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Abstract
We provide a mathematical study of the modified Diffusion Monte Carlo (DMC)
algorithm introduced in the companion article [HW14]. DMC is a simulation technique
that uses branching particle systems to represent expectations associated with Feynman-
Kac formulae. We provide a detailed heuristic explanation of why, in cases in which a
stochastic integral appears in the Feynman-Kac formula (e.g. in rare event simulation,
continuous time filtering, and other settings), the new algorithm is expected to converge
in a suitable sense to a limiting process as the time interval between branching steps goes
to 0. The situation studied here stands in stark contrast to the “naı̈ve” generalisation
of the DMC algorithm which would lead to an exponential explosion of the number
of particles, thus precluding the existence of any finite limiting object. Convergence is
shown rigorously in the simplest possible situation of a random walk, biased by a linear
potential. The resulting limiting object, which we call the “Brownian fan”, is a very
natural new mathematical object of independent interest.
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1 Introduction

Consider a Markov chain ytk with transition probabilities P(x, dy) on some state space
X and, in anticipation of developments below, indexed by a sequence of real numbers
t0 < t1 < t2 < · · · . The nature of the state space does not matter (Polish is enough),
but one should think of X = Rd for definiteness. Given functions χ : X 2 → R and
f : X → R with sufficient integrability properties (say bounded), the Diffusion Monte
Carlo (DMC) algorithm (see [HW14] for description of DMC compatible with the
discussion below) computes an estimate of expectations of the form

〈f〉t = E
(
f (yt) exp

(
−
∑
tk≤t

χ(ytk , ytk+1
)
))

, (1.1)

where y a realisation of the Markov chain described by P. Strictly for convenience we
have assume that t is among the times t0, t1, t2, . . . . More precisely, at time t, DMC
produces a collection of Nt copies of the underlying system, {x(i)

t }
Nt
i=1 so that

E
Nt∑
i=1

f (x(i)
t ) = 〈f〉t. (1.2)

Of course, the expectation in (1.1) can be computed by generating many independent
sample trajectories of y.However, in most cases the weights exp(−

∑
tk≤t v(ytk , ytk+1

))
will quickly degenerate so that a huge number of samples is required to generate a single
statistically significant sample. At each time step DMC removes samples with very low
weights and replaces them with multiple copies of samples with larger weights, focusing
computational effort on statistically significant samples.

Variants of DMC are used regularly in a wide range of fields including electronic
structure, rare event simulation, and data assimilation (see [HM54, dDG05, AFRtW06,
JDMD06, HW14] for a small sample of these applications). The algorithm has also
been the subject of significant mathematical inquiry [DM04]. Continuous time limits
have been considered [Rou06] for cases in which χ scales like the time interval between
branching steps. Perhaps because standard DMC does not have a limit in those cases,
more general Feynman-Kac formulae do not seem to have been considered despite their
appearance in applications.

For the purposes of this article, the main example one should keep in mind is that
where y is a time discretisation of a diffusion process obtained for example by applying
an Euler scheme with fixed stepsize ε:

ytk+1
= ytk + εF (ytk ) +

√
εΣ(ytk ) ξk+1 , (1.3)

where ε = tk+1− tk and the ξk are a sequence of i.i.d. random variables (not necessarily
Gaussian). Regarding the function χ, we will mostly consider the case χ(y, ỹ) =
V (ỹ)−V (y). As described in [HW14], this choice arrises in application of DMC to rare
event simulation problems. Notice that, for this choice of χ and for y in (1.3), when ε is
small, χ(ytk , ytk+1

) ∼
√
ε. This causes a dramatic failure in standard DMC [HW14].
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Yet, for small ε (with fixed t) the expectation 〈f〉t defined in (1.1) has the perfectly nice
limit

E
(
f (yt) exp

(
−V (yt) + V (y0)

))
where now yt is the continuous time limit of (1.3) (the diffusion with drift F and
diffusion Σ). When a stochastic integral appears in the exponential the situation is
completely analogous. It is natural then to search for a modification of DMC that can
handle these settings.

It was shown in [HW14] that the following algorithm provides an unbiased estimator
for 〈f〉t (it satisfies (1.2)) and is superior to DMC (it has lower variance and equivalent
expected cost).

Algorithm TDMC Ticketed DMC

1. Begin with M copies x(j)
0 = x0. For each j = 1, . . . ,M choose an

independent random variable θ(j)
0 ∼ U(0, 1).

2. At step k there are Ntk samples (x(j)
tk
, θ(j)
tk

). Evolve each of the

x(j)
tk

one step to generate Ntk values

x̃(j)
tk
∼ P(ytk+1

∈ dx | ytk = x(j)
tk

).

3. For each j = 1, . . . , Ntk, let

P (j) = e
−χ(x(j)

tk
,x̃(j)
tk+1

)
. (1.4)

If P (j) < θ(j)
tk

then set

N (j) = 0.

If P (j) ≥ θ(j)
tk

then set

N (j) = max{bP (j) + u(j)c, 1} , (1.5)

where u(j) are independent U(0, 1) random variables.

4. For j = 1, . . . , Ntk, if N (j) > 0 set

x(j,1)
tk+1

= x̃(j)
tk+1

and θ(j,1)
tk+1

=
θ(j)
tk

P (j)

and for i = 2, . . . , N (j)

x(j,i)
tk+1

= x̃(j)
tk+1

and θ(j,i)
tk+1
∼ U((P (j))−1, 1).

5. Finally set Ntk+1
=
∑Ntk
j=1 N

(j) and list the Ntk+1
vectors {x(j,i)

tk+1
}

as {x(j)
tk+1
}
Ntk+1

j=1 .

6. At time t produce the estimate

f̂t =
1

M

Nt∑
j=1

f (x(j)
t ) .
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The aim of this article is to argue that one expects the application of Algorithm TDMC
to (1.3) to converge to a finite continuous-time limiting particle process as ε→ 0. Sec-
tion 2.1 provides very detailed heuristic as to why we expect this to be the case and
gives a precise mathematical definition for the expected limiting object.

In the special case where d = 1, F = 0, Σ = 1, and V (x) = x, the process in
question is built recursively by successive realisations of a Poisson point process in a
space of excursions of yt. A precise definition is given in Definition 2.9 and we call this
object the Brownian fan. It is of particular interest since, similarly to the fact that every
diffusion process looks locally like a Brownian motion, one would expect the general
limiting objects described in Section 2.1 to locally “look like” the Brownian fan. The
Brownian fan is interesting in its own right from a mathematical perspective and does
not seem to have been studied before, though it is very closely related to the “Virgin
island model” introduced in [Hut09].

Loosely speaking, the Brownian fan is a branching process obtained in the following
way. Start with a (usually finite) number of initial particles on R that furthermore come
each with a tag v ∈ R, such that the position x satisfies x > v. Each of these particles,
which we call the ancestor particles, perform independent Brownian motions until they
hit the barrier x = v, where they get killed. Each of these particles independently
produces offspring according to the following mechanism. Denoting by E the space of
excursions on R, let M be the Poisson point process on R× E with intensity measure
a dt⊗Q for some a > 0, where Q is Itô’s Brownian excursion measure [Itô72]. If (t, w)
is one of the points of M and the corresponding ancestor particle is alive at time t and
located at xt, then it gives rise to an offspring which performs the motion described by
w, translated so that the origin of the excursion lies at (t, xt). This mechanism is then
repeated recursively for each new particle created in this way.

The Brownian fan has a number of very nice properties. For example, as established
by Theorem 2.14, the continuous-time analogue of the number of particles at time t, Nt,
corresponding to the Brownian fan satisfies

sup
t>0

E exp (λtNt) <∞ (1.6)

for some continuous decreasing function λt > 0. As established in Proposition 2.16,
the bound in (1.6) implies that the continuous-time analogue of the workload,

Wt =

∫ t

0

Nsds

is very nearly a differentiable function of time,

sup
t≤T

lim
h→0

|Wt+h −Wt|
h|logh|

<∞.

This is close to optimal, since there turns out to be a dense set of exceptional times at
which there are infinitely many particles alive (see the argument given at the end of
Section 2.2.3 below).

To conclude this round-up of its mathematical properties, we establish in Propo-
sition 3.3 that the Brownian fan is a Feller process in a suitable state space. When
combined with the continuity of its sample paths established in Proposition 4.8, this
implies that the Brownian fan is a strong Markov process. Note that the construction
of such a state space is a non-trivial endeavour due to the fact that, while the number
Nt of particles alive at time t has finite moments of all orders, there exists a dense set
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of exceptional times for which Nt =∞! Offspring are continuously being created at
infinite rate, thus making the Brownian fan quite different from a standard branching
diffusion.

The “meat” of this article, Sections 4 and 5, is then devoted to a rigorous proof of the
convergence of the output of Algorithm TDMC to the Brownian fan for any sufficiently
light-tailed one-step distribution for the random variables ξk. This result is formulated
in Theorem 5.1. The usual method by which one attempts to characterise the continuous-
time limit of a sequence of discrete-time processes involves studying the limit of the
generators of the discrete-time processes. In our case, as described in Section 3.4, the
discrete-time generators do not converge to the correct limit, at least when applied to
a class of very natural-looking test functions. Surprisingly (and rather confusingly),
they do actually converge to the generator of a Brownian fan, but unfortunately with
the wrong parameters! En route to our convergence result we establish a number
of important and extremely encouraging results about the behaviour of the process
generated by Algorithm TDMC for finite ε. For example, in Proposition 4.2 we obtain
that

sup
ε<ε0

E|Nt|p <∞ ,

for any p ≥ 0 and ε0 > 0 sufficiently small where here Nt refers to the number of
particles generated in Algorithm TDMC and not to the Brownian fan (for which we
have the even stronger result in (1.6)). In Corollary 4.10 we also prove a uniform (in ε)
form of continuity of the processes.

1.1 Notations
For any Polish space Y , we will denote by M+(Y) the space of finite positive measures
on Y , endowed with the topology of weak convergence, together with the convergence
of total mass. Given a random variable X , we denote its law by D(X), except in some
cases where we introduce dedicated notations.

We will often use the notation a . b as a shorthand for the inequality a ≤ Cb for
some constantC. The dependence ofC on other quantities will usually be clear from the
context, and will be indicated when ambiguities may arise. We will also use the standard
notations a ∧ b = min{a, b}, a ∨ b = max{a, b}, and bac = max{i ∈ Z : i ≤ a}.
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2 The continuous-time limit and the Brownian fan

From now on, we restrict ourselves to the analysis of the case χ(x, y) = V (y) −
V (x) for some “potential” V defined on the state space of the underlying Markov
process. We argue that if the underlying process is obtained by approximating a
diffusion process then, unlike in the case of the naı̈ve generalisation of DMC (see
[HW14, Algorithm DMC]), our modification, Algorithm TDMC, converges to a non-
trivial limiting process as the stepsize ε converges to 0.
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We will first provide a heuristic argument showing what kind of limiting process
one would expect to obtain. The remainder of this article will then be devoted to
rigorously constructing the limiting process and proving convergence in the simple case
in which the underlying Markov chain is a random walk (rescaled so that it converges
to a standard Brownian motion) and the biasing potential V is linear. In this case the
limiting process is a very natural object that does not seem to have been studied in
the literature so far. We call this object, which is closely related to the construction in
[Hut09], the Brownian fan (see Section 2.2). It also has a flavour very similar to the
construction of the Brownian web [FINR04] and the Brownian net [SS08], although
there does not seem to be an obvious transformation linking these objects.

2.1 Heuristic derivation of the continuous-time limit
Throughout this section the underlying Markov chain will be given just like in the
introduction by the following approximation to a diffusion:

y(k+1)ε = ykε + εF (ykε) +
√
εΣ(ykε) ξk+1 , ykε ∈ Rn , (2.1)

where the ξk are a sequence of i.i.d. (not necessarily Gaussian) random variables with
law ν and the identity on Rn as their covariance matrix. The functions F and Σ are
sufficiently “nice” functions, but since this section is only heuristic, we do not state
specific regularity, growth or non-degeneracy assumptions.

Remark 2.1 We have slightly changed our notations by writing ykε instead of yk for
the position of the Markov chain after k steps. This is in order to make explicit the fact
that as ε→ 0, one has convergence to a continuous-time process. The corresponding
notational changes in Algorithm TDMC are straightforward.

Concerning the function χ, we take χ(x, y) = V (y) − V (x) for some regular
potential V : Rn → R. Recall now that, as long as a particle is alive, its ticket θ evolves
under Algorithm TDMC as

θ(j)
kε = θ(j)

kε exp(V (x̃(j)
(k+1)ε)− V (x(j)

kε)) .

It is natural therefore to replace θ by the quantity v given by

exp(−v(j)
t ) = θ(j)

t exp(−V (x(j)
t )) .

In this way, the new “tag” v does not change over time, but is assigned to a particle at the
moment of its birth. Translating Steps 3 and 4 of the algorithm into this slightly different
setting, we see that if a particle performs a step from x to y such that V (y) < V (x),
then it can potentially spawn one or more descendants. The tags v of the descendants
are then distributed according to

e−v
law
= U(e−V (x), e−V (y)) , (2.2)

and a particle with tag v lives as long as it stays within the region {x : V (x) ≤ v}.

2.1.1 Description of the limit

For very small values of ε, the process described above has the following features.
Taking the limit ε → 0 in (2.1), we observe that each particle follows a diffusion
process, solving the equation

dyt = F (yt) dt+ Σ(yt) dBt , (2.3)
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where Bt is a standard d-dimensional Brownian motion. If the particle has tag v, then
this process is killed as soon as it exits the sublevel set {x : V (x) ≤ v}.

Consider the following representation of the object produced by Algorithm TDMC.
Denote by Qε

x,v the law of the ε-discretization of (2.3) generated by (2.1) starting at x

and killed upon exiting the set {y : V (y) ≤ v}. Let τ and {wkε}τ/εk=0 be, respectively,
the lifetime and trajectory of the original particle. The trajectories of the offspring of
this initial trajectory are very nearly given (it will be true in the small ε limit) by a
realisation µε,1 of a Poisson point process with intensity

Qε(w, ·) =

τ/ε−1∑
k=0

Aε(k) Θ?
kε

∫ √
εQε

wkε,V (wkε)+δ η(k, dδ) , (2.4)

where, according to the rule for generating new offspring in Algorithm TDMC,

Aε(k) =

{
1√
ε
(e−(V (w(k+1)ε)−V (wkε)) − 1) if V (w(k+1)ε) < V (wkε)

0 if V (w(k+1)ε) ≥ V (wkε)

and, according to the rule for generating offspring tickets in Algorithm TDMC,∫
f (δ)η(k, dδ) =

∫ 1

0

f(− log(1 + u(e−(V (w(k+1)ε)−V (wkε)) − 1))) du.

Here Θt is the map that shifts trajectories forward by time t. Since each offspring
behaves independently just like the original particle, this suggests that the nth generation
µε,n of offspring is obtained recursively as a realisation of the Poisson point process
with intensity given by

Gε,n(·) =

∫
Qε(w̃, ·)µε,n−1(dw̃) .

At each “microscopic” step, the probability of creating a descendent is of order
√
ε

so that, in the limit ε→ 0, each particle spawns descendants at infinite rate. However,
any such descendant is created at distance O(

√
ε) of the “barrier” V (x) = v. As a

consequence, the probability that it survives for a time of order 1 before being killed is
itself only of order

√
ε. Therefore, the rate at which a particle creates descendants that

actually survive for a time τ of order 1 is finite, but tends to infinity as τ → 0.
Now we will consider the small ε-limit of the object we have constructed. The

trajectory wt becomes a sample path of (2.3) exiting the set {y : V (y) ≤ v} at time τ .
Denote by Qx,v the law of the diffusion (2.3) starting at x and killed upon exiting the
set {y : V (y) ≤ v}, which is a probability measure on some space of excursions in
Rn. The characterisation of the standard Itô excursion measure (see for example [RY91,
Theorem 4.1] and [PY82]) then suggests that, for every x ∈ Rn such that ∇V 6= 0 and
Σ is non-degenerate, the limit

Qx = lim
δ→0+

1

δ
Qx,V (x)+δ ,

exists as a σ-finite measure in the sense that 1
δQx,V (x)+δ restricted to the set of excursions

longer than a fixed length converges weakly to Qx restricted to the same set.
The discussion so far suggests that for the limiting object, the trajectories of the first

generation of offspring are given by a realisation µ1 of the Poisson point process with
intensity measure

Q(w, ·) =

∫ τ

0

A(wt) Θ?
tQwt dt , (2.5)



THE CONTINUOUS-TIME LIMIT AND THE BROWNIAN FAN 8

for some intensity A : Rn → R+ yet to be determined and that the nth generation µn of
offspring is obtained recursively as a realisation of a Poisson point process with intensity
given by

Gn(·) =

∫
Q(w̃, ·)µn−1(dw̃) ,

withQ as in (2.5). In order to fully characterise the limiting object, it remains to provide
an expression for the intensity function A.

