided that

lim sup
n∈N

C(n) <∞ and lim sup
n∈N

Γ(n)γ−n <∞ (5.12)

for some γ ∈ (0, 1) we will have proved Theorem 5.5. Choosing a mapping (ξ,W ) 7→
hξ(W ) so that these two conditions hold is the topic of the next four sections.

5.3 Choosing a variation hξth
ξ
th
ξ
t

As discussed in [HM06] and at length in [Mat08], if one looks for the variation hξ such
that (5.7) holds and

∫ t
0
|hξs|2ds is minimized, then the answer is hξs = (A∗tM−1

t Jtξ)(s)
which by the observation in (4.5) is simply hξs = G∗Ks,tM−1

t Jtξ. While this is not
quite the correct optimisation problem to solve since its solution hξ is not adapted to
W and hence E|

∫ t
0
hξs · dW (s)|2 6=

∫ t
0

E|us|2ds, it is in general a good enough choice.
A bigger problem is that the space on whichMt can be inverted is far from evident.

If the range of G was dense in H (which requires infinitely many driving Wiener pro-
cesses), then there is some chance that Range(Jt) ⊂ Range(Mt) and the above formula
for ht could be used. This is in fact the case where the Bismut-Elworthy-Li formula is
often used and which might be refereed to as “truly elliptic.” It this case the system is
in fact strong Feller. We are precisely interested in the case when only a finite number
of directions are forced (or the variance decays so fast that this is effectively true). One
of the fundamental ideas used in this article is that we need only effective control of the
system on a finite dimensional subspace since the dynamic pathwise control embodied
in Assumption B.4 can control the remaining degrees of freedom.

While Theorem 6.7 of the next section gives conditions that ensure that Mt is
almost surely non-degenerate, it does not give much insight into the structure of the
range since it only deals with finite dimensional projections. However, Assumption B.1
ensures that it is unlikely the eigenvectors with sizable projection in ΠH have small
eigenvalues. As long as this is true, the “regularised inverse” (Mt + β)−1, which
always exists sinceMt is positive definite, will be a “good inverse” forMt, at least
on ΠH. This suggests that we make the choice hξs = G∗Ks,t(Mt + β)−1Jtξ for some
very small β > 0. Observe that

Dξut −Dhξut = Jtξ −Mt(Mt + β)−1Jtξ = β(Mt + β)−1Jtξ , (5.13)

which will be expected to be small as long as Jtξ has small projection (relative to the
size of β) in Π⊥H. But in any case, the norm of the right hand side in (5.13) will never
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exceed the norm of Jtξ, so that for small values of β, ‖Dξut − Dhξut‖ is expected to
behave like ‖Π⊥Jtξ‖.

Assumption B.4 precisely states that if one projects the Jacobian onto Π⊥H, then
the system behaves as if it was “strongly dissipative” as in Section 5.1.1. All together,
this motivates alternating between choosing hξ = A∗n,n+1(Mn,n+1 + βn)−1Jn,n+1ρn
for even n and hξ ≡ 0 on [n, n+ 1] for odd n.

Since we will split time into intervals of length one, we introduce the following
notations:

Jn = Jn,n+1 , An = An,n+1 , Mn =Mn,n+1 .

We then define the map (ξ,W ) 7→ hξ(W ) recursively by

hξs =

{
(A∗2n(β2n +M2n)−1Jtρ2n)(s) for s ∈ [2n, 2n+ 1) and n ∈ N ,
0 for s ∈ [2n− 1, 2n) and n ∈ N .

(5.14)

Here, as before, ρ0 = ξ, ρt = J0,tξ −A0,th
ξ
s = Dξut −Dhξut, and βn is a sequence

of positive random numbers measurable with respect to Fn which will be chosen later.
Observe that these definitions are not circular since the construction of hξs for s ∈

[n, n + 1) only requires the knowledge of ρn, which in turn depends only on hξs for
s ∈ [0, n). The remainder of this section is devoted to showing that this particular
choice of hξ is “good” in the sense that it allows to satisfy (5.12). We are going to
assume throughout this section that Assumptions A.1 and B.1-B.4 hold, so that we are
in the setting of Theorem 5.5, and that hξ is defined as in (5.14).

5.4 Preliminary bounds and definitions
We start by a stating a few straightforward consequences of Assumption B.2:

Proposition 5.11 For any α ≤ 1, one has the bound

E exp(αV (u1)) ≤ exp(αη′V (u0) + αCL) .

Furthermore, for η > 0 and p > 0 such that ηp ≤ 1, one has

E exp(ηpV (un)) ≤ exp(pη(η′)nV (u0) + pκCL) .

Finally, setting κ = η/(1− η′) as before, one has the bound

E exp
(
ηp

n∑
k=0

V (uk)
)
≤ exp(pκV (u0) + pκCLn) ,

provided that κp ≤ 1.

Proof. The first bound follows immediately from Jensen’s inequality. The second and
third inequalities are shown by rewriting the estimate from Assumption B.2 as

E( exp(ηpV (un))|Fn−1) ≤ exp (ηpη′V (un−1) + ηpCL) ,

and iterating it.

Similarly, we obtain a bound on the Jacobian and on the Malliavin derivative An
of the solution flow between times n and n+ 1:
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Proposition 5.12 For any p ∈ [0, p̄], one has

sup
n≤s<t≤n+1

E‖Js,t‖p ≤ exp(p(η′)nηV (u0) + pCJ + pκCL) (5.15)

E‖An‖p ≤ ‖G‖p exp(pη(η′)nV (u0) + pκCL + pCJ ) . (5.16)

Furthermore, (5.15) also holds for J (2)
s,t with CJ replaced by C (2)

J .

Proof. We only need to show the bound for p = p̄, since lower values follow again from
Jensen’s inequality. The bound (5.15) is an immediate consequence of Assumption B.2
and Proposition 5.11. The second bound follows by writing

‖Anh‖p =
∥∥∥∫ n+1

n

Jr,n+1Ghrdr
∥∥∥p

≤ ‖G‖p
(∫ n+1

n

‖Jr,n+1‖2dr
) p

2
(∫ n+1

n

|hr|2dr
) p

2

≤ ‖G‖p
(∫ n+1

n

‖Jr,n+1‖pdr
)
|||h|||pn ,

and then applying the first bound.

In addition to these first Malliavin derivatives, we will need the control of the deriva-
tive of various objects involving the Malliavin derivative. The following lemma gives
control over two objects related to the second Malliavin derivative:

Lemma 5.13 For all p ∈ [0, p̄/2], one has the bounds

sup
s,r∈[n,n+1]

E‖DisJr,n+1‖p ≤ exp(2pη(η′)nV (u0) + 2pκCL + pCJ + pC (2)
J ) ,

sup
s∈[n,n+1]

E‖DisAn‖p ≤ |||G|||p exp(2pη(η′)nV (u0) + 2pκCL + pCJ + pC (2)
J ) .

Proof. For this, we note that by (4.9) one has the identities

DisJr,n+1ξ =

{
J (2)
s,n+1(Jr,sξ, gi) for r ≤ s,

J (2)
r,n+1(Js,rgi, ξ) for s ≤ r,

DisAnv =

∫ n+1

n

DisJr,n+1Gvr dr .

Hence if p ∈ [0, p̄/2] (which by the way also ensures that 2pκ < 1) it follows from
Proposition 5.12 that

E‖DisJr,n+1‖p ≤ (E‖J (2)
s,n+1‖2p E‖Jr,s‖2p)

1
2 ≤ E exp(2pηV (un) + pCJ + pC (2)

J )

≤ exp(2pη(η′)nV (u0) + 2pκCL + pCJ + pC (2)
J )

for r ≤ s and similarly for s ≤ r. Since, for p ≥ 1, we can write

E‖DisAn‖p ≤ ‖G‖p
∫ n+1

n

E‖DisJr,n+1‖pdr ,

the second estimate then follows from the first one.
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5.5 Controlling the error term ρtρtρt

The purpose of this section is to show that the “error term” ρt = Dξut − Dhξut goes
the zero as t→∞, provided that the “control” hξ is chosen as explained in Section 5.3.
We begin by observing that for even integer times, ρn is given recursively by

ρ2n+2 = J2n+1ρ2n+1 = J2n+1Rβ2n

2n J2nρ2n , (5.17)

whereRβk is the operator

Rβk
def
= 1−Mk(β +Mk)−1 = β(β +Mk)−1 .

Observe thatRβk measures the error betweenMk(β +Mk)−1 and the identity, which
we will see is small for β very small. This recursion is of the form ρ2n+2 = Ξ2n+2ρ2n,
with the (random) operator Ξ2n+2 : H → H defined by Ξ2n+2 = J2n+1Rβ2n

2n J2n.
Notice that Ξ2n is F2n-measurable and that Ξk is defined only for even integers k.
Define the n-fold product of the Ξ2k by

Ξ(2n) =
n∏
k=1

Ξ2k ,

so that ρ2n = Ξ(2n)ξ.
It is our aim to show that it is possible under the assumptions of Section 5 to choose

the sequence βn in an adapted way such that for a sufficiently small constant η̄ and
p ∈ [0, p̄/2] one has

E‖ρ2n‖p ≤ E(‖Ξ(2n)‖p)‖ρ0‖p ≤ exp(pη̄V (u0)− pnκ̃)‖ρ0‖p . (5.18)

for some κ̃ > 0. This will give the needed control over the last term in (5.11).
By Assumption B.1, we have a bound on the Malliavin covariance matrix of the

form

P
(

inf
‖Πϕ‖≥α‖ϕ‖

〈ϕ,Mkϕ〉 ≤ ε‖ϕ‖2
∣∣∣Fk) ≤ C(α, p)Up(uk) εp . (5.19)

Here, by the Markov property, the quantities ε and α do not necessarily need to be
constant, but are allowed to be Fk-measurable random variables.

In order to obtain (5.18), the idea is to decompose Ξ2n+2 as

Ξ2n+2 = J2n+1Rβ2n

2n J2n = (J2n+1Π⊥)Rβ2n

2n J2n + J2n+1(ΠRβ2n

2n )J2n

def
= I2n+2,1 + I2n+2,2 .

(5.20)

The crux of the matter is controlling the term ΠRβ2n

2n since J2n+1Π⊥ is controlled by
Assumption B.4 and we know that ‖Rβ2n

2n ‖ ≤ 1. To understand and control the I2n+2,2

term, we explore the properties of a general operator of the form ofRβ2n.

Lemma 5.14 Let Π be an orthogonal projection on H and M be a self-adjoint, posi-
tive linear operator onH satisfying for some γ > 0 and δ ∈ (0, 1]

inf
ξ∈Λδ

〈Mξ, ξ〉
‖ξ‖2

≥ γ , (5.21)

where Λδ = {ξ : ‖Πξ‖ ≥ δ‖ξ‖}. Then, definingR = 1−M (β+M )−1 = β(β+M )−1

for some β > 0, one has ‖ΠR‖ ≤ δ ∨
√
β/γ.
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Proof. Since ‖R‖ ≤ 1, for Rξ ∈ Λcδ one has

‖ΠRξ‖
‖ξ‖

≤ ‖ΠRξ‖
‖Rξ‖

≤ δ .

Now for Rξ ∈ Λδ , we have by assumption (5.21)

γ
‖ΠRξ‖2

‖ξ‖2
≤ γ ‖Rξ‖

2

‖ξ‖2
≤ 〈MRξ,Rξ〉

‖ξ‖2
≤ 〈(M + β)Rξ,Rξ〉

‖ξ‖2
= β
〈ξ,Rξ〉
‖ξ‖2

≤ β .

Combining both estimates gives the required bound.

This result can be applied almost directly to our setting in the following way:

Corollary 5.15 Let M (ω) be a random operator satisfying the conditions of Lemma
5.14 almost surely for some random variable γ. If we choose β such that, for some
(deterministic) δ ∈ (0, 1) , p ≥ 1 and C > 0, one has the bound P(β ≥ δ2γ) ≤ Cδp,
then E‖ΠR‖p ≤ (1 + C)δp.

In particular, for any δ ∈ (0, 1), setting

βk =
δ3

U (uk)C(δ, p̄)
1
p̄

, (5.22)

where C is the constant from (5.19), produces the bound E(‖ΠRβ2n

2n ‖p|F2n) ≤ 2δp,
valid for every p ≤ p̄.

Proof. To see the first part define Ω0 = {ω : β(ω) ≤ δ2γ(ω)}. It the follows from
Lemma 5.14, the fact that ‖ΠR‖ ≤ 1 and the assumption P(Ωc0) ≤ Cδp, that

E‖ΠR‖p ≤ E
((

δ ∨

√
β

γ

)p
1Ω0 + 1Ωc0

)
≤ δp + P(Ωc0) ≤ (1 + C)δp , (5.23)

as required.
To obtain the second statement, it is sufficient to consider (5.19) with ε = β2n/δ

2,
so that one can take for γ the random variable equal to ε on the set for which the bound
(5.19) holds and 0 on its complement. It then follows from the choice (5.22) for β2n

that the assumption for the first part are satisfied with C = 1 and p = p̄, so that the
statement follows.

We now introduce a “compensator”

χ2n+2 = exp (ηV (u2n+1) + ηV (u2n)) ,

and, in analogy to before, we set χ(2n) =
∏n
k=1 χ2k. Proposition 5.11 implies that for

any p ∈ [0, p̄]

E(χ(2n))p ≤ exp(pκV (u0) + pκCL2n) , (5.24)

where κ = η/(1− η′). Note that Assumption B.3 made sure that η is sufficiently small
so that κp̄ ≤ 1. With these preliminaries complete, we now return to the analysis of
(5.20).
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Lemma 5.16 For any ε > 0 and p ∈ [0, p̄/2], there exists a δ > 0 sufficiently small so
that if one chooses βn as in Corollary 5.15 and η such that κp̄ ≤ 1, one has

E(‖Ξ2n+2‖pχ−p2n+2|F2n) ≤ exp(pCJ − pCΠ + εp) .

Proof. Since for every ε > 0 there exists a constantCε such that |x+y|p ≤ epε/2|x|p+
Cpε |y|p, recalling the definition of I2n+2,1 and I2n+2,2 from (5.20) we have that

E(‖Ξ2n+2‖pχ−p2n+2|F2n) ≤ eεp/2E(‖I2n+2,1‖pχ−p2n+2|F2n)

+ CpεE(‖I2n+2,2‖pχ−p2n+2|F2n) .

We begin with the first term since it is the most straightforward one. Using the fact
that ‖Rβ2n

2n ‖ ≤ 1 and that p̄η < 1 − η′ by the assumption on η, we obtain from
Assumptions B.2 and B.3 that

E(‖I2n+2,1‖pχ−p2n+2|F2n) ≤ exp(−pηV (u2n))E
(

E(‖J2n+1Π⊥‖p|F2n+1)

× exp(−pηV (u2n+1))‖J2n‖p
∣∣∣F2n

)
≤ exp(pCJ − pCΠ) .

Turning to the second term, we obtain for any δ ∈ (0, 1) the bound

E(‖I2n+2,2‖pχ−p2n+2|F2n) ≤ exp(−pηV (u2n))
√

E(‖ΠRβ2n

2n ‖2p|F2n)

×
√

E
(

E(‖J2n+1‖2p|F2n+1) exp(−2pηV (u2n+1))‖J2n‖2p
∣∣∣F2n

)
≤ exp(p2CJ )δp

√
2 ,

provided that we choose βn as in Corollary 5.15. Choosing now δ sufficiently small (it
suffices to choose it such that δp ≤ εp

2
√

2
C−pε e−pCJ−pCΠ for every p ≤ p̄/2) we obtain

the desired bound.

Combining Lemma 5.16 with (5.24), we obtain the needed result which ensures
that the “error term” ρt from (5.11) goes to zero.

Lemma 5.17 For any p ∈ [0, p̄/4] and κ̃ ∈ [0, CΠ−CJ −2κCL) there exists a choice
of the βn of the form (5.22) so that

E‖Ξ(2n+2)‖p ≤ exp (pκV (u0)− pκ̃n) ,

for all u0 ∈ H.

Proof. Since

E‖Ξ(2n+2)‖p ≤
(

E‖Ξ(2n+2)‖2p(χ(2n+2))−2p
) 1

2
(

E(χ(2n+2))2p
) 1

2

,

the result follows by combining Lemma 5.16 with (5.24).
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5.6 Controlling the size of the variation hξth
ξ
th
ξ
t

We now turn to controlling the size of

E
∣∣∣ ∫ n

0

〈hξs, dWs〉
∣∣∣2 , (5.25)

uniformly as n → ∞. We assume throughout this section that hξt was constructed as
in Section 5.3 with βn as in (5.22).

