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2 INTRODUCTION

1 Introduction

These notes are based on a series of lectures of various lengths given at the University of Warwick,
the Courant Institute, Imperial College London, and EPFL. It is an attempt to give a reasonably
self-contained presentation of the basic theory of stochastic partial differential equations, taking for
granted basic measure theory, functional analysis and probability theory, but nothing else. Since
the aim was to present most of the material covered in these notes during a 30-hours series of
postgraduate lectures, such an attempt is doomed to failure unless drastic choices are made. This
is why many important facets of the theory of stochastic PDEs are missing from these notes. In
particular, we do not treat equations with multiplicative noise, we do not treat equations driven Lévy
noise, we do not consider equations with ‘rough’ (that is not locally Lipschitz, even in a suitable
space) nonlinearities, we do not treat measure-valued processes, we do not consider hyperbolic or
elliptic problems, we do not cover Malliavin calculus and densities of solutions, etc. The reader
who is interested in a more detailed exposition of these more technically subtle parts of the theory
might be advised to read the excellent works [[DPZg2b| DPZg6, [PZo7, [PRo7, [SSo5].

Instead, the approach taken in these notes is to focus on semilinear parabolic problems driven by
additive noise. These can be treated as stochastic evolution equations in some infinite-dimensional
Banach or Hilbert space that usually have nice regularising properties and they already form (in
my humble opinion) a very rich class of problems with many interesting properties. Furthermore,
this class of problems has the advantage of allowing to completely pass under silence many subtle
problems arising from stochastic integration in infinite-dimensional spaces.

1.1 Acknowledgements

These notes would never have been completed, were it not for the enthusiasm of the attendants of
the course. Hundreds of typos and mistakes were spotted and corrected. I am particularly indebted
to David Epstein and Jochen Vof3 who carefully worked their way through these notes when they
were still in a state of wilderness. Special thanks are also due to Pavel Bubak who was running the
tutorials for the course given in Warwick.

2 Some Motivating Examples

2.1 A model for a random string (polymer)

Take N + 1 particles with positions u,, immersed in a fluid and assume that nearest-neighbours
are connected by harmonic springs. If the particles are furthermore subject to an external forcing
F, the equations of motion (in the overdamped regime where the forces acting on the particle are
more important than inertia, which can also formally be seen as the limit where the masses of the
particles go to zero) would be given by

du
= k(a1 — o) + F(u)
t
duy,
W =k(upt1 +upn—1 —2un) + F(uy), n=1,...,N—1,
du
d—;v = k(un_1 — un) + Fuy) .

This is a very primitive model for a polymer chain consisting of N + 1 monomers and without
self-interaction. (In particular, our string is allowed to self-intersect...) It does however not take into
account the effect of the molecules of water that would randomly ‘kick’ the particles that make up
our string. Assuming that these kicks occur randomly and independently at high rate, this effect can
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be modelled in first instance by independent white noises acting on all degrees of freedom of our
model. We thus obtain a system of coupled stochastic differential equations:

dug = k(uy — ug) dt + F(ug) dt + o dwy(t) ,
dun = k(up+1 + un—1 — 2up) dt + F(up)dt + o dwp,(t), n=1,...,.N—1,
duny = k(uy_1 —un)dt + F(uy) dt + o dwy(t) .

Formally taking the continuum limit (with the scalings & ~ v N2 and o ~ v/N), we can infer that
if N is very large, this system is well-described by the solution to a stochastic partial differential
equation

du(z, t) = vO2u(z, t) dt + F(u(z,t)) dt + dW (z,t)

endowed with the boundary conditions 9,u(0,t) = d,u(1,t) = 0.

The reason for the choice of scaling k ~ v N2 should be clear: if we want to obtain a continuum
limit u such that u,,(t) = u(n/N, t), then this is the choice such that k(ty,+1 4 up—1 — 2uy,) ~ u@%u.
It is a bit less obvious a priori what the correct scaling for o should be. Recall at this stage that white
noise can be viewed as a random distribution that is “delta-correlated”, i.e. setting &, = o dw,, /dt
one has at a formal level

E&,(8)6,(t) = 0%8(t — 5)

where 9 denotes the “delta function”. This is of course not an actual function but a distribution, so
that the &,’s should really be interpreted as random distributions such that, for any two test functions
o and 1, one has

B0 () = 0% | (000 dr
R
It is now natural to look for a scaling such that the collection of &,’s converges to a random
space-time distribution. For this, consider now test functions ¢ and 1) depending on both space and

time and note that the natural way of testing the &,’s against then is given by the distribution &)
such that

N
1
V) =+ ngosn«o(n/N, -

In particular, its covariance is then given by
O'2 N
B¢V VW) = 15 ZO E&(o(n/N, )én(t(n/N, )
o2 X o2 [l
PP /R /N, B3/, 1)t = % /O /R o Dy, 1y i e

If we want this to have a non-trivial limit as N — oo, we should indeed choose o of order v/ V.
Furthermore, we see that the limiting random distribution £ formally satisfies

which is called space-time white noise.
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2.2 The stochastic Navier—Stokes equations

The Navier—Stokes equations describing the evolution of the velocity field u(z, t) of an incompress-
ible viscous fluid are given by
du

E:yAu—(u'V)u—ijLf, (2.1)
complemented with the (algebraic) incompressibility condition div « = 0. Here, f denotes some
external force acting on the fluid, whereas the pressure p is given implicitly by the requirement that
divu = 0 at all times.