Let us start by replacing Qε
x,v in equation (2.4) by Qx,v, i.e. by assuming that

for small ε, excursions of the discrete process are very similar to excursions of its
continuous time limit. We then apply the relations

Qx,V (x)+δ ≈ δQx (2.6)

and
V (w(k+1)ε)− V (wkε) ≈

√
ε〈∇V (wkε),Σ(wkε)ξk+1〉

with the ξk+1 as in (2.1). We then formally obtain

Qε(w, ·) ≈ ε
τ/ε−1∑
k=0

1〈∇V (x),Σ(x)ξk+1〉<0〈∇V (wkε),Σ(wkε)ξk+1〉

×
∫ 1

0

u〈∇V (wkε),Σ(wkε)ξk+1〉duΘ?
kεQwkε .

Our arguments so far therefore suggest that

A(x) =
1

2

∫
〈∇V (x),Σ(x)z〉<0

〈∇V (x),Σ(x)z〉2 ν(dz) , (2.7)

where the distribution ν has mean 0 and identity covariance matrix. Assuming that ν is
symmetric this becomes

A(x) = c〈∇V (x),Σ(x)ΣT (x)∇V (x)〉 , (2.8)

where c = 1
4 . If ν is not symmetric, one might even expect a prefactor c that depends

on x.
In fact, as we will see in a specific case in the remainder of this section, the correct

value is c = 1
2 , whether the law of ξ is symmetric or not. The reason for this discrepancy

is that the relation
Qε
x,V (x)+δ ≈ δQx

used in our derivation is only valid if δ �
√
ε. In our case however, one precisely has

δ ∼
√
ε, which introduces a correction factor that eventually gives rise to the value

c = 1
2 . The aim of the next subsection is to show in more detail how this factor 1

2 arises
in the simplest situation where F = 0 and Σ = 1.

2.1.2 The case of Brownian motion

We now consider the one-dimensional case, where the limiting underlying process is
simple Brownian motion. Regarding the underlying discrete problem, we consider the
Markov chain defined recursively by

y(k+1)ε = ykε +
√
εξk+1 , (2.9)
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for an i.i.d. sequence of centred random variables ξk with law ν and variance 1. For the
potential function V , we choose V (x) = −ax for some a > 0.

In order to show that the constant c appearing in (2.8) is equal to 1
2 , we will now

argue that if we denote by Q the standard Itô excursion measure (which we normalise in
such a way that Q = limε→0

1
εQε, where Qε is the law of a standard Brownian motion

starting at ε and killed when it hits the origin) and by Qε
z the law of the random walk

(2.9) starting at
√
εz and stopped as soon as it takes negative values, then there exists a

function G such that
Qε
z ≈
√
εG(z)Q , (2.10)

as ε→ 0 when both sides are restricted to excursions that survive for at least some fixed
amount of time. We will see that the function G behaves like G(z) ≈ z for large values
of z, but has a non-trivial behaviour for values of order 1. In terms of our notation from
the previous subsection (since yt is spatially homogeneous and V is linear) this implies
that the approximation (2.6) should really have been replaced by

Qε
x,V (x)+δ ≈ a

√
εG

(
δ

a
√
ε

)
Q .

Since we assumed a > 0, our process creates offspring only when it performs a step
towards the right, i.e. when ξk+1 > 0. The probability that a new particle is created in
the k-th step is approximately aξk+1. Furthermore, the small ε rule for the generation
of tags implied by Algorithm TDMC is

δ

a
√
ε

=
a−1v + x√

ε
∼ U(0, ξk+1). (2.11)

As a consequence, once we have identified the function G in (2.10), our arguments in
the previous section lead to the formula

A(x) =

∫ ∞
0

(az)
(

1

z

∫ z

0

aG(y) dy
)
ν(dz)

where ν is the law of the steps ξk. If we can show that∫ ∞
0

∫ z

0

G(y) dy ν(dz) =
1

2
, (2.12)

then we will have

A(x) =
a2

2
,

a formula consistent with a choice of c = 1
2 in (2.8).

In order to identify G, we note that if a random walk starting from
√
εδ survives for

some time of order 1 before becoming negative then, with overwhelming probability,
it will have reached a height of at least ε1/4 (say). Furthermore, if we condition the
random walk Qε

z to reach a level
√
εγ with 1� γ � ε−1/2, one would expect its law

to be well approximated by
√
εγQ when restricted to excursions that survive for a time

of order 1.
As a consequence, we expect that

Qε
z ≈ P̄z,γ

√
εγQ , γ � 1 ,

where P̄z,γ denotes the probability that the simple random walk (2.9) with ε = 1 started
at z reaches the level γ before becoming negative.



THE CONTINUOUS-TIME LIMIT AND THE BROWNIAN FAN 10

The remainder of this section is devoted to the proof of the fact that if we define
P̄z,γ in this way, then under some integrability assumptions for the one-step probability
ν, the limit

G(z) = lim
γ→∞

γP̄z,γ ,

exists and does indeed satisfy (2.12), independently of the choice of ν. Actually, we
will prove these statements for the quantity Pz,γ = P̄z,γ+z , which we interpret as the
probability that the random walk starting at the origin reaches [γ,∞) before reaching
(−∞,−z]. Our first result is as follows:

Proposition 2.2 Assume that the law ν satisfies ν({|x| ≥ K}) ≤ C exp(−cKβ) for all
K ≥ 0 and some strictly positive constants c, C and β. Then, the limit

G(s) = lim
γ→∞

γPs,γ (2.13)

exists and satisfies the relations

G(s) =

∫ ∞
−s

G(s+ z) ν(dz) , s ≥ 0 , lim
s→∞

G(s)
s

= 1 . (2.14)

Furthermore, for every δ > 0 there exists C such that the bound

|(γ + s)Ps,γ −G(s)| ≤ C 1 + s

γ
1
2−δ

, (2.15)

holds uniformly for all s ≥ 0 and γ ≥ 1 ∨ s.

Proof. Denote by yk the kth step of the random walk starting at the origin. Our main
tool is the quantitative convergence result [Fra73], which states that the supremum
distance between a Wiener process and the diffusively rescaled random walk over n
steps is of order n−1/4.

As a consequence we claim first that, for every δ > 0 there exists a constant C such
that, for every a ∈ [ 1

3 , 3], we have the bound∣∣∣Paγ,γ − a

1 + a

∣∣∣ ≤ C

γ
1
2−δ

, (2.16)

valid for every γ ≥ 1. Indeed, for any n ≥ 1, it follows from the previously quoted
convergence result that there exists a Brownian motionB such that |Bt−ybtc| ≤ n1/4+δ

for all t ∈ [0, n] with probability greater than 1 − C/nq. Here, δ > 0 and q ≥ 1 are
arbitrary, but the constant C of course depends on them.

Take n such that n1/4+δ ≤ γ. If y hits [γ,∞) before (−∞,−aγ], then either
supt≤n |Bt − ybtc| > n1/4+δ, or supt≤n |Bt| ≤ 3γ, or B hits [γ − n1/4+δ,∞) before
it hits (−∞,−aγ − n1/4+δ]. As a consequence,

Paγ,γ ≤
aγ + n1/4+δ

(1 + a)γ
+
C

nq
+ exp(−cn/γ2) .

Reversing the roles of γ and aγ, we thus obtain the bound∣∣∣Paγ,γ − a

1 + a

∣∣∣ . n1/4+δ

γ
+

1

nq
+ exp(−cn/γ2) .
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Choosing δ small enough and n = γ2+δ , the claim (2.16) then follows.
In order to obtain the convergence of the right hand side in (2.13), we make use of

the fact that, for γ̄ > γ, one has the identity

Ps,γ̄ = Ps,γ

∫ ∞
0

Ps+γ+z,γ̄−γ−z νγ(dz) , (2.17)

where νγ is the law of the “overshoot” yn − γ at the first time n such that yn ≥ γ,
conditioned on never reaching below the level−s. Since Ps+γ+z,γ̄−γ−z is an increasing
function of z, we immediately obtain the lower bound

Ps,γ̄ ≥ Ps,γPs+γ,γ̄−γ ,

If we choose γ = aγ̄ for a ∈ [ 1
4 ,

1
2 ], it then follows from (2.16) that

Ps,γ̄ ≥ Ps,γ
(γ + s

γ̄ + s
− C

γ
1
2−δ

)
,

for all γ sufficiently large and uniformly over all s ∈ [0, γ]. Setting Qs,γ = (γ+ s)Ps,γ ,
it thus follows that one has the bound

Qs,γ̄ ≥ Qs,γ
(

1− C

γ
1
2−δ

)
, (2.18)

possibly for a different constant C. Let γ0 ≥ 1 be such that the factor on the right
of this equation is greater than 1/2. By (2.16), there then exists s0 ≥ γ0 such that
for s ≥ s0 and γ ∈ [s, 2s] one has Qs,γ ≥ C(1 + s). Furthermore, for s ≤ s0 and
γ ∈ [(1 ∨ s), 2(γ0 ∨ s)], there exists a non-zero constant such that Qs,γ ≥ C. Iterating
(2.18), we then conclude that there exists a constant C > 0 such that the bound

Qs,γ ≥ C(1 + s) ,

holds uniformly over all s > 0 and all γ ≥ 1 ∨ s.
On the other hand, for arbitrary α > 0, one has from (2.17) the lower bound

Ps,γ̄ ≤ (νγ({x > γα}) + Ps+γ+γα,γ̄−γ−γα)Ps,γ .

In order to bound νγ({x > γα}), we note that this event can happen only if either one
of the first γ3 increments exceeds γα, or the random walk never exceeds the value γ
within these γ3 steps. Similarly to before, it then follows that

νγ({x > γα}) . 1

Ps,γ
(γ3 exp(−cγαβ) + γ−q + exp(−cγ)) ,

for every q > 0 and uniformly over s ≤ γ. It follows from the lower bound on Ps,γ
obtained previously that νγ({x > γα}) . γ−q for any power q > 0, so that we obtain
the upper bound

Ps,γ̄ ≤ Ps,γ
(γ + s

γ̄ + s
+

C

γ
1
2−δ

)
, (2.19)

with the same domain of validity as before. Using a very similar argument as before, we
obtain a constant C̄ such that γPs,γ ≤ C̄(1 + s) uniformly over s > 0 and γ ≥ 1 ∨ s.

Combining the bounds we just obtained, we obtain

|γ̄Ps,γ̄ − γPs,γ | ≤
C

γ
1
2 +δ

,
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uniformly over γ̄ > γ > s, from which it follows immediately that the sequence
{γPs,γ}γ≥1 is Cauchy, so that it has a limit G(s).

It remains to show that G has the desired properties. The first one follows immedi-
ately from the identity

γPs,γ =

∫
R
γPs+z,γ−z ν(dz) ,

which holds provided that we define the integrand to be 1 for z > γ and 0 for z < −s.
In order to show thatG(s)/s→ 1, we fix some (large) value s and choose γn = 2ns.

It then follows from (2.16) that

|Q0 − s| . s
1
2 +δ ,

where we used the notation Qn = (γn + s)Ps,γn as a shorthand. Furthermore, it follows
immediately from (2.19) that there exists a constant C independent of s such that
|Qn| ≤ Cs uniformly in n. As a consequence, we obtain the recursive bound

|Qn −Qn−1| ≤
Cs

γ
1
2−δ
n

.

Summing over n yields |Qn − s| . s
1
2 +δ, uniformly in n, so that the claim follows.

The quantitative error bound (2.15) follows in the same way.

Corollary 2.3 In the same setting as above, one has the bound∣∣∣Ps,γ − s

γ + s

∣∣∣ . 1 + s
1
2 +δ

γ
,

uniformly for all s ≥ 0 and γ ≥ 1 ∨ s.

Proof. Combine (2.15) with the bounds on G(s)− s obtained at the end of the proof
above.

Somewhat surprising is the fact that the function G obtained in the Proposition 2.2
does indeed satisfy (2.12), independently of the choice of transition probability ν,
provided that we assume that ν has some exponential moment.

Proposition 2.4 Let G be as in Proposition 2.2 and assume that the law ν satisfies∫
R
ec|z|ν(dz) <∞ ,

for some c > 0. Then, one has the identity
∫∞

0
ν([s,∞))G(s) ds = 1

2 .

Remark 2.5 Note that, by Fubini’s theorem,∫ ∞
0

ν([s,∞))G(s) ds =

∫ ∞
0

∫ s

0

G(y) dy ν(ds) ,

so that we do obtain (2.12).
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Proof. Integrating (2.14) from 0 to an arbitrary value K > 0 and applying Fubini’s
theorem, we obtain the identity∫ K

0

G(s) ds =

∫ ∞
0

G(z) ν([z −K, z]) dz . (2.20)

In this proof we denote by I =
∫∞

0
G(z)ν([z,∞)) dz the quantity of interest.

Simple algebraic manipulations then yield from (2.20)

I =

∫ ∞
0

G(z) ν([z −K,∞)) dz −
∫ ∞

0

G(z) ν([z −K, z]) dz

=

∫ ∞
0

G(z) ν([z −K,∞)) dz −
∫ K

0

G(z) dz

=

∫ ∞
0

G(z)(ν([z −K,∞))− 1z<K) dz .

Since this identity holds for every K > 0, it follows in particular that one has

I = ε

∫ ∞
0

G(z)
∫ ∞

0

(ν([z −K,∞))− 1z<K)e−εK dK dz

=

∫ ∞
0

G(z)
(
ε

∫ ∞
0

ν([z −K,∞))e−εK dK − e−εz
)
dz , (2.21)

for every ε > 0. At this stage, we note that one has the identity

ε

∫ ∞
0

ν([z −K,∞))e−εK dK = e−εzEeεξ − εe−εz
∫ ∞
z

eεKν([K,∞)) dK ,

where ξ denotes an arbitrary random variable with law ν. Since ν has some exponential
moment by assumption, ν([K,∞)) decays exponentially so that the second term in this
identity satisfies ∣∣∣εe−εz ∫ ∞

z

eεKν([K,∞)) dK
∣∣∣ ≤ Cεe−γz ,

for some constants γ,C > 0, provided that ε is small enough. Inserting this into (2.21),
it follows that

I =

∫ ∞
0

G(z)e−εzE(eεξ − 1) dz +O(ε) .

At this stage, we use again the fact that ξ has exponential moments to deduce that

Eeεξ − 1 =
ε2

2
+O(ε3) ,

where we used the fact that Eξ = 0 and Eξ2 = 1, so that

I =
ε2

2

∫ ∞
0

G(z)e−εz dz +O(ε) .

It then follows from the fact that lims→∞G(s)/s = 1 and the dominated convergence
theorem that

I = lim
ε→0

ε2

2

∫ ∞
0

ze−εz dt =
1

2
,

which is precisely the desired expression.
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Remark 2.6 It is clear that these results should hold under much weaker integrability
conditions on ν. However, since we need some exponential moments on ν at several
places in the sequel, we did not try to improve on this.

2.2 Some properties of the limiting process
In this section, we provide a rigorous definition of the limiting process loosely defined
in Section 2.1.1, and we study some of its properties. In order to be able to use
existing results on Brownian excursions, we restrict ourselves to the same situation as in
Section 2.1.2, namely the case where the underlying diffusion is a Brownian motion
and the potential V (x) = −ax is linear. We call the resulting object the Brownian fan.

2.2.1 Recursive Poisson point processes

Before we give a formal definition of the Brownian fan, we define a “recursive Poisson
point process”. Loosely speaking, this is a Crump-Mode-Jagers process [Jag75] with
Poisson distributed offspring, but where the number of offspring of any given individual
is allowed to be almost surely infinite. Note again that our construction is very similar
to the one given in [Hut09]. Given a Polish space X and a function F : X → R+, we
denote throughout this section by M F

+ (X ) the space of σ-finite measures µ on X such
that

µ(F−1(0)) = 0 , µ({x : F (x) > ε}) <∞ ,

for all ε > 0. We endow this with the topology of convergence in total variation on each
set of the form {x : F (x) > 1/n}. Given a (measurable) map Q from X to M F

+ (X ),
we can then build for every x ∈ X a point process as follows.

Define µ0
x = δx and, for n ≥ 1, define µnx recursively as a (conditionally independent

of the µ`x with ` < n) realisation of a Poisson point process with intensity measure

Qn =

∫
X
Q(y)µn−1

x (dy) ,

where we view µnx as a random σ-finite positive integer-valued measure on X . (In
principle, it may happen that Qn({x : F (x) > ε}) =∞ for some ε > 0. In this case,
our construction stops there.)