Since our choice of hξs is not adapted to the Ws, this does not follow from a simple
application of Itô’s isometry. However, the situation is not as bad as it could be, since
the control is “block adapted.” By this we mean that hn is adapted to Fn for every
integer value of n. For non-integer values t ∈ (n, n + 1], ht has no reason to be Ft-
measurable in general, but it is nevertheless Fn+1-measurable. The stochastic integral
in (5.25) is accordingly not an Itô integral, but a Skorokhod integral. Hence to estimate
(5.25) we must use its generalization given in (4.7) which produces

E
∣∣∣ ∫ 2n

0

〈hξs, dWs〉
∣∣∣2 ≤ E|||hξ|||2[0,2n] +

n−1∑
k=0

∫ 2k+1

2k

∫ 2k+1

2k

E‖Dsht‖2HS ds dt (5.26)

where |||f |||2I =
∫
I
|f (s)|2 ds and ‖M‖HS denotes the Hilbert-Schmidt norm on linear

operators from Rd to Rd. We see the importance of the “block adapted” structure of
hs. If not for this structure, the integrand appearing in the second term above would
need to decay both in s and t to be finite.

The main result of this section is

Proposition 5.18 Let Assumptions B.1–B.4 hold. Then, if one chooses βn as in (5.22),
there exists a constant C > 0 such that

lim
n→∞

E
∣∣∣ ∫ n

0

〈hξs, dWs〉
∣∣∣2 ≤ C exp((8η + 2κ)V (u0))U2(u0)‖ξ‖2 .

Proof of Proposition 5.18. In the interest of brevity we will set M̃n =Mn + βn and
In = [n, n+ 1]. We will also write |||h|||I for the norm on L2(I,Rd) viewed as a subset
of CM′ and we will use ‖·‖ and ||| · |||I to denote respectively the induced operator norm
on linear maps from H to H and CM′ to H. Hopefully without too much confusion,
we will also use ||| · |||I to denote the induced operator norm on linear maps from H to
CM′. In all cases, we will further abbreviate |||h|||In to |||h|||n.

Observe now that the definitions of M̃n and An imply the following almost sure
bounds:

|||M̃−1/2
n An|||n ≤ 1 , |||A∗nM̃−1/2

n |||n ≤ 1 , ‖M̃−1/2
n ‖ ≤ β−1/2

n . (5.27)

We start by bounding the first term on the right hand-side of (5.26). Observe that

|||h|||2[0,2n] =

n∑
k=0

|||h|||22k . (5.28)

Using the bound on A∗kM̃
−1
k from (5.27), we obtain

|||h|||2k = |||A∗2kM̃−1
2k J2kρ2k|||2k ≤ β−1/2

2k ‖J2k‖‖ρ2k‖ .
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By our assumption that 10/p̄+ 2/q̄ ≤ 1 we can find 1/q+ 1/r+ 1/p = 1 with q ≤ q̄,
2r ≤ p̄ and 2p ≤ p̄. By the Hölder inequality we thus have

E|||h|||22k ≤ (Eβ−q2k )
1/q

(E‖J2k‖2r)1/r
(E‖ρ2k‖2p)1/p

.

From Proposition 5.12, Assumption B.1 and Lemma 5.17, we obtain the existence of a
positive constant C (depending only on the choice made for κ̃ and on the bounds given
by our standing assumptions) such that one has the bounds

(E‖J2k‖2r)1/r ≤ exp(2η(η′)2kV (u0) + 2CJ + 2κCL) ,

(Eβ−q2k )
1/q ≤ CU (u0) ,

(E‖ρ2k‖2p)1/p ≤ exp(2κV (u0)− 2κ̃k)‖ξ‖2 .

(5.29)

combining these bounds and summing over k yields

E|||h|||2[0,2n] ≤ CU (u0) exp(2(η + κ)V (u0))‖ξ‖2 , (5.30)

uniformly in n ≥ 0.
We now turn to bound the second term on the right hand side of (5.26). Since the

columns of the matrix representation of the integrand are justDis, the ith component of
the Malliavin derivative, we have∫ 2k+1

2k

∫ 2k+1

2k

‖Dsht‖2HS ds dt =

m∑
i=1

∫ 2k+1

2k

|||Dish|||22k ds . (5.31)

From the definition of ht, Lemma 5.13, the relation M̃2k = A2kA∗2k + β2k, and the
fact that both ρ2k and β2k are F2k-measurable, we have that for fixed s ∈ I2k, Dish is
an element of L2(I2k,R) ⊂ CM′ with:

Dish = (DisA∗2k)M̃−1
2k J2kρ2k +A∗2kM̃−1

2k (DisJ2k)ρ2k (5.32)

−A∗2kM̃−1
2k ((DisA2k)A∗2k +A2k(DisA∗2k))M̃−1

2k J2kρ2k .

For brevity we suppress the subscripts k on the operators and norms for a moment. It
then follows from (5.27) that one has the almost sure bounds

|||M̃−1A||| ≤ ‖M̃−1/2‖|||M̃−1/2A||| ≤ β−1/2 ,

|||A∗M̃−1||| ≤ |||A∗M̃−1/2|||‖M̃−1/2‖ ≤ β−1/2 ,

|||(DisA∗)M̃−1J ||| ≤ |||DisA∗|||‖M̃−1‖‖J‖ ≤ β−1|||DisA|||‖J‖ ,

|||A∗M̃−1(DisJ)||| ≤ |||A∗M̃−1|||‖DisJ‖ ≤ β−1/2‖DisJ‖ .

In particular, this yields the bounds

|||A∗M̃−1(DisA)A∗M̃−1J ||| ≤ |||A∗M̃−1|||2|||DisA|||‖J‖ ≤ β−1|||DisA|||‖‖J‖
|||A∗M̃−1A(DisA∗)M̃−1J ||| ≤ |||A∗M̃−1/2|||2|||DisA∗|||‖M̃−1‖‖J‖

≤ β−1|||DisA|||‖J‖ .

Applying all of these estimates to (5.32) we obtain the bound

|||Dish|||2k ≤ 3β−1
2k |||D

i
sA2k|||2k‖J2k‖‖ρ2k‖+ β

−1/2
2k ‖DisJ2k‖‖ρ2k‖ .
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The assumption that 10/p̄ + 2/q̄ ≤ 1 ensures that we can find q ≤ q̄/2, r ≤ p̄/2 and
p ≤ p̄/4 with 1/r + 2/p + 1/q = 1. Applying Hölder’s inequality to the preceding
products yields:

E|||Dish|||22k ≤18(Eβ−2q
2k )

1/q
(E|||DisA2k|||2p2kE‖ρ2k‖2p)1/p

(E‖J2k‖2r)1/r

+ 2(Eβ−q2k )
1/q

(E‖DisJ2k‖2pE‖ρ2k‖2p)1/p
.

We now use previous estimates to control each term. From Lemma 5.13 and Proposi-
tion 5.12, we have the bounds

(E‖DisJ2k‖2p)1/p ≤ exp(4η(η′)2kV (u0) + 4κCL + 2CJ + 2C (2)
J ) ,

(E|||DisA2k|||2p2k)
1/p ≤ ‖G‖2 exp(4η(η′)2kV (u0) + 4κCL + 2CJ + 2C (2)

J ) .

Recall furthermore the bounds on ρ2k and J2k already mentioned in (5.29). Lastly,
from Assumption B.1 we have that, similarly as before, there exists a positive constant
C such that

(Eβ−q2k )
1/q ≤ (Eβ−2q

2k )
1/q ≤ CU2(u0) .

Combining all of these estimates produces

m∑
i=1

∫ 2k+1

2k

|||Dish|||22k ds ≤ C exp((8η + 2κ)V (u0))U2(u0) ,

for some different constant C depending only on CJ , C
(2)
J , CL, η, κ, κ̃ and the choice

of δ in (5.22). Combining this estimate with (5.30) and (5.26) concludes the proof.

6 Spectral properties of the Malliavin matrix

The results in this section build on the ideas and techniques from [MP06] and [BM07].
In the first, the specific case of the 2D-Navier Stokes equation was studied using sim-
ilar ideas. The time reversed representation of the Malliavin matrix used there is also
the basis of our analysis here (see also [Oco88]). In the context for the 2D-Navier
Stokes equations, a result analogous to Theorem 6.7 was proven. As here, one of the
key results needed is a connection between the typical size of a non-adapted Wiener
polynomial and the typical size of its coefficients. In [MP06], since the non-linearity
was quadratic, only Wiener polynomials of degree one were considered and the cal-
culations and formulation were made a coordinate dependent fashion. In [BM07], the
calculations were reformulated in a basis free fashion which both made possible the
extension to more complicated non-linearities and the inclusion of forcing which was
not diagonal in the chosen basis. Furthermore in [BM07], a result close to Theorem 6.7
was claimed. Unfortunately, the auxiliary Lemma 9.12 in that article contains a mis-
take, which left the proof of this result incomplete.

That being said, the techniques and presentation used in this and the next section
build on and refine those from [BM07]. One technical, but important, distinction be-
tween Theorem 6.7 and the preceding versions is that Theorem 6.7 allows for rougher
test functions. This is accomplished by allowing Kt,T to have a singularity in a certain
interpolation norm as t→ T . See equation (6.3a) for the precise form. This extension
is important in correcting an error in [HM06] which requires control of the Malliavin
matrix of a type given by Theorem 6.7, that is with test functions rougher than those



SPECTRAL PROPERTIES OF THE MALLIAVIN MATRIX 39

allowed in [MP06]. Indeed, the second inequality in equation (4.25) of [HM06] is not
justified, since the operator M0 is only selfadjoint in L2 and not in H1. Theorem 6.7
rectifies the situation by dropping the requirement to work with H1 completely.

6.1 Bounds on the dynamic
As the previous sections have shown, it is sufficient to have control on the moments
of u and J in H to control their moments in many stronger norms. This motivates the
next assumption. For the entirety of this section we fix a T0 > 0.

Assumption C.1 There exists a continuous function Ψ0 : H → [1,∞) such that, for
every T ∈ (0, T0] and every p ≥ 1 there exists a constant C such that

E sup
T≤t≤2T

‖ut‖p ≤ CΨp
0(u0) ,

E sup
T≤s<t≤2T

‖Js,t‖p ≤ CΨp
0(u0) ,

for every u0 ∈ H. Here, ‖J‖ denotes the operator norm of J fromH toH.

Under this assumption, we immediately obtain control over the adjoint Ks,t.

Proposition 6.1 Under Assumption C.1 for every T ∈ (0, T0] and every p ≥ 1 there
exists a constant C such that

E sup
T≤s<t≤2T

‖Ks,t‖p ≤ CΨp
0(u0) ,

for every u0 ∈ H.

Proof. By Proposition 3.10 we know that Ks,t is the adjoint of Js,t in H. Combined
with Assumption C.1 this implies the result.

In the remainder of this section, we will study the solution to (3.1) away from t = 0 and
up to some terminal time T which we fix from now on. We also introduce the interval
Iδ = [T2 , T − δ] for some δ ∈ (0, T4 ] to be determined later. Given ut a solution to
(3.1), we also define a process vt by vt = ut −GW (t), which is more regular in time.
Using Assumption C.1 and the a priori estimates from the previous sections, we obtain:

Proposition 6.2 Let Assumption C.1 hold and Ψ0 be the function introduced there.
For any fixed γ < γ? and β < β? there exists a positive q so that if Ψ = Ψq

0 then the
solutions to (3.1) satisfy the following bounds for every initial condition u0 ∈ H:

E sup
t∈Iδ
‖ut‖pγ+1 ≤ CpΨp(u0) , (6.1a)

E sup
t∈Iδ
‖∂tvt‖pγ ≤ CpΨp(u0) . (6.1b)

Furthermore, its linearization J0,t is bounded by

E sup
t∈Iδ

sup
‖ϕ‖≤1

‖J0,tϕ‖pγ+1 ≤ CpΨp(u0) , (6.2a)

E sup
t∈Iδ

sup
‖ϕ‖≤1

‖∂tJ0,tϕ‖pγ ≤ CpΨp(u0) . (6.2b)
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Finally, the adjoint Kt,T to the linearization satisfies the bounds

E sup
t∈Iδ

sup
‖ϕ‖≤1

‖Kt,Tϕ‖pβ+1 ≤
CpΨ

p(u0)
δp̄βp

, (6.3a)

E sup
t∈Iδ

sup
‖ϕ‖≤1

‖∂tKt,Tϕ‖pβ ≤
CpΨ

p(u0)
δp̄βp

, (6.3b)

where p̄β is as in Proposition 3.9. In all these bounds, Cp is a constant depending only
on p and on the details of the equation (3.1).

Remark 6.3 One can assume without loss of generality, and we will do so from now
on, that the exponent q defining Ψ is greater or equal to n, the degree of the nonlinearity.
This will be useful in the proof of Lemma 6.16 below.

Proof. It follows immediately from Assumption C.1 that

E sup
t∈[T/4,T ]

‖ut‖p ≤ CΨp
0(u0) .

Combining this with Proposition 3.6 yields the first of the desired bounds with q = pγ .
Here, Ψ0 is as in Assumption C.1 and pγ is as in Proposition 3.6.

Turning to the bound on ∂tvt, observe that v satisfies the random PDE

∂tvt = F (vt +GW (t)) = F (ut) , v0 = u0 .

It follows at once from Proposition 3.6 and Assumption A.1.2 that the quoted esti-
mate holds with q = pγ+1. More precisely, it follows from Proposition 3.6 that
ut ∈ Hα for every α < γ? + 1. Therefore, Lut ∈ Hγ for γ < γ?. Furthermore,
N ∈ Poly(Hγ+1,Hγ) by Assumption A.1.2, so that N (ut) ∈ Hγ as well. The claim
then follows from the a priori bounds obtained in Proposition 3.6.

Concerning the bound (6.2a) on the linearization J0,t, Proposition 3.7 combined
with Assumption C.1 proves the result with q = q̄γ + 1. The line of reasoning used
to bound ‖∂tvt‖γ also controls ‖∂tJs,t‖γ for s < t and s, t ∈ Iδ , since ∂tJs,t =
−LJs,t +DN (ut)Js,t.

Since Proposition 6.1 give an completely analogous bound for Ks,t inH as for Js,t
the results on K follow from the a priori bounds in Proposition 3.9.

6.2 A Hörmander-like theorem in infinite dimensions
In this section, we are going to formulate a lower bound on the Malliavin covariance
matrixMt under a condition that is very strongly reminiscent of the bracket condition
in Hörmanders celebrated “sums of squares” theorem [Hör85, Hör67]. The proof of
the result presented in this section will be postponed until Section 6.3 and constitutes
the main technical result of this work.

Throughout all of this section and Section 6.3, we are going to make use of the
bounds outlined in Proposition 6.2. We therefore now fix once and for all some choice
of constants

γ ∈ [−a, γ?) and β ∈ [−a, β?) satisfying γ + β ≥ −1 . (6.4)

From now on, we will only ever use Proposition 6.2 with this fixed choice for γ and β.
This is purely a convenience for expositional clarity since we will need these bounds
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only finitely many times. As a side remark, note that one should think of these constants
as being arbitrarily close to γ? and β? respectively.

With γ and β fixed as in (6.4), we introduce the set

Poly(γ, β) def
= Poly(Hγ ,H−β−1) ∩ Poly(Hγ+1,H−β) (6.5)

for notational convenience. (For integer m, Polym(γ, β) is defined analogously.) A
polynomial Q ∈ Poly(γ, β) is said to be admissible if

[Qα, Fσ] ∈ Poly(γ, β) ,

for every pair of multi-indices α, σ. Here, Qα and Fσ are defined as in (3.4) and F is
the drift term of the SPDE (3.1) defined in (3.2).

This definition allows us to define a family of increasing subsets Ai ⊂ Poly(γ, β)
by the following recursion:

A1 = {gk , k = 1, . . . , d} ⊂ Hγ?+1 ≈ Poly0(Hγ?+1) ⊂ Poly(γ, β) ,
Ai+1 = Ai ∪ {Qα, [Fσ, Qα] : Q ∈ Ai, Q admissible, and α, σ multi-indices} .

Remark 6.4 Recall from (3.5) that Qα is proportional to the iterated “Lie bracket” of
Qwith gα1

, gα2
and so forth. Similarly, [Fσ, Qα] is the Lie bracket between two differ-

ent iterated Lie brackets. As such, except for the issue of admissibility, the set of brack-
ets considered here is exactly the same as in the traditional statement of Hörmander’s
theorem, only the order in which they appear is slightly different.