While it is not too difficult in general to show that solutions to (2.1)) exist in some weak sense,
in the case where = € R? with d > 3, their uniqueness for all times is an open problem with a
$1,000,000 prize. We will of course not attempt to solve this long-standing problem, so we are
going to restrict ourselves to the case d = 2. (The case d = 1 makes no sense since there the
condition div 4 = 0 would imply that u is constant. However, one could also consider the Burger’s
equation which has similar features to the Navier—Stokes equations.)

For simplicity, we consider solutions that are periodic in space, so that we view w as a function
from T2 x R, to R?. In the absence of external forcing f, one can use the incompressibility
assumption to see that

d
— ]u(:):,t)|2dx = —2y/

tr Du(z, t)* Du(x, t) dx < —21// \u(:p,t)|2dx ,
dt T2 T2 T2

where we used the Poincaré inequality in the last line (assuming that ng u(z,t) dx = 0). Therefore,
by Gronwall’s inequality, the solutions decay to O exponentially fast. This shows that energy needs
to be pumped into the system continuously if one wishes to maintain an interesting regime.

One way to achieve this from a mathematical point of view is to add a force f that is randomly
fluctuating. We are going to show that if one takes a random force that is Gaussian and such that

for some correlation function C' then, provided that C' is sufficiently regular, one can show that
has solutions for all times. Furthermore, these solutions do not blow up in the sense that one can
find a constant K such that, for any solution to (2.1]), one has

limsup E|lu(t)|® < K ,
t—o0

for some suitable norm || - ||. This allows to provide a construction of a model for homogeneous
turbulence which is amenable to mathematical analysis.

2.3 The stochastic heat equation

In this section, we focus on the particular example of the stochastic heat equation. We will perform
a number of calculations that give us a feeling for what the solutions to this equation look like.
These calculations will not be completely rigorous but could be made so with some extra effort.
Most tools required to make them rigorous will be introduced later in the course.

2.3.1  Setup

Recall that the heat equation is the partial differential equation:

Ou=Au, u:R;yxR"—=>R. (2.2)
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Given any bounded continuous initial condition ug: R® — R, there exists a unique solution u to
which is continuous on R, x R™ and such that u(0, z) = ug(x) for every x € R"™.
This solution is given by the formula

_lz—y|?

1
u(t, x) = (47775)"/2/1{716 aug(y) dy

We will denote this by the shorthand u(t, - ) = e®tug by analogy with the solution to an R%-valued
linear equation of the type d;u = Au.
Let us now go one level up in difficulty by considering with an additional ‘forcing term’ f:

ou=Au+f, u:RyxR"—=R. (2.3)

From the variations of constants formula, we obtain that the solution to is given by

t
u(t, ) = e“tug + / A9 f(s, ) ds . (2.4)
0

Since the kernel defining e®* is very smooth, this expression actually makes sense for a large class
of distributions f. Suppose now that f is ‘space-time white noise’. We do not define this rigorously
for the moment, but characterise it as a (distribution-valued) centred Gaussian process ¢ such that
E&(s, )¢, y) = o(t — s)o(z — y).

The stochastic heat equation is then the stochastic partial differential equation

ou=Au+¢, u:Ri xR" = R. (2.5)

Consider the simplest case ug = 0, so that its solution is given by

t 1 |z —y|?
t — S, T At—s) dyd .6
u<,x>—/0 T /Rne &5,y dy ds (26)

This is again a centred Gaussian process, but its covariance function is more complicated. The aim
of this section is to get some idea about the space-time regularity properties of (2.6). While the
solutions to ordinary stochastic differential equations are in general a-Holder continuous (in time)
for every @ < 1/2 but not for o« = 1/2, we will see that in dimension n = 1, u as given by
is only ‘almost’ 1/4-Holder continuous in time and ‘almost’ 1/2-Holder continuous in space. In
higher dimensions, it is not even function-valued... The reason for this lower time-regularity is that
the driving space-time white noise is not only very singular as a function of time, but also as a
function of space. Therefore, some of the regularising effect of the heat equation is required to turn
it into a continuous function in space.