When then set

µ[n]
x =

n∑
`=0

µnx , (2.22)

and we call µ[n]
x the recursive Poisson point process of depth n with kernel Q. We will

occasionally need to refer the Brownian fan spawned by an initial Brownian motion
w. For this purpose we will use the symbol µ[n]

w (or µnw for a specific generation) and
rely on the context to differentiate µ[n]

x and µ[n]
w . If, in these symbols we omit the

subscript entirely then it is assumed that x = 0. In general, there is no reason to expect
the sequence µ[n]

x to converge to a finite limit. However, one has the following simple
criterion ensuring that this is the case:

Lemma 2.7 Let F and Q be as above and assume that there exists c < 1 such that∫
F (y)Q(x, dy) ≤ cF (x) for every x ∈ X . Then, for every x ∈ X , there exists a

random σ-finite measure µ[∞]
x on X such that limn→∞ E

∫
F (y)(µ[∞]

x − µ[n]
x )(dy) = 0.
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Proof. Fix x ∈ X and denote by Fn the σ-algebra generated by µ[n]
x . It then follows

from the definition of the µ[n]
x that

E
(∫
X
F (y)µ`+1

x (dy)
∣∣∣F`

)
=

∫
X

∫
X
F (y)Q(z, dy)µ`x(dz) ≤ c

∫
X
F (z)µ`x(dz) .

As a consequence, one has E
∫
X F (y)µ`x(dy) ≤ c`F (x), and the claim follows.

Remark 2.8 A useful identity is the following. Denote by {µ̃[∞]
y }y∈X a collection of

independent copies of recursive Poisson point processes with “initial conditions” y.
Then one has the identity in law

µ[∞]
x

law
= δx +

∫
X
µ̃[∞]
y µ1

x(dy) , (2.23)

where, as before, µ1
x is a realisation of a Poisson point process with intensity Q(x, ·),

which is itself independent of the µ̃[∞]
y . This identity makes sense since the integral on

the right is really just a countable sum.

2.2.2 Construction of the Brownian fan

We now denote by E the set of excursions with values in R. We consider elements of
E as triples (s, t, y) Where s < t ∈ R ∪ {+∞}, and y ∈ C(R,R) has the property that
yτ = yt for τ ≥ t and yτ = ys for τ ≤ s. We also write E0 for the subset of those
triples (s, t, y) such that s = 0.

Denoting a generic excursion by w, we write s(w) for its starting time and e(w) for
its end time, i.e., s(s, t, y) = s, and e(s, t, y) = t. We also denote by l(w) the lifetime
of the excursion, which is the interval l(w) = [s(w), e(w)]. In order to keep notations
compact, we will also identify an excursion with its path component, making the abuse
of notation wt = yt. There is a natural metric on E given by

d(w̃, w) = dl(w̃, w) +
∑
k≥1

2−k
(

1 ∧ sup
|t|≤2k

|w̃t − wt|
)

, (2.24)

where the distance dl between the supports is given by

dl(w̃, w) = 1 ∧ (|s(w̃)− s(w)|+ | tanh e(w̃)− tanh e(w)|) .

The reason for this particular choice of metric is that it ensures that E is a Polish space,
while still allowing for infinite excursions.

For τ ∈ R and v ∈ E , we denote by Θv,τ : E → E the shift map given by

Θv,τ : (s, t, w) 7→ (s+ τ, t+ τ, w·+τ + vτ ) ,

which essentially changes the coordinate system so that the origin (0, 0) is mapped to
(τ, vτ ). Denoting as before by Q the standard Itô excursion measure, we now give the
following definition:

Definition 2.9 The Brownian fan with intensity a > 0 is the recursive Poisson point
process on E with kernel

Q(w, ·) =
a

2

∫ e(w)

s(w)
Θ?
w,τQ dτ , (2.25)
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Figure 1: A typical realisation of the Brownian fan with intensity a = 3
2 over the time

interval [0, 1]. Successive generations are draw in lighter shades of grey.

and initial condition given by a realisation of Brownian motion, starting at the origin
and killed when it reaches the level −L, where L is exponentially distributed with mean
a.

Remark 2.10 The reason for killing the original Brownian motion at this particular
level is natural, due to the distribution of the initial tag in Step 1 of the algorithm. It is
however essentially irrelevant to the mathematical construction.

Remark 2.11 Formally, the Brownian fan is a particular case of the Virgin Island
Model [Hut09] with a playing the same role in both models, h = a, and g = 1/2. The
differences are twofold. First, the case of constant non-vanishing a actually doesn’t fall
within the framework of [Hut09] since the author there uses the standing assumption
that a(0) = 0. The other difference is mostly one of perspective. while we have so
far defined the Brownian fan as a point process on a space of excursions, one of the
purposes of this article is to show that it is also well-behaved as an actual Markov
process with values in a suitable state space of (possibly infinite) point configurations.

Remark 2.12 By only keeping track of the genealogy of the particles and not their
precise locations, one can construct a “real tree” on top of which the Brownian fan is
constructed (loosely speaking) by attaching a Brownian excursion to each branch. This
is very similar in spirit to Le Gall’s construction of the Brownian map [LG07, LG10],
starting from Aldous’s continuous random tree [Ald91]. The scaling properties of the
Brownian fan however are quite different. In particular, Theorem 2.14 below implies
that the underlying tree has Hausdorff dimension 1, as opposed to the CRT which has
Hausdorff dimension 2.

Before we proceed, let us show that it is possible to verify the assumptions of
Lemma 2.7, so that this object actually exists for every a > 0:
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Proposition 2.13 The kernel Q defined in (2.25) satisfies the assumption of Lemma 2.7
with the choice

F (w) = e−ηs(w)(1− e−η|l(w)|) ,

provided that η is large enough.

Proof. It follows from the properties of Q that there exists a constant C independent of
γ and a such that∫

E
F (w̃)Q(w, dw̃) =

a√
2π

∫ e(w̃)

s(w̃)
e−ητ

∫ ∞
0

(1− e−ηs)s−3/2 ds dτ

≤ Ca
√
η

(e−ηs(w̃) − e−ηe(w̃)) =
Ca
√
η
F (v) ,

where C is a constant independent of a and η. The claim then follows by choosing√
η > Ca.

The remainder of this section is devoted to a study of the basic properties of the
Brownian fan. In particular,we will show that there exists a suitable space X of particle
configurations such that it can be viewed as a X -valued Markov process with continuous
sample paths that satisfies the Feller property.

2.2.3 Number of particles and workload rate

Define the set Nt ⊂ E of excursions that are “alive at time t” by

Nt = {w ∈ E : s(w) < t < e(w)} .

With this notation, the number of particles alive at time t for the Brownian fan is given
by

Nt = µ[∞](Nt) ,

which is in principle allowed to be infinite.

Theorem 2.14 There exist a constant C > 0 and a strictly positive continuous decreas-
ing function λ : R+ → R+ such that

E exp(λtNt) ≤ C , (2.26)

holds uniformly over all t > 0.

Remark 2.15 We will see in the proof that one can choose λ of the form

λt = K−1e−Kt , (2.27)

for K sufficiently large.

Proof. For λ > 0 and s, t ≥ 0, set

Nλ
s,t = log E exp(λµ[∞]

w (Nt)) ,

where w is any excursion starting from 0 with lifetime s. Since, by the definition (2.25),
the value ofNλ

s,t does not depend on the precise choice of excursion, we do not include it
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in the notation. It also follows from the construction of µ[∞]
w that the function t 7→ Nλ

t,t

is increasing in t and that Nλ
s,t = Nλ

t,t for s ≥ t.
We also define Mλ

t by

Mλ
t = log E exp

(
λ

∫
E
µ[∞]
w (Nt) M (dw)

)
, (2.28)

where M is a Poisson random measure with intensity measure Q and the realisations
µ[∞]
w are independent of M and of each other. While Nλ measures the total number of

offspring alive at time t due to an excursion starting at time 0, Mλ measures the rate at
which these offspring are created.

Indeed, combining (2.23) with the definition of µ1
w and the superposition principle

for Poisson point processes, we have the identity

Nλ
s,t = λ1s≥t +

a

2

∫ s∧t

0

Mλ
t−r dr . (2.29)

It therefore remains to obtain suitable bounds on Mλ
t .

It follows from (2.29) and standard properties of Poisson point processes (see for
example [PZ07, Theorem 6.3]) that one has the identity

Mλ
t =

∫
E
(E exp(λµ[∞]

w (Nt))− 1) Q(dw) =

∫
E
(eN

λ
e(w),t − 1) Q(dw)

≤
∫
E

(
exp
(
λ1Nt (w) +

a

2

∫ e(w)∧t

0

Mλ
t−s ds

)
− 1
)

Q(dw) .

At this stage, we note that the integrand appearing in this expression depends on w only
through e(w). It is then convenient to break the integral into a contribution coming from
e(w) > t, as well as its complement. Since, under Q, the quantity e(w) is distributed
according to the measure s−3/2

√
2π
ds, this yields

Mλ
t ≤

(
exp
(
λ+

a

2

∫ t

0

Mλ
r dr

)
− 1
)

Q(e(w) ≥ t)

+

∫ t

0

(
exp
(a

2

∫ s

0

Mλ
t−r dr

)
− 1
) s−3/2

√
2π

ds .

We now assume that both λ and t are sufficiently small so that

λ+
a

2

∫ t

0

Mλ
r dr ≤ 1 . (2.30)

This assumption allows us to use the bound et − 1 ≤ 2t, so that we obtain the more
manageable expression

Mλ
t ≤

4t−1/2

√
2π

(
λ+

a

2

∫ t

0

Mλ
r dr

)
+ a

∫ t

0

∫ s

0

Mλ
t−r dr

s−3/2

√
2π

ds

=
4λt−1/2

√
2π

+
2at−1/2

√
2π

∫ t

0

Mλ
r dr + a

∫ t

0

∫ t

s

Mλ
r dr

(t− s)−3/2

√
2π

ds

=
4λt−1/2

√
2π

+
2at−1/2

√
2π

∫ t

0

Mλ
r dr +

2a√
2π

∫ t

0

(t− s)−1/2Mλ
s ds
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≤ 4λt−1/2

√
2π

+
4a√
2π

∫ t

0

(t− s)−1/2Mλ
s ds .

Writing Hλ
t = t1/2Mλ

t , we thus obtain the bound

Hλ
t ≤

4λ√
2π

+
4a√
2π
t1/2

∫ t

0

(t− s)−1/2s−1/2Hλ
s ds . (2.31)

We can now apply the fractional version of Gronwall’s lemma [NR02, Lemma 7.6]
(with b = 4a√

2π
, a = 4λ√

2π
, and α = 1

2 ), so that there exists a constant C > 0 depending
on a but independent of λ such that

Hλ
t ≤ Cλ exp(Ct) .

From this, we immediately deduce from (2.29) and the definition of Hλ a similar bound
on Nλ

t,t. Choosing λ = K−1e−Kt for sufficiently large t then allows to satisfy (2.30)
and to obtain Nλ

t,t ≤ 2, thus completing the proof.

As a corollary, we obtain a rather sharp bound on the modulus of continuity of the
total workload processWt =

∫ t
0
Ns ds. One has

Proposition 2.16 For every T > 0, one has

sup
t≤T

lim
h→0

|Wt+h −Wt|
h| logh|

<∞ , (2.32)

almost surely.

Proof. It follows from the generalised Young inequality that, for every a, b ∈ R+, and
every λ, η > 0, one has the inequality

ab ≤ η

λ
(eλa − 1− λa+ (1 + b/η) log(1 + b/η)− b/η) ,

so that
Nt ≤

η

λ
(eλNt + (1 + 1/η) log(1 + 1/η)) .

It follows immediately that

|Wt+h −Wt| ≤
η

λ

∫ t+h

t

eλNs ds+
h(1 + η)

λ
log(1 + 1/η) .

Setting η = h, we obtain the bound

|Wt+h −Wt| ≤
h

λ

∫ T+1

0

eλNs ds+ Cλh| logh| ,

uniformly over all h ≤ 1 and all t ∈ [0, T ]. The claim now follows immediately from
Theorem 2.14.

Although the number of particles alive at any deterministic time has exponential
moments, there exists a dense set of exceptional times for which Nt =∞. For one, this
follows from the fact that, under Q, e(w) is distributed proportionally to s−3/2ds, so
that every particle creates an infinite number of offspring in every time interval.
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Actually, one has the even stronger statement that there is a dense set of exceptional
times at which the number of particles belonging to the first generation of offspring is
infinite. Indeed, if we denote by M a Poisson random measure on R2

+ with density
cs−3/2 dr ds for a suitable constant c, then the number N1

t of particles in the first
generation of offspring is given by

N1
t = M (At) , At = {(r, s) ∈ [0, t]× R+ : s ≥ t− r} .

For k ≥ 0 and d ∈ {1, . . . 2k}, we then set

Ak,d = [(d− 1)2−k, d2−k]× [4−k, 41−k] ,

so that, by the scaling properties of M , the random variables Nk,d = M (Ak,d) form a
sequence of i.i.d. Poisson random variables. For any given point (r, s), we set B(r,s) =
[r, r + s], which is the set of times t such that (r, s) ∈ At, and we set

D(r,s) = {(k, d) : B(r′,s′) ⊂ B(r,s) ∀(r′, s′) ∈ Ak,d} .

Since the set D(r,s) is infinite for every (r, s), we can then build a sequence (rn, sn)
recursively in the following way. Start with (r0, s0) = (0, 1) and then, given (rn, sn)
for some n ≥ 0, define (kn, dn) as the first (in lexicographic order) element (k, d) ∈
D(rn,sn) such that Nk,d ≥ 1. We then set (rn+1, sn+1) to be one of the points of
M located in Akn,dn . By construction, one then has ∩n≥1B(rn,sn) = {t} for some
t ∈ [0, 1], and M (At) ≥

∑
n M (Akn,dn ) =∞, as stated. Of course, the interval [0, 1]

in this procedure is arbitrary. If we want to show that there exists an exceptional time
within any deterministic time interval [t0, t1], it suffices to start the algorithm we just
described with r0 = t0 and s0 = t1 − t0.

3 The Brownian fan as a Markov process

In this section, we slightly shift our perspective. We no longer consider the Brownian
fan as a point process of excursions, but we consider it as an evolving system of particles.
Our system will therefore be described by a Markov process in some space of integer-
valued measures on a subset of R2 corresponding to the admissible combinations of
“position + tag”. The problem is that, as we have seen in the previous section, there are
exceptional times at which the limiting process consists of infinitely many particles.
The first challenge is therefore to construct a space X of integer-valued measures with
a sensible topology which can still accommodate these “bad” configurations in such a
way that the limiting process is continuous both as a function of time and as a function
of its initial configuration.

Once this space is defined, we show that the Brownian fan possesses the Feller
property in X (i.e. the corresponding Markov semigroup leaves the space of bounded
continuous functions invariant). In fact, we will show that it preserves the space of
Lipschitz continuous functions. The continuity property of the discrete-time process
established below in Proposition 4.8 also implies the time continuity of the Brownian
fan (see Theorem 5.1 below). These properties allow us to conclude that the Brownian
fan t 7→ µt is in fact a strong Markov process.

In Section 3.4 below, we will furthermore compute its generator A on a class of
“nice” test functions. We will also present a “negative” result showing that if we denote
by Tε the one-step Markov operator corresponding to the evolution of Algorithm TDMC,
then one has A 6= limε→0 ε

−1(Tε−1). This is in stark contrast with, for example, Euler
approximations to stochastic differential equations, where such an equality would hold,
at least when applied to sufficiently regular test functions.
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3.1 State space
Our construction is essentially the Wasserstein-1 analogue of the construction given in
[FG10]. LetM ⊂ Rn be a convex open set with boundary ∂M. For p ∈ (0, 1], we
then denote by `p(M) the set of all integer-valued measures µ onM such that

‖µ‖p =

∫
M
dp(y, ∂M)µ(dy) <∞ , (3.1)

where d(y, ∂M) denotes the (Euclidean) distance from y to the boundary ofM. Note
that since this quantity vanishes at the boundary, there are elements µ ∈ `p(M) such
that µ(M) =∞.

We endow `p(M) with a slight modification of the Wasserstein-1 metric by setting:

‖µ− ν‖p = sup
f∈Lip0

p(M)

(∫
f (y)µ(dy)−

∫
f (y)ν(dy)

)
, (3.2)

where we denoted by Lip0
p(M) the set of all functions f : M→ R such that

|f (x)− f (y)| ≤ |x− y|p , (3.3)

for all x, y ∈M, and f (y) = 0 for all y ∈ ∂M.

Remark 3.1 Our notation is consistent in the sense that if we take for ν the null measure
in (3.2), then we precisely recover (3.1). This can be seen by taking f (x) = dp(x, ∂M),
which is optimal by (3.3) and the triangle inequality.

If µ and ν happen to have the same (finite) mass, then the expression (3.2) does
not change when one adds a constant to f . In this case, we are thus reduced to the
usual Wasserstein-1 distance between µ and ν, but with respect to the modified distance
function

dp(x, y) = |x− y|p ∧ (dp(x, ∂M) + dp(y, ∂M)) .

Note that the completion ofM under the distance function dp consists ofM∪ {∆},
where ∆ is a single “point on the boundary” such that dp(x,∆) = dp(x, ∂M) for every
x ∈M.