To each AN we associate a positive symmetric quadratic form-valued function QN by

〈ϕ,QN (u)ϕ〉 =
∑
Q∈AN

〈ϕ,Q(u)〉2 .

Lastly for α ∈ (0, 1), and for a given orthogonal projection Π: H → H, we define
Sα ⊂ H by

Sα = {ϕ ∈ H \ {0} : ‖Πϕ‖ ≥ α‖ϕ‖} . (6.6)

With this notation, we make the following non-degeneracy assumption:

Assumption C.2 For every α > 0, there exists N > 0 and a function Λα : H →
[0,∞) such that

inf
ϕ∈Sα

〈ϕ,QN (u)ϕ〉
‖Πϕ‖2

≥ Λ2
α(u) ,

for every u ∈ Ha. Furthermore, for every p ≥ 1, t > 0 and every α ∈ (0, 1), there
exists C such that E Λ−pα (ut) ≤ CΨp(u0) for every initial condition u0 ∈ H.

Remark 6.5 Assumption C.2 is in some sense weaker than the usual non-degeneracy
condition of Hörmander’s theorem, since it only requires QN to be sufficiently non-
degenerate on the range of Π. In particular, if Π = 0, then Assumption C.2 is void and
always holds with Λα = 1, say. This is the reason why, by choosing for Π a projector
onto some finite-dimensional subspace of H, one can expect Assumption C.2 to hold
for a finite value of N , even in our situation where AN only contains finitely many
elements.
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Remark 6.6 As will be seen in Section 8, it is often possible to choose Λα to be a
constant, so that the second part of Assumption C.2 is automatically satisfied.

When Assumption C.2 holds, we have the following result whose proof is given in
Section 6.3.

Theorem 6.7 Consider an SPDE of the type (3.1) such that Assumptions A.1 and C.1
hold. Let furthermore the Malliavin matrixMt be defined as in (4.10) and Sα as in
(6.6). Let Π be a finite rank orthogonal projection satisfying Assumption C.2. Then,
there exists θ > 0 such that, for every α ∈ (0, 1), every p ≥ 1 and every t > 0 there
exists a constant C such that the bound

P
(

inf
ϕ∈Sα

〈ϕ,Mtϕ〉
‖ϕ‖2

≤ ε
)
≤ CΨθp(u0)εp ,

holds for every u0 ∈ H and every ε ≤ 1.

Remark 6.8 If Π is a finite rank orthogonal projection satisfying Assumption C.2 then
Theorem 6.7 provides the critically ingredient to prove the smoothness of the density
of (P∗t δx)Π−1 with respect to Lebesgue measure. Though [BM07] contains a few
unfortunate errors, it still provides the framework needed to deduce smoothness of
these densities from Theorem 6.7. In particular, one needs to prove that Πut is infinitely
Malliavin differentiable. Section 5.1 of [BM07] shows how to accomplish this in a
setting close to ours, see also [MP06].

6.3 Proof of Theorem 6.7
While the aim of this section is to prove Theorem 6.7, we begin with some preliminary
definitions which will simplify its presentation. Many of the arguments used will rely
on the construction of “exceptional sets” of small probability outside of which certain
intuitive implications hold. This justifies the introduction of the following notational
shortcut:

Definition 6.9 Given a collection H = {Hε}ε≤1 of subsets of the ambient probability
space Ω, we will say that “H is a family of negligible events” if, for every p ≥ 1 there
exists a constant Cp such that P(Hε) ≤ Cpεp for every ε ≤ 1.

Given such a family H and a statement Φε depending on a parameter ε > 0, we
will say that “Φε holds modulo H” if, for every ε ≤ 1, the statement Φε holds on the
complement of Hε.

We will say that the family H is “universal” if it does not depend on the problem
at hand. Otherwise, we will indicate which parameters it depends on.

Given two families H1 and H2 of negligible sets, we write H = H1 ∪ H2 as a
shortcut for the sentence “Hε = Hε

1 ∪Hε
2 for every ε ≤ 1.” Let us state the following

useful fact, the proof of which is immediate:

Lemma 6.10 Let Hε
n be a collection of events with n ∈ {1, . . . , Cε−κ} for some

arbitrary but fixed constants C and κ and assume that P(Hε
k) = P(Hε

` ) for any pair
(k, `). Then, if the family {Hε

1} is negligible, the family {Hε} defined byHε =
⋃
nH

ε
n

is also negligible.
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Remark 6.11 The same statement also holds of course if the equality between proba-
bilities of events is replaced by two-sided bounds with multiplicative constants that do
not depend on k, `, and ε.

An important particular case is when the family H depends on the initial condition
u0 to (3.1). We will then say thatH is “Ψ-controlled” if the constantCp can be bounded
by C̃pΨp(u0), where C̃p is independent of u0.

In this language, the conclusion of Theorem 6.7 can be restated as saying that there
exists θ > 0 such that, for every α > 0, the event

inf
ϕ∈Sα

〈ϕ,MTϕ〉 ≤ ε‖ϕ‖2

is a Ψθ-controlled family of negligible events. Recall that the terminal time T was
fixed once and for all and that the function Ψ was defined in Proposition 6.2. We
further restate this as an implication in the following theorem which is easily seen to
be equivalent to Theorem 6.7:

Theorem 6.12 Let Π be a finite rank orthogonal projection satisfying Assumption C.2.
Then, there exists θ > 0 such that for every α ∈ (0, 1), the implication

ϕ ∈ Sα =⇒ 〈ϕ,MTϕ〉 > ε‖ϕ‖2

holds modulo a Ψθ-controlled family of negligible events.

6.4 Basic structure and idea of proof of Theorem 6.12
We begin with an overly simplified version of the argument which neglects some tech-
nical difficulties. The basic idea of the proof is to argue that if 〈MTϕ,ϕ〉 is small
then 〈Qk(uT )ϕ,ϕ〉 must also be small (with high probability) for every k > 0. This
is proved inductively, beginning with the directions which are directly forced, namely
those belonging to A1. Assumption C.2 then guarantees in turn that ‖Πϕ‖ must be
small with high probability. On the other hand, since ϕ ∈ Sα, we know for a fact that
‖Πϕ‖ ≥ α‖ϕ‖ which is not small. Hence one of the highly improbable events must
have occurred.

This sketch of proof is essentially the same as that of Hörmander’s theorem in finite
dimensions, see [Mal78, KS84, KS85a, Nor86, Nua95]. Trying to adapt this argument
to the infinite-dimensional case, one is rapidly faced with two major hurdles. First,
processes of the form t 7→ 〈Jt,T g, ϕ〉 appearing in the definition ofMT are not adapted
to the filtration generated by the driving noise. In finite dimensions, this difficulty is
overcome by noting that

Mt = J0,tM̂tJ
∗
0,t , M̂t =

∫ t

0

J−1
0,sGG

∗(J∗0,s)
−1
ds ,

and then working with M̂t instead ofMt. ( M̂t is often called the reduced Malliavin
covariance matrix.) The processes t 7→ 〈J−1

0,t g, ϕ〉 appearing there are now perfectly
nice semimartingales and one can use Norris’ lemma [Nor86], which is a quantita-
tive version of the Doob-Meyer decomposition theorem, to show inductively that if
〈ϕ,MTϕ〉 is small, then t 7→ 〈J−1

0,tQ(ut), ϕ〉 must be small for every vector field
Q ∈ Ak. In our setting, unlike in some previous results for infinite-dimensional sys-
tems [BT05], the Jacobian J0,t is not invertible. This is a basic feature of dissipative
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PDEs with a smoothing linear term which is the dominating term on the right hand
side. Such dynamical systems only generate semi-flows as opposed to invertible flows.

Even worse, there appears to be no good theory characterising a large enough sub-
set belonging to its range. The only other situations to our knowledge where this has
been overcome previously are the linear case [Oco88], as well as the particular case of
the two-dimensional Navier-Stokes equations on the torus [MP06] and in [BM07] for
a setting close to ours. As in those settings, we do not attempt to define something like
the operator M̂t mentioned above but instead we work directly withMt, so that we
do not have Norris’ lemma at our disposal. It will be replaced by the result from Sec-
tion 7 on “Wiener polynomials.” This result states that if one considers a polynomial
where the variables are independent Wiener processes and the coefficients are arbitrary
(possibly non-adapted) Lipschitz continuous stochastic processes, then the polynomial
being small implies that with high probability each individual monomial is small. It
will be shown in this section how it is possible to exploit the polynomial structure of
our nonlinearity in order to replace Norris’ lemma by such a statement.

Another slightly less serious drawback of working in an infinite-dimensional setting
is that we encounter singularities at t = 0 and at t = T (for the operator Jt,T ). Recall
the definition of the time interval Iδ = [T2 , T − δ] from Section 3. We will work on
this interval which is strictly included in [0, T ] to avoid these singularities. There will
be a trade-off between larger values of δ that make it easy to avoid the singularity and
smaller values of δ that make it easier to infer bounds for 〈Qk(uT )ϕ,ϕ〉.

When dealing with non-adapted processes, it is typical to replace certain standard
arguments which hinge on adaptivity by arguments which use local time-regularity
properties instead. This was also the approach used in [MP06, BM07]. To this end we
introduce the following Hölder norms. For θ ∈ (0, 1], we define the Hölder norm for
functions f : Iδ → H by

|||f |||θ = sup
s,t∈Iδ

‖f (s)− f (t)‖
|t− s|θ

, (6.7)

and similarly if f is real-valued. (Note that even though we use the same notation as for
the norm in the Cameron-Martin space in the previous section, these have nothing to do
with each other. Since on the other hand the Cameron-Martin norm is never used in the
present section, we hope that this does not cause too much confusion.) We furthermore
set

|||f |||θ,γ = sup
s,t∈Iδ

‖f (s)− f (t)‖γ
|t− s|θ

,

where ‖ · ‖γ denotes the γth interpolation norm defined in Assumption A.1. Finally,
we are from now on going to assume that δ is a function of ε through a scaling relation
of the type

δ =
T

4
εr (6.8)

for some (very small) value of r to be determined later.

6.5 Some preliminary calculations
We begin with two preliminary calculations. The first translates a given growth of the
moments of a family of random variables into a statement saying that the variables are
“small,” modulo a negligible family of events. As such, it is essentially a translation of
Chebyshev’s inequality into our language. The second is an interpolation result which
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controls the supremum of a function’s derivative by the supremum of the function and
the size of some Hölder coefficient.

Lemma 6.13 Let δ be as in (6.8) with r > 0, let Ψ: H → [1,∞) be an arbitrary func-
tion, and let Xδ be a δ-dependent family of random variables such that there exists b ∈
R (b is allowed to be negative) such that, for every p ≥ 1, E|Xδ|p ≤ CpΨ

p(u0)δ−bp.
Then, for any q > br and any c > 0, the family of events{

|Xδ| >
ε−q

c

}
is Ψ

1
q−br -dominated negligible.

Proof. It follows from Chebychev’s inequality that

P
(
|Xδ| >

ε−q

c

)
≤ CpcpΨpδ−bpεqp = C̄`(Ψ

1
q−br )

`
ε` ,

where C̄` is equal to Cpcp with ` = p(q − br). Provided that q − br > 0, this holds for
every ` > 0 and the claim follows.

Lemma 6.14 Let f : [0, T ] → R be continuously differentiable and let α ∈ (0, 1].
Then, the bound

‖∂tf‖L∞ = |||f |||1 ≤ 4‖f‖L∞ max
{ 1

T
, ‖f‖−

1
1+α

L∞ |||∂tf |||
1

1+α
α

}
holds, where |||f |||α denotes the best α-Hölder constant for f .

Proof. Denote by x0 a point such that |∂tf (x0)| = ‖∂tf‖L∞ . It follows from the
definition of the α-Hölder constant ‖∂tf‖Cα that |∂tf (x)| ≥ 1

2‖∂tf‖L∞ for every x
such that |x − x0| ≤ (‖∂tf‖L∞/2‖∂tf‖Cα)

1/α. The claim then follows from the fact
that if f is continuously differentiable and |∂tf (x)| ≥ A over an interval I , then there
exists a point x1 in the interval such that |f (x1)| ≥ A|I|/2.

6.6 Transferring properties of ϕ back from the terminal time
We now prove a result which shows that if ϕ ∈ Sα then with high probability both
‖ΠKT−δ,Tϕ‖ and the ratio ‖ΠKT−δ,Tϕ‖/‖KT−δ,Tϕ‖ can not change dramatically
for small enough δ. This allows us to step back from the terminal time T to the right
end point of the time interval Iδ . As mentioned at the start of this section, this is needed
to allow the rougher test functions used in Theorem 6.7.

Lemma 6.15 Let (6.9b) hold and fix any orthogonal projection Π of H onto a finite
dimensional subspace ofH spanned by elements ofH1. Recall furthermore the relation
(6.8) between δ and ε. There exists a constant c ∈ (0, 1) such that, for every r > 0 and
every α > 0, the implication

ϕ ∈ Sα =⇒ KT−δ,Tϕ ∈ Scα and ‖ΠKT−δ,Tϕ‖ ≥
α

2
‖ϕ‖ ,

holds modulo a Ψ1/r-controlled family of negligible events.

To prove this Lemma, we will need the following axillary lemma whose proof is
given at the end of the section.
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Lemma 6.16 For any δ ∈ (0, T/2], one has the bound

E sup
‖ϕ‖≤1

‖KT−δ,Tϕ− e−δLϕ‖p ≤ CpΨnp(u0)δ(1−a)p , (6.9a)

E sup
‖ϕ‖≤1

‖KT−δ,Tϕ− ϕ‖p−1 ≤ CpΨnp(u0)δ(1−a)p , (6.9b)

for every p ≥ 1 and every u0 ∈ H. Here, n is the degree of the nonlinearity N .

Proof of Lemma 6.15. We begin by showing that, modulo some Ψ1/r-dominated fam-
ily of negligible events,

‖Πϕ‖ ≥ α‖ϕ‖ =⇒ ‖ΠKT−δ,Tϕ‖ ≥
α

2
‖ϕ‖ .

By the assumption on Π, we can find a collection {vk}Nk=1 in H1 with ‖vk‖ = 1 such
that Πϕ =

∑
k vk〈vk, ϕ〉. Therefore, there exists a constant C1 = supk ‖vk‖1 so that

‖Πϕ‖ ≤ C1‖ϕ‖−1. Combining Lemma 6.13 with Lemma 6.16, we see that

sup
ϕ∈H : ‖ϕ‖=1

‖KT−δ,Tϕ− ϕ‖−1 ≤
α

2C1
, (6.10)

modulo a Ψ
n

(1−a)r -dominated family of negligible events. Hence, modulo the same
family of events,

‖ΠKT−δ,Tϕ‖ ≥ ‖Πϕ‖ − C1‖KT−δ,Tϕ− ϕ‖−1

≥ α‖ϕ‖ − α

2
‖ϕ‖ =

α

2
‖ϕ‖ .

Combining now Lemma 6.13 with (6.9a), we see that

‖KT−δ,Tϕ‖ ≤ ‖ϕ‖+ ‖e−δLϕ‖ ≤ C‖ϕ‖ ,

modulo a Ψ
n

(1−a)r -dominated family of negligible events, thus showing that KT−δ,Tϕ
belongs to Scα with c = 1/(2C) and concluding the proof.

We now give the proof of the auxiliary lemma used in the proof of Lemma 6.15.

Proof of Lemma 6.16. It follows from (3.13) and the variation of constants formula
that

KT−δ,Tϕ− e−δLϕ =

∫ T

T−δ
e−(T−s)LDN∗(us)Ks,Tϕds .

It now follows from Assumption A.1, point 3 that there exists γ0 ∈ [0, γ? + 1) such
that DN∗(u) is a bounded linear map from H to H−a for every u ∈ γ0 and that its
norm is bounded by C‖u‖n−1

γ0
for some constant C. The first bound then follows by

combining Proposition 6.2 with the fact that e−Lt is bounded by Ct−a as an operator
fromH−a toH as a consequence of standard analytic semigroup theory [Kat80].

