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Abstract
We consider the KPZ equation in one space dimension driven by a stationary
centred space-time random field, which is sufficiently integrable and mixing, but
not necessarily Gaussian. We show that, in the weakly asymmetric regime, the
solution to this equation considered at a suitable large scale and in a suitable
reference frame converges to the Hopf-Cole solution to the KPZ equation driven
by space-time Gaussian white noise. While the limiting process depends only on
the integrated variance of the driving field, the diverging constants appearing in
the definition of the reference frame also depend on higher order moments.
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2 INTRODUCTION

1 Introduction

Over the past fifteen years or so, there has been a great deal of interest in reaching
a mathematical understanding of the “KPZ fixed point”, a conjectured self-similar
stochastic process describing the large-scale behaviour of one-dimensional inter-
face growth models [KPZ86]. While substantial progress has been achieved for
microscopic models presenting some form of “integrable structure” (see [BDJ99,
OY02, SS10, BQS11, ACQ11, BC14] and references therein for some of the major
milestones), the underlying mechanisms leading to the universality of the KPZ
fixed point in general are still very poorly understood.

A related question is that of the universality of the “crossover regime” in weakly
asymmetric interface fluctuation models. Recall that the large-scale behaviour of
perfectly symmetric models is expected to be governed by the Edwards-Wilkinson
model [EW82], i.e. the additive stochastic heat equation. Weakly asymmetric
models are thus expected to exhibit a crossover regime where they transition from a
behaviour described by the Edwards-Wilkinson model to one described by the KPZ
fixed point. It is conjectured that this behaviour is also universal and is described
by the KPZ equation [KPZ86], a nonlinear stochastic PDE formally given by

∂th = ∂2
xh+ λ (∂xh)2 + ξ . (1.1)

Here, ξ denotes space-time Gaussian white noise, λ ∈ R, and the spatial variable x
takes values in the circle S1. One then recovers the Edwards-Wilkinson model for
λ = 0, while the KPZ fixed point corresponds to λ =∞ (modulo rescaling).

Mathematically rigorous evidence for this was first given in [BG97], where the
authors show that the height function of the weakly asymmetric simple exclusion
process converges to (1.1) (interpreted in a suitable sense). More recently, this result
was extended to several other discrete models in [AKQ10, GJ14, DT13, CT15].
One difficulty arising is that it is not clear a priori what (1.1) even means: solutions
are not differentiable, so that (∂xh)2 does not exist in the classical sense. The
trick used in [BG97] to circumvent this is that the authors consider the so-called
“Hopf-Cole solution” which, by definition, is given by h = λ−1 log(Z), where Z
solves dZ = ∂2

xZ dt+ λZ dW in the Itô sense, see [DPZ14].
A more direct interpretation of (1.1) was recently given in [Hai13] using the

theory of rough paths, where it was also shown that this interpretation generalises
the Hopf-Cole solution. (In the sense that the solution theory relies on more input
data than just a realisation of the driving noise ξ, but there is a canonical choice
for this additional data for which the solution then coincides with the Hopf-Cole
solution.) A somewhat different approach leading to the same result is given by
the theory of regularity structures developed in [Hai14] (see also [Hai15] for an
introduction to the theory). Its application to the KPZ equation is explained for
example in [FH14], but was already implicit in [Hai14, HP14].



INTRODUCTION 3

In [HQ15], the authors exploit this theory to show that a rather large class of
continuous weakly asymmetric interface fluctuation models is indeed described by
the KPZ equation in the crossover regime. These models are of the type

∂th = ∂2
xh+

√
εP (∂xh) + ζ ,

for ζ a smooth space-time Gaussian field with finite range correlations and P an
even polynomial. In that article, the Gaussianity assumption on the noise is used in
an essential way to show convergence of an associated “model” (in the sense of the
theory of regularity structures) to the limiting model used in [Hai13, FH14].

The purpose of the present article is to remove the Gaussianity assumption of
[HQ15]. Since we focus on dealing with the non-Gaussian character of our model,
we only consider the case of quadratic nonlinearities, but we expect that a result
analogous to that of [HQ15] also holds in our context. We assume that the driving
noise is given by a stationary and centred space-time random field ζ with suitable
regularity, integrability, and mixing conditions given below. It is important to note
that we do not assume that ζ is white in time, so martingale-based techniques as
used for example in [BG97] and more recently in [MW14] do not apply here.

Given a non-Gaussian random field ζ as above, we consider the equation

∂th = ∂2
xh+

√
ελ (∂xh)2 + ζ .

Rescaling it by setting h̃ε(t, x) = ε
1
2h(ε−2t, ε−1x) yields

∂th̃ε = ∂2
xh̃ε + λ(∂xh̃ε)2 + ζ̃ε , (1.2)

where ζ̃ε = ε−3/2ζ(ε−2t, ε−1x). Our main result, Theorem 1.3 below, then states
that there exists a suitable choice of inertial reference frame such that, in this
frame, h̃ε converges as ε → 0 to the Hopf-Cole solution of the KPZ equation.
One interesting fact is that the “vertical speed” Cε of this reference frame differs
by a term of order ε−1/2 from what it would be if ζ were replaced by a centred
Gaussian field with the same covariance. This difference depends to leading order
on the third cumulants of ζ and to order 1 on its fourth cumulants. The limiting
solution however depends only on the covariance of ζ, which is why we call our
result a “Central Limit Theorem”. We will also see that unless the covariance of
ζ is invariant under spatial inversion x 7→ −x, the frame in which convergence
takes place also has a “horizontal speed” of order one. (This is also the case when
the driving noise is Gaussian, but it didn’t arise in [HQ15, HP14] since symmetry
under spatial inversion was assumed there.)

Our assumptions on the space-time random field ζ are twofold. First, we need
translation invariance and sufficient regularity / integrability.
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Assumption 1.1 The random field ζ is stationary, centred and Lipschitz con-
tinuous. Furthermore, E(|ζ(z)|p + |∇ζ(z)|p) < ∞ for every p > 0, and ζ is
normalised so that E(ζ(0)ζ(z)) integrates to 1.

Our second assumption is that there is enough independence. In order to
formulate it, given K ⊂ R2, we denote by FK the σ-algebra generated by the point
evaluations {ζ(z) : z ∈ K}.

Assumption 1.2 For any two compact sets K1, K2 ⊂ R2 such that infzi∈Ki |z1 −
z2| ≥ 1, FK1 and FK2 are independent.

One typical example of a random field ζ satisfying these assumptions is as
follows. Let µ be a finite positive measure on C1

0(R2) which is supported on
the set of functions with support in the centred ball of radius 1/2, and such that∫
‖ϕ‖pC1 µ(dϕ) < ∞ for every p. Denote by µ̂ a realisation of the Poisson point

process on C1
0 (R2)× R2 with intensity µ⊗ dz and set

ζ(z) =

∫
ϕ(z − z′) µ̂(dϕ⊗ dz′)−

∫ ∫
ϕ(z) dzµ(dϕ) .

Then it is immediate that ζ satisfies Assumptions 1.1 and 1.2. Furthermore, nonlin-
ear combinations F (ζ1, . . . , ζk) of fields of this type still satisfy these assumptions
provided that F grows at most polynomially at infinity.

Given this setting, we state the main result of this article as the following theo-
rem. Note that since we consider periodic boundary conditions, we need to replace
the field ζ by a suitable “periodisation”, which is formulated in Assumption 2.1
below. For simplicity of notation we still denote by ζ̃ε the noise obtained from
rescaling the “periodised” random field.

Theorem 1.3 Let ζ be a random field satisfying Assumptions 1.1 and 1.2. Let h(ε)
0

be a sequence of smooth functions on S1 that converge in Cβ as ε→ 0 to a limit
h0 ∈ Cβ with β ∈ (0, 1). Let h̃ε be the solution to (1.2) on S1 with initial condition
h(ε)

0 and with ζ̃ε as in (2.2) below satisfying Assumption 2.1. Then there exist
velocities vx and v(ε)

y such that, for every T > 0, the family of random functions
h̃ε(t, x − vxt) − v(ε)

y t converges in law as ε → 0 to the Hopf-Cole solution of
the KPZ equation (1.1) with initial data h0 in the space Cη([0, T ]× S1), for any
η ∈ (0, 1

2
∧ β).

Furthermore, one has

v(ε)
y = λε−1C0 + 2λ2ε−1/2C1 + λ3c , vx = 4λ2ĉ , (1.3)

where C0 and ĉ only depend on the second moment of the random field ζ , while C1

depends on its third moment and c depends on the second and fourth moments. If
E(ζ(0, 0)ζ(t, x)) is even as a function of x, then ĉ = 0.
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Here Cα is the Hölder space of functions or distributions with regularity α as in
[Hai14]. (This coincides with the parabolic Besov space Bα

∞,∞,loc.)

Remark 1.4 The constant C0 is the one given by the “naı̈ve” Wick ordering and
can be explicitly expressed as

C0 =

∫
R4

P ′(z)P ′(z̄)κ2(z − z̄) dz dz̄ , (1.4)

where P denotes the heat kernel, P ′ is its space derivative, and κ2(z − z̄) =
E(ζ(z)ζ(z̄)). (For comparison we should identify κ2 here with % ∗ % where % is the
mollifier function in [HQ15].)

Remark 1.5 At first sight, the result may appear somewhat trivial since, by the
classical central limit theorem, ζ̃ε → ξ weakly so that it may not be surprising that
solutions to (1.2) converge to solutions to (1.1). The problem of course is that the
solution map to (1.1) is not continuous in any of the usual topologies in which this
weak convergence takes place. This is apparent in the fact that, in order to obtain
the right limit, we need to perform a non-trivial change of reference frame with
divergent velocities that depend on higher order cumulants of ζ .

Proof of Theorem 1.3. Let hε(t, x) def
= h̃ε(t, x− vxt)− v(ε)

y t. Then it is immediate
to check that hε satisfies the equation

∂thε = ∂2
xhε + λ(∂xhε)2 − vx ∂xhε − v(ε)

y + ζε , (1.5)

where ζε is defined in (2.2) below. To prove the convergence of hε as stated in
the theorem, we apply the theory of regularity structures. The theory is briefly
reviewed in Section 2.2, where the regularity structure T suitable for the study of
equation (1.1) is defined. The proof of Theorem 1.3 then follows in the following
way.

We consider the (local) solution map to the abstract fixed point problem for
functions H taking values in a suitable regularity structure (see (2.12) below)

H = P1t>0(λ(DH)2 + Ξ) + Ph0 , (1.6)

where P is a suitable operator representing space-time convolution with the heat
kernel and Ξ is an element in the regularity structure representing the noise term. It
is then known from [Hai13, Hai14, FH14, HP14, HQ15] that there exists a natural
model Ẑ = (Π̂, Γ̂) for T such that ifH solves (1.6) for Ẑ, thenRH coincides with
the Hopf-Cole solution to the KPZ equation. Furthermore, the model in question
is obtained as a limit of renormalised lifts of smooth Gaussian approximations to
space-time white noise.

As a next step, we define a family of renormalised models Ẑε (see Section 3)
and show that they obey the following two crucial properties:
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• By appropriately choosing the values of the renormalisation constants, we
can ensure that Ẑε converges in distribution as ε → 0 to Ẑ. This is the
content of Theorem 6.5 below.
• By appropriately choosing vx and v(ε)

y , we can ensure that if Hε solves
(1.6) for Ẑε, then RHε coincides with the solution hε to (1.5). See (3.3),
combined with the fact that the correct choice of renormalisation constants
for the first step is given by (3.9). In particular vx and v(ε)

y indeed have the
forms claimed in (1.3).

As a consequence of [Hai14, Thm 7.8], these two properties immediately yield the
existence of a random time τ such that hε, when restricted to the interval [0, τ ],
converges in law to the solution to the Hopf-Cole solution to the KPZ equation
in Cη([0, T ]× S1), for every η ∈ (0, 1

2
∧ β), see also the discussion at the end of

Section 2.2.
The extension of the convergence result to any finite deterministic time interval

follows from [Hai14, Prop. 7.11] and the a priori knowledge that Hopf-Cole
solutions to the KPZ equation are global and α-Hölder continuous for every α <
1/2.

Structure of the article
The article is organised as follows. We start with the basic setup of our problem
in Section 2, which includes some more discussions about the assumptions on the
noise, followed by a brief introduction to the theory of regularity structures as the
framework for our proof. In Section 3, we then define a collection of renormalisa-
tion constants which, through the action of the renormalisation group, determines a
family of renormalised models in the sense of [Hai14]. In Section 4, we then obtain
bounds on arbitrary moments of these renormalised models, uniformly in the small
parameter ε. This is the most technical step: because our models are built from a
non-Gaussian random field, their moments are not automatically bounded by their
variance, unlike in the Gaussian case where equivalence of moments holds. The
proof of these moment bounds depends on some general technical tools developed
in Section 5. The main result of that section is Corollary 5.14, which provides
conditions that can be straightforwardly checked and yield the desired moment
estimates. In the last section, Section 6, we show Theorem 6.5 which identifies
the limiting model as the “KPZ model”, and therefore implies that in a suitable
reference frame the limiting solution does indeed coincide with the Hopf-Cole
solution to the KPZ equation driven by Gaussian white noise.

Acknowledgements
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2 Framework

2.1 Assumption on noise
We assume that ζ satisfies Assumption 1.1 and 1.2. Let then {ζ (ε)}ε∈(0,1] be a family
of random fields with the following properties.

Assumption 2.1 The fields ζ (ε) are stationary, almost surely periodic in space with
period 1/ε, and satisfy supε∈(0,1] E|ζ (ε)(0)|p <∞ for every p ≥ 1.

Furthermore, for any two sets K1, K2 ⊂ R2 that are periodic in space with
period 1/ε and such that infzi∈Ki |z1 − z2| ≥ 1, F (ε)

K1
and F (ε)

K2
are independent,

where F (ε)
K is the σ-algebra generated by {ζ (ε)(z) : z ∈ K}.

Finally, for every ε > 0, there is a coupling of ζ and ζ (ε) such that, for every
T > 0 and every δ > 0,

sup
|t|≤Tε−2

sup
|x|≤(1−δ)/(2ε)

lim
ε→0

ε−3E|ζ(t, x)− ζ (ε)(t, x)|2 = 0 . (2.1)

Remark 2.2 We could have replaced (2.1) by a slightly weaker condition, but the
one given here has the advantage of being easy to state. It is also easy to verify in
the examples we have in mind, see Example 2.3 below.

We then set

ζ̃ε(t, x) = ε−3/2ζ (ε)(t/ε2, x/ε) , ζε(t, x) = ε−3/2ζ (ε)(t/ε2, (x−vxt)/ε) , (2.2)

where vx will be specified in Subsection 3.2. Note that both ζε and ζ̃ε are periodic
in space with period 1.

Example 2.3 To show that Assumption 2.1 is not unreasonable, consider the
following example. Let µ be a Poisson point process on R2 × [0, 1] with uniform
intensity measure, let ϕ(t, x, a) be a smooth compactly supported function (say
with support in the ball of radius 1), and set

ζ(t, x) =

∫
R2×[0,1]

ϕ(t− s, x− y, a)µ(ds, dy, da) . (2.3)

Let µ(ε) be the periodic extension to R2 × [0, 1] of a Poisson point process on
R × [−1/(2ε), 1/(2ε)] × [0, 1] with uniform intensity measure and let ζ (ε) be
as in (2.3), with µ replaced by µ(ε). Then it is immediate to verify that (2.1) is
satisfied, since the natural coupling between ζ and ζ (ε) is such that ζ = ζ (ε) on
R× [K − 1/(2ε), 1/(2ε)−K], for some fixed K.
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2.2 Regularity structures setup
In order to prove the convergence result stated in Theorem 1.3, we will make use
of the theory of regularity structures developed in [Hai14]. Before delving into the
technical details, we give a short summary of the main concepts of the theory, as
applied to the problem at hand, in this subsection. One can find a more concise
exposition of the theory in the lecture notes [Hai15].