If one has µ(M) < ν(M) <∞, then the distance ‖ · ‖p reduces to the Wasserstein-
1 distance (again with respect to dp) between µ̄ and ν, where µ̄ is obtained from
µ by placing a mass ν(M) − µ(M) on the boundary ∆. The following alternative
characterisation of (3.2) in the case of purely atomic measures is a version of the
Monge-Kantorovich duality in this context:

Lemma 3.2 Consider a situation where µ =
∑N
i=1 δxi and ν =

∑M
i=1 δyi . Then,

‖µ− ν‖p = inf
σ∈SN+M

N+M∑
i=1

dp(xi, yσ(i)) ,

where SN+M is the group of permutations of N +M elements and we set xj = ∆ for
j > N and yj = ∆ for j > M .

Proof. See for example [Pra08].
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This characterisation suggests the following “interpolation” procedure between
elements in `p(M). Let µ =

∑N
i=1 δxi and ν =

∑N
i=1 δyi , where we assumed that

both measures charge the same number of points (this is something that we can always
achieve by possibly adding points on ∆). assume furthermore that these points are
ordered in such a way that

‖µ− ν‖p =

N∑
i=1

|xi − yi|p .

Again, this can always be enforced by suitably reordering the points and possibly adding
points on the boundary. We then define, for t ∈ (0, 1), the “linear interpolation” Lt(µ, ν)
by

Lt(µ, ν) =

N∑
i=1

δzi , zi = tyi + (1− t)xi . (3.4)

Note that this procedure is not necessarily unique, but it is easy to resolve this ambiguity
by optimising over the possible pairings {(xi, yi)} realising the above construction,
according to some arbitrary criteria.

In any case, one can check that this construction has the property that

‖Ls(µ, ν)− Lt(µ, ν)‖p ≤ |t− s|p‖µ− ν‖p , (3.5)

for any s, t ∈ [0, 1], which will be a useful fact in the sequel.

3.2 Definition of the process
For the remainder of this section, we set

M = {(x, v) ∈ R2 : v > −ax} ,

which is the natural configuration space for our process. We will use capital letters to
distinguish points inM from points in R. By Theorem 2.14, we already know that, for
any fixed time t, the Brownian fan almost surely has only finitely many particles alive at
time t. Define now the evaluation map Et : E →M∪ {∆} by

Et(w) =

{
(wt,−aws(w)) if t ∈ l(w),

∆ otherwise.

For a given “initial condition” (x, v) ∈M, we then set

µt = E?t µ
[∞]
w ,

which is an `p(M)-valued random variable. Here, w is a realisation of a Brownian
motion starting at x and killed when it hits −v/a, and µ[∞]

w is the corresponding
realisation of the Brownian fan. (Just so that Et has the correct effect on w, one can
for example set s(w) = −1 and make sure that w(−1) = −v/a.) As a consequence
of Theorem 2.14 and of our definition of the Brownian fan, we then indeed have
µt ∈ `p(M) for every p ≤ 1.

Note at this stage that we can simply discard the, typically infinite, mass on ∆
by identifying measures that only differ on ∆. As already mentioned earlier, this is
consistent with the identification ∆ ∼ ∂M already made in the interpretation of the
construction of `p(M).
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This construction can be extended to any initial condition in `p(M) with finite total
mass, by considering independent Brownian fans for each particle. As a consequence
of the Markov property of the Brownian excursion and the independence properties
of Poisson point processes, it is then straightforward to verify that t 7→ µt is indeed a
Markov process.

Actually, by Proposition 4.2, we know that for any fixed collection of deterministic
times {t1, . . . , tk}, one has µtk (M) < ∞ almost surely, so that our construction
determines a probability measure on (`p(M))R+ by Kolmogorov’s extension theorem.
At this stage however, we know absolutely nothing about the continuity properties of
this process, and this is the subject of the remainder of this section.

3.3 Feller property
We now show that the Brownian fan constructed in Sections 2.2.2 and 3.2 has the Feller
property in `p(M) for every p ≤ 1.

As in [FG10], we could have defined spaces `p(M) in a natural way for p > 1.
However, the Feller property would fail in this case because of the following simple
heuristic argument. For any p, we can change the initial condition by an amount less
than δ in `p by creating N particles at distance ε = (δ/N )1/p from the boundary ofM.
For ε small, the probability that any such particle survives up to time 1 (say) is bounded
from below by cε for some c > 0. On average, the number of survivors will thus be
on the order of εN ∼ δ1/pN (p−1)/p. Furthermore, at time 1/2, each of these surviving
particles will be at a distance of order 1 of the boundary ofM. As a consequence, by
increasing N but keeping δ fixed (or even sending δ to 0 sufficiently slowly), the law of
the process at time 1 with an initial condition arbitrarily close to 0 can be at arbitrarily
large distance of 0, so that the Feller property fails.

For p ≤ 1 on the other hand, we have

Proposition 3.3 For any p ≤ 1, the Brownian fan gives rise to a Feller process in
`p(M). Even more, the corresponding Markov semigroup preserves the space of
bounded Lipschitz continuous functions.

Proof. For any two initial conditions µ0 and µ̄0, write as before

µ0 =

N∑
j=1

δX (j)
0

, µ̄0 =

N∑
j=1

δX̄ (j)
0

,

with the X (j)
0 ∈M and X̄ (j)

0 ∈M chosen in such a way that

‖µ0 − µ̄0‖p =

N∑
j=1

dp(X (j)
0 , X̄ (j)

0 ) . (3.6)

Our aim now is to show that there exists a constant C such that

E‖µt − µ̄t‖p ≤ C‖µ0 − µ̄0‖p ,

independently of t ≤ 1, where the pair (µt, µ̄t) is a particular coupling between the
Brownian fans starting from µ0 and µ̄0 respectively. Denote by µ(j)

t the contribution to
µt originating from the initial particle X (j)

0 and similarly for µ̄(j)
t . Then, by the triangle

inequality, one obtains the bound

E‖µt − µ̄t‖p ≤
∑
j≥1

E‖µ(j)
t − µ̄

(j)
t ‖p ,
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so that the claim follows from (3.6) if we can show that

E‖µ(j)
t − µ̄

(j)
t ‖p ≤ Cdp(X (j)

0 , X̄ (j)
0 ) .

In other words, it suffices to consider the special case when both µ0 and µ̄0 consist of
one single particle, which we denote by X0 = (x0, v0) and X̄0 = (x̄0, v̄0) respectively.

One then constructs a coupling between the two processes µt and µ̄t by running
both particles with the same Brownian motion and spawning children according to the
same Poisson process (as long as the corresponding particle is alive). We denote by Xt

and X̄t the evolutions of the two initial particles inM, driven by the same realisation
of a Brownian motion, and stopped when they reach ∂M. We can assume without loss
of generality that v0 + ax0 < v̄0 + ax̄0, so that the particle X dies before the particle
X̄ . Denoting by τ and τ̄ the respective lifetimes of these particles, one thus has τ ≤ τ̄ .

Denote now by Mt the (random) measure on [0, t] ×M which is such that, for
I ⊂ [0, t] and A ⊂ M, Mt(I × A) is the number of particles in A at time t that are
offspring of a particle created from the “ancestor particle” X̄ at some time s ∈ I . With
this notation, if we denote by Ξ: M→M the map

Ξ(x, v) = (x+ x0 − x̄0, v − a(x0 − x̄0)) ,

then one has the decompositions

µt(A) = 1τ≥tδXt (A) + Ξ?Mt([0, τ ∧ t]×A) ,
µ̄t(A) = 1τ̄≥tδX̄t (A) + Mt([0, τ̄ ∧ t]×A) .

Denote now by δ the Euclidean distance between the two initial particles, so that their
`p-distance is δp. It then follows immediately from the above decomposition that one
has the bound

‖µt − µ̄t‖p ≤ δp + 1t∈[τ,τ̄ ]dp(X̄t, ∂M) + δpMt([0, τ ∧ t]×M)

+

∫
M
dp(Y, ∂M)Mt([τ ∧ t, τ̄ ∧ t]× dY ) .

Since d(X̄(τ ), ∂M) = δ by the definition of τ and δ, it follows from Jensen’s inequality
and the Martingale property of (stopped) Brownian motion that one has the bound
E1t∈[τ,τ̄ ]dp(X̄t, ∂M) ≤ δp. It also follows from Theorem 2.14 that EMt([0, τ ∧ t]×
M) <∞, independently of δ. Finally, it follows from an argument very similar to the
proof of Theorem 2.14 that

E
∫
M
dp(Y, ∂M)Mt(ds× dY ) ≤ C ds ,

uniformly over s ∈ [0, t]. It follows that

E
∫
M
dp(Y, ∂M)Mt([τ ∧ t, τ̄ ∧ t]× dY ) ≤ CE|τ̄ ∧ t− τ ∧ t| ≤ Cδ ,

where we used the fact that if τδ is the first hitting time of 0 by a Brownian motion
starting at δ, then E(τδ ∧ 1) ≤ Cδ. Combining these bounds completes the proof.
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3.4 Lack of convergence of the generators
One standard method to prove convergence of a sequence of Markov processes to a
limiting process, once tightness has been established, is to show that the corresponding
generators converge in a suitable sense. In our situation, one actually does not expect
the generator of the approximate process to converge to that of the limiting process,
when testing it on “nice” test functions. We first argue at a technical level why this is
the case, before providing an intuitive explanation.

Inspired by [EK86, Daw93], we consider test functions of the form

F (µ) = exp(〈log f, µ〉) , (3.7)

where f : M→ R+ is a sufficiently smooth function such that f (x, v) = 1 for (x, v) ∈
∂M. This boundary condition is required since elements µ ∈ `p(M) can have infinite
mass (and, as we have already seen, the limiting process really does acquire infinite
mass at some exceptional times) accumulating near ∂M. Being in `p(M) for p ≤ 1
does however ensure that smooth functions such as above are integrable.

Exploiting the independence structure of the process as well as its space homogeneity,
we can reduce ourselves to the case of an initial condition of the form µ0 = δ(x,v) for
some v < −ax. In this case, for sufficiently small ε > 0, the probability that the original
particle dies within the time interval ε is of the order εp for any p > 0. We therefore
only need to take into account the possibility of creating some descendant(s), with
the killing mechanism being taken care of by the boundary condition of f . While the
average number of “second generation” descendants is of order ε, any such descendant
will typically have travelled to a distance of order

√
ε from ∂M, so that only the first

generation has a chance of contributing to the generator.
We then have

1

ε
(EF (µε)− F (µ0)) ≈ A0f (x, v) +

f (x, v)
ε

E〈f − 1,Mε〉 ,

where
A0 =

1

2
∂2
x ,

is the generator of Brownian motion, and where Mε is the (projection to time ε of
the) Poisson point process yielding the first generation of offsprings. Note now that
since these offspring will be created near ∂M and since f = 1 there, we can further
approximate this expression by

1

ε
(EF (µε)− F (µ0)) ≈ A0f (x, v) +

f (x, v)
ε

f ′(x) E
∫
M

(x̄+ a−1v̄)Mε(dx̄, dv̄) .

Here, we wrote f ′(x) as a shortcut for ∂xf (x, v)|v=−ax. Denoting by es the position,
relative from its starting point, of an excursion of length s and making use of the formula
(2.25) for the intensity measure of Mε, we obtain for the last term in this equation the
expression

1

ε
E
∫
M

(x̄+ a−1v̄)Mε(dx̄, dv̄) =
a

2
√

2πε

∫ ∞
0

∫ s∧ε

0

Ees(t) dt s−3/2 ds . (3.8)

At this stage we note that, for a Brownian excursion of length s, we have for t ≤ s the
identity

Ees(t) =

√
8t

πs
(s− t)
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which can be computed using the explicit formula given for the transition probabilities
of the Brownian excursion on page 59 of [?]. Inserting this into (3.8), a tedious but
straightforward calculation then yields

lim
ε→0

1

ε
E
∫
M

(x̄+ a−1v̄)Mε(dx̄, dv̄) =
a

2
,

so that we finally obtain for the generator A the expression

AF (µ0) = A0f (x, v) +
a

2
f (x, v)f ′(x) . (3.9)

Recall that this is for the particular case where µ0 = δ(x,v). In the general case, we can
use the independence structure of the process to obtain

AF (µ0) = F (µ0)
∫
M

(A0f (x, v)
f (x, v)

+
a

2
f ′(x)

)
µ0(dx, dv) .

Remark 3.4 Compare this with the generator of a usual branching diffusion, where the
term af ′(x)/2 would be replaced by a(f (x)− 1), with a the branching rate.

On the other hand, if we denote by Tε the Markov operator describing one step of
Algorithm TDMC, we might expect that one also obtains A as the limit ε−1(Tε − 1) as
ε→ 0. This would indeed be the case if there was no branching or if branching did only
occur at a finite rate. Considering again initial conditions of the form µ0 = δ(x,v) for
some v < −ax. By reasoning similar to that in the beginning of Section 2, we obtain

ε−1(TεF − F )(µ0) ≈ A0f (x, v) +
a

2
f (x, v)f ′(x)

∫ ∞
0

y2 ν(dy) , (3.10)

which is always different from (3.9), and is actually what we would have obtained from
the wrong guess (2.7).

A possible reason for this discrepancy is that, while the Markov semigroup of the
Brownian fan does indeed preserve test functions of the type (3.7), we do not expect
this to be true of the Markov operator Tε. Instead, the “correct” space of test functions
for Tε is of the same type, but the function f should have a “boundary layer” near ∂M.

Remark 3.5 Another reason why the generator of the Brownian fan is not such a useful
object is that many seemingly innocent observables, like for example the total numberN
of particles, do not belong to its domain. This follows from the fact that if we consider
again a simple initial condition µ0 as above, then EN (µε)− 1 ≈

√
ε for small ε. The

reason the total number of particles nevertheless remains finite (at least for fixed times)
is that there are exceptional states where one or more particles are very near ∂M and
for which EN (µε)− 1 ≈ −O(1).

The remainder of the article is devoted to providing a rigorous proof of the fact that,
in the situation of the previous two sections, the process given by Algorithm TDMC
converges to the Brownian fan in C([0, T ], `p(M)) for any T > 0 and p ≤ 1. The
overall strategy of the proof is classical: we first prove a tightness result in Section 4
and then show that finite-dimensional marginals converge to those of the Brownian fan
in Section 5.

Difficulties arise on two fronts. First, to prove the tightness result, it is convenient to
have uniform moment bounds on the number of particles at fixed time for the approxi-
mating system. These turn out to be much more difficult to obtain for the approximating
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system than for the Brownian fan, which is mainly due to a lack of uniform exponential
bounds. A second difficulty arises in the proof that finite-dimensional distributions
converge to those of the Brownian fan. While it is intuitively clear that those excursions
that survive for times of order O(1) do converge to suitably normalised Brownian ex-
cursions, this result is rather technical and, surprisingly, does not seem to appear in the
literature. Furthermore, no convergence result holds for the typical excursions which die
very early. We therefore also need to argue that, both at the level of Algorithm TDMC
and at the level of the Brownian fan, these small excursions do not matter in the limit.

4 Tightness

As in the previous section, we restrict ourselves to the particular case when the underly-
ing Markov process is given by a rescaled random walk, namely

y(k+1)ε = ykε +
√
εξk+1 , (4.1)

where the ξk are i.i.d. random variables with distribution ν having some exponential
moments, and where the potential V is given by a linear function, V (x) = −ax. Our
aim is to show that as ε → 0, the sequence of birth and death processes obtained by
running Algorithm TDMC is tight in a state space X , which we will now describe.

4.1 Formulation of the tightness result
With the construction of the previous section in mind, we choose as our state space
X = `p(M), whereM = {(x, v, n) ∈ R2 × N : v > −ax}, and p ≤ 1 is arbitrary.
Here, the coordinate n is used to keep track of the generation of a particle: direct
offspring of a particle from the nth generation belong to the (n+ 1)st generation. We
extend the Euclidean distance to R2 × N by additionally postulating that the distance
between particles belonging to different generations is given by the sums of the distances
of the two particles to ∂M. The boundary ∂M is given as before by ∂M = {(x, v, n) :
v = −ax}. We will use capital letters for elements ofM to differentiate them from
elements of R.

In order to formulate our result, we will make use of the following notation. For
t = kε with k an integer, we denote by µεt the empirical measure of the particles alive
at time t, and by Nt the number of such particles. Sometimes, it will be convenient to
consider the particles instead as a collection of elements X (j)

t ∈M, so that we write

µεt =

Nt∑
j=1

δX (j)
t
.

We do not specify how exactly we order the particles, as this is completely irrelevant
for our purpose. For t ∈ (kε, (k + 1)ε), we define µεt by using the “linear interpolation”
procedure (3.4), setting

µεt = Ls(µεkε, µ
ε
(k+1)ε) , s = ε−1t− k .