In order to obtain the second bound, we write

‖KT−δ,Tϕ− ϕ‖−1 ≤ ‖KT−δ,Tϕ− e−Lδϕ‖−1 + ‖e−Lδϕ− ϕ‖−1

≤ ‖KT−δ,Tϕ− e−Lδϕ‖+ Cδ ,

where the last inequality is again a consequence of standard analytic semigroup theory.
The claim then follows from (6.9a).
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6.7 The smallness ofMT implies the smallness of QN (uT−δ)

In this section, we show that if 〈MTϕ,ϕ〉 is small then 〈QN (ut)Kt,Tϕ,Kt,Tϕ〉 must
also be small with high probability for every t ∈ Iδ . The precise statement is given by
the following result:

Lemma 6.17 Let the Malliavin matrix MT be defined as in (4.10) and assume that
Assumptions A.1 and C.1 are satisfied. Then, for every N > 0, there exist rN > 0,
pN > 0 and qN > 0 such that, provided that r ≤ rN , the implication

〈ϕ,MTϕ〉 ≤ ε‖ϕ‖2 =⇒ sup
Q∈AN

sup
t∈Iδ
|〈Kt,Tϕ,Q(ut)〉| ≤ εpN ‖ϕ‖ ,

holds modulo some ΨqN -dominated negligible family of events.

Proof. The proof proceeds by induction on N and the steps of this induction are the
content of the next two subsections. Since A1 = {g1, . . . , gd}, the case N = 1 is
implied by Lemma 6.18 below, with p1 = 1/4, q1 = 8, and r1 = 1/(8p̄β).

The inductive step is then given by combining Lemmas 6.21 and 6.24 below. At
each step, the values of pn and rn decrease while qn increases, but all remain strictly
positive and finite after finitely many steps.

6.8 The first step in the iteration
The “priming step” in the inductive proof of Lemma 6.17 follows from the fact that
the directions which are directly forced by the Wiener processes are not too small with
high probability.

Lemma 6.18 Let the Malliavin matrixM be defined as in (4.10) and assume that As-
sumptions A.1 and C.1 are satisfied. Then, provided that r ≤ 1/(8p̄β), the implication

〈ϕ,MTϕ〉 ≤ ε‖ϕ‖2 =⇒ sup
k=1...d

sup
t∈Iδ
|〈Kt,Tϕ, gk〉| ≤ ε1/4‖ϕ‖ ,

holds modulo some Ψ8-dominated negligible family of events. Here, p̄β is as in (6.3b)
and β was fixed in (6.4).

Proof. For notational compactness, we scale ϕ to have norm one by replacing ϕ with
ϕ/‖ϕ‖. We will still refer to this new unit vector as ϕ. Now assume that 〈ϕ,MTϕ〉 ≤
ε. It then follows from (4.10) that

sup
k=1...d

∫
Iδ

〈gk,Kt,Tϕ〉2 dt ≤ ε .

Applying Lemma 6.14 with f (t) =
∫ t
T/2
|〈gk,Ks,Tϕ〉| ds and α = 1, it follows that

there exists a constant C > 0 such that, for every k = 1 . . . d, either

sup
t∈Iδ
|〈gk,Kt,Tϕ〉| ≤ ε1/4 ,

or
|||〈gk,K·,Tϕ〉|||1 ≥ Cε−1/4 . (6.11)
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Therefore, to complete the proof, we need only to show that the latter events form a Ψ4-
dominated negligible family for every k. Since |||〈gk,K·,Tϕ〉|||1 ≤ ‖gk‖−β |||K·,Tϕ|||1,β ,
the bound (6.11) implies that

sup
ϕ∈H : ‖ϕ‖=1

|||Kt,Tϕ|||1,β ≥
Cε−1/4

g∗
, (6.12)

where g∗ = maxk ‖gk‖−β (which is finite since we have by assumption that −β ≤
γ + 1 < γ? + 1 and since gk ∈ Hγ?+1 for every k) . This event depends only
on the initial condition u0 and on the model under consideration. In particular, it is
independent of ϕ.

The claim now follows from the a priori bound (6.3b) and Lemma 6.13 with q = 1
4

and b = p̄β .

6.9 The iteration step
Recall that we consider evolution equations of the type

dut = F (ut) dt+

d∑
k=1

gkdWk(t) , (6.13)

where F is a “polynomial” of degree n. The aim of this section is to implement the
following recursion: if, for any given polynomial Q, the expression 〈Q(ut),Kt,Tϕ〉
is “small” in the supremum norm, then both the expression 〈[Q,F ](ut),Kt,Tϕ〉 and
〈[Q, gk](ut),Kt,Tϕ〉 must be small in the supremum norm as well.

The main technical tool used in this section will be the estimates on “Wiener poly-
nomials” from Section 7. Using the notation

Wα(t) def
= Wα1

(t)Wα2
(t) · · ·Wα` (t) ,

for a multi-index α = (α1, . . . , α`), this estimate states that if an expression of the type∑
|α|≤mAα(t)Wα(t) is small, then, provided that the processes Aα are sufficiently

regular in time, each of the Aα must be small. In other words, two distinct monomials
in a Wiener polynomial cannot cancel each other out. Here, the processes Aα do not
have to be adapted to the filtration generated by the Wk, so this gives us some kind of
anticipative replacement of Norris’ lemma. The main trick that we use in order to take
advantage of such a result is to switch back and forth between considering the process
ut solution to (6.13) and the process vt defined by

vt
def
= ut −

d∑
k=1

gkWk(t) ,

which has more time-regularity than ut. Recall furthermore that given a polynomial Q
and a multi-index α, we denote by Qα the corresponding term (3.5) appearing in the
(finite) Taylor expansion of Q.

Recall the definition Polym(γ, β) = Polym(Hγ ,H−β−1) ∩ Polym(Hγ+1,H−β).
We first show that ifQ ∈ Polym(γ, β) and 〈Q(ut),Kt,Tϕ〉 is small, then the expression
〈Qα(vt),Kt,Tϕ〉 (note the appearance of vt rather than ut) must be small as well for
every multi-index α:
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Lemma 6.19 Let Q ∈ Polym(γ, β) for some m ≥ 0 and for γ and β as chosen in
(6.4). Let furthermore q > 0 an set q̄ = q3−m. Then, the implication

sup
t∈Iδ
|〈Q(ut),Kt,Tϕ〉| ≤ εq‖ϕ‖ =⇒ sup

α
sup
t∈Iδ
|〈Qα(vt),Kt,Tϕ〉| ≤ εq̄‖ϕ‖ ,

holds modulo some Ψ6(m+1)/q̄-dominated negligible family of events, provided that
r < q̄/(6p̄β).

Proof. Note first that both inner products appearing in the implication are well-defined
by Proposition 6.2 and the assumptions on Q. By homogeneity, we can assume that
‖ϕ‖ = 1. Since Q is a polynomial, (3.4) implies that

〈Q(ut),Kt,Tϕ〉 =
∑
α

〈Qα(vt),Kt,Tϕ〉Wα(t) .

Applying Theorem 7.1, we see that, modulo some negligible family of events OscmW ,
supt∈Iδ |〈Q(ut),Kt,Tϕ〉| ≤ εq implies that either

sup
α

sup
t∈Iδ
|〈Qα(vt),Kt,Tϕ〉| ≤ εq̄ , (6.14)

or there exists some α such that

|||〈Qα(vt),K·,Tϕ〉|||1 ≥ ε−q̄/3 . (6.15)

We begin by arguing that the second event is negligible. Since Q is of degree m, there
exists a constant C such that

|||〈Qα(vt),K·,Tϕ〉|||1 ≤ sup
t∈Iδ
‖Kt,Tϕ‖β+1|||Qα(v·)|||1,−β−1 + sup

t∈Iδ
‖Qα(vt)‖−β |||K·,Tϕ|||1,β

≤ C sup
t∈Iδ
‖Kt,Tϕ‖β+1 sup

t∈Iδ
‖vt‖m−1

γ |||v|||1,γ + C sup
t∈Iδ
‖vt‖mγ+1|||K·,Tϕ|||1,β .

Here, we used the fact that Qα ∈ Polym(Hγ ,H−1−β) to bound the first term and the
fact thatQα ∈ Polym(Hγ+1,H−β) to bound the second term. The fact thatQα belongs
to these spaces is a consequence of gk ∈ Hγ?+1 and of the definition (3.4) of Qα.

Therefore, (6.15) implies that either

Xδ
def
= sup
ϕ∈H : ‖ϕ‖=1

sup
t∈Iδ
‖Kt,Tϕ‖β+1 sup

t∈Iδ
‖vt‖m−1

γ |||v|||1,γ ≥
1

2C
ε−q̄/3 (6.16)

or
Yδ

def
= sup
ϕ∈H : ‖ϕ‖=1

sup
t∈Iδ
‖vt‖mγ+1|||K·,Tϕ|||1,β ≥

1

2C
ε−q̄/3 . (6.17)

Combining the Cauchy-Schwarz inequality with (6.3b) of Proposition 6.2, we see that
Xδ and Yδ satisfy the assumptions of Lemma 6.13 with Φ = Ψm+1 and b = p̄β , thus
showing that the families of events (6.16) and (6.17) are both Ψ6(m+1)/q̄-dominated
negligible, provided that r < q̄/(6p̄β).

In the sequel, we will need the follow simple result which is, in some way, a con-
verse to Theorem 7.1.



SPECTRAL PROPERTIES OF THE MALLIAVIN MATRIX 50

Lemma 6.20 Given any integer N > 0 and any two exponents 0 < q̄ < q, there exists
a universal family of negligible events SupNW such that the implication

sup
α

sup
t∈Iδ
|Aα(t)| < εq =⇒ sup

t∈Iδ

∣∣∣ ∑
α:|α|≤N

Aα(t)Wα(t)
∣∣∣ < εq̄

holds modulo SupNW for any collection of processes {Aα(t) : |α| ≤ N}.

Proof. Observe that

sup
t∈Iδ

∣∣∣ ∑
α:|α|≤N

Aα(t)Wα(t)
∣∣∣ ≤ (sup

α
sup
t∈Iδ
|Aα(t)|

)( ∑
α:|α|≤N

sup
t∈Iδ
|Wα|

)
Since for any p > 0, ∑

α:|α|≤N

sup
t∈Iδ
|Wα| > ε−p

is a negligible family of events, the claim follows at once.

As a corollary to Lemmas 6.19 and 6.20, we now obtain the key estimate for
Lemma 6.17 in the particular case where the commutator is taken with one of the
constant vector fields:

Lemma 6.21 Let Q ∈ Polym(γ, β) be a polynomial of degree m and let q > 0. Then,
for q̄ = q3−(m+1), the implication

sup
t∈Iδ
|〈Q(ut),Kt,Tϕ〉| ≤ εq‖ϕ‖ =⇒ sup

α
sup
t∈Iδ
|〈Qα(ut),Kt,Tϕ〉| ≤ εq̄‖ϕ‖ ,

holds for all ϕ ∈ H modulo some Ψ2(m+1)/q̄-dominated negligible family of events,
provided that r < q̄/(2p̄β).

Proof. Since it follows from (3.4) that (Qα)β = Qα∪β , we have the identity

Qα(ut) =
∑
β

(Qα)β(vt)Wβ =
∑
β

Qα∪β(vt)Wβ .

Combining Lemma 6.19 and Lemma 6.20 with N = m proves the claim.

In the next step, we show a similar result for the commutators between Q and F .
We are going to use the fact that if a function f is differentiable with Hölder continuous
derivative, then f being small implies that ∂tf is small as well, as made precise by
Lemma 6.14. As previously, we start by showing a result that involves the process vt
instead of ut:

Lemma 6.22 Let Q be as in Lemma 6.19 and such that [Qα, Fσ] ∈ Poly(γ, β) for
any two multi-indices α, σ. Let furthermore q > 0 and set q̄ = q3−2m/8. Then the
implication

sup
t∈Iδ
|〈Q(ut),Kt,Tϕ〉| ≤ εq‖ϕ‖ =⇒ sup

α,σ
sup
t∈Iδ
|〈[Qα, Fσ](vt),Kt,Tϕ〉| ≤ εq̄‖ϕ‖ ,

holds modulo some Ψ6(m+1)/q̄-dominated negligible family of events, provided that
r < q̄/(6p̄β). (As before the empty multi-indices are included in the supremum.)
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Proof. By homogeneity, we can assume that ‖ϕ‖ = 1. Combining Lemma 6.19 with
Lemma 6.14 and defining q̂ = q3−m, we obtain that supt∈Iδ |〈Q(ut),Kt,Tϕ〉| ≤ εq

implies for fα,ϕ(t) def
= ∂t〈Qα(vt),Kt,Tϕ〉 the bound

sup
t∈Iδ
|fα,ϕ(t)| ≤ C max{εq̂, ε

q̂
4 |||fα,ϕ|||3/41/3} , (6.18)

modulo some Ψ6(m+1)/q̂-dominated negligible family of events, provided that r ≤
q̂/(6p̄β). Note that this family is in particular independent of both α and ϕ. Here and
in the sequel, we use the letter C to denote a generic constant depending on the details
of the problem that may change from one expression to the next.

One can see that 〈Qα(vt),Kt,Tϕ〉 is differentiable in t by combining Proposi-
tion 6.2 with the fact that Qα ∈ Poly(Hγ ,H−1−β)∩ Poly(Hγ+1,H−β) as in the proof
of Lemma 6.19. See [DL92] for a more detailed proof of a similar statement.

Computing the derivative explicitly, we obtain

fα,ϕ(t) = 〈DQα(vt)F (ut)−DF (ut)Qα(vt),Kt,Tϕ〉
def
= 〈Bα(t),Kt,Tϕ〉 .

The function Bα can be further expanded to

Bα(t) =
∑
σ

(DQα(vt)Fσ(vt)−DFσ(vt)Qα(vt))Wσ(t) =
∑
σ

[Qα, Fσ](vt)Wσ(t) .

Notice that, by the assumption that [Qα, Fσ] ∈ Poly(γ, β), one has

|||[Qα, Fσ](v·)Wσ(·)||| 1
3 ,−1−β ≤ C(1 + sup

t∈Iδ
‖vt‖γ)n+m−2−|α|−|σ|‖∂tvt‖γ sup

t∈Iδ
|Wσ(t)|

+ C|||Wσ||| 1
3

(1 + sup
t∈Iδ
‖vt‖γ)n+m−1−|α|−|σ| ,

‖[Qα, Fσ](vt)Wσ(t)‖−β ≤ C(1 + ‖vt‖γ+1)n+m−1−|α|−|σ||Wσ(t)| .

(Here it is understood that if one of the exponents of the norm of vt is negative, the
term in question actually vanishes.) It therefore follows from Proposition 6.2 that

E|||Bα|||p1
3 ,−1−β ≤ CpΨ

(n+m−1)p(u0) , E sup
t∈Iδ
‖Bα(t)‖p−β ≤ CpΨ

(n+m−1)p(u0) ,

for every p ≥ 1 and some constants Cp.
Since the Hölder norm of fα,ϕ is bounded by

|||〈Bα(·),K·,Tϕ〉||| 1
3
≤ |||Bα||| 1

3 ,−1−β sup
t∈Iδ
‖Kt,T ‖β+1 + |||K·,T ||| 1

3 ,β
sup
t∈Iδ
‖Bα(t)‖−β ,

we can use the bounds on Bα just obtained, the Cauchy-Schwarz inequality, Proposi-
tion 6.2, and Lemma 6.13, to obtain

sup
α

sup
‖ϕ‖≤1

|||fα,ϕ|||3/41/3 ≤ ε
− q̂8 , (6.19)

modulo some Ψ12(n+m)/q̂-dominated negligible family of events, provided that r ≤
min{q̂/12, q̂/(6p̄β)}. As a consequence, modulo this family, we obtain from (6.18) the
bound supα supt∈Iδ |fα,ϕ(t)| ≤ Cε

q̂
8 which can be rewritten as

sup
α

sup
t∈Iδ

∣∣∣∣∣∑
σ

〈[Qα, Fσ](vt),Kt,Tϕ〉Wσ(t)

∣∣∣∣∣ ≤ Cε q̂8 . (6.20)
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Since [Qα, Fσ] ∈ Poly(γ, β) the same reasoning as in Lemma 6.19 combined with
Theorem 7.1 on Wiener polynomials implies that modulo some negligible family of
events OscmW , the estimate (6.20) implies that either

sup
α,σ

sup
t∈Iδ
|〈[Qα, Fσ](vt),Kt,Tϕ〉| ≤ εq̄ , (6.21)

or there exists some α and σ such that

|||〈[Qα, Fσ](vt),K·,Tϕ〉|||1 ≥ ε−q̄/3 . (6.22)

Again following the same logic as Lemma 6.19, we see that the family of events in
(6.22) is Φ6(m+1)/q̄-dominated negligible provided that r < q̄/(6p̄β).

In order to turn this result into a result involving the process ut, we need the fol-
lowing expansion:

Lemma 6.23 Given any two multi-indices α and σ (including the empty indices), there
exist an integer N and a collection of multi-indices {αi, σi, ζi : i = 1 . . . N} and
constants {ci : i = 1 . . . N} so that

[Qα, Fσ](ut) =

N∑
i=1

ci[Qαi , Fσi ](vt)Wζi (t)

Proof. First observe that

[Qα, Fσ](ut) =
∑
ζ

[Qα, Fσ]ζ(vt)Wζ(t) .