Recall that a regularity structure consists of two pieces of data. First, a graded
vector space T =

⊕
α∈A Tα, where the index setA, called the set of homogeneities,

is a subset of R which is locally finite and bounded from below. In our case, each
Tα is furthermore finite-dimensional. Second, a “structure group” G of continuous
linear transformations of T such that, for every Γ ∈ G, every α ∈ A, and every
τ ∈ Tα, one has

Γτ − τ ∈ T<α with T<α
def
=
⊕
β<α

Tβ . (2.4)

A canonical example is the space of polynomials in d indeterminates, with index
set A = N, Tn consisting of homogeneous polynomials of s-scaled degree n,
and G consisting of translations. We recall here a scaling s ∈ Nd is simply a
vector (s1, . . . , sd) of positive relatively prime integers, and the s-scaled degree of
a monomial Xk def

=
∏d

i=1 X
ki
i , where k = (k1, . . . , kd) is a multi-index, is defined

as |k| def
=
∑d

i=1 siki.
In general, [Hai15, Sec. 8] gives a recipe to build a regularity structure from

any given family of (subcritical in an appropriate sense) semi-linear stochastic
PDEs. In our case, the natural scaling to choose is the parabolic scaling s = (2, 1),
and thus the scaling dimension of space-time is |s| = 3. This scaling defines a
distance ‖x− y‖s on R2 by

‖x‖4
s

def
= |x0|2 + |x1|4 ,

where x0 and x1 are time and space coordinates respectively. To simplify the
notation, in the sequel we will often just write |x| = ‖x‖s for a space-time point x.

The regularity structure relevant for the analysis of (1.1) is then built in the
following way. We write U for a collection of formal expressions that will be
useful to describe the solution h, U ′ for a collection of formal expressions useful to
describe its spatial distributional derivative ∂xh, and V for a collection of formal
expressions useful to describe the right hand side of the KPZ equation (1.1).
We decree that U and U ′ contain at least the polynomials of two indeterminates
X0, X1, denoting the time and space directions respectively. We then introduce
three additional symbols, Ξ, I and I ′, where Ξ will be interpreted as an abstract
representation of the driving noise ζ (or rather ζε), and I and I ′ will be interpreted
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as the operation of convolving with a truncation of the heat kernel and its spatial
derivative respectively. In view of the structure of the equation (1.1), to have a
regularity structure that is rich enough to describe the fixed point problem we
should also decree that

τ, τ̄ ∈ U ′ ⇒ τ τ̄ ∈ V ,
τ ∈ V ⇒ I(τ ) ∈ U , I ′(τ ) ∈ U ′ .

(2.5)

The sets U , U ′ and V are then defined as the smallest collection of formal expres-
sions such that Ξ ∈ V , Xk ∈ U , Xk ∈ U ′, and (2.5) holds. Following [Hai14], we
furthermore decree that τ τ̄ = τ̄ τ and I(Xk) = I ′(Xk) = 0. We then define

W def
= U ∪ U ′ ∪ V .

For each formal expression τ , the homogeneity |τ | ∈ R is assigned in the
following way. First of all, for a multi-index k = (k0, k1), we set |Xk| = |k| =
2k0 + k1, which is consistent with the parabolic scaling s chosen above. We then
set

|Ξ| = −3

2
− κ̄

where κ̄ > 0 is a fixed small number, and we define the homogeneity for every
formal expression by

|τ τ̄ | = |τ |+ |τ̄ | , |I(τ )| = |τ |+ 2 , |I ′(τ )| = |τ |+ 1 .

The linear space T is then defined as the linear span ofW , and Tα is the subspace
spanned by {τ : |τ | = α}. By a simple power-counting argument, one finds
that as long as κ̄ < 1/2, the sets {τ ∈ W : |τ | < γ} are finite for every γ ∈ R,
reflecting the fact that the KPZ equation (1.1) in one space dimension is subcritical.

As in [Hai13], we use a graphical shorthand for the formal expressions inW .
We use dots to represent the expression Ξ, and lines to represent the operator I ′.
Joining of formal expressions by their roots denotes their product. For example,
one has = I ′(Ξ). Writing Ψ = I ′(Ξ) as a shorthand, one also has = Ψ2 and

= ΨI ′(Ψ2), etc. With this notation, the formal expressions inW with negative
homogeneities other than Ξ are given by

| | = −1− 2κ̄ , | | = −1

2
− 3κ̄ , | | = −1

2
− κ̄ ,

| | = | | =− 4κ̄ , | | = | | = −2κ̄ ,
(2.6)

provided that κ̄ > 0 is sufficiently small. We will denote byW− the above formal
expressions with negative homogeneities. In fact, we will never need to consider
the full space T , but it will be sufficient to consider the subspace generated by all
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elements of homogeneity less than some large enough number σ. In practice, it
actually turns out to be sufficient to choose any σ > 3

2
+ κ̄.

The last ingredient of the regularity structure, namely the structure group G,
can also be described explicitly. However, its precise description of G does not
matter in the present paper, so we refrain from giving it. The interested reader is
referred to [Hai14, Sec. 8] as well as [HQ15, Sec. 3] for the more general case in
which the nonlinearity of the equation also contains powers of higher order. The
regularity structure (T ,G) defined here is the same as in [FH14, Chapter 15].

Given the regularity structure, a crucial concept is that of a model for it, which
associates to each formal expression in the regularity structure a “concrete” function
or distribution on Rd. It consists of a pair (Π,Γ) of functions

Π: Rd → L(T ,S ′) Γ: Rd × Rd → G
x 7→ Πx (x, y) 7→ Γxy

where L(T ,S ′) is the space of linear maps from T to the space of distributions,
such that Γxx is the identity and

Πy = Πx ◦ Γxy , ΓxyΓyz = Γxz ,

for every x, y, z ∈ Rd. Furthermore, for every γ > 0, we require that

|(Πxτ )(ϕλx)| . λ|τ | , ‖Γxyτ‖m . |x− y||τ |−m , (2.7)

uniformly over x, y in any compact set of Rd, and over all λ ∈ (0, 1], all smooth
test functions ϕ ∈ B, all m < |τ |, and all τ ∈ T with |τ | < γ. Here, ‖ · ‖m denotes
the norm of the component in Tm,

B = {ϕ : ‖ϕ‖C2 ≤ 1, and ϕ is supported in the unit ball} , (2.8)

and ϕλx(z) denotes the following recentred and rescaled version of ϕ

ϕλx(z) def
= λ−|s|ϕ

(z0 − x0

λ2
,
z1 − x1

λ

)
.

The reason why C2 appears in (2.8) is that this is the smallest integer r such that
r + minτ∈W |τ | > 0.

Besides these requirements, we also impose that our models are admissible.
To define this notion, as in [Hai14], we first fix a kernel K : R2 → R such that
suppK ⊂ {|(t, x)| ≤ 1, t > 0}, K(t,−x) = K(t, x) and K coincides with the
heat kernel in |(t, x)| < 1/2. We also require that for every polynomial Q on R2 of
parabolic degree 2 one has

∫
R2 K(t, x)Q(t, x) dx dt = 0.
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Given this truncated heat kernel K, the set M of admissible models consists of
those models such that, for every multiindex k,

(ΠzX
k)(z̄) = (z̄ − z)k , (2.9)

and such that

(ΠzIτ)(z̄) =

∫
R2

K(z̄ − x)(Πzτ)(dx) (2.10)

−
∑
|k|<|Iτ |

(z̄ − z)k

k!

∫
R2

DkK(z − x)(Πzτ)(dx) .

We refer to [Hai14, Sec. 5] for a discussion on the meaning of these expressions in
general. As an example to illustrate (2.10), for Iτ = with | | = 1

2
− κ̄, one has

(Πz )(z̄) =

∫
R2

(K(z̄ − x)−K(z − x))(Πz )(dx) .

When analysing the objects and in Section 4 we will see how the increment
of K appearing in this expression is exploited.

Remark 2.4 It actually turns out that if Π satisfies the first analytical bound in
(2.7), and the structure group G acts on T in a way that is compatible with the
definition of the admissible model (which is true in our case), then the second
analytical bound in (2.7) is automatically satisfied. This is a consequence of [Hai14,
Thm. 5.14].

Given a continuous space-time function ζε, there is a canonical way of building
an admissible model (Π(ε),Γ(ε)), as in [Hai14, Sec. 8]. First, we set Π(ε)

z Ξ = ζε
independently of z, and we define it on Xk as in (2.9). Then, we define Π(ε)

z

recursively by (2.10), as well as the identity

(Π(ε)
z τ τ̄)(z̄) = (Π(ε)

z τ)(z̄)(Π(ε)
z τ̄)(z̄) . (2.11)

Note that this is only guaranteed to make sense if ζε is a sufficiently regular function.
It was shown in [Hai14, Prop. 8.27] that this does indeed define an admissible
model for every continuous function ζε, and we will call this admissible model the
canonical lift of ζε. However, we emphasize that, unlike in the case of rough paths
[FV06], not every admissible model is obtained in this way, or even as a limit of
such models. In particular, while the renormalisation procedure used in Section 3
preserves the admissibility of models, it does not preserve the property of being a
limit of canonical lifts of regular functions.

It was then shown in [Hai14] how to associate an abstract fixed point problem to
the equation (1.1) in a certain spaceDγ,η of T<γ-valued functions. This space is the
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analogue in this context of a Hölder space of order γ, with the exponent η allowing
for a possible singular behavior at t = 0. In our particular case, the abstract fixed
point problem can be formulated in Dγ,β for γ > 3

2
+ κ̄, and for β > 0 such that

the initial data h0 ∈ Cβ. One of the main results in [Hai14] is the reconstruction
theorem which states that for every U ∈ Dγ,β with γ > 0, there exists a unique
distribution RU such that, near every point z, RU “looks like” ΠzU (z) up to an
error of order γ. The operator U 7→ RU is called the reconstruction operator
associated to the model (Π,Γ).

The idea to formulate this abstract fixed point is to define multiplication,
differentiation, and integration against the heat kernel on elements in Dγ,η, so one
can write

H = P1t>0(λ(DH)2 + Ξ) + Ph0 (2.12)

where Ph0 is the heat kernel acting on the initial data h0 and can be interpreted
as an element of Dγ,β by [Hai14, Lemma 7.5], D is given by DI(τ ) = I ′(τ ), and
the product is simply given by pointwise multiplication in T . The symbol 1t>0

represents the (scalar) indicator function of the set {(t, x) : t > 0} and the linear
operator P represents space-time convolution by the heat kernel in the space Dγ,β ,
in the sense that

RPH = P ∗ RH ,

for every H ∈ Dγ,η for γ > 0 and η > −2. The explicit expression for the operator
P does not matter for our purpose but can be found in [Hai14, Sec. 5], let us just
mention that PH and IH only differ by elements taking values in the linear span
of the Xk and that it satisfies a Schauder estimate.

Theorem [Hai14, Theorem 7.8] shows that, for every admissible model, there
exists a unique T > 0 such that the above fixed point problem has a unique solution
in Dγ,β([0, T ] × S1). If the model is given by the canonical lift (Π(ε),Γ(ε)) of a
continuous function ζε, thenRH coincides with the classical solution to (1.1).

Unfortunately, these canonical lifts do not converge to a limit in M as ε→ 0.
However, we will show that one can build a natural finite-dimensional family
of continuous transformations M̂ε of M such that the “renormalised models”
(Π̂(ε), Γ̂(ε)) def

= M̂ε(Π(ε),Γ(ε)) do converge to an admissible limiting model. These
transformations are parametrised by elements of a renormalisation group R associ-
ated to our regularity structure (T ,G). Since the precise definition of R requires a
bit more understanding of the algebraic properties of our regularity structure and is
not quite relevant to the present article, we simply refer to [Hai14, Section 8].

Once we obtain the convergence of renormalised models, the function h = RH
with R the reconstruction map associated with the limiting model is then the
limiting solution stated in Theorem 1.3. The Hölder regularity of the solution h
is given by the minimum of the regularity of Ph0 and the lowest homogeneity
of elements of U beside the Taylor polynomials which is I(Ξ) with homogeneity
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1/2− κ̄ where κ̄ > 0 is a sufficiently small fixed number, so [Hai14, Prop. 3.28]
yields h ∈ Cη([0, T ]× S1), with η ∈ (1

4
, 1

2
∧ β).

3 Renormalisation

We now give an explicit description of the renormalisation maps M̂ε described
above. These are parametrised by linear mapsMε : T → T belonging to the “renor-
malisation group” R which was introduced in this context in [Hai14, Sec. 8.3]. As a
matter of fact, we only need to consider a certain 5-parameter subgroup of R. This
subgroup consists of elements M ∈ R of the form M = exp(−

∑5
i=1 `iLi) where

the `i are real-valued constants and the generators Li : T → T are determined by
the following contraction rules:

L1 : 7→ 1 , L2 : 7→ 1 , L3 : 7→ 1 , L4 : 7→ 1 , L5 : 7→ 1 .
(3.1)

For Li with i 6= 2, these rules are extended to the whole regularity structure by
setting Liτ = 0 if τ is not the element given above. For L2 however, the above
contraction rule should be understood in the sense that for an arbitrary formal
expression τ , L2τ equals the sum of all expressions obtained by performing a
substitution of the type 7→ 1. For instance, one has

L2 = 2 , L2 = 2 + .

Given an admissible model (Π,Γ) and an element M of the above type, we can
then build a new model (Π̂, Γ̂) = M̂ (Π,Γ) such that the identity

Π̂xτ = ΠxMτ , (3.2)

holds for every τ ∈ T . This is sufficient to determine (Π̂, Γ̂) since in our case
Γ̂ is uniquely determined by Π̂ and the knowledge that the new model is again
admissible, see [Hai14].

Remark 3.1 The fact that M ∈ R can be checked essentially in the same way as
in [HQ15], with the simplification that since we are only interested in a quadratic
nonlinearity, the symbol E never appears. The only minor difference is the ap-
pearance of the generators L2 and L3 here. In fact, using the notations of [Hai14,
Section 8.3], one can check that ∆M = Mτ ⊗ 1 always holds, from which (3.2)
and the “upper triangular condition” [Hai14, Def. 8.41] follow.

Let now (Π,Γ) be the model obtained by the canonical lift of an arbitrary
smooth function ζ, and let (Π̂, Γ̂) = M̂ (Π,Γ) be as above, again with M =
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exp(−
∑5

i=1 `iLi). It is then straightforward to verify that ifRM is the reconstruc-
tion operator associated to (Π̂, Γ̂) and H solves the corresponding abstract fixed
point problem (2.12), then h = RMH satisfies the renormalised equation

∂th = ∂2
xh+ λ(∂xh)2 − 4λ2`2 ∂xh+ ζ − (λ`1 + 2λ2`3 + 4λ3`4 + λ3`5) . (3.3)

This can be shown in the same way as [FH14, Proposition 15.12], except that in our
case the term 2λ2 appearing in the expression of (∂H)2 + Ξ produces a constant
2λ2`2 when being acted upon by M .

3.1 Joint cumulants
Before giving the definition of the actual values for the `i relevant to our analysis,
we review the definition and basic properties of joint cumulants. Given a collection
of random variables X = {Xα}α∈A for some index set A, and a subset B ⊂ A, we
write XB ⊂ X and XB as shorthands for

XB = {Xα : α ∈ B} , XB =
∏
α∈B

Xα .

Given a finite set B, we furthermore write P(B) for the collection of all partitions
of B, i.e. all sets π ⊂P(B) (the power set of B) such that

⋃
π = B and such that

any two distinct elements of π are disjoint.

Definition 3.2 Given a collection X of random variables as above and any finite
set B ⊂ A, we define the cumulant Ec(XB) inductively over |B| by

E(XB) =
∑

π∈P(B)

∏
B̄∈π

Ec(XB̄) . (3.4)

Remark 3.3 In order to keep notations simple, we only considered subsets B in
the above definition, so that each random variable Xα is only allowed to appear at
most once in the collection XB. This is sufficient for the purpose of this article.
As a matter of fact, one can easily reduce oneself to this case by considering the
augmented collection X̄ = {X̄ᾱ}ᾱ∈Ā with Ā = A× N and random variables X̄ᾱ

such that X̄(α,k) = Xα almost surely.