The interpolation procedure Ls is a very minor modification from the one described
above, in the sense that we only connect particles belonging to the same generation. In
this way, the process t 7→ µεt has continuous trajectories for every ε. The main result of
this section is as follows:
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Theorem 4.1 Let p ≤ 1 and denote by Lε the law of the process t 7→ µεt described
above, viewed as a family of probability measures on C([0, 1],X ). Assume furthermore
that there exists c > 0 such that

∫
ec|y|ν(dy) <∞.

Then, for any single particle initial condition µε0 = δX0 with X0 ∈M, there exists
ε0 > 0 such that the family {Lε}ε≤ε0 is tight.

Proof. Combining [Daw93, Theorem 3.6.4] and [Bil99, Theorem 8.3], we see that, in
order to obtain tightness, it is sufficient to show that:
• For every δ > 0, there exists a compact set Kδ ⊂ X such that P(µεt ∈ Kδ) >

1− δ, uniformly over t ∈ [0, 1] and ε < ε0.
• There exists α > 0 and C > 0 such that E‖µεt − µεs‖qp ≤ C|t− s|αq , uniformly

over all s, t ∈ [0, 1] and ε < ε0.
The first claim then follows from Proposition 4.7 below, while the second claim is the
content of Proposition 4.8.

The proof of this result is the content of the remainder of this subsection and goes
roughly as follows. In Section 4.2, we obtain a moment bound on the number of
particles alive at any fixed time t ∈ [0, 1], which is uniform in ε > 0. This then allows
to obtain the compactness at fixed time in Section 4.3. The verification of Kolmogorov’s
continuity criterion is the content of Section 4.4.

4.2 Moment bounds on the number of particles
In the sequel, we will denote by Kp(X) the pth cumulant of a random variable X and by
Kp(X |F ) the same cumulant, conditioned on the σ-field F . We will use the important
property that Kp(X + Y |F ) = Kp(X |F ) + Kp(Y |F ), provided that X and Y are
independent, conditionally on F . We will also use the fact that ifX is a positive random
variable, then Kp(X) ≤ EXp and there exists a constant C such that the bound

EXp ≤ C
∑
q≤p

(Kq(X))p/q , (4.2)

holds.
Our aim now is to obtain a bound on the cumulants of the number of particles alive

at time t which is independent of ε. We start with an initial configuration containing
only one particle, which belongs to generation 0, and we set N0

t ∈ {0, 1}, depending
on whether or not this particle is still alive at some subsequent time t. We also define
Nn
t = µεt (Mn), where Mn = {(x, v, `) ∈ M : ` = n}, which is the number of

particles in the nth generation that are alive at time t. We also denote by Nn
s,t the

number of such particles that were created at time s ≤ t.
For any X0 = (x, v) with v > −ax, we write EX0

for expectations of observables
for the process generated by starting Algorithm TDMC with underlying dynamic (4.1),
started with one single initial particle in generation 0 at location x with tag v. Finally,
for x ∈ R, we write Ex for the same expectation, but where the initial particle has tag
v = +∞, meaning that it is “immortal”. We then have the following result:

Proposition 4.2 Consider the situation of Theorem 4.1. For every p ≥ 0, there exist
Cp > 0 and ε0 > 0 such that, under the rules of Algorithm TDMC, the number
Nt = µεt (M) of particles alive at time t satisfies Ex|Nt|p ≤ 2 exp(Cpt), uniformly over
all ε ≤ ε0 and x ∈ R. Furthermore, there exists % > 0 such that

ExNn
t ≤ (n+ 1)t/%2−n , (4.3)
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uniformly over all ε ≤ ε0, n ≥ 0, and t > 0.
Finally, denoting by Rγt the number of offspring alive at time t that have never been

at distance more than γ from ∂M, we have the bound

ExRγt ≤ Cγ ,

uniformly over t ∈ [0, 1], γ ∈ (0, 1], and ε ≤ ε0 ∧ γ2.

The proof will make use of the following elementary fact where, for λ = n + p
with n ∈ N and p ∈ (0, 1], we denote by I(λ) the law of a random variable Y such
that Y = n with probability 1− p and Y = n+ 1 with probability p. (This is so that
EY = λ.)

Lemma 4.3 Let Y be a random variable with law I(λ). Then, for any q ≥ 1 and any
λ > 0, one has the bound EY q ≤ λ+ (2λ)q .

Proof. By inspection, one has

EY q = p(n+ 1)q + (1− p)nq .

In the case n = 0, one then has EY q = λ, so the statement is true. For n ≥ 1, one uses
the fact that both n+ 1 and n are bounded by 2λ, and the claim follows at once.

Proof of Proposition 4.2. We restrict ourselves to times that are integer multiples of ε.
Furthermore, from now on, we fix an initial condition x, so that we just write E instead
of Ex. We also denote by Fn the σ-algebra containing all information pertaining to
particles in generations up to (and including) n. With this notation at hand, we obtain
for Nn

t the bound

E(Nn
t )
p . E

p∑
q=1

(Kq(Nn
t |Fn−1))p/q

= E
p∑
q=1

(∑
ε`≤t

Kq(Nn
ε`,t |Fn−1)

)p/q
.

p∑
q=1

E
(∑
ε`≤t

E(|Nn
ε`,t|q |Fn−1)

)p/q
, (4.4)

where we used (4.2) in the first step and the independence of the offspring in the second
step. In the above expression, ` takes only integer values. Note now that∑

ε`≤t

ε√
t(t+ ε− ε`)

≤ C , (4.5)

uniformly over all t ≥ ε. As a consequence, for any positive sequence an and any power
r ≥ 1, one has the bound(∑

ε`≤t

a`

)r
=
(∑
ε`≤t

ε√
t(t+ ε− ε`)

ã`

)r
.
∑
ε`≤t

ε√
t(t+ ε− ε`)

ãr`

=
∑
ε`≤t

t
r−1

2 (t+ ε− ε`) r−1
2

εr−1
ar` ,
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where we have set ã` = ε−1
√
t(t+ ε− ε`) a` in the intermediate steps. Applying this

inequality to (4.4), we obtain

E(Nn
t )
p .

p∑
q=1

∑
ε`≤t

t
p−q
2q (t+ ε− ε`)

p−q
2q

ε
p−q
q

E
(

E(|Nn
ε`,t|q |Fn−1)

)p/q
. (4.6)

Denote now by Mn,j
s the number of particles in the nth generation created at time s

by the jth particle from the n− 1st generation. We write Gs for the σ-algebra generated
by this additional data. Each of these particles yields a contribution to Nn

s,t of either
1 or 0, depending whether it survives or not. Furthermore, these contributions, which
we will denote by Sn,j,is,t , are all independent and, for the same value of j, they are also
identically distributed. By definition, we thus have the identity

Nn
ε`,t =

Nn−1
ε(`−1)∑
j=1

Mn,j
ε∑̀
i=1

Sn,j,iε`,t .

We now twice make use of the inequality( m∑
j=1

aj

)q
≤ mq−1

m∑
j=1

aqj , (4.7)

which is valid for any q ≥ 1, m ≥ 0 and sequence of positive numbers aj . This yields
the bound

(Nn
ε`,t)

q ≤ (Nn−1
(`−1)ε)

q−1

Nn−1
(`−1)ε∑
j=1

(Mn,j
ε` )

q−1

Mn,j
ε∑̀
i=1

Sn,j,iε`,t . (4.8)

Note that since Sn,j,iε`,t can only take the values 0 or 1, raising it to the power q makes no
difference. By the “gambler’s ruin theorem” [LL10, Thm 5.1.7], we have the bound

E(Sn,j,iε`,t |F
n−1 ∨ Gε`) ≤ C

√
ε

ξj + 1√
t+ ε− `ε

, (4.9)

where
√
εξj denotes the step performed by the jth particle of the (n− 1)st generation

between times ε(` − 1) and ε`. Regarding the number of offspring Mn,j
ε` , it follows

from the definition of the algorithm that its distribution is given by I(exp(a
√
εξj+)− 1),

where ξj+ denotes the positive part of ξj . Combining this with (4.8), Lemma 4.3, and
(4.9), we thus obtain the bound

E(|Nn
ε`,t|q |Fn−1) . |Nn−1

(`−1)ε|
q−1

Nn−1
(`−1)ε∑
j=1

√
ε

(ea
√
εξj+ − 1) + (ea

√
εξj+ − 1)

q

√
t+ ε− ε`

(ξj+1) .

In order to simplify this expression, we use the fact that, for x ≥ 0, there exists a
constant C depending on q such that

ex − 1 ≤ xex , (ex − 1)q ≤ Cxeqx ,

for every q ≥ 1. This yields

E(|Nn
ε`,t|q |Fn−1) . |Nn−1

(`−1)ε|
q−1

Nn−1
(`−1)ε∑
j=1

ε
1ξj≥0e

aq
√
εξj

√
t+ ε− ε`

(ξj + 1)
2
.
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Using (4.7) once again, we get the bound

(E(|Nn
ε`,t|q |Fn−1))

p
q . |Nn−1

(`−1)ε|
p−1

Nn−1
(`−1)ε∑
j=1

ε
p
q

1ξj≥0e
ap
√
εξj

(t+ ε− ε`)
p
2q

(ξj + 1)
2p
q .

At this stage, we note that, conditional on the state of the system at time ε(`− 1) the
steps ξj are all independent and identically distributed with law ν. Setting

Pε =

∫ ∞
0

eap
√
εz(z + 1)

2p
q ν(dz) ,

it follows that

E(E(|Nn
ε`,t|q |Fn−1))

p
q .

ε
p
q Pε

(t+ ε− ε`)
p
2q

E|Nn−1
(`−1)ε|

p .

Inserting this into (4.6) yields for t ≤ 1 the bound

E(Nn
t )
p . Pε

∑
ε`≤t

ε√
t+ ε− ε`

E|Nn−1
(`−1)ε|

p .

On the other hand, since we assumed that the initial particle is immortal, Nn−1
s is

stochastically increasing as a function of s, so that we obtain from (4.5) the bound

E(Nn
t )
p . Pε

√
tE(Nn−1

t )
p
.

Since, by the exponential integrability assumption on ν, there exists C > 0 such that,
for ε small enough, Pε ≤ C and since N0

t = 1, we conclude that there exists some λp
such that, for all n ≥ 1, one has the bound

E(Nn
t )
p . (λpt)

n/2
. (4.10)

It follows that there exists t? > 0 (depending on p) such that E(Nt)p ≤ 2 (say), for
every t ≤ t?. To show that E(Nt)p <∞ for every t, we use again (4.7), combined with
the Markov property of the process to conclude that E(Nt+t? )p ≤ 2E(Nt)p, from which
the first claim follows.

To get (4.3), observe that if we choose % small enough so that λ1% ≤ 1/4, the bound
with t ≤ % follows from (4.10). Denote now by Ft the filtration generated by all events
up to time t. For t and % that are multiples of ε it follows from the Markov property that

E(Nn
t | Ft−%) ≤

n∑
`=0

N `
t−% ENn−`

%

where the expectation on the right is taken with respect to an initial condition with one
single immortal particle. The claimed bound for arbitrary t > 0 therefore follows by
induction.

It remains to obtain the bound on Rγt . Denote by Rγs,t the number of offspring
contributing to Rγt that are created at time s < t, so that Rγt =

∑
εk≤tR

γ
kε,t. Denote

now byQγz,t the probability that, after time t, the random walk (4.1) with initial condition√
εz has never exited the interval [0, γ]. It then follows that

E(Rγkε,t | Fkε) = a
√
εNkε

∫ ∞
0

∫ z

0

ea
√
εzQγy,t−kε dy ν(dz) . (4.11)
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This is because, by Step 3 of Algorithm TDMC, the expected number of offspring
created by a particle performing an upward step of size

√
εz is given by ea

√
εz−1 while,

if we denote by
√
εy the distance between the starting point of the offspring and the

“wall” below which it is killed, the law of y is given by c−1
∫ z

0
ea
√
εy dy where c is a

normalizing constant. Since c = (ea
√
εz − 1)/a

√
ε, (4.11) follows.

Using again the gambler’s ruin theorem, combined with the Markov property of the
random walk, we obtain for Qγz,t the bound

Qγz,t ≤ C
(z + 1)

√
ε√

t+ ε
Q̄γt/2 ,

where Q̄γt is the probability that the random walk (4.1), starting at the origin, stays
within [−γ, γ] up to time t. Using the scaling properties of Brownian motion, combined
with [Fra73], we conclude that one has the bound

Q̄γt ≤ 1 ∧ Cδ
2q

tq
,

for every q > 0, so that

Qγz,t .
(z + 1)

√
ε√

t+ ε

(
1 ∧ δ

2q

tq

)
.

Inserting this bound into (4.11), using the previously obtained bounds on Nkε, and
summing over all k, the claim follows at once.

Remark 4.4 It follows from Theorem 4.1 in [HW14] that, in the particular case when
the initial tag v is distributed according to the logarithm of a uniformly distributed
random variable, one has the identity ENt = Eeayt , where yt is the rescaled random
walk with steps ν. The (at least one-sided) exponential integrability assumption on ν is
therefore a necessary assumption in order to obtain any kind of moment bounds on Nt.

Remark 4.5 Even if we assume that ν has Gaussian tails and despite the result pre-
viously obtained for the Brownian fan in Theorem 2.14, it is not true in general that
Nt defined by Algorithm TDMC, has uniform exponential moments as ε → 0. This
is because even for the first step, the probability that the original particle performs a
step of order ε−p is of order exp(−ε−2p−1). If this were to happen, the number of
offspring created in this way would be of order exp(ε−p), which immediately shows
that exponential moments blow up as ε→ 0.

4.3 Compactness at any fixed time
We now show that we can find a compact set Kδ such that µεt belongs to Kδ with high
probability, uniformly over ε and t ∈ [0, 1]. Our first ingredient for this is the following
moment bound:

Proposition 4.6 Consider the setting of Theorem 4.1. Then, there exist constants C
and ε0 such that, for every t ∈ [0, 1] and every ε ≤ ε0, the bound

EX0

(∫
M
|x− x0|2pµεt (dx, dv, dk)

)
≤ Ctp , (4.12)

holds uniformly over all initial conditions X0 = (x0, v0, 0) ∈M.
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Proof. We restrict ourselves to the case when t is an integer multiple of ε, since
the bound on the remaining times easily follows from our interpolation procedure.
Furthermore, we can restrict ourselves to the case when the initial particle is immortal,
which formally corresponds to setting v = +∞. By translation invariance, we also
restrict ourselves to the case where the initial particle is located at the origin, and we
denote the corresponding expectation by E0.

It follows from Theorem 4.1 in [HW14] that if we choose v = 1
a logu, where u is

drawn uniformly from [0, 1] and denote by µ̃εt the corresponding process, then one has
the identity

E0

(∫
M
x2pµ̃εt (dx, dv, dk)

)
= E0

(
eayt(yt)

2p
)

,

where yt is the simple random walk (4.1) started at the origin. It follows immediately
from the exponential integrability of ν that this quantity is bounded by Ctp for t ≤ 1
and for ε small enough.

On the other hand, one can realise the process µεt , which starts with an immortal
initial particle, in the following way:

1. Consider the process µ̃εt , where the v-component is as above.

2. When the initial (generation 0) particle is killed, replace it instantly by an immortal
particle starting at the current location.

Let x0
t denote the trajectory of the initial particle and let s be the time at which the initial

particle is killed and replaced. Let Pt = P(s ≤ t). By the construction just outlined, we
have the recursion relation

Ft,0 = Et + Pt E(Ft−s,x0
s
| s ≤ t) ,

where we set

Ft,x0
s

= E0

(∫
M

(x+ x0
s)2pµεt (dx, dv, dk)

)
,

Et = E0

(∫
M
x2pµ̃εt (dx, dv, dk)

)
.

(Remember that the difference between Et and Ft,0 is that in order to compute F , we
start with an immortal particle.) Setting Ft = Ft,0, using the fact that, for every δ > 0
one can find Cδ such that (x + x0

s)
2p ≤ Cδ(x0

s)
2p + (1 + δ)x2p, and recalling that

Et ≤ Ctp, we deduce that

Ft ≤ Ctp + CδPtE((x0
s)2pEx0

s
(Nt−s) | s ≤ t)) + (1 + δ)Pt E(Ft−s | s ≤ t) ,

whereNt is the number of particles alive at time t for the system started with an immortal
particle. Note now that, for t ≤ 1, we know from Proposition 4.2 that the expected
number of particles alive at any given time is bounded by some constant uniform in ε.
Since this bound is also uniform in the initial condition, we have

PtE((x0
s)2pEx0

s
(Nt−s | s ≤ t)) . PtE((x0

s)2p | s ≤ t) = E((x0
s)2p1s≤t) .

Defining s̃ = s ∧ t, we then obtain the trivial bound

E((x0
s)2p1s≤t) ≤ E0|ys̃|2p ≤ E0|yt|2p . tp ,
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where we made use of the fact that |yt|2p is a submartingale to obtain the second
inequality.