The Jacobi identity for Lie bracket states that

Dgk [Qα, Fσ] = [gk, [Qα, Fσ]] = [[gk, Qα], Fσ] + [Qα, [gk, Fσ]]
= (|α|+ 1)[Qα∪(k), Fσ] + (|σ|+ 1)[Qα, Fσ∪(k)] .

By iterating this calculation, we see that for any multi-index ζ, [Qα, Fσ]ζ is equal to
some linear combination of a finite number of terms of the form [Qαi , Fσi ] for some
multi-indices αi and σi.

In very much the same way as before, it then follows that:

Corollary 6.24 Let Q be as in Lemma 6.19 and such that [Qα, Fσ] ∈ Poly(γ, β) for
any two multi-indices α, σ. Let furthermore q > 0 and set q̄ = q3−2(m+1)/8. Then the
implication

sup
t∈Iδ
|〈Q(ut),Kt,Tϕ〉| ≤ εq‖ϕ‖ =⇒ sup

α,σ
sup
t∈Iδ
|〈[Qα, Fσ](ut),Kt,Tϕ〉| ≤ εq̄‖ϕ‖ ,

holds modulo some Ψ2(m+1)/(3q̄)-dominated negligible family of events, provided that
r < 3q̄/(2p̄β).

Proof. It follows from Lemma 6.23 that

〈[Qα, Fσ](ut),KT,tϕ〉 =

N∑
i=1

ci〈[Qαi , Fσi ](vt),KT,tϕ〉Wγi (t) .

Combining the control of the 〈[Qαi , Fσi ](vt),KT,tϕ〉 obtained in Lemma 6.22 with
Lemma 6.20 gives the quoted result.
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6.10 Putting it all together: proof of Theorem 6.12
We now finally combine all of the results we have just accumulated to give the proof
of the main theorem of these sections.

Proof of Theorem 6.12. We are going to prove the statement by showing that there ex-
ists θ > 0 and, for every α > 0, a Ψθ-dominated family of negligible events such that,
modulo this family, the assumption infϕ∈Sα〈ϕ,MTϕ〉 ≤ ε‖ϕ‖2 leads to a contradic-
tion for all ε sufficiently small.

From now on, fix N as in Assumption C.2. By Lemmas 6.15 and 6.17, we see
that there exist constants θ, q, r0 > 0 such that, modulo some Ψθ-dominated family of
negligible events, one has the implication

ϕ ∈ Sα
〈ϕ,MTϕ〉 ≤ ε‖ϕ‖2

}
=⇒

{
KT−δ,Tϕ ∈ Scα and ‖ΠKT−δ,Tϕ‖ ≥ α

2 ‖ϕ‖
〈KT−δ,Tϕ,QN (uT−δ)KT−δ,Tϕ〉 ≤ εq‖ϕ‖2 ,

provided that we choose r ≤ r0 in the definition (6.8) of δ. By Assumption C.2, this in
turn implies (modulo the same family of negligible events)

· · · =⇒ α

2
‖ϕ‖ ≤ ‖ΠKT−δ,Tϕ‖ ≤ Λ−1

cα (u0)ε
q
2 ‖ϕ‖ .

On the other hand, it follows from Lemma 6.13 and the assumption on the inverse
moments of Λcα that, modulo some Ψ

4
q -dominated family of negligible events, one

has the bound
Λ−1
cα (u0) ≤ ε−

q
4 .

Possibly making θ smaller, it follows that, modulo some Ψθ-dominated family of neg-
ligible events, one has the implication

ϕ ∈ Sα
〈ϕ,MTϕ〉 ≤ ε‖ϕ‖2

}
=⇒ α

2
≤ ε

q
4 ,

which cannot hold for ε small enough, thus concluding the proof of Theorem 6.12

7 Bounds on Wiener polynomials

We will use the terminology of “negligible sets” introduced in Definition 6.9. We will
always work on the time interval [0, 1], but all the results are independent (modulo
change of constants) of the time interval, provided that its length is bounded from
above and from below by two positive constants independent of ε. This is seen easily
from the scaling properties of the Wiener process.

The results of this section are descendents of similar results obtained in [MP06,
BM07] by related techniques. In [BM07] it was proven that if a Wiener polynomial,
with continuous, bounded variation coefficients, is identically zero on an interval then
so are its coefficients. This is enough to prove the almost sure invertibility of projec-
tions of the Malliavin matrix, which in turn implies the existence of a density for the
projections of the transition probabilities. To prove smoothness of the densities or the
ergodic results of this paper, more quantitative control is needed. In [BM07], a result
close to (7.1) is claimed. However an error in Lemma 9.12 of that article leaves the
proof incomplete. Arguing along similar, though slightly different lines, we prove the
needed result below. We build upon the presentation in [BM07] but simplify it signif-
icantly. (The presentation in [BM07] was already a significant simplification over that
in [MP06].)
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Theorem 7.1 Let {Wk}dk=1 be a family of i.i.d. standard Wiener processes and, for
every multi-index α = (α1, . . . , α`), define Wα = Wα1

. . .Wα` with the convention
that Wα = 1 if α = φ. Let furthermore Aα be a family of (not necessarily adapted)
stochastic processes with the property that there exists m ≥ 0 such that Aα = 0
whenever |α| > m and set ZA(t) =

∑
αAα(t)Wα(t).

Then, there exists a universal family of negligible events OscmW depending only on
m such that the implication

‖ZA‖L∞ ≤ ε =⇒

{
either supα ‖Aα‖L∞ ≤ ε3−m

or supα ‖Aα‖Lip ≥ ε−3−(m+1) (7.1)

holds modulo OscmW . (The supremum norms are taken on the interval [0, 1].)

Remark 7.2 Informally, we can read the statement of Theorem 7.1 as “if ZA is small,
then either all of the coefficients Aα are small, or at least one of them oscillates very
fast.” The exponents appearing in the statement of Theorem 7.1 are somewhat arbitrary.
By going through the proof more carefully, we can see that for any κ > 2, it is possible
to find a constant Cκ > 0 such that the exponents in (7.1) can be replaced by κ−m

and −Cκκ−m respectively. Here, the coefficient Cκ tends to 0 as κ → 2. While
the precise values of the exponents in (7.1) arising from our proof are unlikely to be
sharp, they are not far from it, as can be seen by looking at processes of the form
Z(t) = ε1− θ2 (Wθ(t)−W (t)), whereWθ is the linear interpolation of the Wiener process
W over intervals of size εθ.

Remark 7.3 The reason why the family of negligible sets appearing in this statement
is called OscmW is that it relies on the fact that the Wiener processes typically fluctuate
sufficiently fast on every small time interval so that their effects can be distinguished
from those of the multiplicators Aα which fluctuate over much longer timescales. It is
important to note that OscmW depends on the processesAα only through the value ofm.

Before we start with the proof, we show the following result, which is essentially
the particular case of Theorem 7.1 where m = 1 and where the coefficients Aα do not
depend on time. Here, 〈·, ·〉 denotes the scalar product in Rd.

Lemma 7.4 Let {Wk}dk=1 be a collection of i.i.d. standard Wiener processes. Then,
for any exponent κ > 0, there exists a universal family OscW of negligible events such
that the bound

sup
t∈[0,1]

|〈A,W (t)〉| ≥ εκ|A| , (7.2)

holds modulo OscW for any choice of coefficients A ∈ Rd.

Remark 7.5 We would like to stress again the fact that the family of events OscW is
independent of the choice of coefficients A and depends only on the realisation of the
Wk’s.

Proof. Fix κ > 0 and define a family of events B by Bε = {supt∈[0,1] |W (t)| ≥
ε−κ}. It follows immediately from the fact that the supremum of a Wiener process has
Gaussian tails that the family B is negligible. Consider now the unit sphere Sd in Rd.
For every A ∈ Sd, the process WA(t) = 〈A,W (t)〉 is a standard Wiener process and
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so P(supt∈[0,1] |WA(t)| ≤ 2εκ) ≤ C1 exp(−C2ε
−2κ) for some constants C1 and C2

that are independent of A. Denote this event by Hε
A.

Choose now a collection {Ak} of points in Sd such that supA∈Sd infk |A− Ak| ≤
ε2κ and define Hε =

⋃
kH

ε
Ak

. Since this can be achieved with O(ε−2κ(d−1)) points,
the family H is negligible by Lemma 6.10. We now define OscW = H ∪ B and we
note that, modulo OscW , one has for every Ā ∈ Rd the bound

sup
t∈[0,1]

|〈Ā,W (t)〉| ≥ |Ā| inf
A∈Sd

sup
t∈[0,1]

|〈A,W (t)〉|

≥ |Ā|
(

inf
k

sup
t∈[0,1]

|〈Ak,W (t)〉| − εκ
)
≥ |Ā|εκ ,

as required.

We now turn to the

Proof of Theorem 7.1. The proof proceeds by induction on the parameter m. For m =
0, the statement is trivial since in this case one has ZA(t) = Aφ(t), so that one can take
Osc0

W = φ.
Fix now a value m ≥ 1 and assume that, for some ε, both inequalities

‖ZA‖L∞ ≤ ε , (7.3a)

sup
|α|≤m

‖Aα‖Lip ≤ ε−3−(m+1)
(7.3b)

hold. Our aim is to find a (universal) family of negligible sets OscmW such that, modulo
OscmW , these two bounds imply the bound supα ‖Aα‖L∞ ≤ ε3−m . Before we proceed,
we localise our argument to Wiener processes that do not behave too “wildly.” Using
the fact that the Hölder norm of a Wiener process has Gaussian tails for every Hölder
exponent smaller than 1/2, we see that the bounds

sup
t∈[0,1]

sup
|α|≤m

|Wα(t)| ≤ ε−1/10 , sup
s6=t

sup
|α|≤m

|Wα(t)−Wα(s)|
|t− s|2/5

≤ ε−1/30 , (7.4)

both hold modulo some universal family Wien of negligible events. The reason for
these particular choices of exponents will become clearer later on, but any two negative
exponents would have been admissible.

Choose an exponent κ to be determined later and define a sequence of times t` =
`εκ for ` = 0, . . . , ε−κ, so that the interval [0, 1] gets divided into ε−κ subintervals of
the form [t`, t`+1]. We define A`α = Aα(t`) and similarly for W `

α. We also define the
Wiener increments W̄ `

i (t) = Wi(t)−Wi(t`) and their products W̄ `
α = Πj∈αW̄

`
j . With

these notations, one has for t ∈ [t`, t`+1] the equality

ZA(t) = ZA(t`) +
∑
α6=φ

A`α(Wα(t)−W `
α) +

∑
α

(Aα(t)−A`α)Wα(t) (7.5)

= ZA(t`) +
∑
α6=φ

∑
σ⊂α
σ 6=φ

A`αW
`
α\σW̄

`
σ(t) +

∑
α

(Aα(t)−A`α)Wα(t)

= ZA(t`) +
∑
ν

∑
σ 6=φ

Cν,σA
`
ν∪σW

`
νW̄

`
σ(t) +

∑
α

(Aα(t)−A`α)Wα(t)

≡ ZA(t`) +
∑
ν

d∑
j=1

Cν,(j)A
`
ν∪(j)W

`
νW̄

`
j (t) + E`(t) ,
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for some “error term” E` that will be analysed later. Here, the combinatorial factor
Cα,σ counts the number of ways in which the multi-index σ can appear in the multi-
index α ∪ σ (for example C(i,j),(j) is equal to 2 if i 6= j and 3 if i = j). Using the
Brownian scaling and the fact that the supremum of a Wiener process has Gaussian
tails, we see that for every κ′ < κ, the bound

sup
`≤ε−κ

sup
t∈[0,εκ]

sup
j∈{1,...,d}

|W̄ `
j (t)| ≤ εκ

′/2 , (7.6)

holds modulo some universal family Wienκ′,m of negligible events.
Note now that all the terms appearing in E` are (up to combinatorial factors) either

of the form A`α∪σW
`
αW̄σ(t) with |σ| ≥ 2, or of the form (Aα(t) − A`α)Wα(t). To-

gether with (7.6) and the first bound in (7.4), this shows that there exists a constant C
depending only on m such that (7.3b) implies

sup
`≤ε−κ

sup
t∈[t`,t`+1]

|E`(t)| ≤ C(εκ
′−1/27−1/10 + εκ−1/9−1/10) , (7.7)

modulo Wienκ′,m. Here we used the fact that (7.3b) implies in particular that the bound
‖Aα‖L∞ ≤ ε−1/27 holds for every α with |α| ≥ 2 (note that these terms are non-zero
only if m ≥ 2) and that ‖Aα‖Lip ≤ ε−1/9, since we assumed m ≥ 1. At this point,
we fix κ = 5

4 and κ′ = 6
5 , so that in particular both exponents appearing in (7.7) are

greater than 1. We then define Wien′ = Wien∪Wienκ′,m so that, modulo Wien′, (7.3a)
and (7.5) imply

sup
t∈[t`,t`+1]

∣∣∣∑
α

d∑
j=1

Cα,(j)A
`
α∪(j)W

`
αW̄j(t)

∣∣∣ ≤ 2ε+ sup
`≤ε−κ

sup
t∈[t`,t`+1]

|E`(t)| ≤ Cε .

(7.8)
The left hand side of this expression motivates the introduction of operators Mj acting
on the set of families of stochastic processes by

(MjA)α = Cα,(j)Aα∪(j) .

Note that Mj lowers the “degree” of A by one in the sense that if Aα = 0 for every
|α| ≥ m, then (MjA)α = 0 for every |α| ≥ m− 1.

With this notation, we can rewrite (7.8) as

sup
t∈[t`,t`+1]

∣∣∣ d∑
j=1

ZMjA(t`)W̄j(t)
∣∣∣ ≤ Cε . (7.9)

Using the Brownian scaling and applying Lemma 7.4, combined with Lemma 6.10,
shows the existence of a family OscW of negligible events such that (7.9) implies

|ZMjA(t`)| ≤ ε7/20 , ∀` ≤ ε−5/4 .

Here, we used the fact that our choice of κ implies that 1 − κ/2 > 7/20. This shows
that the statements (7.3) imply

‖ZMjA‖L∞ ≤ ε7/20 + Cm sup
α

(εκ‖Aα‖Lip‖Wα‖L∞ + ε2κ/5‖Aα‖L∞‖Wα‖C2/5)

≤ ε7/20 + Cm(εκ−1/9−1/0 + ε1/2−1/9−1/30) ≤ Cmε7/20 , (7.10)
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modulo Wien′ ∪ OscW . Here, the constant Cm > 1 depends only on m.
We now finally arrived at the stage where we are able to apply our induction hy-

pothesis to each of the processes ZMjA. Note that since 7/20 > 1/3, (7.3b) implies
that

sup
α,j
‖(MjA)α‖Lip ≤ (Cmε7/20)−3−m ,

for all sufficiently small ε. Therefore, outside of the event (Oscm−1
W )Cmε7/20 , one has

the implication{
sup
j
‖ZMjA‖L∞ ≤ Cmε7/20

}
&
{

sup
α
‖Aα‖Lip ≤ ε−3−(m+1)

}
=⇒

{
sup
α,j
‖(MjA)α‖L∞ ≤ C ′mε

7
20 3−(m−1)

}
,

(7.11)

for some different constant C ′m depending also only on m. Since 7/20 > 1/3 and
since ‖(MjA)α‖L∞ ≥ ‖Aα∪(j)‖L∞ , this implies in particular that ‖Aα‖L∞ ≤ ε3−m

for every α 6= φ.
In order to conclude the proof of the theorem, it therefore only remains to obtain

a similar bound on ‖Aφ‖L∞ . We define a family of negligible events Wien′′m so that
Wien′ ⊂Wien′′m and such that the bound

sup
t∈[0,1]

sup
|α|≤m

|Wα(t)| ≤ ε− 1
70 3−(m−1)

, (7.12)

holds modulo Wien′′m. We claim that if we define recursively

(OscmW )ε = (Oscm−1
W )Cε7/20 ∪ (Wien′′m)ε ,

the family OscmW has the requested properties. It follows indeed from (7.3a), (7.12) and
the definition of ZA that, modulo OscmW , (7.3) imply the bound

‖Aφ‖L∞ ≤ ε+
∑
α 6=φ

‖Aα‖L∞‖Wα‖L∞ ≤ ε+ C ′mε
(7/20−1/70)3−(m−1)

. (7.13)

Since we choose the bound (7.12) in such a way that 7/20 − 1/70 > 1/3, we obtain
‖Aφ‖L∞ ≤ ε1/3 for sufficiently small ε. Together with the remark following (7.11),
this concludes the proof of Theorem 7.1.