The expression (3.4) does indeed determine the cumulants uniquely by induc-
tion over |B|. This is because the right hand side only involves Ec(XB), which is
what we want to define, as well as Ec(XB̄) for some B̄ with |B̄| < |B|, which is
already defined by the inductive hypothesis. If all the random variables are centred
and jointly Gaussian, then it follows from Wick’s theorem that Ec(XB) always
vanishes unless |B| = 2. Henceforth, we will use the notation κn for the nth joint
cumulant function of the field ζ (ε):

κn(z1, . . . , zn) def
= Ec({ζ (ε)(z1), . . . , ζ (ε)(zn)}) . (3.5)
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Note that κ1 = 0 since ζ (ε) is assumed to be centred and κ2 is its covariance
function.

Remark 3.4 There is a slight abuse of notation here since κn does of course
depend on ε in general, but this dependence is very weak.

We refer to [PT11] and [GJ87, Sec. 13.5] for the properties of joint cumulants.
A property that will be useful in our problem is that the cumulant is zero when
some of the variables are independent from the others. We formulate this in terms
of our random field ζ (ε). Given a collection {zi}pi=1 of space-time points, we define
zi ∼ zj if |zi − zj| ≤ 1, and extend this into an equivalence relation.

Lemma 3.5 The cumulants have the property that if κp(z1, . . . , zp) 6= 0, then
z1, . . . , zp all belong to the same equivalence class.

3.2 Values of the renormalisation constants

We now have all the ingredients in place to determine the relevant values of the
renormalisation constants `i. We denote by κ(ε)

p the p-th cumulant function of
ζε, which is the properly rescaled cumulant function of ζ (ε) (rescaling according
to (2.2) with a shift by vx). By Assumption 2.1, one has |κ(ε)

p | . ε−p|s|/2. By
Lemma 3.5, one also has κ(ε)

p = 0 unless all of its arguments are located within a
parabolic ball of radius pε (in fact, given a constant v, one can show that for ε > 0
sufficiently small, if |(t, x)| > 2ε, then |(t, x− vt)| > ε).

To define the renormalisation constants, we introduce some graphical notations
which represent our integrations. In our graphs, a dot represents an integration
variable, and the special vertex represents the origin 0. Each arrow
represents the kernel K ′(y − x) with x and y being the starting and end points of
the arrow respectively. A red polygon with p dots inside, for instance with
p = 4, represents the cumulant function κ(ε)

p (z1, . . . , zp), with zi given by the p
integration variables represented by the p dots.

We then define a collection of renormalisation constants as follows. Here,
we use the notations Q(ε) ≈ ε−α + σ (where σ ∈ {0, 1}) as a shorthand for the
statement “there exist constantsQ1,Q2 such that limε→0 |Q(ε)−Q1ε

−α−Q2σ| = 0”
(and call σ the O(1) correction in the case σ = 1), and Q(ε) ≈ c log ε as a shorthand
for “there exists a constant Q such that limε→0 |Q(ε) − c log ε−Q| = 0”. Define

C (ε)
0 = ≈ ε−1 + 1 , C (ε)

1 = ≈ ε−
1
2 ,

where the O(1) correction in C (ε)
0 is zero if κ2 is even in the space variable, and
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C (ε)
2 = 2C (ε)

2,1 + C (ε)
2,2 where

C (ε)
2,1 = ≈ − log ε

32π
√

3
, C (ε)

2,2 = ≈ 1 ,

and C (ε)
3 = 2C (ε)

3,1 + C (ε)
3,2 where

C (ε)
3,1 = ≈ log ε

8π
√

3
, C (ε)

3,2 = ≈ 1 .

When vx is zero, our constants C (ε)
0 , C (ε)

2,1, C (ε)
3,1 are the same as the renormalisation

constants C (ε)
0 , C (ε)

2 , C (ε)
3 in [HQ15] where their divergence rates were obtained

(just identify κ(ε)
2 with the mollifier convolving with itself in [HQ15]). However,

since vx 6= 0 in general,

κ(ε)
2 (t, x) 6= κ̂(ε)(t, x) def

= ε−3κ2(t/ε2, x/ε) ,

so there may be lower order corrections to the asymptotic behaviors of the renor-
malisation constants obtained in [HQ15]. We have the following lemma.

Lemma 3.6 For every sufficiently small ε > 0, there exists a constant ĉ(ε) such
that

ĉ(ε) = (3.6)

and such that as ε→ 0, ĉ(ε) converges to a finite limit ĉ. Furthermore, as ε→ 0
the right hand side of (3.6) with κ̂(ε) in place of κ(ε)

2 also converges to ĉ. Finally,
with this family of constants ĉ(ε), one has C (ε)

0 ≈ ε−1 + 1 and the O(1) correction
is zero if κ2 is even in the space variable.

The proof of this lemma relies crucially on the following result.

Lemma 3.7 The function Θ: R2 → R given by

Θ(z) def
=

∫
K ′(x)K ′(x− y)K ′(y − z) dx dy

is bounded.
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Proof. Since K ′ is an odd function in the space variable, the function K2(x) def
=∫

K ′(x − y)K ′(y) dy is even in the space variable. We decompose the integral
Θ(z) =

∫
K ′(x)K2(x− z) dx as integrals over three domains (similarly with the

proof of [Hai14, Lemma 10.14]). The first domain is Ω1
def
= {|x| < 2|z|/3}. On this

domain, one has |K2(x− z)| . |x− z|−1 . |z|−1, and the integration of |K ′(x)|
over this domain is bounded by |z|, therefore the integration over Ω1 is bounded.
The second domain is Ω2

def
= {|x− z| < 2|z|/3}, and the proof is analogous.

On the last domain Ω3 = R2 \ (Ω1 ∪ Ω2), if we replace K2(x− z) by K2(x),
we have |

∫
Ω3
K ′(x)K2(x) dx| . 1. Indeed, since the integrand is odd in the space

variable and Ω1 is a domain that is symmetric under the space reflection, one has∫
R2\Ω1

K ′(x)K2(x) dx = 0; furthermore, one has
∫

Ω2
|K ′(x)K2(x)| dx . 1, so

the claim follows. The difference |K2(x − z) − K2(x)| is bounded by |z||x|−2

using the gradient theorem, so the error caused by the replacement is bounded by
|z|
∫

Ω3
|K ′(x)||x|−2 dx . |z||z|−1 = 1. Collecting all the bounds above completes

the proof for the boundedness of Θ(z).

Proof of Lemma 3.6. We first remark that (3.6) is indeed an equation for ĉ(ε) since
on the right hand side κ(ε)

2 depends on vx = 4λ2ĉ(ε). We can then rewrite (3.6) as

ĉ(ε) =

∫
Θ(t, x) κ̂(ε)(t, x− 4λ2ĉ(ε)t) dt dx def

= Fε(ĉ(ε)) . (3.7)

It follows immediately from Lemma 3.7 and the properties of κ̂(ε) that the function
Fε is bounded, uniformly in ε and in ĉ(ε).

By Assumptions 1.1 and 1.2, for sufficiently small ε > 0, ∂xκ̂(ε) is bounded
by Cε−41ε for some constant C, where 1ε is the characteristic function for the
parabolic ball of radius ε. Combining this with the fact that |t| . ε2 for (t, x) in the
support of κ̂(ε), we conclude that F ′ε is bounded by Cε for some C, again uniformly
in ε < 1 and in ĉ(ε). It follows that, provided that ε is sufficiently small, so that
|F ′ε| < 1/2, (3.7) has indeed a unique solution (because the function x− Fε(x) is
monotonically increasing in x with derivative bounded below by a strictly positive
number), and that this solution converges to

F? = lim
ε→0

Fε(0) ,

as ε → 0. In fact, the existence of this limit F? is straightforward to show. The
right hand side of (3.7) can be rewritten as Fε(0) plus an error which is bounded by
|
∫ ĉ(ε)

0
F ′ε(x)dx| . ε|ĉ(ε)|. Since Fε is bounded uniformly in ε, so is ĉ(ε); therefore

this error vanishes, and taking limits on both sides of (3.7) shows that ĉ(ε) converges
to F?.
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Regarding the statement for C (ε)
0 , by the scaling argument in [HQ15], if we

define Ĉ (ε)
0 to be the same asC (ε)

0 except that κ(ε)
2 is replaced by κ̂(ε), then Ĉ (ε)

0 ≈ ε−1.
Note that

C (ε)
0 − Ĉ

(ε)
0 =

∫ 4λ2ĉ(ε)t

0

∫
R4

K ′(x)K ′(x− z) ∂xκ̂(ε)(t, x− θ) dθ dxdz (3.8)

and that |∂xκ̂(ε)| . ε−41ε, |t| . ε2 on the support of κ̂(ε), and ĉ(ε) is bounded,
C (ε)

0 − Ĉ
(ε)
0 converges to a finite limit. Therefore there exists a constant Q such that

lim
ε→0
|C (ε)

0 − C0ε
−1 −Q| = 0 .

If κ2 is even in the space variable, then since K ′ is odd in the space variable one
has Fε(0) = 0, so limε→0 ĉ

(ε) = 0 and the order 1 correction Q vanishes, thus
completing the proof.

Remark 3.8 In fact, the right hand side of (3.8) divided by λ2 converges to a
limit independent of λ, which can be shown in an analogous way as the fact that
limε→0 Fε(θ) does not depend on θ. Since C (ε)

0 appears in the renormalised equation
(3.3) in the form λC (ε)

0 (see (3.9) below), it turns out that the O(1) correction to
C (ε)

0 contributes to the term λ3c in (1.3).

Regarding the other renormalisation constants, when vx = 0, it was also shown
in [HQ15, Theorem 6.5] that there exists a constant c̄ ∈ R depending on both κ2

and the choice of the cutoff kernel K such that limε→0(4C (ε)
2,1 + C (ε)

3,1) = c̄. The
prefactors in front of the logarithmically divergent constants were obtained in
[Hai13]. Following similar arguments as in [HP14] and [HQ15], one has C (ε)

1 ≈
ε−1/2, with the limiting prefactor C1 equal to an integral which can be represented
by the same graph as the one for C (ε)

1 , except that each arrow is understood as P ′

and the red triangle is interpreted as κ3 (i.e. setting ε = 1). It is easy to see that
this integral is finite since κ3 is continuous and P ′ is integrable, in particular C1

does not depend on the choice of K. In a similar way C (ε)
2,2 and C (ε)

3,2 converge to
finite constants C2,1, C3,2 ∈ R depending on κ4, but independent of the choice of
the kernel K. These are all consequences of the scaling property of the heat kernel
and the fact that K converges to heat kernel in suitable spaces under parabolic
scaling. Following analogous arguments as in the proof of Lemma 3.6, one can
show that the next order corrections to these constants due to the nontrivial shift vx
are O(ε1/2) and thus all vanish in the limit.

The specification of these renormalisation constants (in particular with ĉ(ε)

given by Lemma 3.6) determines an element Mε ∈ R as in (3.1) by setting

`1 = C (ε)
0 , `2 = ĉ(ε) , `3 = C (ε)

1 , `4 = C (ε)
2 , `5 = C (ε)

3 . (3.9)

Given ε > 0 and a realisation of ζε, this yields a renormalised model (Π̂(ε), Γ̂(ε)) by
acting on the canonical model (Π(ε),Γ(ε)) lifted from ζε by Mε.
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Remark 3.9 One may wonder whether the constants C (ε)
2,2 and C (ε)

3,2 which involve
the fourth cumulants have to be subtracted from the objects and . (Note that
although their homogeneities are zero, they converge to finite constants rather than
diverge logarithmically.) To obtain some limit, one does of course not have to
subtract them, but we do subtract them here in order to obtain a limit which is
independent (in law) of the choice of process ζ .

4 A priori bounds on the renormalised models

In the previous section we have defined the renormalised models Ẑε = (Π̂(ε), Γ̂(ε)).
The goal of this section is to obtain uniform bounds on the moments of this
family of renormalised models. Actually, we will obtain a bit more, namely we
obtain bounds also on a smoothened version of this model which will be useful
in Section 6 when we show convergence of the models Ẑε to a limiting Gaussian
model. More precisely, we define a second family of renormalised random models
Ẑε,ε̄ = (Π̂(ε,ε̄), Γ̂(ε,ε̄)) in the same way as Ẑε, except that the field ζε used to build Ẑε
is replaced by ζε,ε̄

def
= ζε ∗ %ε̄, where % is a compactly supported smooth function on

R2 integrating to 1 that is even in the space variable, and %ε̄ = ε̄−3%(ε̄−2t, ε̄−1x).
The renormalisation constants used to build the models Ẑε,ε̄ are still defined

as in Section 3, except that they are now dependent on cumulants of ζε,ε̄, so we
denote them by ĉ(ε,ε̄) and C (ε,ε̄)

i with i = 0, . . . , 3. Note that while ĉ(ε) was obtained
implicitly by solving the equation (3.6), we now consider ζε (and therefore vx) as
given and view (3.6) as the definition of ĉ(ε) with given right hand side.

For instance, C (ε,ε̄)
2,1 and ĉ(ε,ε̄) are given by

C (ε,ε̄)
2,1

def
= = ĉ(ε,ε̄) def

= =

respectively, where the dashed arrows represent K ′ε̄, with Kε̄ = K ∗ %ε̄, and
represents the covariance of ζε,ε̄. (This covariance depends on vx = ĉ(ε), but not on
ĉ(ε,ε̄).) It is straightforward to verify that the kernel Kε̄ approximates the kernel K
in the sense that

|K(z)−Kε̄(z)| . ε̄η|z|−1−η , |K ′(z)−K ′ε̄(z)| . ε̄η|z|−2−η , (4.1)

for some sufficiently small η > 0. Our main result is the following a priori bound
on Ẑ (ε) and on its difference with Ẑ (ε,ε̄).
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Theorem 4.1 Let (Π̂(ε), Γ̂(ε)) and (Π̂(ε,ε̄), Γ̂(ε,ε̄)) be as above. There exist κ, η > 0
such that for every τ ∈ {Ξ, , , , , } and every p > 0, one has

E|(Π̂(ε)
x τ )(ϕλx)|p . λp(|τ |+η) , E|(Π̂(ε)

x τ − Π̂(ε,ε̄)
x τ )(ϕλx)|p . ε̄κλp(|τ |s+η) (4.2)

uniformly in all ε, ε̄ ∈ (0, 1], all λ ∈ (0, 1], all test functions ϕ ∈ B, and all
x ∈ R2.

Remark 4.2 The first bound of (4.2) actually implies tightness for the family
of renormalised models Ẑε = (Π̂(ε), Γ̂(ε)). The proof for this Kolmogorov type
tightness criterion is similar to that of [Hai14, Theorem 10.7]. Since we do not
really need to know tightness here, we will not elaborate on this point.

Note that although and both have negative homogeneities, they are of the
form I(τ ), so that the corresponding bounds follow from the extension theorem
[Hai14, Theorem 5.14], combined with the analogous bounds on τ . The remainder
of this section is devoted to the proof of (4.2) for each τ ∈ { , , , , }. In
fact we will mainly focus on the first bound of (4.2), and the second bound will
follow analogously. We are going to use extensively the notion of Wick product
for a collection of (not necessarily Gaussian) random variables which is defined as
follows.

Definition 4.3 Given a collection X = {Xα}α∈A of random variables as before,
the Wick product :XA : for A ⊂ A is defined recursively by setting E :X 6# : = 1
and postulating that

XA =
∑
B⊂A

:XB :
∑

π∈P(A\B)

∏
B̄∈π

Ec(XB̄) . (4.3)

Note that by (3.4) we could also write XA =
∑

B⊂A :XB : E(XA\B), but (4.3)
is actually the identity frequently being used in the paper. Again, (4.3) is sufficient
to define :XA : by recursion over the size of A. Indeed, the term with B = A is
precisely the quantity we want to define, and all other terms only involve Wick
products of strictly smaller sets of random variables. By the definition we can
easily see that as soon as A 6= 6#, one always has E :XA : = 0. Note also that if
we take expectations on both sides of (4.3), then all the terms with B 6= 6# vanish
and we obtain exactly the identity (3.4).