Setting now F̄t = sups≤t Fs, we can combine all of these bounds to get the inequal-
ity

F̄t ≤ Cδtp + (1 + δ)PtF̄t .

Since one can check (for example by again using the fact that the random walk approx-
imates a Brownian motion for small ε) that supε≤1 supt≤1 Pt = supε≤1 P1 < 1, the
claim follows at once by choosing δ sufficiently small.

This result can now be used to deduce the announced uniform tightness result over
fixed times:

Proposition 4.7 Consider the setting of Theorem 4.1. Then, for every δ > 0 there exists
a compact set Kδ ⊂ X such that PX0

(µεt ∈ Kδ) > 1 − δ, uniformly over t ∈ [0, 1],
ε ≤ ε0 and X0 ∈M0.

Proof. For any n ∈ Z+ and R ∈ R+, denote

M[n] = {(x, v, `) ∈M : ` ≤ n} , BR = {(x, v, `) ∈M : |x| ∨ |v| ≤ R} .

For any such n and R and for m ∈ Z+, we then denote by Kn,m,R ⊂ X the set of
all integer-valued measures η onM such that η(M \M[n]) = 0, η(M) ≤ m, and
η(M\BR) = 0. Since these sets are obviously compact, it suffices to find, for every
δ > 0, sufficiently large values n, R and m so that PX0(µεt ∈ Kn,m,R) > 1 − δ
uniformly over all ε ≤ ε0 and t ∈ [0, 1].

Note that Kn,m,R ⊂ K1
n∩K2

m∩Kx
R∩Kv

R where, for K1
n and K2

m we only enforce
the conditions involving n and m respectively. The set Kx

R consists of configurations
such that the x-coordinate of every particle is less than R in absolute value, while Kv

R

enforces that the v-coordinate be less than R.
It follows immediately from (4.3) that there exists γ > 0 and a constant C (depend-

ing in principle on the time we consider, but it can be chosen uniformly over t ∈ [0, 1]),
such that

PX0
(µεt 6∈ K1

n) ≤ Ce−γn ,

for every n ≥ 0. Similarly, it follows from the moment bounds on Nt obtained in
Proposition 4.2 that, for every p > 0, there exists C such that

PX0
(µεt 6∈ K2

m) ≤ C

mp
.

In order to get a bound on the x-coordinate of the particles, we combine Proposition 4.6
with Chebyshev’s inequality, so that

PX0
(µεt 6∈ Kx

R) ≤ C

R2
.

It remains to obtain a bound on the probability of not being in Kv
R. For this, we use the

fact that on the one hand, the label of a particle always satisfies v > −ax. On the other
hand, any descendant of the initial particle will always satisfy v ≤ −a supt≤1 x

0
t , where

here we denote by x0
t the position of the original particle at time t. Since this particle

was assumed to start at the origin, we obtain v2 ≤ a2x2 + a2 supt≤1(x0
t )

2, so that we
obtain the bound

PX0
(µεt 6∈ Kv

R) ≤ C

R2
,

just as above. Combining all of these bounds, the claim follows by choosing n, R and
m large enough.
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4.4 Kolmogorov criterion
The aim of this section is to obtain the following bound on the time regularity of our
process:

Proposition 4.8 For every p ≤ 1 and q ≥ 1, there exists a constant C such that

EX0
‖µεδ − δX0

‖qp ≤ Cδpq/2 , (4.13)

where X0 ∈M0 is an initial condition with only one particle in the system, and δ < 1
is an integer multiple of ε.

Remark 4.9 As usual, the precise location of the particle is irrelevant by translation
invariance, so the above bound is uniform over all choices of X0.

Before we proceed to the proof of Proposition 4.8, we observe that the bound (4.13)
implies that Kolmogorov’s criterion holds for the process over a fixed interval of time:

Corollary 4.10 For every p ≤ 1 and q ≥ 1, one has the bound

EX0
‖µεt+δ − µεt‖qp ≤ Cδpq/2 , (4.14)

uniformly over all δ, t, ε ∈ [0, 1].

Proof. Note first that we can restrict ourselves to the case when t and δ are integer
multiples of ε. Indeed, it follows from the definition of ‖ · ‖p and from (3.5) that, if
kε ≤ s < t ≤ (k + 1)ε, then

‖µεs − µεt‖ ≤ ε−p|t− s|p‖µεkε − µε(k+1)ε‖ .

We then obtain from Proposition 4.8 the bound

EX0‖µεt+δ − µεt‖qp = EX0

(
EX0(‖µεt+δ − µεt‖qp | Ft)

)
≤ EX0

(
|Nt|q−1

Nt∑
j=1

EX (j)
t
‖µεδ − δX (j)

t
‖qp
)

≤ Cδpq/2EX0
(|Nt|q) ≤ Cδpq/2 ,

where we made use of the Markov property, (4.7), and (4.13).

Proof of Proposition 4.8. Denote byXt the location at time t of a single particle starting
at X0 = (x0, v0, 0) and evolving under the rescaled random walk stopped when it
reaches the boundary ofM. Denote by xt the position in R corresponding to Xt. From
the properties of the random walk and the definition of ‖ · ‖p, for every q > 1 there
exists a constant C such that the bound

EX0
‖δXδ − δX0

‖qp ≤ Cδqp/2 ,

holds, independently of the initial condition and independently of ε ≤ 1.
Let us now bound the contribution from the descendants of the initial particle.

Ordering the particles alive at time t in such a way that the original particle has label 1
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(if it is not alive anymore, we consider it as being located on the boundary, where it was
stopped), we have the bound

‖δXδ − µεδ‖p ≤
Nδ∑
j=2

dp(X (j)
δ , ∂M) ,

so that

EX0
‖δXδ − µεδ‖qp ≤ EX0

( Nδ∑
j=2

dp(X (j)
δ , ∂M)

)q
≤
((

EX0 (Nδ − 1)2q−1
)(

EX0

Nδ∑
j=2

d2q
p (X (j)

δ , ∂M)
))1/2

≤ C
(

EX0

Nδ∑
j=2

d2q
p (X (j)

δ , ∂M)
)1/2

,

where the second inequality follows from Proposition 4.2. Recall now that if X (j)
δ =

(x, v, n), then one has dp(X (j)
δ , ∂M) = |x − v/a|p, where v/a is guaranteed to take

values between infs≤δ xs and x. As a consequence, we have the bound

|x− v/a|p ≤ |x− inf
s≤δ

xs|p ≤ |x− x0|p + sup
s≤δ
|xs − x0|p ,

so that

EX0

Nδ∑
j=2

d2q
p (X (j)

δ , ∂M) . EX0

(
Nδ sup

s≤δ
|xs − x0|2pq

)
+ EX0

∫
|x− x0|2pqµεδ(dx, dv, dk) . δpq ,

where the last bound is a consequence of Propositions 4.2 and 4.6, as well as standard
bounds on the supremum of a random walk. The claim now follows at once.

5 Convergence of fixed-time distributions

In this section, we show that any limiting process obtained from the tightness result
of the previous section necessarily coincides with the Brownian fan constructed in
Section 3.2. With the notations of that section at hand, our convergence result can be
formulated as follows.

Theorem 5.1 Consider the setting of Theorem 4.1 with an initial condition X0 =
(x, v, 0) ∈M, and consider µt as above with the “initial condition” for µ[∞] given by
a Brownian motion starting at x, killed when it reaches the level −v/a.

Then, for every p ∈ (0, 1], there exists a version of the process {µt}t≥0 which is a
continuous Markov process with values in `p(M). Furthermore, denoting the law of
its restriction to the time interval [0, 1] by L, the sequence of measures Lε converges
weakly to L in C([0, 1], `p(M)).
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Proof. It suffices to show that, for any fixed collection of times {t1, . . . , tk}, the law of
{µεti}i≤k converges weakly to that of {µti}i≤k. Indeed, Corollary 4.10 then implies that
the process µt satisfies Kolmogorov’s continuity criterion and therefore has a continuous
version. By Theorem 4.1, we deduce weak convergence in C([0, 1], `p(M)) from the
convergence of marginals. Using the Markov property, the superposition property of
the process, and Proposition 4.2, we reduce ourselves to the case k = 1 with an initial
condition consisting of one single particle.

Denote now by µε,[∞] the random integer-valued measure on E obtained by running
Algorithm TDMC until time 1. Observe that µε,[∞] can be built in the following way.
For an excursion w ∈ E , we build a random measure Qε(w) by the following procedure.
For every k ∈ N with εk > s(w) and ε(k + 1) < e(w) ∧ 1 we set

∆wk = w(k+1)ε − wkε .

If ∆wk > 0, we then draw a random variable N1
k with law I(exp(a∆wk) − 1) (see

(1.5) and Lemma 4.3). For j = 1, . . . , N1
k , we build i.i.d. excursions wk,j ∈ E by the

following procedure. First, draw a uniform random variable u ∼ U(exp(−a∆wk), 1)
and set v = logu − awkε. Then, denote by {yk,j`ε }L`=0 an instance of the random
walk (4.1), started at w(k+1)ε and stopped just before it becomes smaller than −v/a
(so that yk,jLε > −v/a). The excursion wk,j is then given by s(wk,j) = kε, e(wk,j) =

(L+k+2)ε, wk,jε(`+k+1) = yk,j`ε for ` ∈ {0, . . . , L}, wk,j(`ε) = −v/a for the remaining
integer values of `, and linear interpolation in between integer values. We then set

Qε(w) =

∞∑
k=1

N1
k∑

j=1

δwk,j ,

which is the point measure describing the children of the particle with trajectory w.
Similarly to before, we build µε,[∞] recursively by the following procedure:
• Build an excursion w0 ∈ E as above, starting at x and stopped at −v/a, where

(x, v, 0) ∈M is the initial condition appearing in the statement. Set µε,0 = δw0 .
• Given µε,`, define µε,`+1 by

µε,`+1 =

∫
E

Qε(w)µε,`(dw) ,

where the {Qε(w)}w∈E are all independent (and independent of the µε,`
′

with
`′ ≤ `). Note that the integral is actually a finite sum, so the construction makes
sense.

• Set µε,[`] =
∑`
`′=0 µ

ε,`′ for positive ` (including the case ` =∞).
If we set

µεt = E?t µ
ε,[∞] ,

where Et is defined as in Section 3.2, then the process µεt is indeed equal in law to the
process considered in Section 41.

Denote now by Eγ the set of excursions of height at least γ, namely

Eγ = {w ∈ E : ∃t ∈ l(w) with wt ≥ w(s(w)) + γ} .
1Strictly speaking, the two processes agree only at times that are multiples of ε since the two interpolation

procedures we used may differ when the trajectories of two particles from the same generation cross each
other. This is irrelevant.
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We also write µε,[n]
γ for the measure obtained exactly like µε,[n], but where we replace

Qε(w) by its restriction Qε
γ(w) to the set Eγ at every step, so that µε,[n]

γ ≤ µ[∞]
ε almost

surely. In words, Qε
γ is obtained from Qε by discarding all excursions of height less

than γ, as well as the descendants of any such excursions.
Combining Propositions 4.2 and 4.6, we see that, for ε0 small enough, there exist

constants C and α > 0 such that one has the bound

sup
ε≤ε0

P(E?t µ
ε,[∞] 6= E?t µ

ε,[n]
γ ) ≤ C(e−αn + γp) , (5.1)

uniformly over ε and t ∈ [0, 1].
Following an argument along the lines of the proof of Theorem 2.14, a similar bound

can be shown to hold for P(E?t µ
[∞] 6= E?t µ

[n]
γ ), where µ[n]

γ is the recursive Poisson
process of depth n constructed like µ[∞], but with Q(w, ·) replaced by its restriction
Qγ(w, ·) to Eγ . As a consequence, we conclude that it is sufficient to show that, for
every fixed γ > 0 and n ≥ 1,

lim
ε→0
D(µε,[n]

γ ) = D(µ[n]
γ ) , (5.2)

where D(·) denotes the law of a random variable and convergence is to be understood in
the sense of weak convergence on the space M+(E) endowed with the Wasserstein-1
distance (see [Vil03] and Section 5.2 below).

Our aim then is to make use of Theorem 5.7 below which gives a general convergence
result for recursive Poisson point processes. The drawback is that µε,[n]

γ is itself not
a recursive Poisson point process, due to the fact that Qε

γ(w) is not a realisation of a
Poisson point process. However, it would be one if, in the construction of Qε(w), we
had drawn N1

k according to a Poisson distribution with mean exp(a∆wk)− 1. Denote
by Q̃

ε
(w) the Poisson point process obtained in this way, by Q̃ε

γ its restriction to Eγ ,
and by µ̃ε,[n]

γ the recursive Poisson point process of depth n obtained by iterating Q̃ε
γ .

We then claim that it is possible to find a coupling between µ̃ε,[n]
γ and µε,[n]

γ such that

P(µ̃ε,[n]
γ 6= µε,[n]

γ ) ≤ Cn,γ
√
ε , (5.3)

where the constant Cn,γ depends on n and γ, but not on ε. Indeed, if we denote by Uλ a
random variable with law I(λ) and by Ūλ a Poisson random variable with mean λ, then
it is straightforward to check that there exists a constant C and a coupling between Uλ
and Ūλ such that

P(|Uλ − Ūλ| = 1) ≤ C(1 ∧ λ2) , P(|Uλ − Ūλ| > 1) ≤ C(1 ∧ λ3) .

Furthermore, by Proposition 2.2, the probability that the random walk started at x
reaches γ before becoming negative is bounded from above by Cγ(x+

√
ε) for some

constant Cγ depending on γ. As a consequence, one can construct a coupling between
Qε
γ(w) and Q̃ε

γ(w) such that

P(Qε
γ(w) 6= Q̃ε

γ(w)) ≤ Cγ
∑

kε∈[0,1]

|∆wk|2(|∆wk|+
√
ε) . (5.4)

Similarly, regarding the total mass of Qε
γ , one has the bound

EQε
γ(w, E) = EQε(w, Eγ) ≤ Cγ

∑
kε∈[0,1]

|∆wk|2ec|∆wk| , (5.5)
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for some constant c. If w is an excursion created by the procedure above, the expected
values of (5.4) and (5.5) are bounded by Cγ

√
ε and Cγ respectively, for a possibly

different constant depending on γ. Proceeding as in Lemma 2.7, it follows that, if we set

Fε(w) = 1 +
1√
ε

∑
kε∈[0,1]

|∆wk|3 +
∑

kε∈[0,1]

|∆wk|2ec|∆wk| ,

we obtain the bound E
∫
E Fε(w)µε,[n]

γ (dw) < Cn,γ , uniformly over ε. (But this constant
might potentially grow very fast as γ → 0 and n→∞!) Combining this with (5.4), the
bound (5.3) then follows at once.

As a consequence, it is sufficient to show, instead of (5.2), that

lim
ε→0
D(µ̃ε,[n]

γ ) = D(µ[n]
γ ) . (5.6)

This is the content of Proposition 5.10 below, which completes the proof.

The remainder of this section is devoted to the proof of (5.6). The outline of the
proof goes as follows. First, in Section 5.1, we show that the law of a single excursion of
the random walk (4.1), conditioned on hitting a prescribed level γ, converges as ε→ 0
to the Brownian excursion, conditioned to reach γ. In Section 5.2 we then provide a
general criterion for the convergence of recursive Poisson point processes. Finally, in
Section 5.3 we combine these results in order to obtain (5.6).

5.1 Convergence of excursion measures
As before, we denote by yt the rescaled random walk given by

y(k+1)ε = ykε +
√
εξk+1 ,

where the ξk are an i.i.d. sequence of random variables with law ν. As before, we
extend this to arbitrary times by linear interpolation. We also assume that ν has some
exponential moment as before. The aim of this section is to show that if we start yt
at some initial condition x ∼

√
ε and condition it on reaching a prescribed height γ

before becoming negative, then its law converges to that of an unnormalised Brownian
excursion, conditioned to reach height γ (call it wγ). Throughout this whole section, we
will only consider the process on a fixed time interval, which for definiteness we choose
to be equal to [0, 1].

A more precise description of the law Qγ of wγ is given by the identity

Qγ( · ) =

∫∞
0
s−3/2gγ(s)Qs,γ( · ) ds∫∞
0
s−3/2gγ(s) ds

,

where Qs,γ denotes the law of a Brownian excursion of length s, conditioned to reach
level γ, and

gγ(s) = Qs,0({w : supt≤s wt ≥ γ}) = Q({w : supt≤1 wt ≥ γ/
√
s}) ,

where Q is the standard Itô excursion measure. Since gγ(s)→ 0 exponentially fast for
small s, this does indeed define a probability measure on C(R+,R). We then turn this
into a probability measure on C([0, 1],R) by restriction.