8 Examples

In this section, we apply the abstract framework developed in this article to two con-
crete examples: the stochastic Navier-Stokes equations on a sphere and a class of
stochastic reaction-diffusion equations. The examples are chosen in order to highlight
the techniques that can be used to verify the assumptions of our results and to get some
idea of their scope of applicability. In particular, the Navier-Stokes equations provide
an example where bounds on the Jacobian are not very uniform, so that an initial condi-
tion dependent control is required in Assumption C.1. The stochastic reaction-diffusion
system on the other hand satisfies very strong a priori bounds, but Assumption A.1 is
not verified with the usual choice H = L2, so that one has to work a bit more to fit
the equations into the framework presented here. Our strategy is as follows: in a first
section, we provide a simplified version of our results. We tried to find a formulation
that strikes a balance between powerful results and easily verifiable assumptions. This
general formulation will then be used by both of the examples mentioned above.
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8.1 A general formulation
The ‘general purpose’ theorem formulated in this section allows to obtain the asymp-
totic strong Feller property for a large class of semilinear SPDEs under a Hörmander-
type bracket condition. Our first assumption ensures that all the stability conditions of
the previous sections can be verified.

Assumption D.1 The operator L has compact resolvent. Furthermore, there exists a
measurable function V : H → R+ such that there exist constants c > 0 and α > 0
such that the bound

V (u) ≥ c‖u‖α ,

holds for all u ∈ H and such that the following bounds hold:
There exists a constant C > 0 and η′ ∈ [0, 1) such that

E exp(V (u1)) ≤ C exp(η′V (u0)) . (8.1)

We also require the following bounds on the Jacobian, as well as the second variation
on the dynamic. For every p > 0 and every δ > 0, there exists a constant C such that
the bounds

sup
t∈[0,1]

E‖ut‖p ≤ C exp(δV (u0)) , (8.2a)

E sup
s,t∈[0,1]

‖Js,t‖p ≤ C exp(δV (u0)) , (8.2b)

sup
s,t∈[0,1]

E‖J (2)
s,t‖p ≤ C exp(δV (u0)) , (8.2c)

hold for every u0 ∈ H.

Our next assumption is simply a restatement of the Hörmander bracket condition
(considering only constant ‘vector fields’), with the additional condition that the gi be-
long toH∞. This ensures that all the relevant brackets are inH∞ and hence admissible
in the sense of Section 6.2.

Assumption D.2 The forcing directions gi belong to H∞. Furthermore, define a se-
quence of subsets ofH recursively by A0 = {gj : j = 1, . . . , d} and

Ak+1
def
= Ak ∪ {Nm(h1, . . . , hm) : hj ∈ Ak} .

Then, the linear span of A∞
def
=
⋃
n>0 An is dense inH.

With these assumptions in hand, a simplified, yet sufficiently powerful for many
uses, formulation of our main results is as follows:

Theorem 8.1 Consider the setting of equation (1.1) and assume that Assumptions A.1,
D.1, and D.2 hold. Then, there exist constants C, κ > 0 and γ ∈ (0, 1) such that the
Markov semigroup Pt generated by (1.1) satisfies the bound

‖D(P2nϕ)(u)‖ ≤ CeκV (u0)
(√

(P2nϕ2)(u) + γn
√

(P2n‖Dϕ‖2)(u)
)

, (8.3)

for every integer n > 0. In particular, it satisfies the asymptotic strong Feller property.
Furthermore, if β? > a − 1, then for every m > 0, every u ∈ H, and every linear

map T : H → Rm, the projections of the time-2 transition probabilities T ∗P2(u, ·)
have C∞ densities with respect to Lebesgue measure on Rm.
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Remark 8.2 The final times 1 and 2 appearing in the statement are somewhat arbitrary
since it suffices to rescale the equation in time, which does not change any of our
assumptions. We chose to keep them in this way in order to avoid awkward notations
in the proof.

In this result, the Hörmander-type assumption, Assumption C.2 is verified by using
constant vector fields only. Before we turn to the proof of Theorem 8.1, we therefore
present the following useful little lemma:

Lemma 8.3 Let H be a separable Hilbert space and {gi}∞i=1 ⊂ H a collection of
elements such that its span is dense in H. Define a family of symmetric bilinear forms
Qn on H by 〈h,Qnh〉 =

∑n
i=1〈gi, h〉2. Let Π: H → H be any orthogonal projection

on a finite-dimensional subspace of H. Then, there exists N > 0 and, for every α > 0
there exists cα > 0 such that 〈h,Qnh〉 ≥ cα‖Πh‖2 for every h ∈ H with ‖Πh‖ ≥
α‖h‖ and every n ≥ N .

Proof. Assume by contradiction that the statement does not hold. Then, there exists
α > 0 and a sequence hn in H such that ‖Πhn‖ = 1, ‖hn‖ ≤ α−1, and such that
limn→0〈hn,Qnhn〉 → 0. Since ‖hn‖ ≤ α−1 is bounded, we can assume (modulo ex-
tracting a subsequence) that there exists h ∈ H such that hn → h in the weak topology.
Since Π has finite rank, one has ‖Πh‖ = 1. Furthermore, since the maps h 7→ 〈h,Qnh〉
are continuous in the weak topology and since n 7→ 〈h,Qnh〉 is increasing for every
n, one has

〈h,Qnh〉 = lim
m→∞

〈hm, Qnhm〉 ≤ lim
m→∞

〈hm, Qmhm〉 = 0 ,

so that 〈h, gi〉 = 0 for every i > 0. This contradicts the fact that the span of the gi is
dense inH.

We are now in a position to turn to the proof of our general result.

Proof of Theorem 8.1. We show first that the supremum in (8.2a) can easily be pulled
under the expectation. Indeed, it follows from the variation of constants formula that
we have the bound

‖ut‖ ≤ ‖S(t)u0‖+ C

∫ s

0

(t− s)−a‖N (us)‖−a ds+ ‖WL(t)‖ ,

where WL is the stochastic convolution of GW with the semigroup S generated by L.
It follows immediately from Hölder’s inequality that there exists a constant C and an
exponent p > 0 such that

sup
t≤1
‖ut‖ ≤ ‖u0‖+ C

(∫ 1

0

(1 + ‖us‖np) ds
)1/p

+ sup
t≤1
‖WL(t)‖ .

Combining this with (8.2a), we conclude immediately that for every p > 0 and every
δ > 0 there exists C > 0 such that

E sup
t∈[0,1]

‖ut‖p ≤ C exp(δV (u0)) . (8.4)

We now verify that Assumptions C.1 and C.2 are satisfied for our problem. It
follows from (8.4) and (8.2b) that for every δ > 0, Assumption C.1 holds with the
choice Ψ0(u) = exp(δV (u)).
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Furthermore, Assumption C.2 holds for every finite-rank orthogonal projection
Π: H → H by Assumption D.2 and Lemma 8.3. Note that the function Λα is then
constant, so that the condition on its moments is trivially satisfied. We can therefore
apply Theorem 6.7 which states that for every α ∈ (0, 1), every δ > 0, every finite-rank
projection Π, and every p ≥ 1 there exists a constant C such that the bound

P
(

inf
ϕ∈Sα

〈ϕ,M1ϕ〉
‖ϕ‖2

≤ ε
)
≤ C exp(δV (u0))εp , (8.5)

holds for every u0 ∈ H and every ε ≤ 1.
Combining this statement with (8.1), we see that Assumption B.1 is satisfied with

q̄ = 8 (for example) and U (u) = exp(δV (u)) with every δ ≤ 1
8 .

The bound (8.1) is nothing but a restatement of Assumption B.2. Since we assume
that (8.2b) and (8.2c) hold for every δ > 0, we infer that Assumption B.3 holds with
p̄ = 20 and η sufficiently small. It remains to verify that, for every CΠ > 0 there exists
a finite-rank projection Π such that (5.3) is satisfied. This ensures that the required
relation CΠ > CJ + 2ηCL/(1− η′) can be satisfied by a suitable choice of Π.

Because L has compact resolvent by assumption, it has a complete system of eigen-
vectors with the corresponding eigenvalues {λn} satisfying limn→∞ λn =∞. There-
fore, if we denote by ΠN the projection onto the subspace ofH spanned by the first N
eigenfunctions, we have the identity

‖e−LtΠ⊥N‖ = e−λN+1t .

This allows us to get a bound on J0,1Π⊥ as follows. It follows from (3.10) and the
variation of constants formula that

‖J0,tΠ
⊥‖ ≤ ‖e−LtΠ⊥‖+

∫ t

0

Cs−a‖DN (us)‖−a ds

≤ e−λN+1t + Ct1−a sup
s≤t
‖us‖k ,

so that, for every δ > 0, we have by (8.4) the bound

E‖J0,tΠ
⊥‖p ≤ Cδ,p(e−λN+1t + t1−a) exp(δV (u0)) ,

for some family of constants Cδ,p independent of t ∈ [0, 1]. Since a < 1, it follows
that for every ε, δ > 0 and p > 0, we can find N sufficently large and t sufficiently
small such that

E‖J0,tΠ
⊥‖p ≤ ε exp(δV (u0))) .

Combining this with (8.2b) and the fact that ‖J0,1Π⊥‖ ≤ ‖Jt,1‖‖J0,tΠ
⊥‖, we obtain

E‖J0,1Π⊥‖p̄ ≤
(

E‖J0,t‖2p̄E‖Jt,1‖2p̄
) 1

2 ≤ Cε exp(2δV (u0))) ,

provided that N is sufficiently large. By choosing δ sufficiently small, it follows that
Assumption B.4 (with arbitrary values for p̄ and CΠ) can always be satisfied by choos-
ing for Π the projection onto the first N eigenvectors of L for some large enough value
of N . The bound (8.3) now follows from a simple application of Theorem 5.5.

It remains to prove the statement about the smoothness of T ∗P2(u, ·), which will
be a consequence of (8.5) by [Nua95, Cor. 2.1.2]. The reason why we consider the
process at time 2 is that, in order to avoid the singularity at the origin, we consider the
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solution u2 as an element of the probability space with Gaussian structure given by
the increments of W over the interval [1, 2]. The increments of W over [0, 1] are then
considered as some “redundant” randomness, which is irrelevant by [Nua95, Ch. 1].
With this slightly tweaked Gaussian structure, the Malliavin matrix of Πu2 is given
almost surely by ΠM1(u1)Π, where M1 is defined as before, but over the interval
[1, 2]. The claim now follows from (8.5) and (8.1), provided that the random variable
Πu2 belongs to the space D∞ of random variables whose Malliavin derivatives of all
orders have moments of all orders.

Recall now (see for example [BM07, Section 5.1]) that for any n-tuple of ele-
ments h1, . . . , hn ∈ L2([1, 2],Rd), the nth Malliavin derivative of u2 in the directions
h1, . . . , hn is given by

Dnu2(h) =

∫
1≤s1<···<sn≤2

J (n)
s,1Ghs ds . (8.6)

Applying (6.1a) in Proposition 6.2 we see that, for every u0 ∈ H, every γ < γ? + 1,
and every p > 0, one has the bound

E sup
t∈[1,2]

‖ut‖pγ <∞ .

We conclude from Proposition 3.11 that

E sup
1≤s1<···<sn≤2

sup
‖ϕj‖≤1

‖J (k)
s,t (ϕ1, . . . , ϕk)‖p ≤ ∞ ,

so that, by (8.6), u2 does indeed have Malliavin derivatives of all orders with bounded
moments of all orders. This concludes the proof.

8.2 The 2D Navier-Stokes equations on a sphere
Consider the stochastically forced two-dimensional Navier-Stokes equations on the
two-dimensional sphere S2:

du = ν∆u dt+ ν Ricu dt−∇uu dt−∇p dt+QdW (t) , divu = 0 . (8.7)

Here, the velocity field u is an element of H1(S2, TS2), ∇uu denotes the covari-
ant differentiation of u along itself with respect to the Levi-Civita connection on S2,
∆ = −∇∗∇ is the (negative of the) Bochner Laplacian on S2, and Ric denotes the
Ricci operator from TS2 into itself. In the case of the sphere, the latter is just the mul-
tiplication with the scalar 1. See also [Tay92, TW93, Nag97] for more details on the
Navier-Stokes equations on manifolds.

As in the flat case, it is possible to represent u uniquely by a scalar “vorticity” field
w given by

w = curlu def
= − div(n ∧ u) , (8.8)

where n denotes the unit vector in R3 normal to the surface of the sphere (so that n∧u
defines again a vector field on the sphere). With this notation, one can rewrite (8.7) as

dw = ν∆w dt− div(wKw) dt+GdW (t) . (8.9)

Here, we denoted by K the operator that reconstructs a velocity field from its vorticity
field, that is

u = Kw = − curl ∆−1w
def
= n ∧∇∆−1w ,
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and ∆ denotes the Laplace-Beltrami operator on the sphere. See [TW93] for a more
detailed derivation of these equations. In order to fit the framework developed in this
article, we assume that the operator G is of finite rank and that its image consists of
smooth functions, so that the noise term can be written as

GdW (t) =

n∑
i=1

gi dWi(t) , gi ∈ H∞(S2,R) .

We choose to work in the space H = L2(S2,R) for the equation (8.9) in vorticity
formulation, so that the interpolation spaces Hα coincide with the fractional Sobolev
spaces H2α(S2,R), see [Tri86]. In particular, elements w ∈ Hα are characterised by
the fact that the functions x 7→ ϕ(x)w(ψ(x)) belong to H2α(R2) for any compactly
supported smooth function ϕ and any function ψ : R2 → S2 which is smooth on an
open set containing the support of ϕ. Since the sphere is compact, this implies that the
usual Sobolev embeddings for the torus also hold true in this case.

Define now A0 = {gi : i = 1, . . . , n} and set recursively

An+1 = An ∪ {B(v, w) : v, w ∈ An} ,

where we made use of the symmetrised nonlinearity

B(v, w) = 1
2 (div(wKv) + div(v Kw)) .

We then have the following result:

Theorem 8.4 If the closure of the linear span of A∞ =
⋃
n≥0 An is equal to all of

L2(S2,R), then the equations (8.7) have a unique invariant measure.

Remark 8.5 Sufficient conditions for density of A∞ and for approximate controlla-
bility are given in [AS08]. In particular, the authors there give an example of A0

containing five spherical harmonics that satisfies our condition. Note however that
controllability is not required for our result to hold, since we only use the fact that
the origin belongs to the topological support of every invariant measure. On the other
hand, as shown in [MP06], controllability allows to obtain positivity of the projected
densities of transition probabilities.

Proof. The main step in the proof is to check that we can apply Theorem 5.5 to con-
clude that the Markov semigroup generated by the solutions to (8.7) has the asymptotic
strong Feller property. Let us first check that the Navier-Stokes nonlinearity on the
sphere does indeed satisfy Assumption A.1 for some a ∈ [0, 1). It is clear that the
nonlinearity N , defined by N (w) = B(w,w), is continuous from H∞ to H∞ (which
coincides with the space of infinitely differentiable functions on the sphere), so in order
to show point 2, it remains to show that N maps Hγ into Hγ−a for a range of values
γ ≥ 0 and some a ∈ [0, 1).

Setting B̂(w,w′) = div(wKw′) so that N (w) = B(w,w) = B̂(w,w), one can
show exactly as in [CF88] that, for any triplet (s1, s2, s3) with si ≥ 0,

∑
i si > 1, one

has bounds of the type∫
S2

v(x) B̂(w,w′)(x) dx ≤ C‖v‖Hs1 ‖w‖H1+s2 ‖w′‖Hs3−1 ,∫
S2

v(x) B̂(w,w′)(x) dx ≤ C‖v‖H1+s1 ‖w‖Hs2 ‖w′‖Hs3−1 ,
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for some constant C depending on the choice of the si. In particular, B̂ can be in-
terpreted as a continuous linear map from H ⊗ H into H− 3

4
(for example) and from

H 1
2
⊗ H 1

2
into H (using the usual identification of bilinear maps with linear maps

between tensor products). It thus follows from the Calderón-Lions interpolation theo-
rem as in Remark 3.3 that B̂ is a continuous linear map from Hα ⊗ Hα into Hβ for
β = 3α

2 −
3
4 and α ∈ [0, 1

2 ]. For α > 1
2 , we use the fact that Hα is an algebra [Tri92]

to deduce that B̂ is continuous from Hα ⊗Hα into Hα− 1
2

. This shows that point 2 of
Assumption A.1 is satisfied with a = 3

4 (any exponent strictly larger than 1
2 would do,

actually) and γ? = +∞.
Turning to point 3 of Assumption A.1, it suffices to show that, for v sufficiently

smooth, the map w 7→ B̂(v, w) is bounded from H−β into H−β−a. It is well-known
on the other hand that if v ∈ Ck then the multiplication operator w 7→ vw is continuous
in Hs for all |s| ≤ k. It follows immediately that DN∗(v) is continuous from H−β
intoH−β− 1

2
, provided that v ∈ Ck for k ≥ 2β. Point 3 then follows with β? =∞.