We refer to [AT87] or [AT06, Appendix B] for the properties of non-Gaussian
Wick products. The following result (Lemma 4.5) is often called “diagram formula”
in the literature. As far as we know, the original proof of this particular statement
was given by [Sur83] and [GS86], but similar statements were known long before
that. Before stating the lemma, we define an important type of partition.
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Definition 4.4 Let M × P be the Cartesian product of two sets M and P , and
D ⊂ M × P . We say that π ∈ PM (D) if π ∈ P(D) and for every B ∈ π, there
exist (i, k), (i′, k′) ∈ B such that k 6= k′ (in particular |B| > 1).

In plain words, the requirement says that for each B ∈ π, the elements in B can
not all have the same “P -index”. In most cases, we are interested in the situation
D = M × P .

Lemma 4.5 Let M def
= {i : 1 ≤ i ≤ m} and P def

= {k : 1 ≤ k ≤ p}. Let X(i,k)

where 1 ≤ i ≤ m, 1 ≤ k ≤ p be centred random variables with bounded moments
of all orders. One has

E
( p∏
k=1

:
m∏
i=1

X(i,k) :
)

=
∑

π∈PM (M×P )

∏
B∈π

Ec(XB) . (4.4)

Note that if the Wick products were replaced by usual products (say in the case
m = 1), one would recover the definition of cumulants (3.4). In the case of centred
Gaussians, only the partitions π with |B| = 2 for each B ∈ π is allowed since joint
cumulants of higher order vanish, and the statement recovers the fact that (4.4)
can be computed by summing over all the ways of pairwise contracting |M × P |
variables excluding “self-contractions” (i.e. factors of the form Ec(X(i,k), X(i′,k))).

As an immediate consequence of Lemma 4.5 one has

Corollary 4.6 For every p ≥ 1 and m ≥ 1, one has

E
( p∏
k=1

:ζε(x
(1)
k ) · · · ζε(x(m)

k ) :
)

=
∑

π∈PM (M×P )

∏
B∈π

κ(ε)
|B|

(
{x(i)

k : (i, k) ∈ B}
)

(4.5)

where M def
= {i : 1 ≤ i ≤ m} and P def

= {k : 1 ≤ k ≤ p}.

From now on we define a further simplified notation. Given a family of space-
time points {xα : α ∈ B} parametrised by the index set B, we write

κ(ε)
|B|(B) def

= κ(ε)
|B|({xα : α ∈ B}) .

Here, α can be multi-indices, for instance xα would be x(i)
k in the situation of (4.5).

According to Lemma 3.5, some factors κ(ε)
|B| in (4.5) may actually vanish. In

fact, a partition π encodes the information that some of the space-time points must
be “close to each other” in order to have non-zero contribution to (4.5).
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4.1 First object and some generalities
We now have all the ingredients in place for the proof of Theorem 4.1. For the
moment, we only show how to obtain the first bound of (4.2); we include a short
discussion on how to obtain the second bound at the end of this section. We start
with the case τ = Ξ, for which where we need to show that λ|s|p/2E|ζε(ϕλ0)|p . 1
uniformly in ε, λ > 0 for all p > 1. As a consequence of Corollary 4.6 with m = 1,
one has

E|ζε(ϕλ0 )|p =
∑

π∈P({1,...,p})

∏
B∈π

(∫
κ(ε)
|B|(B)

∏
i∈B

ϕλ0 (xi)
∏
i∈B

dxi

)
.

We bound the integral in the bracket for each B ∈ π, |B| > 1. If ε > λ, we bound
|κ(ε)
|B|| . ε−|B||s|/2 . λ−|B||s|/2, and the fact that the integral of the test functions ϕλ0

are uniformly bounded. If on the other hand ε ≤ λ, then we use the fact that the
integrand vanishes unless all points xi are within a ball of radius Cε for some fixed
C > 0, and this ball is centred around a point in the ball of radius λ around the
origin. The volume of this region is bounded by Cε(|B|−1)|s|λ|s|. Since the integrand
on the other hand is bounded by Cε−|B||s|/2λ−|B||s|, it follows that the integral is
bounded by Cε(|B|/2−1)|s|λ(1−|B|)|s| . λ−|B||s|/2. Since

∑
B∈π |B| = p, the desired

bound follows.
We now turn to the simplest non-trivial object, namely τ = . Using Defini-

tion 4.3 to rewrite the product ζε(x(1))ζε(x(2)) as :ζε(x(1))ζε(x(2)) : + κ(ε)
2 (x(1), x(2)),

together with the definition of C (ε)
0 , one has

(Π̂(ε)
0 )(ϕλ0 ) =

∫
ϕλ0 (z)K ′(z − x(1))K ′(z − x(2)) :ζε(x(1))ζε(x(2)) : dx(1)dx(2)dz .

(4.6)
The term containing κ(ε)

2 is precisely canceled by C (ε)
0 . The p-th moment for any

even number p of the above quantity can be written as∫ p∏
k=1

(
ϕλ0 (zk)K ′(zk − x(1)

k )K ′(zk − x(2)
k )
)

E
p∏

k=1

(
:ζε(x

(1)
k )ζε(x

(2)
k ) :

)
dx dz ,

where the integration is over all x(i)
k and all zk with i ∈ {1, 2} and 1 ≤ k ≤ p.

Applying Corollary 4.6, one has the bound

E|(Π̂(ε)
0 )(ϕλ0 )|p (4.7)

.
∑
π

∫ p∏
k=1

∣∣∣ϕλ0 (zk)K ′(zk − x(1)
k )K ′(zk − x(2)

k )
∣∣∣ ∏
B∈π

|κ(ε)
|B|(B)| dx dz ,

where π runs over partitions in P{1,2}({1, 2} × {1, . . . , p}).
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As illustrations, the left picture below shows the situation for p = 2 and π
being the particular partition consisting of only one element which is the whole
set of cardinality 4. The right picture below shows the situation for p = 4 with a
prohibited partition π (namely, π ∈ P({1, 2}×{1, . . . , p}) but π /∈ P{1,2}({1, 2}×
{1, . . . , p})), i.e. one that does not appear in the sum (4.7). Graphically, the fact
that the partition is prohibited is reflected in the presence of a subgraph identical to
the one representing the diverging constant C (ε)

0 .

(4.8)

Here, the interpretation of these graphs is as in Section 3, but with the green arrow
representing the test function ϕλ0 .

The right hand side of (4.7) involves an integration of functions of the following
general form; we formulate it in a general way in order to deal with other objects
τ ∈ W− as well. We are given a finite set of space-time points B = {x1, . . . , xn},
and a cumulant function κ(ε)

|B|(B) = κ(ε)
n (x1, . . . , xn). By observing the right hand

side of (4.7), one realises that for every 1 ≤ i ≤ n, there is a factor |K ′(yi − xi)|
for some space-time point yi in the integrand, which is bounded by |yi − xi|α for
some α. Here, it is allowed that some of the points y1, . . . , yn may coincide. In the
case of (4.7) above, yi would be one of the points zk and α = −2. We then have
the following result for integrating such a product of cumulants and kernels (see
[Hai14] for definition of a scaling s of Rd).

Lemma 4.7 Given a scaling s of Rd, n points y1, . . . , yn ∈ Rd, and real numbers
α1, . . . , αn, assuming −|s| < αi < 0 for all 1 ≤ i ≤ n, one has∫ n∏

i=1

|yi − xi|αi |κ(ε)
n (x1, . . . , xn)| dx1 · · · dxn (4.9)

. ε(n/2−1)|s|
∫

Rd

n∏
i=1

(|yi − x|+ ε)
αi dx ,

uniformly in y1, . . . , yn ∈ Rd and ε > 0. Here, the integral on the left hand side is
over n variables, and the integral on the right hand side is over only one variable.

Remark 4.8 The intuitive “graphical” meaning of this lemma is that for all practi-
cal purposes, we can “collapse” the p points in an expression of the type (here
p = 4) into one single point, and this operation then generates a factor ε(p/2−1)|s|. It
is because this exponent is positive as soon as p > 2 that our bounds behave “as if”
everything was Gaussian.
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Remark 4.9 If we consider κn to have homogeneity −n|s|/2, |y − x|α to have
homogeneity α, ε to have homogeneity 1, and each integration variable to have
homogeneity |s|, then the total homogeneity is identical on both sides of (4.9). (It
is equal to n|s|/2 +

∑
αi in both cases.)

Proof. First of all, we define 1a(x) = 1 if |x| < a and vanishes if |x| ≥ a. Recall
then that one has the bound

|κ(ε)
n (x1, . . . , xn)| . ε(n/2−1)|s|

∑
T

∏
{xi,xj}∈E(T )

ε−|s|1ε(xi − xj) , (4.10)

uniformly in ε > 0, where T runs over all spanning trees of the set {x1, . . . , xn},
and E(T ) denotes the edge set of T . Indeed, for each T , since |E(T )| = n − 1,
the total power of ε on the right hand side is (n/2− 1)|s| − (n− 1)|s| = −n|s|/2
which is consistent with the naive bound |κ(ε)

n | . ε−n|s|/2. By Lemma 3.5, κ(ε)
n = 0

unless there exists a connected graph over {x1, . . . , xn} such that |xi − xj| < ε
whenever {xi, xj} is an edge of the graph. The bound (4.10) is then obtained by
taking a spanning tree of this graph.

Let T be a fixed tree in the above sum and e = {xi, xj} be an arbitrary fixed
edge of T . There exists a constant c > 1 such that

ε−|s|1ε(xi − xj) .
∫

Rd
ε−|s|1cε(xi − x) · ε−|s|1cε(x− xj) dx . (4.11)

uniformly in ε > 0. This is obviously true for ε = 1, and the case for general
ε > 0 follows by rescaling. We can therefore add a new “dummy variable” x
representing the integration variable in (4.11), which suggests to define a new tree
T ′ by T ′ = T ∪{x} and to replace the edge e by the two edges {xi, x} and {x, xj}.
In other words, one sets E(T ′) = (E(T )\{e}) ∪ {{xi, x}, {x, xj}}.

Writing now 1ε(e)
def
= 1ε(xi, xj) as a shorthand if e = {xi, xj}, we note that∏

ce∈E(T ′) ε
−|s|1ε(e) is the indicator function of the event “every edge of T ′ has

length at most cε”. Since the graph T ′ has finite diameter, this implies that every
vertex of T ′ is at distance at most Cε from the fixed vertex x, for some fixed C > 0,
so that∏

e∈E(T )

ε−|s|1ε(e) ≤
∫

Rd

∏
e∈E(T ′)

ε−|s|1cε(e) dx ≤
∫

Rd

∏
x̄∈T

ε−|s|1Cε(x− x̄) dx ,

where the first inequality is given by (4.11).
It now remains to substitute this back into (4.10) and into the left hand side of

(4.9). Integrating over all the variables xi ∈ T ′ \ {x}, the claim follows from the
bound ∫

Rd
|yi − x̄|αi ε−|s|1Cε(x− x̄) dx̄ . (|yi − x|+ ε)αi ,
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which can easily be shown by considering separately the two cases |yi − x| ≤ 2Cε
and |yi − x| ≥ 2Cε.

Remark 4.10 In the above proof, if one chose x to be a fixed point in T , which
would seem more natural in principle than the first step (4.11), the resulting bound
would have one of the factors on the right hand side of (4.9) equal to |yi − x|αi
(i.e. without the additional ε appearing in the statement). These occurrences of ε in
our bound will however be useful in the sequel, as it will allow us to use the brutal
bound (|yi − x|+ ε)αi ≤ εαi .

We introduce the following notation: for any space-time point x and ε ≥ 0, let

|x|ε
def
= |x|+ ε ,

where |x| is as above the norm of x with respect to the parabolic scaling.
We can now apply Lemma 4.7 to each π and each B ∈ π of the right hand side

of (4.7), so that the entire right hand side of (4.7) is bounded by

∑
π

∫ ( p∏
k=1

ϕλ0 (zk)
)∏
B∈π

(
ε(|B|/2−1)|s|

∏
(i,k)∈B

|zk−xB|−2
ε

)∏
B∈π

dxB

p∏
k=1

dzk (4.12)

where π ∈ P{1,2}({1, 2} × {1, . . . , p}) as above, and for each B ∈ π we have an
integration variable xB ∈ R2. For example, in the case of the left picture in (4.8),
we have π = {B} with B = {(1, 1), (1, 2), (2, 1), (2, 2)}, and the corresponding
term in (4.12) can be depicted graphically as

ε3

with dashed lines representing the function x 7→ |x|−2
ε .

Remark 4.11 Bounds of the form (4.12) are crucial to our analysis. As already
noted in Remark 4.9, although the number of integration variables appearing in
(4.12) differs for each π, a simple power counting shows that the “homogeneity”
of the summand is always the same, namely∑

B∈π

(
(|B|/2− 1)|s| − 2|B|

)
+
∑
B∈π

|s| = −
∑
B∈π

|B|/2 = −p .

In a certain sense, the powers of ε thus guarantee that the entire quantity is still of
the correct “homogeneity”.
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In the rest of this subsection we explain some generalities for bounding ex-
pressions of the type (4.12), and in the next several subsections we will follow the
same routine for the other objects τ ∈ W−. Our idea is to apply the general tools
developed in Section 5, which are summarised in Proposition 4.18 below. To apply
this proposition to obtain our desired bound, we will associate to an “H-type
graph” H (in general, several such graphs for other elements τ ∈ W−) as defined
in Definition 4.12 below. Then, we represent the multi-integral for each partition π
in the expressions of the type (4.12), which result from application of Corollary 4.6
and Lemma 4.7, a graph V obtained by “Wick contracting” p copies of H , in the
sense of Definition 4.13 below. The set of all allowed partitions in (4.12) is then in
one-to-one correspondence with the set of possible “Wick contractions”. Given an
integer p > 1, a rescaled test function ϕλ0 , and anH-type graph H , one then has a
number Λp

ϕλ0
(V) for every such graph V which equals the value of the multi-integral,

and the sum of them over all Wick contractions then yields a number Λp

ϕλ0
(H)

which provides a bound for the moment (4.2). In a nutshell, the “routine” we will
always follow is that

E|(Π̂(ε)
x τ )(ϕλx)|p

(4.5)(4.9)
. Λp

ϕλ0
(H)

Prop 4.18

. λᾱ . (4.13)

In general (see the next subsections), the quantity in the middle may be replaced
by a sum over several graphs, and before applying (4.9) one may have to deal with
the renormalisations. Now we start to define the above mentioned terminologies
precisely.

Definition 4.12 AnH-type graphH is a connected graph with each edge e labelled
by a real number me, which satisfies the following requirements. There exists
a unique distinguished vertex 0 ∈ H , as well as a unique distinguished edge
e = {0, v?} attached to 0 with label me = 0. (Other edges may also connect
to 0 but they are not called distinguished edges.) We define H0

def
= H \ {0} and

H?
def
= {0, v?}. The set H0 can be decomposed as a union of two disjoint subsets of

vertices H0 = Hex ∪Hin, such that deg(v) = 1 for every v ∈ Hex and deg(v) ≥ 2
for every v ∈ Hin = H0 \Hex. We call an vertex in Hex an “external vertex” and
the only edge attached to it an “external edge”. We call a vertex in Hin an “internal
vertex”, and the edges which are not distinguished or external are called “internal
edges”. We require that v? ∈ Hin.