We view C([0, 1],R) as a subset of E via the injection ι : C([0, 1],R) ↪→ E given by

s(ιw) = 0 , e(ιw) = 1 ∧ inf{t > 0 : w(t) = 0} ,
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and by setting the path component of ιw equal to w, stopped when it reaches the time
e(ιw). We endow E as before with the distance d given in (2.24). Since we only deal
with excursions starting at 0 and stopped before time 1, the distance d is equivalent on
this set to the (pseudo-)distance d̄ given by

d̄(w,w′) = 1 ∧
(
|e(w)− e(w′)|+ sup

t∈[0,1]
|wt − w′t|

)
.

Regarding the space C([0, 1],R), we endow it throughout this section with the metric

d(w,w′) = 1 ∧ sup
t∈[0,1]

|wt − w′t| .

We furthermore denote by ‖ · ‖d the Wasserstein-1 metric associated with any distance
function d, which is just the dual of the corresponding Lipschitz (semi-)norm. The main
theorem of this section is the following:

Theorem 5.2 Let x > 0 and denote by Qε
z,γ the law of the random walk (4.1), starting

at z =
√
εx and conditioned to reach level γ before becoming negative. Then, for every

β̄ < 1
16 there exists a constant C such that

‖Qε
z,γ −Qγ‖d ≤ Cεβ̄ , ‖ι?Qε

z,γ − ι?Qγ‖d̄ ≤ Cε
2β̄
5 ,

uniformly over all ε ∈ (0, 1], all x ∈ [0, ε−1/3], and all γ ∈ [ε1/16, 1].

Our main abstract ingredient in the proof is the following criterion for the conver-
gence of conditional probabilities when the probability of the set on which the measures
are conditioned converges to 0:

Lemma 5.3 Let µ and π be two probability measures on some Polish space Y with
metric d and diameter 1 and let Dµ : Y → [0, 1] and Dπ : Y → [0, 1]. For % > 0, set

A% = {x ∈ Y : ∃y ∈ Y with Dπ(y) > Dπ(x) + d(x, y)/%} ,

Ā% = {x ∈ Y : d(x,A%) ≤ %} .

Assume that δ, ε1 and ε2 are such that∫
Y
Dπ(x)π(dx) ≥ δ , ‖µ− π‖d ≤ ε1 , sup

x
|Dπ(x)−Dµ(x)| ≤ ε2 ,

where ‖ · ‖d denotes the Wasserstein-1 distance with respect to d.
Define measures µ̃ and π̃ by

µ̃(A) = cµ

∫
A

Dµ(x)µ(dx) , π̃(A) = cπ

∫
A

Dπ(x)π(dx) ,

where cµ and cπ are such that these are probability measures.
Then, the bound

‖µ̃− π̃‖d ≤
1

δ

(3ε1

%
+ ε2 + 2π(Ā%)

)
, (5.7)

holds for every % ≤ 1. In particular, one has
∫
Y Dµ(x)µ(dx) > 0 whenever the right

hand side in (5.7) is strictly smaller than 1, so that the bound is non-trivial.
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Proof. Let f : Y → R be a test function such that Lipd(f ) ≤ 1. Since the diameter of
Y is assumed to be 1, we can assume without loss of generality (by possibly adding a
constant to f ) that supx |f (x)| ≤ 1

2 . Since one has the identity

‖µ̃−π̃‖d = sup
Lipd(f )≤1

(
cµ

∫
f (x)Dµ(x)µ(dx)−cπ

∫
f (x)Dπ(x)π(dx)

)
= sup

Lipd(f )≤1
If ,

our aim is to bound If , uniformly over f . Note first that, by the bound on f ,

If ≤
cπ
2

∣∣∣ 1

cπ
− 1

cµ

∣∣∣+
cπ
2

∫
|Dµ(x)−Dπ(x)|µ(dx)

+ cπ

∣∣∣∫ f (x)Dπ(x)µ(dx)−
∫
f (x)Dπ(x)π(dx)

∣∣∣ .
Note that the first term is nothing but a particular instance of the last term with f = 1

2 .
Since the second term is furthermore trivially bounded by ε2/(2δ), it suffices to bound
the last term.

The problem in bounding this term arises of course from the fact that Dπ is not
Lipschitz continuous. For any % > 0, we can however “mollify” this function by setting

D%π(x) = sup
y∈Y

(
Dπ(y)− d(x, y)

%

)
.

It is then straightforward to check that Lipd(D%π) ≤ %−1, that Dπ(x) ≤ D%π(x) ≤
supy Dπ(y), and that furthermore D%π(x) = Dπ(x) for all x 6∈ A%. It then follows from
the definition of ε1 that∣∣∣∫ f (x)D%π(x)µ(dx)−

∫
f (x)D%π(x)π(dx)

∣∣∣ ≤ ε1(1 + (2%)−1) .

Furthermore, ∣∣∣∫ f (x)D%π(x)π(dx)−
∫
f (x)Dπ(x)π(dx)

∣∣∣ ≤ π(A%)
2

,

and similarly for the term with π replaced by µ. In order to bound µ(A%), we set as
above

F %(x) = sup
y∈Y

(
1A% (y)− d(x, y)

%

)
,

so that

µ(A%) ≤
∫
F %(x)µ(dx) ≤ ε1

%
+

∫
F %(x)π(dx) ≤ ε1

%
+ π(Ā%) ,

where we used the fact that F % vanishes outside of Ā%. Collecting all of these bounds,
the claim follows.

An alternative description of wγ is given by the following. Let Y be a Bessel-3
process starting at the origin and let τγ be its first hitting time of γ, i.e. τγ = inf{t ≥ 0 :
Yt ≥ γ}. Let furthermore B be a Brownian motion independent of Y , which is stopped
when it reaches the level γ. Then, one has the decomposition

wγt =

{
Yt for t ≤ τγ ,

γ −Bt−τγ for t ≥ τγ . (5.8)
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This is a consequence of the symmetry of the Brownian excursion under time reversal,
combined with [RW94, Theorem 49.1] for example.

We can use the above decomposition to obtain the following bound:

Lemma 5.4 For any β < 1
4 , there exists a constant C such that, for every γ, γ′ ∈ (0, 1],

one has the bound
‖Qγ −Qγ′‖d ≤ C|γ − γ′|β .

Proof. The decomposition (5.8) suggests a natural coupling between wγ and wγ
′

by
building them from the same basic building blocks Y and B. The characterisation of
the Bessel-3 process as the norm of a 3-dimensional Brownian motion, together with
standard hitting estimates for Brownian motion, imply that

P(|τγ − τγ′ | > ζ) ≤ 1 ∧ C|γ − γ
′|

ζ3/2
,

so that in particular P(|τγ − τγ′ | ≥
√
|γ − γ′|) ≤ C|γ− γ′|1/4. The result now follows

from the fact that both B and Y are almost surely α-Hölder continuous for every α < 1
2 .

Lemma 5.5 Let Bγz be a Brownian motion starting at z, conditioned to hit γ before
0, and stopped upon its return to 0. Then, for every β < 1, there exists a constant C
depending on β such that the bound

‖D(Bγε )−Qγ‖d ≤ Cγεβ ,

holds uniformly over ε ∈ (0, γ ∧ 1] and γ > 0.

Proof. Let wγ be as above and let τε be the first passage time of wγ through ε. Then, it
follows from the decomposition (5.8) that one has the exact identity

Bγε (·) law
= wγ(· − τε) . (5.9)

It then follows from the small ball estimates of Brownian motion that, for every ζ̄ < 2,
one has the bound

P(τε ≥ εζ̄) . ε .

The desired estimate then follows at once from the Hölder regularity of wγ .

Proposition 5.6 Let α ∈ (0, 1
8 ). Suppose further that γ > 0 is fixed and denote by yγt

the random walk yt conditioned to hit [γ,∞) before hitting R− and stopped when it
then hits R−. Assume that yγ0 = εα. Then the law of yγ converges weakly to Qγ as
ε→ 0. Furthermore, for every β > 0, there exists a constant C such that the bound

‖D(yγ)−Qγ‖d ≤ C(
√
γε

1
8−α + εα−β) ,

holds uniformly over all ε ≤ 1 and γ ∈ [εα, 1].

Proof. By Lemma 5.5, it suffices to compare the law of yγ with that of Bγεα . The result
will then be a consequence of Lemma 5.3.
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To see this, we partition the state space Y = {w ∈ C([0, 1],R) : w0 = εα} into
three sets in the following way. Given a continuous function w with w0 ∈ (0, γ), we set
τ = 1 ∧ inf{t > 0 : wt 6∈ [0, γ]}, and we define sets A(i) with i ∈ {1, 2, 3} by

1

γ

wt

t
1

γ

wt

t
1

γ

wt

t

A(1) = {w : wτ = 0} , A(2) = {w : wτ = γ} , A(3) = {w : τ = 1} .

Define furthermore functions Fγ and F εγ on Y by

Fγ(w) =
wτ
γ

, F εγ (w) =


0 if w ∈ A(1),
1 if w ∈ A(2),

P̄ γ√
ε
,
w1√
ε

if w ∈ A(3),

where P̄z,γ is defined as in the discussion before Proposition 2.2. With these definitions
at hand, if we set µ = D(y) with y0 = εα, π = D(Bεα ), Dµ = F εγ , and Dπ = Fγ , then
we are precisely in the setting of Lemma 5.3 with µ̃ = D(yγ) and π̃ = D(Bγεα ).

Note first that, since Fγ is precisely the probability that a Brownian motion started
from w1 hits γ before 0, we have

δ =

∫
Dπ(w)π(dw) =

εα

γ
.

Furthermore, it follows from Corollary 2.3 (and from the fact that Fγ and F εγ coincide
outside of A(3)) that

ε1 = sup
w
|Fγ(w)− F εγ (w)| . ε

1
4

γ
.

(We could have replaced 1
4 by any exponent less than 1

2 here.) Regarding the distance
between the unconditioned measures, we obtain from [Fra73] the bound

ε2 = ‖µ− π‖d . ε
1
8 .

It thus remains to obtain a bound on Ā%. By the definition of A% and of Fγ , w ∈ A%
implies that either w ∈ A(1) ∪A(3) and d(w,A(2)) ≤ % or w ∈ A(1) and d(w,A(3)) ≤ %.
This implies that

A% ⊂
{
w : sup

t∈[0,1]
wt ∈ [γ − %, γ]

}
∪
{
w : inf

t∈[0,1]
wt ∈ [−%, 0]

}
,

so that

Ā% ⊂
{
w : sup

t∈[0,1]
wt ∈ [γ − 2%, γ + %]

}
∪
{
w : inf

t∈[0,1]
wt ∈ [−2%, %]

}
.

Since (by the reflection principle) the law of the extremum of Brownian motion over a
finite time interval has a smooth density with respect to Lebesgue measure, there exists
a constant C independent of ε and δ such that π(Ā%) ≤ C%.
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Inserting these bounds into Lemma 5.3, we thus obtain the bound

‖D(yγ)−D(Bγεα )‖d .
γ

εα

(ε 1
4

%γ
+ ε

1
8 + %

)
.

Setting % = ε
1
8 γ−

1
2 completes the proof.

We now have all the ingredients required for the proof of Theorem 5.2.

Proof of Theorem 5.2. Assume as in the previous proof that yγt is the random walk
yt conditioned to hit [γ,∞) before hitting R− and stopped when it then hits R−. In
contrast to the above setup we now assume that yγ0 = z = x

√
ε for some x ≥ 0. Let k0

be given by
k0 = inf {k > 0 : yγkε ≥ ε

1
16 } .

It then follows from [Fra73], combined with standard small ball estimates for Brownian
motion that, for every β < 1

8 and every p > 0 there exists a constant C such that

P(εk0 > εβ) . εp , (5.10)

uniformly over ε ≤ 1, for all x such that x
√
ε ≤ ε 1

16 . Furthermore, the probability that
yγk0ε

> 2ε
1
16 (say) is exponentially small in ε, again uniformly over x. It then follows

from Proposition 5.6 (choosing α = 1
16 ) that, for every β̄ < 1

16 one can construct a joint
realisation of yγ and wγ such that

Ed(yγ , wγ(· − εk0)) . εβ̄ .

(Here we extend wγ by setting it to 0 for negative times.) On the other hand, the Hölder
regularity of the sample paths of wγ together with (5.10) implies that

Ed(wγ , wγ(· − εk0)) . εβ̄ ,

so that the bound on ‖Qε
z,γ −Qγ‖d follows.

In order to obtain the bound on ‖ι?Qε
z,γ−ι?Qγ‖d̄, we make use of the same coupling

between yγ and wγ as above, so that Ed(yγ , wγ) . εβ̄ . It then remains to obtain a
bound on

|e(ιyγ)− e(ιwγ)| .
For this, note first that, by Chebychev’s inequality, one has the bound

P(d(yγ , wγ) ≥ εβ) . εβ̄−β , (5.11)

valid for every β ≤ β̄. Consider now any two paths yγ and wγ at distance less than εβ

and define

τ1 = 1 ∧ inf{t > 0 : wγ(t) ≤ εβ} , τ2 = 1 ∧ inf{t > τ1 : wγ(t) < −εβ} .

In this way, one has both e(ιwγ) ∈ [τ1, τ2] and e(ιyγ) ∈ [τ1, τ2], so that it remains to
obtain a bound on τ2 − τ1. The explicit expression for the hitting time of a line for a
Brownian motion yields

P(τ2 − τ1 ≥ εα) ≤ εβ−α2 ,

for any α < 2β. Choosing β = 3β̄
5 and α = 2β̄

5 and combining this with (5.11), we
then obtain

P(|e(ιyγ)− e(ιwγ)| ≥ ε
2β̄
5 ) . ε

2β̄
5 ,

from which the bound follows.
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5.2 Convergence of recursive Poisson point processes
The aim of this section is to provide a general result allowing us to bound the distance
between two recursive Poisson point processes of the same depth n in terms of their
respective kernels. This result is the main abstract result on which the proof of the
convergence result (5.6) will be based. One difficulty that we have to overcome is that
there is very little uniformity in the proximity of the kernel describing µε,[n]

γ to the one
describing µ[n]

γ .
Throughout this section, given a Polish space X with a distance function d bounded

by 1, we define the Wasserstein-1 distance between any two positive measures with
finite mass (and not just probability measures!) by

‖µ− π‖1 = sup
Lipf≤1
‖f‖∞≤1

(∫
X
f (x)µ(dx)−

∫
X
f (x)π(dx)

)
.

If µ and π happen to have the same mass, then the additional constraint on the supremum
norm ‖f‖∞ of f is redundant in the above expression, and we simply recover the usual
Wasserstein-1 distance. In the case where the masses of µ and π are different however,
our choice of definitions ensures that

‖µ− π‖1 ≈ |µ(X )− π(X )|+ |µ(X )|
∥∥∥ µ

µ(X )
− π

π(X )

∥∥∥
1

, (5.12)

where ≈ denotes that both quantities are bounded by multiples of each other, with
proportionality constants that are independent of µ and π.

The main result of this section is the following:

Theorem 5.7 Let Q and Q̄ : X →M+(X ) be two measurable maps and assume that
the Polish space X is endowed with a metric d bounded by 1. Let A ⊂ X , ε ∈ (0, 1]
and K ≥ 1 be such that the bounds

sup
x∈X
Q(x,X ) ≤ K , ‖Q(x)−Q(y)‖1 ≤ Kd(x, y) , (5.14)

sup
x∈A
Q̄(x,Ac) ≤ ε , sup

x∈A
‖Q(x)− Q̄(x)‖1 ≤ ε , (5.15)

hold, where we use the notation Ac = X \A.
Fix n > 0, x̄ ∈ A and x ∈ X , and denote by µ[n]

x and µ̄[n]
x̄ the recursive Poisson

point processes with respective kernels Q and Q̄. Then, there exists a coupling between
µ[n]
x and µ̄[n]

x̄ such that

E(1 ∧ ‖µ[n]
x − µ̄

[n]
x̄ ‖1) . C(

√
ε+ d(x, x̄)) ,

where the proportionality constant C depends only on K and n.

Remark 5.8 One useful feature of the way that we set up the bounds in the statement is
that we only require information about the kernel Q̄ on the set A. In the application we
have in mind, the kernel Q̄ will be the one describing µ̃ε,[n]

γ , while the set A will consist
of trajectories exhibiting “typical” behaviour at small scales.

Before we turn to the proof of this theorem, we show that if πn → π in the
Wasserstein-1 sense, then the (usual) Poisson point processes with these intensity
measures also converge to each other weakly in the Wasserstein-1 distance:
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Proposition 5.9 Let π and π̄ be two finite positive measures on a Polish space X
endowed with a metric d ≤ 1 and let µ and µ̄ be the corresponding Poisson point
processes on X . Then, there exists a constant C and a coupling between µ and µ̄ such
that

E(1 ∧ ‖µ− µ̄‖1) ≤ C(‖π − π̄‖1 ∧ 1) .