For any fixed η > 0, it follows exactly as in [HM06, Lemma 4.10] that Assump-
tion D.1 is verified with V (w) = η‖w‖2 for η sufficiently small. This concludes the
verification of the assumptions of Theorem 8.1 and the claim follows.

Remark 8.6 Just as in [HM06], this result is optimal in the following sense. The
closure Ā∞ of the linear span of A∞ in L2 is always an invariant subspace for (8.9)
and the invariant measure for the Markov process restricted to Ā∞ is unique. However,
if Ā∞ 6= L2, then one expects in general the presence of more than one invariant
probability measure in L2 at low values of the viscosity ν.

8.3 Stochastic reaction-diffusion equations
In this section, we consider a general class of reaction-diffusion equations on a “nice”
domain D. The dimension m of the ambient space is chosen smaller or equal to 3 for
technical reasons. However, the number ` of components in the reaction is arbitrary.
The domain D is assumed to be either of
• A compact smooth m-dimensional Riemannian manifold.
• A bounded open domain of Rm with smooth boundary.
• A hypercube in Rm.

We furthermore denote by ∆ the Laplace (resp. Laplace-Beltrami) operator on D,
endowed with either Neumann or Dirichlet boundary conditions. With these notations
in place, the equations that we consider are

du = ∆u dt+ f ◦ u dt+
d∑
i=1

gi dWi(t) , (8.10)

with u(t) : D → R` and f : R` → R` a polynomial of arbitrary degree n with n ≥ 3
an odd integer. (We exclude the case n = 1 since this gives rise to a linear equation
and is trivial to analyse.) The functions gi describing the stochastic component of the
equations are assumed to belong to H∞, the intersection of the domains of ∆α in
L2(D) for all α > 0. It is a straightforward exercise to check that (8.10) has unique
local solutions in E = C(D,R`) for every initial condition in C(D,R`) (replace C by
C0 in the case of Dirichlet boundary conditions). In order to obtain global solutions,
we make the following assumption on the nonlinearity:
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Assumption RD.1 Writing f =
∑n
k=0 fk for f with fk being k-linear maps from R`

to itself, we assume that n is odd and that

〈fn(u, . . . , u, v), v〉 < 0 ,

for every u, v ∈ R` \ {0}.

Remark 8.7 Provided that Assumption RD.1 holds, one can check that there exist
positive constants c and C such that the inequality

〈f (u+ v), u〉 ≤ C(1 + ‖v‖n+1)− c‖u‖n+1 , (8.11)

holds for every u, v ∈ R`.

Essentially, Assumption RD.1 makes sure that the function u 7→ |u|2 is a Lya-
punov function for the “reaction” part u̇ = f (u) of (8.10). In the interest of brevity,
we define Supt,∞(v) = 1 + sups≤t ‖v(s)‖E for any function v ∈ L∞([0, t], E) and
Supt,r(v) = 1 + sups≤t ‖v(s)‖Hr for v ∈ L∞([0, t], Hr(D)), As a consequence of
Assumption RD.1, we obtain the following a priori bound on the solutions to (8.10):

Proposition 8.8 Under Assumption RD.1, there exist constants c and C such that the
bound

‖u(t)‖L∞ ≤ C
( ‖u0‖L∞

(1 + t‖u0‖nL∞ )1/n
+ Supt,∞(W∆)

)
,

holds almost surely for every u0 ∈ E , where E is either C(D,R`) or C0(D,R`), de-
pending on the boundary conditions of ∆. In particular, for every t0 > 0 there exists a
constant C such that one has the almost sure bound

‖u(t)‖L∞ ≤ CSupt,∞(W∆) , (8.12)

independently of the initial condition, provided that t ≥ t0.

Proof. The proof is straightforward and detailed calculations for a variant of it can be
found for example in [Hai08]. Setting v = u −W∆(t) where W∆ is the “stochastic
convolution” solving the linearised equation (8.10) with f ≡ 0, and defining V (v) =
‖v‖2L∞ , we obtain from (8.11) the almost sure bound

d

dt
V (v(t)) ≤ CSupn+1

t,∞ (W∆)− cV (n+1)/2(v(t)) .

In particular, there exist possibly different constants such that

d

dt
V (v(t)) ≤ −cV (n+1)/2(v(t))

for all v such that V (v(t)) ≥ CSup2
t,∞(W∆)). Since we assumed that n ≥ 3, a simple

comparison theorem for ODEs then implies that

V (v(t)) ≤ C ‖u0‖2

(1 + t‖u0‖2/α)α
∧ Sup2

t,∞(W∆) ,

where we set α = 2/n. The requested bound then follows at once. The second bound
is an immediate consequence of the first one.
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Remark 8.9 The function t 7→ V (v(t)) is of course not differentiable in time in gen-
eral. The left hand side in (8.12) should therefore be interpreted as the right upper Dini
derivative lim suph→0+ h−1(V (v(t+ h))− V (v(t))).

In order to fit the framework developed in this article, we cannot take L2 as our
base space, since the nonlinearity will not in general map L2 into any Sobolev space
of negative order. However, provided that k > m/2, the Sobolev spaces Hk form an
algebra, so that the nonlinearity u 7→ N (u) def

= f ◦ u is continuous from Hk to Hk in
this case. It is therefore natural to choose H = Hk for some k > m/2. In this case,
for α > 0, the interpolation spaces Hα coincide with the Sobolev spaces Hk+2α, so
that one has N ∈ Poly(Hα,Hα) for every α > 0. This shows that Assumption A.1
is satisfied with a = 0, γ? = ∞ and β? = ∞. It turns out that it is relatively easy to
obtain bounds in the Sobolev space H2. From now on, we do therefore assume that the
following holds:

Assumption RD.2 The space dimension m is smaller or equal to 3.

This will allow us to work in H = H2. Before we state the main theorem of this
section, we obtain a number of a priori bounds that will allow us to verify that the
assumptions from the previous parts of this article do indeed apply to the problem at
hand.

By using a bootstrapping argument similar to Proposition 3.6, we can obtain the
following a priori estimate:

Proposition 8.10 Assume that Assumptions RD.1 and RD.2 hold. If u is the solution
to (8.10) with initial condition u0 ∈ H2 then there exists a constant C such that the
bounds

‖u(t)‖H2 ≤ CSup2n
t,∞(u)(‖u0‖H2 + Supt,2(W∆)) ,

‖u(t)‖H2 ≤ CSup2n
t,∞(u)(

1

t
‖u0‖L2 + Supt,2(W∆)) ,

hold for all t ≤ 1 almost surely.

Proof. From Duhamel’s formula, we obtain the bound

‖u(t)‖H1 ≤ ‖u0‖H1 +

∫ t

0

C√
t− s

‖f ◦ u(s)‖L2 ds+ Supt,1(W∆)

≤ ‖u0‖H2 + C
√
tSupnt,∞(u) + Supt,1(W∆) .

At this stage, we use that since f is a polynomial of degree n, there exists a constant C
such that

‖f ◦ u‖H1 ≤ C(1 + ‖u‖nL∞ + ‖u‖n−1
L∞ ‖u‖H1) . (8.13)

Using Duhamel’s formula again, this yields

‖u(t)‖H2 ≤ ‖u0‖H2 +

∫ t

0

C√
t− s

‖f ◦ u(s)‖H1 ds+ Supt,2(W∆)

≤ ‖u0‖H2 +

∫ t

0

C√
t− s

(1 + ‖u(s)‖nL∞ + ‖u(s)‖n−1
L∞ ‖u(s)‖H1) ds

+ Supt,2(W∆)
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≤ ‖u0‖H2 +

∫ t

0

C√
t− s

(
Supnt,∞(u) + Supn−1

t,∞ (u)(‖u0‖H2

+
√
sSupnt,∞(u) + Supt,1(W∆))

)
ds+ Supt,2(W∆) .

Integrating the last term yields the first bound. The second bound can be obtained in
exactly the same way, using the smoothing properties of the semigroup generated by
the Laplacian.

As a consequence, we obtain the following bound on the exponential moments in
H2 of the solution starting from any initial condition:

Proposition 8.11 For every T > 0, there exists a constant C > 0 such that

E exp(‖u(T )‖1/nH2 ) ≤ C ,

for every initial condition u0 ∈ H2.

Proof. Without loss of generality, we set T = 1. Combining Proposition 8.10 and the
Markov property, we see that there exists a constant C > 0 such that

‖u(1)‖H2 ≤ C
(

sup
1
2≤s≤1

‖u(s)‖nL∞
)(
‖u( 1

2 )‖L2 + Sup1,2(W∆)
)

≤ C
(

sup
1
2≤s≤1

‖u(s)‖nL∞
)

Sup1,2(W∆) .

The requested bound then follows from (8.12) and the fact that Sup1,2(W∆) has Gaus-
sian tails by Fernique’s theorem.

We now turn to bounds on the Jacobian J for (8.10). Recall from (3.10) that, given
any “tangent vector” ξ, the Jacobian Js,tξ satisfies the random PDE

d

dt
Js,tξ = ∆Js,tξ + (Df ◦ u)(t)Js,tξ ,

where Df denotes the derivative of the map f . Our main tool is the fact that, from
Assumption RD.1, we obtain the existence of a constant C > 0 such that

〈Df (u)v, v〉 ≤ C|v|2 ,

for every u, v ∈ R`. In particular, we obtain the a priori L2 estimate:

d

dt
‖Js,tξ‖2L2 = −2‖∇Js,tξ‖2L2 + 2〈Js,tξ, (Df ◦u)(t)Js,tξ〉 ≤ 2C‖Js,tξ‖2L2 , (8.14)

so that ‖Js,tξ‖L2 ≤ eC(t−s)‖ξ‖L2 almost surely. We now us similar reasoning to obtain
a sequence of similar estimates in smoother spaces.

Proposition 8.12 For any u0 ∈ H2, the Jacobian satisfies the operator bounds

‖Js,t‖L2→L2 ≤ C

‖Js,t‖L2→H1 ≤ C
( 1√

t− s
+ Supnt,∞(u)

)
,

‖Js,t‖H1→H1 ≤ CSupnt,∞(u) ,

‖Js,t‖H2→H2 ≤ CSup4n
t,∞(u)(‖u0‖H2 + Supt,2(W∆))

‖Js,t‖H1→H2 ≤ CSup4n
t,∞(u)(‖u0‖H2 + Supt,2(W∆)) +

C√
t− s
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for 0 ≤ s < t ≤ 1 with Supt,∞ defined just before Proposition 8.10.

Proof. The first estimate is just a rewriting of the calculation before the Proposition. As
in the proof of the a priori bounds for the solution, we are going to use a bootstrapping
argument, starting from the bound (8.14). Applying Duhamel’s formula and using the
notation Supt,∞ as before, we obtain

‖Js,tξ‖H1 ≤ ‖ξ‖H1 +

∫ t

s

C√
t− r

‖(Df ◦ u)(r)Js,rξ‖L2 dr

≤ ‖ξ‖H1

(
1 + Supn−1

t,∞ (u)
∫ t

s

C√
t− r

eC(r−s) dr
)

≤ ‖ξ‖H1

(
1 + CSupn−1

t,∞ (u)eC|t−s|
√
t− s

)
≤ ‖ξ‖H1CSupn−1

t,∞ (u)eC|t−s| .

(And similarly for the second bound.) Regarding the H2 norm of the Jacobian, we use
the fact that there is a constant C such that the bound

‖Df (u)v‖H1 ≤ C(‖u‖n−1
L∞ ‖v‖H1 + ‖u‖n−2

L∞ ‖∇u‖L4‖v‖L4)

≤ C‖u‖n−2
L∞ ‖u‖H2‖v‖H1

holds. Hence we get similarly to before

‖Js,tξ‖H2 ≤ ‖ξ‖H2 +

∫ t

s

C√
t− r

‖(Df ◦ u)(r)Js,rξ‖H1 dr

≤ ‖ξ‖H2 +

∫ t

s

C√
t− r

‖u(r)‖n−1
L∞ ‖u(r)‖H2‖Js,rξ‖H1 dr

≤ CSup4n
t,∞(u)(‖u0‖H2 + Supt,2(W∆))‖ξ‖H2 ,

which is the requested bound. To obtain the last bound, one proceeds identically except
that one used ‖eL(t−s)ξ‖H2 ≤ C‖ξ‖H1/

√
t− s.

We now turn to the second variation.

Proposition 8.13 For any u0 ∈ H2, the second variation J (2) of the solution to (8.10)
satisfies

‖J (2)
s,t‖H2⊗H2→H2 ≤ CSup13n

t,∞(u)(‖u0‖H2 + Supt,2(W∆))4

for 0 ≤ s < t ≤ 1 with Supt,∞ defined just before Proposition 8.10.

Proof. Again using Duhamel’s formula, we have

J (2)
s,t(ϕ,ψ) =

∫ t

s

Jr,tD
2F (ur)(Js,rϕ, Js,rψ)dr . (8.15)
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To control the H2 norm we will need the following estimate:

‖∇2D2F (u)(ϕ,ψ)‖L2 ≤ C(1 + ‖u‖n−2
∞ )(‖(∇2u)ϕψ‖L2 + ‖(∇u)2ϕψ‖L2

+ ‖(∇2ϕ)ψ‖L2 + ‖ϕ(∇2ψ)‖L2 + ‖(∇ϕ)(∇ψ)‖L2

+ ‖(∇u)(∇ψ)ϕ‖L2 + ‖(∇u)(∇ϕ)ψ‖L2 )

≤ C(1 + ‖u‖n−2
∞ )(‖u‖H2‖ϕ‖L∞‖ψ‖L∞ + ‖u‖2H2‖ϕ‖L∞‖ψ‖L∞

+ ‖ϕ‖H2‖ψ‖L∞ + ‖ϕ‖L∞‖ψ‖H2 + ‖ϕ‖H2‖ψ‖H2

+ ‖u‖H2‖ϕ‖L∞‖ψ‖H2 + ‖u‖H2‖ϕ‖H2‖ψ‖L∞ )

≤ C(1 + ‖u‖n−2
∞ )(1 + ‖u‖2H2 )‖ϕ‖H2‖ψ‖H2 .

In this estimate, we have used repeatedly the fact that ‖v‖L4 ≤ C‖v‖H1 and ‖v‖L∞ ≤
C‖v‖H2 . Using this estimate in (8.15), we obtain

‖J (2)
s,t(ϕ,ψ)‖H2 ≤ CSupn−2

t,∞ (u)
∫ t

s

(1 + ‖ur‖2H2 )‖Jr,t‖H2→H2‖Js,rϕ‖H2‖Js,rψ‖H2dr

≤ CSup17n
t,∞(u)(‖u0‖H2 + Supt,2(W∆))5‖ψ‖H2‖ϕ‖H2 ,

which completes the proof.

We now set the stage to prove the analogue of Theorem 5.5 for equation (8.10). We
begin by collecting a number for relevant results implied by the preceding calculations.
We will work in H2 since this will be the base space for what follows.

Proposition 8.14 Define V (u) = ‖u‖1/nH2 . Then, for every p > 0 there exists a constant
Cp and, for every η > 0 and p > 0 there exists a constant Cη,p so that the bounds

E sup
1/2≤t≤1

‖u(t)‖pH2 ≤ Cp

E sup
1/2≤s<t≤1

‖Js,t‖pH2→H2 ≤ Cp

sup
0≤s<t≤1

E‖Js,t‖pH2→H2 ≤ exp(ηpV (u) + pCη,p)

sup
0≤s<t≤1

E‖J (2)
s,t‖

p
H2⊗H2→H2 ≤ exp(ηpV (u) + pCη,p)

hold for all u0 ∈ H2.