When we draw an H-type graph, we use a special dot to represent the
distinguished vertex 0, a black dot to represent a generic vertex which is not the 0,
a special thick line to represent the distinguished edge {0, v?}. The labels
me are often drawn on the edges e, such as 2+ , understood as me = 2 + δ for
sufficiently small δ > 0.
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Definition 4.13 Suppose that we are given an H-type graph H and an integer
p > 1, and for each 1 ≤ i ≤ p let H (i) be a copy of the graph H . We say that a
graph V is obtained from H by Wick contracting p copies of H , if there exists an
equivalence relation ∼ over the disjoint union of the p copies ∪pi=1H

(i), such that
each equivalence class B is one of the following three forms:

• B = {0(1), . . . , 0(p)} where 0(i) is the distinguished vertex of H (i); or

• B = {v} where v ∈ ∪pi=1H
(i)
in ; or

• B = {v1, . . . , v|B|} ⊂ ∪pi=1H
(i)
ex with |B| > 1, with requirement that there

exist at least two elements v, v′ ∈ B such that v ∈ H (i)
ex , v′ ∈ H (i′)

ex and i 6= i′;

and such that V = ∪pi=1H
(i)/ ∼ (namely, we identify all the vertices in each

equivalence class as one vertex). The set of edges E ′(V) of V is the union of all
the sets of edges of the p copies of H , and each edge e ∈ E ′(V) of V naturally
inherits a label me from H . We still call the equivalence class consisting of the
distinguished vertices 0, and call an equivalence class consisting of an internal
vertex (resp. some external vertices) an in-vertex (resp. an ex-vertex), and call an
edge e ∈ E ′(V) an in-edge (resp. ex-edge) if e is an internal (resp. external) edge
of H . We say that an in-vertex belongs to a certain copy H (i) if the only element in
this equivalence class is an internal vertex of H (i). We write V = Vex ∪ Vin ∪ {0}
where Vex is the set of ex-vertices and Vin is the set of in-vertices. Let V0 = V \{0}
and V? = {0, v(1)

? , . . . , v
(p)
? }.

Remark 4.14 Note that given (H, p) there could be many possible graphs V con-
structed as above. The graph (V , E ′) may have multiple edges between two vertices.
In the sequel, deg(v) for v ∈ V stands for the degree of v counting multiple edges.

Remark 4.15 The graphical notation for a graph V in Definition 4.13 will be the
same with that for anH-type graph H . We remark that although we use the same
solid line to represent all edges of V , the functions associated with them will turn
out to be slightly different: an in-edge will be associated with a singular function
|x|−me while an ex-edge will be associated with a mollified function |x|−meε . We
will not distinguish them by complicating the graphical notation since it is always
clear whether an edge is an in-edge or ex-edge.

Given a graph V as in Definition 4.13 and a test function ϕ, we can associate a
number to it, as alluded above:

Λp
ϕ(V) def

=

∫ p∏
i=1

ϕ(xv(i)
?

)
∏
v∈Vex

ε(deg(v)/2−1)|s|
∏

e={v,v̄}∈E ′(V)

|xv−xv̄|−meε(e)

∏
v∈V0

dxv , (4.14)
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where the norm | · |ε(e) = | · |ε if e is an ex-edge and | · |ε(e) = | · | if e is an in-edge.
Now by observing the expressions (4.12) and (4.14) one realises that we can define
anH-type graph H with one internal vertex u and two external vertices v1, v2:

H
def
=

u
v1

v2

0
2+

2+
(4.15)

so that for every π in (4.12) the integral is equal to Λp

ϕλ0
(V) for a graph V obtained

from Wick contracting p copies of H . Indeed, every in-vertex (resp. ex-vertex) of
V corresponds to an integration variable zk (resp. xB) in (4.12). Define

Λp

ϕλ0
(H) def

=
∑
V

Λp

ϕλ0
(V) (4.16)

where the sum is over all graphs V obtained from Wick contracting p copies of
H . Then by Definition 4.4 (for the allowed partitions) and Definition 4.13 (for the
allowed Wick contractions), (4.12) is equal to Λp

ϕλ0
(H).

Proposition 4.18 below will then yield the desired bound on Λp

ϕλ0
(H). Before

stating the proposition we need the following definitions.

Definition 4.16 Given a graph (V , E) we define for any subgraph V̄ ⊂ V the
following subsets of E :

E0(V̄) = {e ∈ E : e ∩ V̄ = e} , E(V̄) = {e ∈ E : e ∩ V̄ 6= 6#} .

Definition 4.17 Given H̄ ⊂ H0 such that H̄ex
def
= H̄ ∩ Hex 6= 6#, define number

ce(H̄) for edges e of H as follows. If |H̄ex| = 1, then ce(H̄) = 0 for all e. If
|H̄ex| = 2, then, assuming that H̄ex = {v, v̄}, there are two cases. The first case is
that v and v̄ are connected with the same vertex of H , and we define ce(H̄) = 3/4
for every e ∈ E(H̄ex); the second case is that v and v̄ are connected with different
vertices of H , and we define ce(H̄) = 1/2 for every e ∈ E(H̄ex). Finally, if
|H̄ex| > 2, then

ce(H̄) =
3

2
− 3

|H̄ex|+ 1
, (4.17)

for every e ∈ E(H̄ex). Given any H̄ ⊂ H such that 0 ∈ H̄ , we define ce(H̄) = 3/2
for every e ∈ E(H̄ex). For any subset H̄ ⊂ H we set ce(H̄) = 0 for every
e /∈ E(H̄ex).

Proposition 4.18 Given anH-type graphH , suppose that the following conditions
hold.
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(1) For every subset H̄ ⊂ H with |H̄| ≥ 2 and |H̄in| ≥ 1 one has∑
e∈E0(H̄)

(me − ce(H̄)) < 3 (|H̄in| − 1H̄⊂Hin) . (4.18)

(2) For every non-empty H̄ ⊂ H \H? one has∑
e∈E(H̄)

me > 3
(
|H̄ ∩Hin|+

1

2
|H̄ ∩Hex|

)
. (4.19)

Then, for every p > 1, one has

sup
ϕ∈B

Λp

ϕλ0
(H) . λᾱ p , (4.20)

where
ᾱ = 3

(
|Hex|/2 + |Hin \H?|

)
−
∑
e∈E(H)

me .

Proof. This follows from Corollary 5.14 below, together with Remark 5.10 that
the number ce(H̄) in Definition 4.17 yields an admissible ε-allocation rule in the
sense of Definition 5.5, and the fact that Λp

ϕλ0
(H) . Λp

ϕλ0
(V) with proportionality

constant depending only on the cardinality of H and on p (see (4.16)).

Remark 4.19 By Remark 5.12, if the H-type graph H is such that deg(0) = 1,
namely the distinguished edge e? = {0, v?} with label me? = 0 is the only edge
connected to 0, then one does not need to check (4.18) for the subsets H̄ such that
0 ∈ H̄ .

Lemma 4.20 The conditions of Proposition 4.18 are satisfied for H defined in
(4.15).

Proof. Since deg(0) = 1, we only check (4.18) for H̄ ⊂ H0. If H̄ = {u, v1}, then
since ce(H̄) = 0 condition (4.18) reads 2 + δ < 3 where δ > 0 is sufficiently small.
The case H̄ = {u, v2} follows in the same way by symmetry.

Still considering condition (4.18), we now look at subgraph H̄ = {u, v1, v2}.
On the left hand side of (4.18), the set E0(H̄) consists of two edges. Since H̄ ∩Hex

consists of two points which are connected with the same point (i.e. u) in H ,
by Definition 4.17, ce(H̄) = 3/4 for each e ∈ E0(H̄). So condition (4.18) reads
5/2 + 2δ < 3 for sufficiently small δ > 0.

Regarding condition (4.19), if H̄ = {v1} then condition (4.19) reads 2 + δ > 3
2
,

and the case H̄ = {v2} follows in the same way. If H̄ = {v1, v2}, then condition
(4.19) reads 4 + 2δ > 3. So (4.19) is verified.
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Proposition 4.18 then yields the desired bound (with ᾱ = −1 − κ for some
arbitrarily small κ > 0) on Λp

ϕλ0
(H), and therefore Theorem 4.1 is proved for the

case τ = .

Remark 4.21 While for the simplest object we have directly applied Lemma 4.7
to the bound (4.7), for the more complicated objects, we will often have to deal
with renormalisations before applying the absolute values as in (4.7).

4.2 Bounds on the other objects
Bounds on

With the generalities discussed in the previous subsection we now proceed to con-
sider the object τ = . Recall that we have defined some graphical notations from
Section 3 to represent integrations of kernels. Besides these graphical notations,
we will need another type of special vertices in our graphs. Each instance of
stands for an integration variable x, as well as a factor ζε(x). Furthermore, if more
than one such vertex appear, then the corresponding product of ζε is always a Wick
product :ζε(x1) · · · ζε(xn) : , where the xi are the integration variables represented
by all of the special vertices appearing in the graph. This is consistent with
the graphical notation used in [HP14, HQ15]: our graphs represent integrals of
product of kernels and a (non-Gaussian) Wick product of the random fields. In
the particular case where ζε is a Gaussian random field, this yields an element of
the nth homogeneous Wiener chaos as in [HP14, HQ15], and the two notations do
coincide.

With these notations, by Definition 4.3 and the definition of C (ε)
1 , combined

with the fact that K annihilates constants, we have the identity

(Π̂(ε)
0 )(ϕλ0 ) = + 2

 − ĉ(ε)

 =: I1 + 2I2 .

For instance,

I1 =

∫
ϕλ0 (z)K ′(w−x(1))K ′(w−x(2))K ′(z−x(3))K ′(z−w) :

3∏
i=1

ζε(x(i)) : dxdwdz

where x = (x(1), x(2), x(3)). Note that in principle one would expect the appearance
of a term involving κ(ε)

3 in the expression for Π̂(ε)
0 , but this term is precisely

cancelled by C (ε)
1 .

We bound the p-th moments of I1 and I2 separately. For the moment E|I1|p of
the first integral I1, we can apply Corollary 4.6 and Lemma 4.7. We are then again
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in the situation that there is a natural H-type graph H with two internal vertices
and three external vertices:

H
def
= 0 2+

2+ 2+ 2+

(4.21)

so that E|I1|p . Λp

ϕλ0
(H). As in the case τ = , it is straightforward to verify

the conditions of Proposition 4.18. We only check the condition (4.18) with H̄
consisting of all the vertices of H except 0 (so |H̄| = 5). Since |H̄ ∩Hex| = 3, by
(4.17) in Definition 4.17 we have ce(H̄) = 3/4 for each of the three external edges,
so (4.18) holds since the left hand side is 8 + 4δ− 3

4
· 3 while the right hand side is

equal to 6. We remark that the fact that the labels in the graph are actually 2 + δ for
some strictly positive δ guarantees the strict inequality in the condition (4.19). We
therefore have the desired bound on the moments of I1 by Proposition 4.18 (with
ᾱ = −1/2− κ for some arbitrarily small κ > 0).

Regarding the second integral I2, we define a function

Qε(w) def
=

∫
K ′(w − x)K ′(−y)K ′(−w)κ(ε)

2 (x, y) dxdy − ĉ(ε)δ(w) . (4.22)

We use the notation for the function Qε. One then has

I2 = (4.23)

By [Hai13, Lemma 10.16] one has∣∣∣ ∫ K ′(w − x)Qε(z − w) dw
∣∣∣ . |z − x|−2 , (4.24)

uniformly over ε ∈ (0, 1]. Note that the renormalised distribution RQε appearing
in [Hai13, Lemma 10.16] is precisely the same as Qε, because Qε integrates to 0
by the choice of ĉ(ε) in Lemma 3.6.

As an immediate consequence of (4.24), one has for all even p

E|I2|p .
∫ p∏

i=1

(
ϕλ0 (zi) |zi − xi|−2

)∣∣∣E( p∏
i=1

ζε(xi)
)∣∣∣ dx dz (4.25)

where the integration is over x1, . . . , xp and z1, . . . , zp. Again, after applying
Corollary 4.6 and Lemma 4.7, we can define anH-type graph H with one internal
vertex and one external vertex as

H
def
= 0 2+
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so that (4.25) is bounded by Λp

ϕλ0
(H). It is then very straightforward to check that

the conditions of Proposition 4.18 are all satisfied. Therefore we have the desired
bound on the moments of I2.

This completes the proof of Theorem 4.1 for the case τ = . Note that in
the bound of E|I2|p, we actually integrated out some of the integration variables
before applying the first step in the “routine” (4.13) and representing the rest of the
multi-integral by graphs obtained by Wick contracting an H . This procedure will
be useful sometimes for other objects.

Bounds on

To study the case τ = , we introduce an additional graphical notation ,
which is the same as in [HP14] and [HQ15]. This barred arrow represents K ′(z −
w) − K ′(−w) where w and z are the coordinates of the starting and end point
respectively. With this notation at hand, we have

(Π̂(ε)
0 )(ϕλ0 ) = + − ĉ(ε) = − (4.26)

where we used the definition of ĉ(ε) (i.e. Lemma 3.6) in the second equality.
The second term on the right hand side of (4.26) is deterministic and it is

bounded by λ−δ for every δ > 0 (for instance, using Lemma 4.7 and [Hai14,
Lemma 10.14]). So it remains to bound the first term, which is equal to∫

R8

ϕλ0 (z)K ′(w−x(1))K ′(z−x(2))(K ′(z−w)−K ′(−w)) :ζε(x(1))ζε(x(2)) : dxdwdz

where the x-integration is over x(1), x(2). This integral can be written as a sum of
two terms I ′1 + I ′2, where I ′i denotes the integration over Ωi for i ∈ {1, 2}, with

Ω1
def
= {(x(1), x(2), w, z) ∈ R8 : |w| ≥ |z|/2} ,

and Ω2
def
= R8 \ Ω1. We then bound the pth moment of each of these two terms

separately.
By the generalised Taylor theorem in [Hai14, Proposition A.1],

|K ′(z − w)−K ′(−w)| .

{
|z|1/2 |z − w|−5/2 on Ω1

|z|1/2−η |w|−5/2+η on Ω2

(4.27)



A PRIORI BOUNDS ON THE RENORMALISED MODELS 33

for any η ∈ [0, 1/2]. On the support of ϕλ0 (z) one has the additional bound |z| ≤ λ.
One then has

E|I ′1|p . λ
p
2

∫
Ω1×···×Ω1

p∏
i=1

|ϕλ0 (zi)| |K ′(wi − x(1)
i )K ′(zi − x(2)

i )| (4.28)

× |zi − wi|−5/2
∣∣∣E( p∏

i=1

:ζε(x
(1)
i )ζε(x

(2)
i ) :

)∣∣∣ dx dw dz
. λ

p
2

∫
R6p

p∏
i=1

|ϕλ0 (zi)| |zi − x(2)
i |−2|zi − x(1)

i |−
3
2

∣∣∣E( p∏
i=1

:ζε(x
(1)
i )ζε(x

(2)
i ) :
)∣∣∣dxdz .

Note that after applying (4.27), we bounded the integral over the Cartesian product
of p copies of Ω1 by the integration over all of (R2)4p. In the last step we then
integrated out wi for all 1 ≤ i ≤ p.

Remark 4.22 In the bound (4.27), just like in (4.24), we deal with renormalisa-
tions “by hand”, no matter whether they are “negative renormalisation” (meaning
the situations in which we have kernels with too small homogeneity such as Q in
(4.22)) or “positive renormalisation” (meaning the situations in which we have to
subtract the kernel at the origin as in (4.27)), rather than directly relying on the
general bounds in [HQ15]. We follow this approach because, when we apply the
bounds on the cumulants (e.g. Lemma 4.7), each factor in the integrand is bounded
by its absolute value, but the renormalisations encode cancellations that would then
be lost. Another reason for following this approach is that Assumption 5.2 below
will be simpler to verify than the original assumption in [HQ15].

Now we apply Corollary 4.6 and Lemma 4.7, which for E|I ′1|p gives the same
bound as (4.12), times λp/2, except that some factors |zk − xB|−2 are replaced by
|zk − xB|−3/2. This bound is again represented for each π by a graph obtained
from Wick contracting p copies of H , where H is given by

H
def
=

u

v1

v2

0
3/2+

2+

One can directly check that the conditions of Proposition 4.18 are all satisfied. In
fact, the choice of exponent −5/2 in (4.27) was designed so that, on one hand the
function |zi − wi|−5/2 is still integrable when we integrate out wi in (4.28), and
on the other hand condition (4.19) is satisfied for the subgraph H̄ = {v1}. This is
because the left hand side of (4.19) is then equal to 3/2 + δ for some small δ > 0,
while the right hand side is equal to 3/2. We conclude that we have the desired
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bound on E|I ′1|p by Proposition 4.18 with ᾱ = −1/2 − κ for arbitrarily small
κ > 0.