Proof. The proof relies on the fact that, if P(λ) denotes the Poisson distribution with
parameter λ, one has the total variation bound

dTV(P(λ),P(λ̄)) ≤ |λ− λ̄| ∧ 1 , (5.16)

see for example [AJ06].
We can construct µ (and similarly for µ̄) in the following way. First, draw a Poisson

random variable N with parameter π(X ). Then, draw N independent random variables
{X1, . . . , XN} with law π/π(X ) and set

µ =

N∑
k=1

δXk . (5.17)

By (5.16), we can now construct a Poisson random variable N̄ with parameter π̄(X )
such that

P(N̄ 6= N ) ≤ |π(X )− π̄(X )| . (5.18)

Assuming that N̄ = N , we can then draw random variables {X̄1, . . . , X̄N} in such a
way that the pairs (X̄k, Xk) are distributed according to a coupling between π/π(X )
and π̄/π̄(X ) that minimises their expected distance. If N̄ 6= N , then we simply draw
{X̄1, . . . , X̄N} according to π̄/π̄(X ), independently of the Xk.

If we then define µ̄ similarly to (5.17), it follows that

‖µ− µ̄‖1 ≤

{
N‖ π

π(X ) −
π̄

π̄(X )‖1 if N = N̄ ,

N + N̄ otherwise.

As a consequence, we obtain the bound

E(1 ∧ ‖µ− µ̄‖1) ≤ P(N 6= N̄ ) +
∥∥∥ π

π(X )
− π̄

π̄(X )

∥∥∥
1
EN ,

so that the claim follows from (5.18), the definition of N , and (5.12).

Proof of Theorem 5.7. Note first that, by combining the first bound in (5.14) with the
second bound in (5.15), we obtain the bound

sup
x∈A
Q̄(x,X ) ≤ K + ε .

It follows that we have the recursive bound

E(µ̄nx̄(A) | µ̄[n−1]
x̄ (Ac) = 0) ≤ 2KE(µ̄n−1

x̄ (A) | µ̄[n−2]
x̄ (Ac) = 0) ,

so that, since µ̄0
x̄(A) = 1 by assumption,

E(µ̄nx̄(A) | µ̄[n−1]
x̄ (Ac) = 0) ≤ (2K)n . (5.19)
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On the other hand, defining the positive measures πn and π̄n by

πn+1 =

∫
X
Q(y)µnx(dy) and π̄n+1 =

∫
X
Q̄(y)µ̄nx̄(dy)

we have the inequality

P(µ̄[n]
x̄ (Ac) > 0) ≤ P(µ̄[n−1]

x̄ (Ac) > 0) + P(µ̄nx̄(Ac) > 0 | µ̄[n−1]
x̄ (Ac) = 0)

≤ P(µ̄[n−1]
x̄ (Ac) > 0) + E(π̄n(Ac) | µ̄[n−1]

x̄ (Ac) = 0)

≤ P(µ̄[n−1]
x̄ (Ac) > 0) + εD + P(µ̄n−1

x̄ (A) > D | µ̄[n−1]
x̄ (Ac) = 0)

≤ P(µ̄[n−1]
x̄ (Ac) > 0) + εD +

1

D
E(µ̄n−1

x̄ (A) | µ̄[n−1]
x̄ (Ac) = 0)

≤ P(µ̄[n−1]
x̄ (Ac) > 0) + εD +

(2K)n−1

D
,

which is valid uniformly over all D > 0. Choosing D ∼ 1/
√
ε, we thus obtain the

recursion relation

P(µ̄[n]
x̄ (Ac) > 0) ≤ P(µ̄[n−1]

x̄ (Ac) > 0) + C
√
ε ,

from which it follows that

P(µ̄[n]
x̄ (Ac) > 0) ≤ C

√
ε , (5.20)

where in both cases the constant C depends on K and n, but not on ε.
Note now that we have the bound

‖πn+1 − π̄n+1‖1 ≤
∥∥∥∫
X
Q(y) (µnx − µ̄nx̄)(dy)

∥∥∥
1

+

∫
X
‖Q(y)− Q̄(y)‖1µ̄nx̄(dy)

≤ ‖µnx − µ̄nx̄‖1(Lip(Q) + ‖Q‖∞) + εµ̄nx̄(A)

+

∫
Ac
‖Q(y)− Q̄(y)‖1µ̄nx̄(dx) ,

so that the bound

1 ∧ ‖πn+1 − π̄n+1‖1 ≤ 2K(‖µnx − µ̄nx̄‖1 ∧ 1) + εD + 1µ̄nx̄ (A)>D + 1µ̄nx̄ (Ac)>0 ,

is valid for every D > 0. Furthermore, by Chebyshev’s inequality and (5.19)–(5.20),
one has

P(µ̄nx̄(A) > D) ≤ P(µ̄nx̄(A) > D | µ̄n−1
x̄ (Ac) = 0) + P(µ̄n−1

x̄ (Ac) > 0)

≤ Kn

D
+ C
√
ε .

Choosing again D ∼ 1/
√
ε, we thus obtain the bound

E(1 ∧ ‖πn+1 − π̄n+1‖1) ≤ 2KE(‖µnx − µ̄nx̄‖1 ∧ 1) + C
√
ε .

Applying Proposition 5.9, we conclude that, given µnx and µ̄nx̄ , it is possible to
construct a coupling between µn+1

x and µ̄n+1
x̄ such that

E(1 ∧ ‖µn+1
x − µ̄n+1

x̄ ‖1) . E(1 ∧ ‖µnx − µ̄nx̄‖1) +
√
ε ,

from whence the claim now follows at once.
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5.3 Convergence of the truncated distributions
We are now in a position to provide the proof of (5.6). Again, throughout this section,
we make the standing assumption that the one-step distribution ν for the random walk
(4.1) has some exponential moment. We also use the notations µ̃ε,[n]

γ and µ[n]
γ from

(5.6). Let E be the space of real-valued excursions as before. We then introduce the map
J ε : E →M+(R2) given by

J ε(w)(dz, dt) = aε
∑

εk∈[0,1]

ea
√
εz δεk(dt) 1[0,∆ε

kw](z) dz , (5.21)

where δz denotes the Dirac measure located at z, ∆εwk is defined by

∆ε
kw =

w(k+1)ε − wkε√
ε

,

and we used the convention that 1[0,z] = 0 if z < 0.
As before, denote by Qε

z,γ the law of the random walk (4.1), starting at z
√
ε, and

conditioned to hit level γ before becoming negative. We stop it as soon as it hits R−, so
that we interpret Qε

z,γ as a measure on E0. Recall also that P̄z,γ/√ε, with P̄z,γ defined
as in Section 2.1.2 denotes the probability that this event actually happens.

With this notation, the measure Qεγ describing µ̃ε,[n]
γ (i.e. Qεγ(w, ·) is the intensity

measure of Q̃ε
γ(w)) is given by

Qεγ(w, ·) =

∫
R2

Θ?
w,tQ

ε
z,γ P̄z, γ√ε

J ε(w)(dz, dt)√
ε

=

∫
R2

( 1

γ
Θ?
w,tQ

ε
z,γ

)( γ√
ε
P̄z, γ√

ε

)
J ε(w)(dz, dt) .

Note now that if w is a typical realisation of Qε
z,γ , then J ε(w) is expected to be close

to the measure
J (w) = 1l(w)∩[0,1](t) dt⊗ ν̂(dz) ,

where ν̂ is the measure on R+ given by∫
G(z)ν̂(dz) =

∫ ∞
0

∫ z

0

G(y) dy ν(dz) ,

for any test function G. This is because ea
√
ε∆ε

kw ∼ 1 and the law of ∆ε
kw would be

given by ν, were it not for the conditioning.
On the other hand, the kernel Qγ describing the truncated Brownian fan µ[n]

γ with
parameter a is given by

Qγ(w, ·) =
a

2δ

∫
l(w)∩[0,1]

Θ?
w,tQγ dt =

1

δ

∫
R2

Θ?
w,tQγ G(z) J (w)(dz, dt) , (5.22)

where Qγ is the law of a Brownian excursion conditioned to reach level γ and G was
defined in (2.13). This is the case because of the well-known fact that 1

γQγ is the law of
the unnormalised Brownian excursion restricted to the set of excursions reaching level
γ. The second identity in (5.22) is a consequence of the definition of ν̂, combined with
Proposition 2.4. With these notations at hand, we have:
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Proposition 5.10 Consider the setting and assumptions of Theorem 5.1. For every
δ < 1

32 , there exists a constant C depending on γ, n and δ such that

E(1 ∧ ‖µ̃ε,[n]
γ − µ[n]

γ ‖1) ≤ Cεδ ,

uniformly over ε ≤ ε0 for some ε0 small enough.

Proof. We apply Theorem 5.7 with Q = Qγ , Q̄ = Qεγ , and A to be determined. Using
the results obtained earlier in this section, it turns out that the assumptions are then
relatively straightforward to check.

For convenience, we introduce the notation

J̃ ε(w)(dz, dt) = G(x)J ε(w)(dz, dt) ,

and similarly for J̃ . We also denote by Π2 : R2 → R the projection onto the second
component, so that Π?

2J̃
ε(w) (and similarly for J̃ ) is the projection of J̃ ε(w) onto

the t-component. We also denote by Ωε ⊂ E the subset of excursions given by

Ωε = Ω(1)
ε ∩ Ω(2)

ε ,

where we set

Ω(1)
ε = {w ∈ E : J̃ ε(w)({x > ε−1/3}) = 0} ,

Ω(2)
ε = {w ∈ E : ‖Π?

2J̃ (w)−Π?
2J̃

ε(w)‖1 ≤ ε1/10} .

Also, in the definition of Ω(2)
ε , the Wasserstein-1 distance is taken with respect to the

somewhat unusual distance on R given by

d(t, t′) = 1 ∧ |t− t′|1/3 . (5.23)

The reason for this seemingly strange choice will become clear later. The set Ωε defined
in this way will play the role of A when applying Theorem 5.7.

Note first that Qγ(w,X ) ≤ a
2γ , which is bounded independently of w. Furthermore,

one has the bound

‖Qγ(w,X )−Qγ(w̄,X )‖1 ≤
a

2γ

∫
l(w)∩l(w̄)∩[0,1]

‖Θ?
w,tQγ −Θ?

w̄,tQγ‖1 dt

+
a

2γ
(|s(w)− s(w̄)|+ |e(w)− e(w̄)|) .

Since furthermore ‖Θ?
w,tQγ −Θ?

w̄,tQγ‖1 ≤ |wt − w̄t|, it does indeed follow that Q is
globally Lipschitz continuous as required, so that (5.14) holds with some constant K
depending on γ.

It remains to check that (5.15) holds, with ε replaced by some power of ε. By
Theorem 5.2, we already know that there exists a constant C, possibly depending on γ,
such that

‖Qε
z,γ −Qγ‖1 ≤ Cεδ ,

for any exponent δ ∈ (0, 1
16 ), and uniformly over all z ≤ ε−1/3. As a consequence, for

every w ∈ Ωε, we have the bound

‖Qγ(w,X )−Qεγ(w,X )‖1 ≤
1

γ

∫
R2

( γ√
ε
P̄z, γ√

ε
−G(z)

)
J ε(w)(dz, dt)
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+
1

γ

∫
R2

‖Θ?
w,tQ

ε
z,γ −Θ?

w,tQγ‖ J̃ ε(w)(dz, dt)

+
1

γ

∥∥∥∫
R2

Θ?
w,tQγ(Π?

2J̃
ε(w)(dt)−Π?

2J̃ (w)(dt))
∥∥∥

1

≤ Cγε1/5J ε(w)(R2) + Cγε
δJ̃ ε(w)(R2)

+ Cγε
1/10(1 + Lip Θ?

w,tQγ) ,

where Lip Θ?
w,tQγ denotes the quantity

Lip Θ?
w,tQγ = sup

t6=t′

‖Θ?
w,tQγ −Θ?

w,tQγ‖1
1 ∧ |t− t′|1/3

.

It is at this stage that the choice (5.23) of distance function becomes clear: with respect to
the usual Euclidean distance, the map t 7→ Θ?

w,tQγ would not be Lipschitz continuous.
In this way however, it follows immediately from the Hölder continuity of Brownian
motion that Lip Θ?

w,tQγ <∞.
Furthermore, it follows from the definition of Ω(2)

ε that J̃ ε(w)(R2) is bounded by a
constant independent of w and ε. Since G(x) is bounded from below by a constant, this
implies that the same is true of J ε(w)(R2). Combining these bounds, we then obtain

‖Qγ(w,X )−Qεγ(w,X )‖1 ≤ Cγε
δ ,

for some constant C and any δ < 1
16 .

In order to complete the proof, it thus remains to show that infw∈Ωε Qεγ(w,Ωc
ε)→ 0

sufficiently fast as ε→ 0, where Ωc
ε denotes the complement of Ωε. As a consequence

of the definition of Ωε, this follows if we can show that Qε
z,γ(Ωc

ε) → 0 as ε → 0,
uniformly over all z ≤ ε−1/3. Instead of considering Qε

z,γ , it is much easier to consider
Qε
z , the law of the rescaled random walk (4.1) over the time interval [0, 1].

Observe that Qε
z,γ is obtained from Qε

z by first conditioning on the event that γ is
reached before the walk becomes negative and then stopping the walk. By Proposi-
tion 2.2, the probability of this event is bounded from below by C

√
ε for some constant

C depending on γ but independent of z ∈ [0, ε−1/3]. Therefore it is sufficient to find a
set Ξε with the following two properties:
• There exists an exponent ζ > 1

2 and a constant C such that Qε
z(X \ Ξε) ≤ Cεζ

for every α ≤ 1 and every z ∈ [0, ε−1/3].
• For every w ∈ Ξε and every t ∈ [0, 1], the path w̃ obtained from w by stopping

it at time t belongs to Ωε.
In order to determine whether a path w belongs to Ξε, we “coarse-grain” it into pieces
of length ε1/3 (the precise exponent is not very important as we do not endeavour to
obtain optimal convergence rates) and we impose that the contribution of J̃ ε(w) on
each piece is very close to what it should be. In other words, setting Ik ⊂ [0, 1] by
Ik = [ε1/3k, ε1/3(k + 1)), we define Ξε as

Ξε = Ω(1)
ε ∩

{
w :

∣∣∣Π?
2J̃

ε(w)(Ik)− a

2
|Ik|

∣∣∣ ≤ √ε} ,

where |Ik| denotes the length of the interval Ik.
We first note that if w ∈ Ξε and t ∈ [0, 1], then the path w̃ obtained by stopping w

at time t does belong to Ωε. Since J̃ ε(w̃) ≤ J̃ ε(w), w ∈ Ω(1)
ε implies that w̃ ∈ Ω(1)

ε .
Denote now by ηε the measure ηε = Π?

2J̃
ε(w̃) and by η the target measure, namely
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η = a
2λ|[0,t], where λ denotes the Lebesgue measure. By the assumption on J̃ ε(w), it

follows that one has |ηε(Ik)− η(Ik)| ≤
√
ε for each of the intervals Ik, except possibly

for the interval containing t. As a consequence, denoting by ηεk and ηk the restrictions
of ηε and η to Ik, one obtains for all k such that t 6∈ Ik the bound

‖ηεk − ηk‖1 ≤ ε
1
9 + 1

3 + ε
1
2 .

(Recall that we use the distance function (5.23), this is the reason for the exponent 1
9 .)

Summing over k and using the fact that ‖ηεk − ηk‖1 ≤ Cε1/3 for the value k such that
t ∈ Ik, it follows that one has ‖ηε − η‖1 ≤ Cε1/9, which indeed implies that w̃ ∈ Ωε,
at least for ε small enough.

It remains to show that Qε
z(E \ Ξε) ≤ Cεζ for sufficiently large ζ. Observe first

that Qε
z(E \ Ω(1)

ε ) ≤ Cεp for every p > 0 thanks to the fact that the distribution ν of the
steps of our random walk has exponential tails.

To obtain the required bound on Qε
z(E \ Ξε), we use the fact that Π?

2J̃
ε(w)(Ik)

consists of the sum of ε−2/3 i.i.d. copies of a random variable Y with law given by

Y
law
= aε

∫ Z

0

ea
√
εzG(z) dz , D(Z) = ν ,

where ν is the one-step distribution of the underlying random walk. Note now that, as a
consequence of Proposition 2.4 and the fact that ν admits some exponential moment,
one has

EY =
a

2
ε+O(ε3/2) ,

for all ε sufficiently small. Similarly, it is straightforward to check that E|Y |p = O(εp)
for every p > 0. As a consequence, one has for every p > 0 the bound

E
∣∣∣Π?

2J̃
ε(w)(Ik)− a

2
|Ik|

∣∣∣p ≤ Cε2p/3 ,

for a constant possibly depending on p. It immediately follows that

P
(∣∣∣Π?

2J̃
ε(w)(Ik)− a

2
|Ik|

∣∣∣ > √ε) ≤ Cεp ,

for every p > 0. Summing over k and combining this with the previously obtained
bound on Qε

z(E \ Ω(1)
ε ), we conclude that Qε

z(E \ Ξε) ≤ Cεp for every p ≥ 0, which
concludes our proof.
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