Proof. The first two bounds are a consequence of Propositions 8.11, 8.12 and 8.8.
In order to get the second two bounds, note that

sup
0≤s<t≤1

E‖J (2)
s,t‖

p
H2⊗H2→H2 ≤ Cp(1 + ‖u0‖H2 )(17n+5)p

= exp
(

(17n+ 5)p log(1 + ‖u0‖H2 ) + logCp
)

,

as a consequence of Propositions 8.13, 8.11 and 8.8. A similar bound holds for J .
Since, for any positive q, r, η,K there exists a Cq,r,η,K so that q log(1+x)+ log(K) ≤
ηxr + Cq,r,η,K for all x ≥ 0, the quoted bound holds.

We assume from now on that the gk used in the definition of the forcing all belong
to H4. We now construct a particular subset of the An defined in Section 6.2 using on
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the highest degree nonlinear term. By doing so we obtain only constant vector fields,
thus trivializing Assumption C.2 in light of Lemma 8.3. Setting Ã1 = {g1, · · · , gd}, we
define recursively Ãk+1 = Ãk∪{Fn(h1, · · · , hn) : hj ∈ Ãk} and Ã∞ =

⋃
Ãk. Notice

that since gk ∈ H4, we know that all of the Ãn ⊂ H4 since H4 is a multiplicative
algebra in our setting.

Proposition 8.15 If span(Ã∞) is dense in H2 then given any H2-orthogonal projec-
tion Π onto a finite dimensional subspace, there exists θ > 0 such that Assumption B.1
holds with U (u) = Ψθ

0.

Proof. Proposition 8.14 guarantees that all of the assumptions of Theorem 6.7 hold
except Assumption C.2. However since by construction all of the vector fields in Ãn
are constant Assumption C.2 clearly holds with Λ a constant if Π is an orthogonal
projection onto a subspace of span(Ãn). Lemma 8.3 furthermore shows that it actually
holds for any finite rank orthogonal projection.

Let ΠM be the projection on the eigenfunctions of the Laplacian with eigenvalues
smaller than M2. We will now restrict ourselves to such a projection since it allows
for easy verification of the pathwise smoothing/contracting properties needed for As-
sumption B.4. We have indeed the following bound:

Proposition 8.16 Given any positive η, r and p, there exists a Cη,r,p so that the bound

E‖J0,1Π⊥M‖
p
H2→H2 ≤ exp(pη‖u0‖rH2 − p log(M ) + pCη,r,p)

holds for all u0 ∈ H2, and all M ∈ N.

Proof. First observe that

‖J0,1Π⊥M‖H2→H2 ≤ ‖J0,1‖H1→H2‖Π⊥M‖H2→H1 ≤M−1‖J0,1‖H1→H2

≤ CM−1Sup4n
1,∞(‖u0‖H2 + Sup1,2(W∆))

≤ CM−1Sup1,2(W∆)4n+1(‖u0‖H2 + 1)4n+1

Raising both sides to the power p, taking expectations, and using the fact that the law
of Sup1,2(W∆) has Gaussian tails, we obtain

E‖J0,1Π⊥M‖
p
H2→H2 ≤ exp(p(4n+ 1) log(1 + ‖u0‖)− p log(M ) + pCp) .

The claim now follows from the fact that, for any η > 0 and r > 0, there exist a Cη,r
with (4n+ 1) log(1 + x) ≤ ηxr + Cη,r for all x ≥ 0.

Theorem 8.17 Let Pt be the Markov semigroup on H2 generated by (8.10). If the
linear span of Ã∞ is dense in H2 then, for every orthogonal finite rank projection
Π: H2 → H2, for every p > 0, and for every α > 0, there exists a constant C(α, p,Π)
such that the bound (5.1) on the Malliavin matrix holds with U = 1.

Proof. The result follows from Theorem 6.7. One can check that Assumption A.1
holds with H = H2, a = 0, γ? = β? = ∞ since H` is a multiplicative algebra for
every ` ≥ 2 (this is true because we restricted ourselves to dimension m ≤ 3). Since
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the most involved part is the assumption on the adjoint, part 3, we give the details for
that one. One can verify that the adjoint of DN (u) inH acts on elements v inH∞ as

DN∗(u)v = ∆−2f ′(u)∆2v .

(This is because H is the Sobolev space H2 and not the space L2.) The claim then
follows from the fact that the multiplication by a smooth enough function is a bounded
operator in every Sobolev space H` with ` ∈ R.

Since Assumption C.2 (with Λα a constant depending on Π) can be verified by
using Lemma 8.3, it remains to verify Assumption C.1 with Ψ0 = 1. This in turn is an
immediate consequence of Proposition 8.14.

Combining all of these results, we finally obtain the following result on the asymp-
totic strong Feller property of a general reaction-diffusion equation:

Theorem 8.18 Let Pt be the Markov semigroup on H2 generated by (8.10) and let
Assumptions RD.1 and RD.2 hold. If the linear span of Ã∞ is dense inH2 then, for any
ζ > 0, there exists a positive constant C so that for every u ∈ H2, and ϕ : H2 → R
on has

‖DPtϕ(u)‖L2→R ≤ C(‖ϕ‖L∞ + e−ζt sup
v∈H2

‖Dϕ(v)‖H2→R) . (8.16)

In particular, Pt has the asymptotic strong Feller property in H2.

Remark 8.19 It is easy to infer from the a priori bounds given in Propositions 8.10,
8.11, 8.12 and 8.13 that the assumptions of our ‘all purpose’ Theorem 8.1 hold with
V (u) = ‖u‖α for a sufficiently small exponent α. However, the bound (8.3) is slightly
weaker than the bound (8.16). This shows that it may be worth under some circum-
stances to make the effort to apply the more general Theorem 5.5.

Remark 8.20 As a corollary, we see that for the semigroup on E , one has

‖DPtϕ(u)‖ ≤ C(‖ϕ‖L∞ + e−ζt‖Dϕ‖L∞) ,

where all the derivatives a Fréchet derivatives of functions from E to R.
In particular, in space dimension m = 1, the same bound is obtained in the space

H1 since one then has H1 ⊂ E .

Proof. The result follows from Theorem 5.5. Fix Π = ΠM , the projection onto the
eigenfunctions of ∆ with eigenvalues of modulus less than M2. The constant M is
going to be determined later on. Assumption B.2 with V (u) = ‖u‖1/nH and η′ = 0
follows immediately from Proposition 8.11. Fix any p̄ > 10 and any positive η < 1/p̄.
Assumption B.3 then follows from Proposition 8.14. It then follows from Proposi-
tion 8.16 that we can choose the value of M in the definition of Π sufficiently large so
that Assumption B.4 holds and such that (CΠ − CJ )/2 − ηCL > ζ. Since, in view of
Theorem 8.17, Assumption B.1 holds with U = 1, we thus obtain from Theorem 5.5
the bound

‖DPtϕ(u)‖H2→R ≤ Ceη‖u‖
1/n

(‖ϕ‖L∞ + e−ζt sup
v∈H2

‖Dϕ(v)‖H2→R) . (8.17)
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In order to obtain (8.16), we note that one has

E‖J0,2‖2L2→H2 ≤ E‖J0,1‖2L2→L2‖J1,2‖2L2→H2 ≤ CE‖J1,2‖2L2→H2 ≤ C , (8.18)

whereC is a universal constant independent of the initial condition. Here, we combined
the bounds of Proposition 8.12 with Proposition 8.8 in order to obtain the last bound.
We thus have

‖DPtϕ(u)‖L2→R = ‖DP2Pt−2ϕ(u)‖L2→H2

≤ E‖DPt−2ϕ(u2)‖H2→R‖J0,2‖L2→H2

≤ C(‖ϕ‖L∞ + e−ζt sup
v
‖Dϕ(v)‖H2→R)E(e2η‖u2‖1/n‖J0,2‖L2→H2) ,

where we made use of (8.17) to obtain the last inequality. The requested bound now
follows from (8.18) and Proposition 8.11.

8.4 Unique ergodicity of the stochastic Ginzburg-Landau equation
In this section, we show under very weak conditions on the driving noise that the
stochastic real Ginzburg-Landau equation has a unique invariant measure. Recall that
this equation is given by

du(x, t) = ν∂2
xu(x, t) dt+ ηu(x, t) dt− u3(x, t) dt+

d∑
j=1

gj(x) dWj(t) , (8.19)

where the spatial variable x takes values on the circle x ∈ S1 and the driving func-
tions gj belong to C∞(S1,R). The two positive parameters ν and η are assumed to be
fixed throughout this section. This is a particularly simple case of the type of equation
considered above, so that Theorem 8.18 applies. The aim of this section is to show
one possible technique for obtaining the uniqueness of the invariant measure for such
a parabolic SPDE. It relies on Corollary 2.2 and yields:

Theorem 8.21 Consider (8.19) and suppose that
1. there exists a linear combination g of the gj that has only finitely many simple

zeroes,
2. the smallest vector space containing all the gj and closed under the operation

(f, g, h) 7→ fgh is dense in H1(S1).
Then (8.19) has exactly one invariant probability measure.

Remark 8.22 The second assumption is satisfied for example if d ≥ 3 and g1(x) = 1,
g2(x) = sinx and g3(x) = cosx.

Remark 8.23 We believe that the first condition in Theorem 8.21 is not needed, since
in finite dimensions such a Lie bracket condition implies global controllability for poly-
nomial systems of odd degree. See for example [Jur97].

Remark 8.24 Actually, we could have relaxed the regularity assumption on the gj’s.
If we choose H = H1, γ? = 2ε − 1, a = 1 − ε, and β? = 1, we can check that
Assumption A.1 is satisfied as soon as gj ∈ H1+4ε. Furthermore, in this case, all
the relevant Lie brackets for assumption 2 in Theorem 8.21 are admissible, so that its
conclusion still holds.
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Looking at Corollary 2.2, the two main ingredients needed to prove Theorem 8.21
are the establishment of the estimate in (1.2) and the needed form of irreducibility. The
first will follows almost instantly from the second assumption of Theorem 8.21 which
ensures that span(Ã∞) is dense in H1. The irreducibility is given by the following
proposition whose proof is postponed to the end of this section.

Proposition 8.25 Consider (8.19) under the second condition in Theorem 8.21. Then
there exists a positive K so that for any ε > 0 there is a v with ‖v‖H1 ≤ K and a
T > 0 so that PT (u0,Bε(v)) > 0 for all u0 ∈ H1. Here Bε(v) is the ε ball in the
H1–norm.

Proof of Theorem 8.21. The existence of an invariant probability measure for (8.19)
is standard, see for example [Cer99]. Furthermore, since we are working in space
dimension 1, H1 is already a multiplicative algebra and one can retrace the proof of
Theorem 8.18 for H = H1. This shows that assumption 2. implies that the semigroup
generated by (8.19) satisfies (1.2) on the Hilbert space H = H1(S1). It therefore
remains to show that assumption 1. implies the assumption of Corollary 2.2.

In fact we have established much more than just uniqueness of the invariant mea-
sure. We now use the results from [HM08] to establish a spectral gap. For any Fréchet
differentiable functions from ϕ : H1 → R define the norm ‖ϕ‖Lip = supu(|ϕ(u)| +
‖Dϕ(u)‖H1→R). In turn we define a metric on probability measures µ, ν on H1 by
d(µ, ν) = sup{

∫
ϕdµ−

∫
ϕdν : ‖ϕ‖Lip ≤ 1}. Combining (8.16), Proposition 8.25 and

[HM08, Theorem 2.5] yields the following corollary to Theorem 8.21.

Corollary 8.26 Under the assumption of Theorem 8.21, there exist positive constants
C and γ so that d(P∗t µ,P∗t ν) ≤ Ce−γtd(µ, ν) for any two probability measures µ and
ν on H1 and t ≥ 1.

Proof of Proposition 8.25. Fix an arbitrary initial condition u0 and some ε > 0. Our
aim is to find a target v, bounded controls Vj(t), and a terminal time T > 0, so that the
solution to the controlled problem

∂tu(x, t) = ν∂2
xu(x, t) + ηu(x, t)− u3(x, t) + f (x, t) , f (x, t) def

=

d∑
j=1

gj(x)Vj(t) ,

(8.20)
satisfies ‖u(T ) − v‖H1 ≤ ε. Furthermore, we want to be able to choose v such that
‖v‖H1 ≤ K for some constant K independent of ε. The claim on the topological
supports of transition probabilities then follows immediately from the fact that the Itô
map (u0,W ) 7→ ut is continuous in the second argument in our case.

The idea is to choose f of the form

f (x, t) =

{
ε−γg(x) for 1 ≤ t ≤ 2,

0 otherwise,

and to set T = 3. We furthermore set v to be the solution at time 1 for the uncontrolled
equation (that is (8.20) with f = 0) with an initial condition v0 satisfying

ν∂2
xv0(x) + ηv0(x)− v3

0(x) + ε−γg(x) = 0 , (8.21)
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for some exponent γ > 0 to be determined. Such a v0 always exists since the coercive
“energy functional”

E(v) =

∫
S1

(ν
2
|∂xv(x)|2 − η

2
|v(x)|2 +

1

4
|v(x)|4 − ε−γg(x)v(x)

)
dx

has at least one critical point. Even though v0 is in general very large (see however
Lemma 8.27 below), it follows from (8.12) that the target v constructed in this way is
bounded independently of ε.

The remaining ingredient of the proof are Lemmas 8.28 and 8.27 below. To show
that this is sufficient, note first that (8.12) implies the existence of a constant C such
that ‖u(1)‖L2 ≤ C independently of u0. It then follows from Lemmas 8.28 and 8.27
that (choosing for example β = γ/14) there exists a constant C such that one has the
bound

‖u(2)− v0‖L2 ≤ Cε
γ
6 .

Since the uncontrolled equation expands at rate at most η, this immediately yields
‖u(T ) − v‖L2 ≤ Cε

γ
6 . On the other hand, we know from Proposition 8.10 that there

exists a constant C such that ‖u(T )− v‖H2 ≤ C, so that

‖u(T )− v‖H1 ≤ (‖u(T )− v‖L2‖u(T )− v‖H2)
1/2 ≤ Cεγ/12 ,

and the claim follows by choosing γ > 12.

Lemma 8.27 There exists a constant Cv independent of ε < 1 such that the bound
‖v0(x)‖L∞ ≤ Cvε−γ/3 holds.

Proof. It follows immediately from (8.21), using the fact that ∂2
xv0 ≤ 0 at the maxi-

mum and ∂2
xv0 ≥ 0 at the minimum.

Lemma 8.28 For every exponent β ∈ [0, γ/4] there exists a constant C such that the
bound ∫

S1

(u− v0)(u3 − v3
0) dx ≥ Cε−2β

∫
S1

(u− v0)2 dx− Cε
γ−13β

3

holds for every ε ≤ 1 and every u ∈ L2(S1).

Proof. The proof is based on the fact that since g has only isolated zeroes, the function
v0 necessarily has the property that it is large at most points. More precisely, consider
some exponent β ∈ [0, γ/3] and define the set A = {x ∈ S1 : |v0(x)| > ε−β}.
We claim that there then exists a constant C such that the Lebesgue measure of A
is bounded by |A| ≤ Cεα for α = min{γ − 3β, γ−β3 }. Indeed, consider the set Ã of
points such that |g(x)| ≤ 2εα. Since g is assumed to be smooth and have simple zeroes,
|Ã| ≤ Cεα and the complement of Ã consists of finitely many intervals on which g
has a definite sign.

Consider one such interval I on which g(x) > 9εα, so that the definition of v0

yields the estimate v′′0 < −9εα−γ−v0 +v3
0 . It follows that, for every x ∈ I , one either

has v′′0 (x) < −εα−γ , or one has v0(x) > 2ε
α−γ

3 ≥ 2ε−β (since we set α ≤ γ − 3β).
We conclude that I ∩ A consists of at most two intervals and that v0(x) > ε

α−γ
3 for

every x ∈ I ∩ A, so that |I ∩ A| ≤ Cε
γ−α−β

2 and the bound follows. (The same
reasoning but with opposite signs applies to those intervals on which g(x) < −9εα.)
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This yields the sequence of bounds

2

∫
S1

(u− v0)(u3 − v3
0) dx ≥

∫
S1

(u− v0)2(u2 + v2
0) dx

≥ ε−2β

∫
A

(u− v0)2 dx+

∫
Ac

(u− v0)2(u2 + v2
0) dx

≥ ε−2β

∫
A

(u− v0)2 dx+
1

4

∫
Ac

(u− v0)4 dx

≥ ε−2β

∫
A

(u− v0)2 dx+
1

4|Ac|

(∫
Ac

(u− v0)2 dx
)2

≥ ε−2β

∫
A

(u− v0)2 dx+
C

εα

(
εα−2β

∫
Ac

(u− v0)2 dx− ε2α−4β
)

≥ Cε−2β

∫
S1

(u− v0)2 dx− Cεα−4β ,

which is the required estimate.
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