Regarding the term I ′2, we note that on the domain Ω2 and the support of the
function ϕλ0 , one has |z|1/2−η . λ1/2|w − z|−η. Therefore one has

E|I ′2|p . λ
p
2

∫
Ω2×···×Ω2

p∏
i=1

ϕλ0 (zi) |K ′(wi − x(1)
i )K ′(zi − x(2)

i )| (4.29)

× |zi − wi|−η |wi|−5/2+η
∣∣∣E( p∏

i=1

:ζε(x
(1)
i )ζε(x

(2)
i ) :

)∣∣∣ dx dw dz .
Again, we bound the integral by the corresponding integral over all of (R2)4p.
After applying Corollary 4.6 and Lemma 4.7, we obtain integrals which are again
represented by graphs obtained from Wick contracting theH-type graph

H
def
=

u

w v1

v20

5/2− η

2+

2+

η

with H? = {0, u}. It is again straightforward to verify that the conditions of
Proposition 4.18 are all satisfied, provided that we choose η and δ in a suitable way.
Note that, due to existence of the edge between the vertex w and 0, we really do
need to check condition (4.18) for H̄ 3 0. In fact, for the subgraph H̄ = {0, w, v1},
the right hand side of (4.18) is equal to 3, and since c{w,v1}(H̄) = 3/2 the left hand
side is equal to (5/2 − η) + (2 + δ) − 3/2 < 3 for sufficiently small δ > 0 such
that δ < η. The fact that the other subgraphs all satisfy condition (4.18) can be
verified straightforwardly, so we omit the details.

Regarding the condition (4.19), if the subgraph is given by H̄ = {w, v1}, then
the right hand side of (4.19) equals 9/2 and the left hand side equals (5/2− η) +
(2 + δ) + η > 9/2. For the other subgraphs the condition follows similarly, and we
conclude that the desired bound holds for E|I ′2|p by Proposition 4.18 with again
ᾱ = −1/2− κ for arbitrarily small κ > 0. The proof to the first bound of (4.2) is
therefore completed for the case τ = , noting that although one has | | = −2κ̄
by (2.6), the presence of the factor λ

p
2 in front of the expressions (4.28) and (4.29)

yields the required bound.
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Bounds on

For the object , it is straightforward to check using (4.3) and definition of the
renormalised model that

(Π̂(ε)
0 )(ϕλ0 ) = + 4 + 4

Note that the terms in which all the four leaves are contracted are canceled by the
renormalisation constants C (ε)

3,1 and C (ε)
3,2. Here, the first two graphs are essentially

the same as in [HQ15] (except that our graphs represent non-Gaussian Wick
products of random fields), but the last graph is new. It will be shown that the last
term vanishes in the limit ε→ 0.

Denote by I†i (i = 1, 2, 3) the above terms respectively. For I†1 and I†2 we
can apply Corollary 4.6 and Lemma 4.7 to obtain the bound E|I†i |p . Λp

ϕλ0
(Hi)

where i ∈ {1, 2} and H1, H2 are defined below. It is straightforward to check the
conditions of Proposition 4.18. Note that for I†2 , we have integrated out the second
cumulant κ(ε)

2 , which gives the factor |x − y|−1 (corresponding to the edge with
label “1+” in H2).

H1 =

0

2+ 2+

2+ 2+ 2+ 2+

H2 =

0

2+ 2+

2+ 1+ 2+

H3 =

0

2+

Regarding the term I†3 , when we apply Lemma 4.7, we gain a factor ε3/2 from
the third cumulant κ(ε)

3 . It is clear from our graphical representation that there
exist “double edges” connecting to the third cumulant function, which stand for a
function (|x− w|+ ε)−4. We can use a factor ε1+δ with 0 < δ < 1/2 to improve
the homogeneity of this function, namely, we have bound ε1+δ(|x− w|+ ε)−4 .
(|x − w| + ε)−3+δ; and we still have a factor ε

1
2
−δ left. Integrating out all the

variables represented by dots (which are simple convolutions) except for the ones
where the test functions ϕλ0 are evaluated at, we again obtain a bound Λp

ϕλ0
(H3)

where theH-type graph drawn as H3 above (with the label 2+ denoting 2 + δ as
above). It is easy to verify that the conditions of Proposition 4.18 are again satisfied
for H3. With the remaining factor ε

1
2
−δ, we see that as ε→ 0, the moments of this

term converge to zero. The proof of the first bound of (4.2) is therefore completed
for the case τ = .
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Bounds on

For the object , by Definition 4.3 for Wick products and the definition of the
renormalised model Π̂(ε), one has

(Π̂(ε)
0 )(ϕλ0 ) = +

 − ĉ(ε)

 + 2

 − ĉ(ε)



+ 2 + 2

 − C (ε)
2,1

 (4.30)

+ + 2 + 2

 − C (ε)
2,2


Here, the graphs in the first two lines are essentially the same as those in [HQ15]
(except for the renormalisation constant ĉ(ε)), but the graphs in the last line are new
due to the nontrivial higher cumulants of the random field ζε. Note that the term
involving the joint cumulant of ζε at three points represented by the top three
shaped vertices vanishes because the kernel K annihilates constants.

Using the notation for the kernel Qε defined in (4.22), and proceeding in
the same way as [HQ15] with the definition of constant C (ε)

2,1, we see that the sum
of all the graphs appearing in the first two lines of (4.30) is equal to

+ − + 2 + 2 − 2 (4.31)

We denote by I?k the k-th term in (4.31) with k = 1, . . . , 6. Note that I?6 is
deterministic and easily bounded by λ−η for any η > 0.

For the term I?2 , we apply the bound (4.24), then it can be bounded using
Corollary 4.6 and Lemma 4.7 followed by Proposition 4.18, with theH-type graph
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shown in the left picture below. The term I?3 is bounded in the same way, with the
H-type graph shown in the right picture:

0 2+

2+

2+

0

2+ 2+ 2+

2+1+

It is again straightforward to check the conditions of Proposition 4.18 for these
H-type graphs.

For the term I?4 , we apply (4.24), then it is essentially the same as in the case
τ = . Regarding the term I?5 , we can bound the two kernels in separately.
In other words, we write I?5 as sum of two terms, each containing one of the two
kernels. The moments of each term can then be bounded in the same way as above
withH-type graphs defined as follows respectively:

0

1+

2+

2+

2+

2+ 0

1+

2+

2+

2+2+

The conditions of Proposition 4.18 are again verified.
We now bound moments of I?1 . Using the bound (4.27) and proceeding in

the same way as in the case , one can write I?1 as a sum of two terms, so that
the moments of these two terms can be bounded separately. The H-type graphs
associated with these two terms are

0 5/2+ 2+

2+ 2+2+2+

u

w1 w2

v1 v2 v3 v4

0

5/2− η 2+

2+ 2+2+

2+

η

These graphs still satisfy the conditions of Proposition 4.18. We only check here
the conditions for some subgraphs of the second graph. For condition (4.18), if the
subgraph H̄ = {0, w1, w2, v2, v3, v4}, then the right hand side of (4.18) is equal to 6,
and the left hand side is equal to (5/2− η) + 4(2 + δ)− 3 · 3/2 < 6 for sufficiently
small δ > 0 such that 4δ < η. Regarding condition (4.19), if the subgraph
H̄ = {w1, w2, v2, v3, v4}, then the condition reads (5/2−η) + 4(2 + δ) +η > 21/2
for any δ > 0. Proposition 4.18 (with ᾱ = −1/2 − κ for some arbitrarily small
κ > 0) then yields the desired bound on the p-th moment, noting the overall factor
λ
p
2 showing up as we proceed as in the case .

We proceed to consider the first graph in the last line of (4.30). Applying
Lemma 4.7 to the third cumulant κ(ε)

3 yields a factor ε3/2. As before we combine
a factor ε1+η together with the “double-edge” to obtain an edge with label 3− η.
Regarding the two terms in the barred edge, we deal with them separately. After
integrating out some variables which are simple convolutions, the bounds boil
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down to straightforward verification of the conditions of Proposition 4.18 for the
following twoH-type graphs:

0 2+

0

2+ 2+

1+

Since there is the factor ε1/2−η remaining, the moments of this graph converge to
zero.

With the same argument the second graph in the last line of (4.30) also con-
verges to zero. For the quantity in the last bracket in (4.30), after cancellation with
the renormalisation constant it is equal to the same graph with the barred arrow
replaced by an arrow pointing to the origin, and this graph, which represents a
deterministic number, is bounded by ε1−δλδ−1 for sufficiently small δ > 0 using
[Hai14, Lemma 10.14] and therefore converges to zero. We therefore obtain the
desired bounds for all the terms.

Proof of Theorem 4.1. Collecting all the results of this section, we obtain the first
bound of (4.2), so it remains to show the second bound. Just as in the verification
of the second bound in [Hai14, Theorem 10.7], this follows in essentially the same
way as the first bound. Indeed, as we consider the difference between Π̂(ε)

0 τ and
Π̂(ε,ε̄)

0 τ for any τ 6= Ξ, we obtain a sum of expressions of the type (4.6), but in each
term some of the instances of K ′ are replaced by K ′ε̄ and exactly one instance is
replaced by K ′ −K ′ε̄.

This is because ζε,ε̄ always appears as part of an expression of the type K ′ ∗ ζε,ε̄,
which can be rewritten as K ′ε̄ ∗ ζε. We then use the fact that K ′ε̄ satisfies the same
bound as K ′, while K ′ −K ′ε̄ satisfies the improved bound (4.1).

The case τ = Ξ is slightly different, since in this case ζε,ε̄ appears on its own.
However, the required bound there follows immediately from the fact that, on any
fixed bounded domain, and for any α < 0 and sufficiently small δ > 0, and for any
distribution η with ‖η‖Cα+δ <∞, one has

‖η − %ε̄ ∗ η‖Cα . ε̄δ‖η‖Cα+δ .

The proof of Theorem 4.1 is therefore complete.

5 General bounds

In this section we derive some general results on bounding the type of integrals
appearing in the previous section, for instance (4.12). These integrals are repre-
sented by labelled graphs which, after certain operations, fall into the scope of the
general bounds in [HQ15] (see also [HP14]). We view these labelled graphs as
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being obtained from “Wick contractions” ofH-type graphs, and the purpose of this
section is to prove criteria on these H-type graphs (i.e. Proposition 4.18) which
are easy to verify and yield the desired bounds on the integrals.

We start with recalling the settings and results of the general a priori bound from
[HQ15], which should really be viewed as some version of the BPHZ theorem
[BP57, Hep69, Zim69] in this context. The paper [HQ15] considers labelled
graphs (V , E), in which each vertex v ∈ V represents an integration variable
xv, except for a distinguished vertex 0 ∈ V which represents the origin. Each
edge e = {e−, e+} ∈ E is labelled by a number ae and represents a kernel
Je(xe+ − xe−) with homogeneity −ae. There are p special vertices v?,1, . . . , v?,p
and p distinguished edges of the type e = {v?,i, 0} with label ae = 0, which
represent factors Je(xv − x0) = ϕλ0 (xv − 0).

Remark 5.1 In [HQ15] the edges e = (v, v̄) ∈ E are oriented and decorated with
labels (ae, re) ∈ R× Z where re represents certain renormalisation procedure, and
the orientation of an edge matters only if r > 0. In our case, since we always treat
the renormalisations “by hand” before applying these general bounds, we ignore
the label re (in other words re is always 0) and the orientation, so we only have
a label ae. (The orientations of the distinguished edges do not matter since we
always just assume that they are associated with function ϕλ(xv − 0) rather than
ϕλ(0− xv).)

For every a ∈ R, we define a (semi)norm on the space of compactly supported
functions that are smooth everywhere, except at the origin:

‖J‖a = sup
0<|x|s≤1

|x|as |J(x)| .

We use the notation V0 = V \ {0} and V? = {0, v?,1, . . . , v?,p}. With all of these
notations at hand, a labelled graph as above, together with the corresponding
collection of kernels determines a number

Iλ(J) def
=

∫
(Rd)V0

∏
e∈E

Je(xe+ − xe−) dx , (5.1)

where d is the space-time dimension, and we implicitly set x0 = 0.
To bound the quantity Iλ(J), we will impose the following assumption. Recall

that for a subgraph V̄ , the sets E0(V̄) and E(V̄) are defined in Definition 4.16.

Assumption 5.2 The labelled graph (V , E) satisfies the following properties.

1. For every subset V̄ ⊂ V of cardinality at least 2, one has∑
e∈E0(V̄)

ae < |s| (|V̄| − 1) . (5.2)
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2. For every non-empty subset V̄ ⊂ V \ V?, one has the bounds∑
e∈E(V̄)

ae > |s| |V̄| . (5.3)

Note that in [HQ15] there are four assumptions, but they reduce to the two
given here since we assume that the labels re appearing in [HQ15] are always 0.
We then have the following result taken from [HQ15]:

Theorem 5.3 Provided that Assumption 5.2 holds, there exists a constant C de-
pending only on the number of vertices in V such that

|Iλ(J)| ≤ Cλα
∏
e∈E

‖Je‖ae , λ ∈ (0, 1] ,

where α = |s| |V \ V?| −
∑

e∈E ae.

The rest of this section is devoted to verify that Assumption 5.2 indeed holds
for the labelled graphs which represent our integrals, but after some necessary
modifications which we explain now.

First of all, we are actually concerned with labelled graphs (V , E ′) which are
of the same type as the labelled graphs (V , E) defined above, except that there
may exist more than one edge in E ′ between two vertices. More formally, E ′ is
a multiset (i.e. it allows multiple instances of elements) of unordered pairs of
vertices. (Such a graph (V , E ′) is sometimes called a multigraph in the graph theory
literature.) Indeed, for instance if we Wick contract two copies of the graph H
defined in (4.15) (resp. in (4.21)) by identifying all the four (resp. six) external
vertices as one equivalence class, then we obtain (multi)graphs on the left hand
sides of the arrows below, which clearly contain multi-edges:

2+
2+ 2+

2+
⇒

4+ 4+ 2+ 2+
2+

2+

2+

2+

2+
2+

⇒ 2+ 2+

4+

2+

4+

2+ (5.4)

However, this issue can be easily resolved because given a labelled (multi)graph
(V , E ′), one can naturally define a labelled graph (V , E) by identifying all the multi-
edges in E ′ between every pair of two vertices; the label ae for e = {v, v̄} ∈ E is
simply defined as the sum of the labels ae′ of all the edges e′ ∈ E ′ between v and
v̄, see the right hand sides of the arrows in (5.4). In the sequel the prime in the
notation E ′ always indicates that the set E ′ allows multi-edges. For an edge e ∈ E ′,
we will sometimes still write e = {v, v̄} or v, v̄ ∈ e, which simply means that e is
an edge between the two vertices v and v̄.
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Another necessary modification is due to the following fact. One can verify that
Assumption 5.2 fails to hold in the situations illustrated in the above two graphs.
In fact, both examples contain subgraphs V̄ with |V̄| = 2 and

∑
e∈E0(V̄) ae = 4, and

the right example also contains subgraphs V̄ with |V̄| = 3 and
∑

e∈E0(V̄) ae = 8. In
both cases, (5.2) is violated, and one might worry that the corresponding integrals
diverge. However this will not cause any problem, since we will see that these
graphs arise in situations where one is allowed to modify the labels of E ′ (and E
accordingly) in such a way that Assumption 5.2 holds for the modified graph. In
fact, by observing the expressions (4.12), it is clear that in the left example above,
which arises in (4.15), one has an additional factor ε(|B|/2−1)|s| = ε3. Similarly,
in the right example, which arises in (4.21), the factor is ε6. In general for each
contracted vertex v, we have a factor ε3(deg(v)/2−1) arising from Lemma 4.7. These
factors associated with the ex-vertices together with the fact that their neighboring
ex-edges correspond to mollified functions (see Remark 4.15) can be exploited to
improve the homogeneities of the edges attached to v and thus cure these “fake
divergences”. Here and in the sequel, deg(v) is always understood as the degree
of v as a vertex in (V , E ′) (rather than (V , E)); in other words deg(v) counts the
multiple edges rather than regarding them as one edge.

Our main idea to verify that the Assumption 5.2 indeed holds for the objects we
want to bound is based on the observation that the graphs (V , E ′) are actually built
by contracting simple “atomic” graphs calledH-type graphs (see Definition 4.12
and Definition 4.13), and we have precise knowledge on the structures of these
H-type graphs. We will then describe the rules to “allocate” the factors ε to the
neighboring edges to cure the “fake” divergences, see Definition 5.5 below. Finally
we will identify multi-edges and obtain graphs (V , E) which will be shown to
satisfy Assumption 5.2.

We start with the following remark about some obvious properties of our graphs
(V , E ′).

Remark 5.4 We will frequently use the following facts. Let (V , E ′) be a graph
constructed by Wick contracting p copies of H as in Definition 4.13. If v is an
in-vertex, then deg(v) is equal to the degree of the corresponding internal vertex in
H . If v is an ex-vertex, then deg(v) is equal to the cardinality of v, viewed as an
equivalence class in Hp. By construction there does not exist any edge connecting
two in-vertices belonging to two different copies of H . Also, there does not exist
any edge connecting two ex-vertices of V .

Definition 5.5 An ε-allocation rule is a way to assign, for every graph (V , E ′)
constructed according to the procedure in Definition 4.13 and every v ∈ Vex, a
non-negative real number b(v)

e ≥ 0 to every e ∈ {e ∈ E ′ : v ∈ e}. An ε-allocation
rule is called admissible if the following holds for every such graph (V , E ′).
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• For every v ∈ Vex, one has∑
e3v

b(v)
e = (deg(v)/2− 1) |s| . (5.5)

• For every v ∈ Vex and every A ⊂ {e : v ∈ e}, one has∑
e∈A

b(v)
e ≥ (|A|/2− 1) |s| . (5.6)

• For any v1, v2 ∈ Vex, v1 6= v2, define a new graph (V̂ , Ê ′) by identifying
v1 and v2 as one vertex w and apply the ε-allocation rule to V̂ to obtain
numbers b̂(w)

e . Then, the following monotonicity condition holds

b̂(w)
e ≥ b(v1)

e (∀e 3 v1) and b̂(w)
e ≥ b(v2)

e (∀e 3 v2) . (5.7)

(With the obvious identification of E ′ with Ê ′.)
Note that by Remark 5.4 one necessarily has {e : v1 ∈ e} ∩ {e : v2 ∈ e} = 6#. We
set a convention that b(v)

e = 0 if v /∈ e.

Remark 5.6 In general the ε-allocation rule could be allowed to depend on the
underlying H-type graph H , as long as it is the same rule for all graphs (V , E ′)
built from a given H . However, in this article, we just fix one ε-allocation rule for
all the graphs.

The following result will be used.

Lemma 5.7 Suppose that we are given an admissible ε-allocation rule. Then for
any graph V constructed as in Definition 4.13, for any v1, v2 ∈ Vex, v1 6= v2 and
any Q1 ⊂ {e : v1 ∈ e}, Q2 ⊂ {e : v2 ∈ e}, if we define a new graph V̂ by
identifying v1 and v2 as one vertex w as in Definition 5.5 (so that Q1 ∪Q2 ⊂ {e :
w ∈ e}), then ∑

e∈Q1

b̂(w)
e +

∑
e∈Q2

b̂(w)
e ≤

∑
e∈Q1

b(v1)
e +

∑
e∈Q2

b(v2)
e + |s| , (5.8)

where b(v1)
e and b(v2)

e are numbers for V and b̂(w)
e are numbers for V̂ when the

ε-allocation rule is applied.

Proof. Suppose that Q1 = {e1, . . . , eq1} and Q2 = {f1, . . . , fq2}. Using (5.5), and
the convention that b(v)

e = 0 if v /∈ e, the left hand side of (5.8) is equal to(
Dw −

∑
e/∈Q1∪Q2

b̂(w)
e

)
−
(
Dv1 −

∑
e/∈Q1

b(v1)
e

)
−
(
Dv2 −

∑
e/∈Q2

b(v2)
e

)
(5.9)
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where Du
def
= (deg(u)/2 − 1) |s| for any vertex u ∈ {w, v1, v2} and deg is with

respect to V for u ∈ {v1, v2} and with respect to V̂ for u = w. Since the set
{e : w ∈ e} \ (Q1 ∪Q2) is equal to the disjoint union of the set {e : v1 ∈ e} \Q1

and the set {e : v2 ∈ e} \Q2, applying (5.7) yields∑
e/∈Q1

b(v1)
e +

∑
e/∈Q2

b(v2)
e −

∑
e/∈Q1∪Q2

b̂(w)
e ≤ 0 .

Therefore (5.9) is bounded by Dw −Dv1 −Dv2 = |s|.

With restrictions (5.5) and (5.7) there is not much freedom for an admissible
ε-allocation rule. If deg(v) = 2, then one must have b(v)

e = 0 by (5.5). For the
graphs arising in our analysis of the KPZ equation, we define an ε-allocation rule
as follows.

• If deg(v) > 3, or deg(v) = 3 and there are 3 distinct vertices connected to
v, then b(v)

e = (deg(v)/2 − 1) |s|/ deg(v) for every e adjacent to v (i.e. the
“even allocation” rule).

• If deg(v) = 3 and there are only 2 distinct vertices connected to v then,
calling e1, ē1 the two edges connecting v to the same vertex and e2 the
remaining edge, we set b(v)

e1
= b(v)

ē1 = |s|/4 and b(v)
e2

= 0 (i.e. the “divergence
priority” rule).

For the KPZ equation, it turns out that if deg(v) = 3, then it is never the case that
all three edges connect v to the same vertex.

Lemma 5.8 The above ε-allocation rule is admissible.

Proof. The equality in (5.5) always holds by definition. Regarding (5.7), let
V = deg(v), V̄ = deg(v̄), and W = deg(w) = V + V̄ (no edge between v and v̄
by Remark 5.4). Since W ≥ 4 the “even allocation” rule is necessarily applied to
w. If both v and v̄ are such that the “even allocation” rules are applied, it is easy to
check that monotonicity condition (5.7) reduces to

(V/2− 1)|s|/V ≤ (W/2− 1)|s|/W ,

which holds since V ≤ W and x 7→ x−2
x

is increasing on R+.
Now suppose that the “even allocation” rule is applied to v̄ while the “diver-

gence priority” rule is applied to v (one then necessarily has V = 3 andW = V̄ +3).
Then

(V̄ /2− 1)|s|
V̄

∨ |s|
4
≤ ((V̄ + 3)/2− 1)|s|

V̄ + 3
,

namely, the condition (5.7) holds. Here |s|/4 is the largest possible value of b(v)
e .

Finally if the “divergence priority” rules are applied to both v and v̄, so that one
necessarily has V = V̄ = 3, then one can verify (5.7) in an analogous way.
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Remark 5.9 The above divergence priority rule is such that when V contains a
subgraph where each dashed line represents a function |x|1−|s|ε (think of
it as |K ′ε|) and a factor ε|s|/2 is associated with the middle vertex, the function
ε|s|/2|x|2(1−|s|)

ε ≤ |x|2−3|s|/2
ε is integrable as long as |s| < 4, which turns out to be

the subcriticality condition for the KPZ equation. For the dynamical Φ4 equation,
consider the subgraph with a factor ε|s|. One should again associate all
the powers of ε to the triple-edge, so that the function ε|s||x|3(2−|s|)

ε ≤ |x|6−2|s|
ε is

integrable as long as |s| < 6, which is again the subcriticality condition. (In fact for
the situation one also has to associate more powers of ε to the triple-edge
than that to the double-edge when we are very close to the criticality in a certain
sense.) See Remark 6.6 for discussion on the dynamical Φ4 equation in three space
dimensions.

As mentioned earlier, the ε-allocation procedure is aimed to improve the ho-
mogeneities associated to the edges and thus cure the “fake” divergences arising
from the contractions. Given a graph (V , E ′) constructed from Wick contracting
p copies of anH-type graph H , together with an admissible ε-allocation rule, we
define for every e ∈ E ′

ae
def
= me − b(v)

e (5.10)

if there exists ex-vertex v (which is necessarily unique by Remark 5.4) such that
v ∈ e, and ae

def
= me otherwise. In this way, given an ε-allocation rule and a Wick

contraction of H , we obtain a labelled graph (V , E ′, {ae}e∈E ′).
Propositions 5.11 and 5.13 below are the main results in this section which

state that certain conditions on H ensure that (V , E ′, {ae}) satisfies the conditions
required for applying the results of [HQ15, Sec. 9].

Before being able to state Proposition 5.11, we need to introduce one more
notation. Let H be an H-type graph. Given an ε-allocation rule and a subgraph
H̄ ⊂ H , we define numbers be(H̄) for edges e of H as follows. Consider a graph
V obtained from Wick contracting p copies H (1), . . . , H (p) of H for some p ≥ 2,
such that, considering H̄ as a subgraph of H (1), all the elements in H̄ ∩H (1)

ex are
identified in V as one single vertex v. Applying the ε-allocation rule to v, we obtain
numbers b(v)

e . We then define

be(H̄) def
= inf
V
b(v)
e , (5.11)

where the infimum is over all choices of V as above.
Given this definition, we furthermore define numbers ce(H̄) by

ce(H̄) =


be(H̄) if 0 6∈ H̄ and e touches an ex-vertex,
|s|/2 if 0 ∈ H̄ and e touches an ex-vertex,

0 otherwise.
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This definition in engineered in such a way that, as a consequence of (5.6) and of
(5.11), if V is obtained by Wick contracting p copies H (1), . . . , H (p) of H for some
integer p ≥ 2, and H̄ (i) is the preimage of some V̄ ⊂ V with |V̄ex| ≤ 1 under the
map H (i) → V , then one has the bound∑

i

∑
e∈E0(H̄ (i))

ce(H̄ (i)) ≤ |s|10∈V̄1V̄ex 6= 6# +
∑

e∈E0(V̄)

b(v)
e . (5.12)

Here, we wrote V̄ex as a shorthand for V̄ ∩ Vex. (We will similarly also use the
notation V̄in = V̄ ∩ Vin.)

Remark 5.10 The number ce(H̄) defined in Definition 4.17 is a special case (and
thus consistent with) the general definition of ce(H̄) here with the ε-allocation rule
specified above Lemma 5.8. Indeed, with |s| = 3, let n = |H̄ ∩Hex|. One then has
deg(v) ≥ n + 1 by the definition of a Wick contraction. For n > 2, by (5.5) and
the even allocation rule, one then has be(H̄) = infk≥1 3(n+k

2
− 1)/(n+ k), which is

equal to the right hand side of (4.17). In the cases n ∈ {1, 2}, it can be also easily
seen that Definition 4.17 follows from (5.11).

We then have the following criterion.

Proposition 5.11 Given anH-type graph H , fix an admissible ε-allocation rule.
Suppose that for every subset H̄ ⊂ H with |H̄| ≥ 2 and |H̄in| ≥ 1 one has∑

e∈E0(H̄)

(me − ce(H̄)) < |s| (|H̄in| − 1H̄⊂Hin) . (5.13)

Then, for every p > 1 and every graph V obtained from Wick contracting p copies
of the graph H , the condition∑

e∈E0(V̄)

ae < |s| (|V̄| − 1) (5.14)

holds for every subset V̄ ⊂ V of cardinality at least 2, where ae is defined in (5.10).

Proof. We first remark that in the case |H̄| = 1, (5.13) always reads 0 < 0, so that
it still holds, but without the inequality being strict. We first treat the case when V
has at most one ex-vertex. As a consequence of (5.12), and with the same notations
as above for H̄ (i), we have∑

e∈E0(V̄)

ae ≤ |s|10∈V̄1V̄∩Vex 6=6# +
∑

i : H̄ (i)
in 6= 6#

∑
e∈E0(H̄ (i))

(me − ce(H̄ (i))) (5.15)
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≤ |s|
(

10∈V̄1V̄∩Vex 6= 6# +
∑

i : H̄ (i)
in 6=6#

(|H̄ (i)
in | − 1H̄ (i)⊂Hin)

)
.

On the other hand, we have the identity

|V̄| − 1 = 10∈V̄ + |V̄ex| − 1 +
∑
i

|H̄ (i)
in | .

We claim that (5.14) follows, but with an inequality that is not necessarily strict.
Indeed, using the brutal bound 1H̄ (i)⊂Hin ≥ 0 in (5.15), it could only fail if 0 6∈ V̄
and V̄ex = 6#. In this case however one has necessarily H̄ (i) ⊂ Hin for every i,
so that the inequality is restored by the fact that at least one of the H̄ (i) must be
non-empty. To see that the inequality is indeed strict, we note that the second
inequality in (5.15) is actually strict, unless |H̄ (i)| = 1 for every non-empty H̄ (i). In
this case however, since |V̄| > 1 by assumption, it must be the case that H̄ (i) ⊂ Hin

for every i and therefore that at least two of the H̄ (i) are non-empty, which again
restores the strict inequality.

We now turn to the case where V̄ contains at least two ex-vertices, call them v1

and v2. The idea is then to compare this to the graph V̂ obtained by contracting
v1 and v2, with ˆ̄V ⊂ V̂ the corresponding subgraph. We also write âe for the
edge-weights of ˆ̄V . It then follows from Lemma 5.7 that∑

e∈E0(V̄)

ae ≤
∑

e∈E0( ˆ̄V)

âe + |s| .

Since furthermore | ˆ̄V| = |V̄| − 1, the required bound for V̄ follows from the
corresponding bound for ˆ̄V . Successively contracting external vertices, we can
therefore reduce ourselves to the case where V̄ contains only one ex-vertex. If the
resulting graph still has at least two vertices, the claim follows. If not, then we
have V̄ ⊂ Vex, so that E0(V̄) is empty and the bound (5.14) is trivially satisfied.

Remark 5.12 If H is such that deg(0) = 1 (which is often the case in practice),
then (5.13) only needs to be verified for graphs H̄ with 0 6∈ H̄ . Indeed, let H̄
be such that 0 ∈ H̄ , set H̄0 = H̄ \ {0}, and assume that H̄0 satisfies (5.13). If
H̄ex = 6#, then condition (5.13) for H̄ coincides with that for H̄0, so we only
consider the case H̄ex 6= 6#.

Since be(H̄) is defined by (5.11) as an infimum over all choices of V , it is in
particular bounded by the case where V is such that all vertices of H̄ex are identified
to one single vertex v which contains only one additional edge not belonging to H̄ .
It thus follows from (5.5) that∑

e

ce(H̄0) =
∑
e

be(H̄0) ≤
( |H̄ex|+ 1

2
− 1
)
|s| ≤ |H̄ex| |s|

2
=
∑
e

ce(H̄) ,
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so that condition (5.13) indeed holds for H̄ whenever it holds for H̄0.

Proposition 5.13 Given an H-type graph H , assume that for every subgraph
H̄ ⊂ H \H? one has ∑

e∈E(H̄)

me >
(
|H̄in|+

1

2
|H̄ex|

)
|s| . (5.16)

Then, for every graph V obtained by Wick contracting several copies of H , and for
every subgraph V̄ ⊂ V \ V?, one has∑

e∈E(V̄)

ae > |s| |V̄| , (5.17)

where ae is defined in (5.10).

Proof. Given V̄ ⊂ V \ V?, let m = |V̄in| and q = |V̄ex|, so that |V̄| = m + q.
Denote by H (i) the ith copy of H in V as before, and denote by mi the number
of in-vertices of V̄ belonging to H (i), so that m =

∑
imi. We also denote by ni

the number of external vertices in H (i) whose images under the quotient map are
ex-vertices of V̄ . With this notation, (5.16) reads∑

e∈E(V̄)∩E(H (i))

me > (mi + ni/2) |s| ,

and the intersection here is well-defined because by construction E(V) = ∪iE(H (i)).
Summing over i, one has ∑

e∈E(V̄)

me > (m+ n/2) |s| (5.18)

where n def
=
∑

i ni. Let now d1, . . . , dq be the degrees of the q ex-vertices in V̄ . By
the procedure used to construct V from H and the fact that the degree of every
external vertex of H is 1, one has

∑q
j=1 di = n, so that (5.18) is equivalent to

∑
e∈E(V̄)

me −
q∑
j=1

(dj/2− 1) |s| > (m+ q) |s| .

By (5.5), this is precisely the desired bound (5.17).

Corollary 5.14 Given anH-type graph H with labels {me}e∈E(H) and p ≥ 2, let
(V , E ′) be a graph obtained by Wick contracting p copies of H . If the conditions of
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Proposition 5.11 and Proposition 5.13 are satisfied for H , then the quantity defined
in (4.14) is bounded as

Λp

ϕλ0
(V) . λᾱ p ,

where
ᾱ = |s|

(
|Hex|/2 + |Hin \H?|

)
−
∑
e∈E(H)

me .

Proof. As described in Definition 4.13, the graph (V , E ′) naturally inherits la-
bels {me}e∈E ′ from H , and by definition (5.10) of ae, one has labelled graph
(V , E ′, {ae}). Let (V , E) be the graph obtained from (V , E ′) by simply identifying
each multi-edge as one single edge whose label is the sum of the labels ae of
the multi-edge as described above. With slight abuse of notation we still denote
by ae the labels of (V , E). Then we are precisely in the setting of Theorem 5.3,
where each function Je(x) is simply |x|−ae which has finite norm ‖Je‖ae , except
Je(x) = ϕλ0 (x) for the distinguished edges e. Since the way we define ae in (5.10)
simply encodes the bound εb

(v)
e |xv − xv̄|−meε . |xv − xv̄|−ae for each e = {v, v̄},

and we precisely use up all the factors ε(deg(v)/2−1)|s| in (4.14) due to the condition
(5.5), one has

Λp

ϕλ0
(V) . |Iλ(J)| .

So it is enough to show that Assumption 5.2 is satisfied for (V , E). In fact, the
conclusions of Proposition 5.11 and Proposition 5.13 are obviously the same as
the conditions (5.2) and (5.3) of Assumption 5.2 respectively (note that the sum of
labels ae on the left side of each of these conditions is the same after we identify
the multi-edges). So Assumption 5.2 is satisfied.

Finally the power ᾱ is obtained from Definition 4.13 of the procedure of
constructing the graph V , the condition (5.5) of the admissible ε-allocation rule,
the relation (5.10) between ae and me, and the power α defined in Theorem 5.3.

6 Identification of the limit

It was shown in [HQ15] (but see also [Hai13] and [FH14] for very similar results)
that if we replace ζε by ξε with ξε = %ε∗ξ where ξ is the Gaussian space-time white
noise, the renormalised models built from ξε converge to a limit Ẑ = (Π̂, Γ̂), which
we call the KPZ model1. The goal of this section is to show that our renormalised
models (Π̂(ε), Γ̂(ε)) built from ζε defined above converge to the same limit. We

1This is a slight misnomer, since the constant parts of Π̂z and Π̂z depend on the choice of
cutoff function K. However, the model does not depend on % and, when comparing it to the model
built from ζε, we will always implicitly assume that we make the same choice for K.
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prove this by applying a “diagonal argument” along the lines of the one used in
[MW14] in a similar context. First of all, we have a central limit theorem for the
random field ζε.

Proposition 6.1 Under Assumption 2.1, for every α < −3
2
, ζε converges in law to

space-time white noise ξ in Cα(R× S1).

The proof of this proposition relies on the following result.

Lemma 6.2 Let ζ be a random variable in Cα(R× Td) for some α < 0 which is
stationary and such that, for any finite collection of test functions η1, . . . , ηN with
supp ηi not intersecting the hyperplane {x = vt} (viewed as a subset of R× Td in
the natural way) for a constant vector v ∈ Rd, the joint law of {ζ(ηi)} is Gaussian
with covariance 〈ηi, ηj〉. Then ζ is space-time white noise.

Proof. Choose an orthonormal basis {en} of L2(R × Td) such that each en is
sufficiently smooth (C|α| will do) and supported away from {x = vt}. Then, as
a consequence of the assumption, ζ(en) is an i.i.d. sequence of normal random
variables. As a consequence, we can set ξ =

∑
n ζ(en) en, which converges almost

surely in the sense of distributions to a space-time white noise ξ. It remains to
show that ξ = ζ almost surely, as random variables in Cα, which follows if we can
show that ξ(ϕ) = ζ(ϕ) almost surely, for any smooth test function ϕ with support
in some ball of radius 1/5 (say).

If ϕ is supported away from {x = vt}, this is immediate. Otherwise, write
ϕ = limn→∞ ϕn, where each ϕn is compactly supported away from {x = vt} and
the convergence is sufficiently fast so that ξ(ϕn)→ ξ(ϕ) almost surely. (It is easy to
see that such an approximation always exists.) Let now (Tϕ)(t, x) = ϕ(t, x− 1/2)
and note that one also has ζ(Tϕn) → ζ(Tϕ) almost surely since the supports of
Tϕn avoid {x = vt} and ζ coincides with ξ for such test functions. By stationarity,
the collection of random variables {ζ(Tϕ), ζ(Tϕn) : n ≥ 0} is equal in law to the
collection {ζ(ϕ), ζ(ϕn) : n ≥ 0}, so that ζ(ϕn)→ ζ(ϕ) almost surely. Since we
already know that ζ(ϕn) = ξ(ϕn) almost surely, we conclude that ζ(ϕ) = ξ(ϕ) as
required.

Remark 6.3 The assumption that ζ is stationary is crucial here, otherwise the
conclusion doesn’t hold in general. (Just add to ζ a Dirac measure located at the
origin.)

Proof of Proposition 6.1. Setting ζ (0)
ε (t, x) = ε−3/2ζ(t/ε2, (x−vxt)/ε), it is shown

in Lemma 6.4 below that, when testing ζ (0)
ε against a finite number of test functions

η1, . . . , ηN , the law of the resulting Rn-valued random variable converges to a
Gaussian distribution with covariance Cij = 〈ηi, ηj〉.
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Following the same argument as in Lemma 6.4, one shows that the sequence ζε
is tight, so that it has some accumulation point ξ. Since each of the ζε is stationary,
ξ is also stationary. By Lemma 6.2, it therefore suffices to verify that it has the
correct finite-dimensional distributions when tested against test functions avoiding
the hyperplane x = vxt. By stationarity, we can replace this by the hyperplane
x = vxt ± 1

2
(which is one single plane if we view the spatial variable as taking

values on the circle).
For any δ > 0, define the space-time domain

Dδ = {(t, x) : |t| ≤ T , |x− vxt| ≤ (1− δ)/2} ,

and consider a finite collection of test functions as above, but with supports con-
tained in Dδ. Choosing the coupling mentioned in the assumption, we then have
the bound

E|(ζε − ζ (0)
ε )(ηi)|2 . sup

(t,x)∈supp ηi
E|ζε(t, x)− ζ (0)

ε (t, x)|2

. ε−3 sup
|t|≤Tε−2

sup
|x|≤(1−δ)/(2ε)

E|ζ(t, x)− ζ (ε)(t, x)|2 ,

which converges to 0 as ε→ 0 by assumption.

The only missing piece in the proof of Proposition 6.1 is the following simple
lemma. Note that Assumptions 1.1 and 1.2 can be also easily formulated on R×Rd.

Lemma 6.4 Let ζ be a random field on R × Rd equipped with scaling s =
(2, 1, . . . , 1) satisfying Assumptions 1.1 and 1.2. Let

ζ (0)
ε (z) def

= ε−(d+2)/2ζ
( t
ε2
,
x− v(ε)t

ε

)
where v(ε) converges to a constant vector v ∈ Rd and z = (t, x) ∈ R × Rd. The
sequence of random fields ζ (0)

ε converges in distribution to Gaussian white noise ξ
with scaling s as ε→ 0 in the space Cγ for every γ < −d+2

2
.

Proof. We first show that E‖ζ (0)
ε ‖

p

C−|s|/2 (where |s| = d+ 2) is bounded uniformly
in ε > 0 for all p > 1. For this it suffices to show that λ|s|p/2E|ζ (0)

ε (ϕλ0)|p . 1
uniformly in ε, λ > 0 for all p > 1, which follows in exactly the same way as the
proof of the case τ = Ξ in Theorem 4.1.

To identify the limit, it follows from the multidimensional version of Carle-
man’s theorem [CW36, Akh65] that it is enough to show that for any given finite
number of compactly supported smooth functions ϕ1, . . . , ϕn, one has convergence
of joint moments E(ζ (0)

ε (ϕ1) · · · ζ (0)
ε (ϕn)) → E(ξ(ϕ1) · · · ξ(ϕn)) as ε → 0. This
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implies convergence ζ (0)
ε → ξ in distribution, and the first part of the proof gives

convergence in the desired topology. The calculation for the joint moment of
ζ (0)
ε (ϕi) is the same as above, except that ϕλ0 is replaced by ϕi. For B ∈ π, |B| > 2,

the integral is bounded by a positive power of ε and thus converges to zero. The
non-vanishing terms are the partitions π such that |B| = 2 for every B ∈ π. Since
κ2 is normalised in Assumption 1.1 such that the second cumulant of ζ (0)

ε converges
to the Dirac distribution, the joint moment converges to that of the Gaussian white
noise by standard Wick theorem.

Theorem 6.5 Let Ẑε = (Π̂(ε), Γ̂(ε)) be the renormalised model built from ζε defined
in the previous sections (with the choice of renormalisation constants given by
(3.9)). Let Ẑ = (Π̂, Γ̂) be the KPZ random model. Then, as ε → 0, one has
Ẑε → Ẑ in distribution in the space M of admissible models for T .

Proof. For any fixed bounded domain D ⊂ R2, recall that we have an associated
“norm” ||| · |||D and pseudometric |||·, ·|||D on the space M of admissible models,
defined as in [Hai14, Eqs. 2.16–2.17]. Since the topology on M is generated by
these pseudometrics, it is sufficient to show that

lim
ε→0

E|||Ẑε, Ẑ|||D = 0 , (6.1)

for every bounded domain D. Since D does not matter much in the sequel, we
henceforth omit it from our notations.

In order to prove (6.1), we proceed by going through the “intermediate” model
Ẑε,ε̄ previously defined in Section 4. Recall that this is built in the same way as Ẑε,
except that the field ζε used to build the model is replaced by ζε,ε̄

def
= ζε ∗%ε̄, where %

is a compactly supported smooth function on R2 integrating to 1 that is even in the
space variable, and with %ε̄ = ε̄−3%(ε̄−2t, ε̄−1x). We furthermore define a model
Ẑ0,ε̄ obtained again in the same way, but this time replacing ζε by ζ0,ε̄

def
= ξ ∗ %ε̄,

where ξ is a realisation of space-time white noise.
With these notations at hand, we then have

E|||Ẑε, Ẑ||| ≤ E|||Ẑε, Ẑε,ε̄|||+ E|||Ẑε,ε̄, Ẑ0,ε̄|||+ E|||Ẑ0,ε̄, Ẑ||| ,

which is valid for any fixed ε̄ > 0 and for any coupling between ξ and ζε, so that

lim
ε→0

E|||Ẑε, Ẑ||| ≤ lim
ε̄→0

lim
ε→0

(E|||Ẑε, Ẑε,ε̄|||+ E|||Ẑε,ε̄, Ẑ0,ε̄|||+ E|||Ẑ0,ε̄, Ẑ|||) . (6.2)

Note the order of limits: we first take ε→ 0 and then only take ε̄→ 0.
The convergence of Ẑ0,ε̄ to the KPZ model in the sense that

lim
ε̄→0

E|||Ẑ0,ε̄, Ẑ|||p = 0 ,
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for every p was already shown in [HQ15, Thm 6.1] (see also [Hai13, FH14] in
a slightly different setting). Regarding the first term, it suffices to note that, by
[Hai14, Thm 10.7] and the second bound in Theorem 4.1, we obtain the bound

E|||Ẑε, Ẑε,ε̄||| . ε̄κ ,

uniformly over ε sufficiently small, so that this term also vanishes.
It therefore remains to bound the second term. This term involves both ζε and

ξ, so we need to specify a coupling between them. For this, we recall that, given
any sequence Xn of random variables on a complete separable metric space X ,
weak convergence to a limit X and uniform boundedness of some moment of order
strictly greater than p of d(0, Xn) implies convergence in the p-Wasserstein metric,
which in turn implies that, for every n, there exists a coupling between Xn and X
such that

lim
n→∞

Ed(Xn, X)p = 0 ,

see for example [Vil09]. Taking for X the space C−2 (say) on any bounded
domain K with the metric given by its norm, it follows from Proposition 6.1 and
Theorem 4.1 (with τ = Ξ) that we can find couplings between ζε and ξ such that

lim
ε→0

E‖ξ − ζε‖p−2;K = 0 .

At this point we use the fact that, for any fixed ε̄ > 0, convolution with %ε̄ maps
C−2 into C1 (actually C∞), so that

lim
ε→0

E‖ζ0,ε̄ − ζε,ε̄‖p1;K = 0 . (6.3)

Consider now the space Y of all stationary random processes η on some given
probability space with the following additional properties:
• The process η is almost surely periodic in space with period 1.
• One has E‖η‖p1;K <∞ for every p ≥ 1.

We endow the space Y with the seminorm

‖η‖pY = E‖η‖p1;K ,

and we denote by Ψ̂ the map ζε 7→ Ẑε, viewed as a map from Y into the space
of M -valued random variables. Here, the requirement that the argument be a
stationary stochastic process is needed for the renormalisation constants to be
well-defined by the formulae in Section 3.2.

It is then immediate from the definitions that, for some sufficiently large p, Ψ̂
satisfies

E|||Ψ̂(ζ), Ψ̂(η)||| . ‖ζ − η‖Y(1 + ‖ζ‖Y + ‖ζ‖Y)
p ,
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Combining this with (6.3) and the fact that Ẑε,ε̄ = Ψ̂(ζε,ε̄), it immediately follows
that

lim
ε→0

E|||Ẑε,ε̄, Ẑ0,ε̄||| = 0 ,

for every fixed (sufficiently small) ε̄ > 0, so that the second term in (6.2) also
vanishes, thus concluding the proof.

Remark 6.6 Our proof also extends to the dynamical Φ4
3 model driven by a general

noise ζ under the same assumptions as here (except that the spatial variable takes
values in T3 instead of S1). Besides the constantC (ε)

1 ≈ ε−1 and the logarithmically
divergent constant C (ε)

2 as in the Gaussian case, we then have the following new
renormalisation constants appearing:

C̄ (ε)
0,1 = ≈ ε−3/2 , C̄ (ε)

0,2 = ≈ ε−1/2 ,

C̄ (ε)
1,1 =

ε→0−→ c1 , C̄ (ε)
1,2 =

ε→0−→ c2 ,

where c1, c2 are some finite constants. The renormalised equation is then given by

∂tΦε =∆Φε − λΦ3
ε

+
(

3λC (ε)
1 − 9λ2C (ε)

2 − 6λ2c1 − 9λ2c2

)
Φε −

(
λC̄ (ε)

0,1 + 3λ2C̄ (ε)
0,2

)
+ ζε .

Using the method developed in this article, one can show that Φε converges to a
limit which coincides with the solution to the dynamical Φ4

3 equation driven by
Gaussian space-time white noise as constructed in [Hai14, CC13, Kup14].
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