Heuristically, the appearance of the Holder exponents 1/2 for space and 1/4 for time in
dimension n = 1 can be understood by the following argument. If we were to remove the term
Oyu in (2.5), then u would have the same time-regularity as &, but two more derivatives of space
regularity. If on the other hand we were to remove the term Awu, then v would have the sample
space regularity as &, but one more derivative of time regularity. The consequence of keeping both
terms is that we can ‘trade’ space-regularity against time-regularity at a cost of one time derivative
for two space derivatives. Now we know that white noise (that is the centred Gaussian process
n with En(t)n(s) = d(t — s)) is the time derivative of Brownian motion, which itself is ‘almost’
1/2-Holder continuous. Therefore, the regularity of 7 requires ‘a bit more than half a derivative’ of
improvement if we wish to obtain a continuous function.
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Turning back to &, we see that it is expected to behave like 7 both in the space direction and in
the time direction. So, in order to turn it into a continuous function of time, roughly half of a time
derivative is required. This leaves over half of a time derivative, which we trade against one spatial
derivative, thus concluding that for fixed time, u will be almost 1/2-Holder continuous in space.
Concerning the time regularity, we note that half of a space derivative is required to turn £ into a
continuous function of space, thus leaving one and a half space derivative. These can be traded
against 3/4 of a time derivative, thus explaining the 1/4-Holder continuity in time.

In Section we are going to see more precisely how the space-regularity and the time-
regularity interplay in the solutions to linear SPDEs, thus allowing us to justify rigorously this type
of heuristic arguments. For the moment, let us justify it by a calculation in the particular case of the
stochastic heat equation.

2.3.2 A formal calculation

Define the covariance for the solution to the stochastic heat equation by
C(s,t,z,y) = Bu(s, v)ult, y) , (2.7)

where u is given by (2.6).
By (statistical) translation invariance, it is clear that C(s,t,x,y) = C(s,t,0,z — y). Using
and the expression for the covariance of &, one has

C(s,t,0,)

1 tors 1 lo—yl2 12
TA—r)  AGs—r)) ’oo ’ g
= (47T)nE// / / |S ’["/|n/2|t T’n/2€ 4t—r)  A(s—r )f(r’ y)&(/r Y )dy dy dr dT‘
0J0 n, n — —
1 SAt 1 ‘Iiy‘g \y|2
- “at—n 360 dy d
(4m)n A /n |3—T’n/2|t—r|n/2€ yar

B 1 /s/\t/ 1
C@mn Sy n |8 — 7|2t — r|n/2

|| (z,y) ly[? ly[?
Xe“(_4@—r)_2@—r)_4@—r)_4@—rﬂdym“

(Here, we used the shorthand notation a A b < min{a, b}.) The integral over y can be performed
explicitly by ‘completing the square’ and one obtains

C(s,t,0,2)=2"" /SM (s+t—2r) "2 exp(-w) dr
o 0 4(s+t—2r)
s+t 2
_ -t /2 gy (1210
2 /|s—t l exp( v, )dﬂ . (2.8)

We notice that the singularity at £ = 0 is integrable if and only if n < 2, so that C'(¢, ¢, 0, 0) is finite
only in the one-dimensional case. We therefore limit ourselves to this case in the sequel.

Remark 2.1. Even though the random variable v defined by is not function-valued in
dimension 2, it is ‘almost’ the case since the singularity in diverges only logarithmically. The
stationary solution to is called the Gaussian free field and has been the object of intense studies
over the last few years, especially in dimension 2. Its interest stems from the fact that many of its
features are conformally invariant (as a consequence of the conformal invariance of the Laplacian),
thus linking probability theory to quantum field theory on one hand and to complex geometry on
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the other hand. The Gaussian free field also relates directly to the Schramm—Loewner evolutions
(SLEs) for the study of which Werner was awarded the Fields medal in 2006, see [Lawo4l ISSo6]].
For more information on the Gaussian free field, see for example the review article by Sheffield
[Sheo7|].

The regularity of u is determined by the behaviour of C near the ‘diagonal’ s =t, z = y. We
first consider the time regularity. We therefore set x = 0 and compute

1[5t ! !
C(s,t,O,O):4/ V240 = L(|s+t]7 —|s — 7).

ls—t|

This shows that, in the case n = 1 and for s = ¢, one has the asymptotic behaviour
2 1
E|u(s,0) — u(t,0)| ~ |t — s|2 .

Comparing this with the standard Brownian motion for which E| B(s)— B(t)|? = |t — s|, we conclude
that the process t — u(t, x) is, for fixed z, almost surely a-Holder continuous for any exponent
a < 1/4 (but actually not for « = 1/4). This argument is a special case of Kolmogorov’s celebrated
continuity test, of which we will see a version adapted to Gaussian measures in Section|4.1

If, on the other hand, we fix s = ¢, we obtain (still in the case n = 1) via the change of variables
z = |x|%/4¢, the expression

lx| [ _s _
C(t,t,O,x)z; ﬂZ 2e % dz .
8t
Integrating by parts, we get
t _l=)? o
C(t,t,0,x) = \4[6_& + |Z o2 2 Tre % dz ,

So that to leading order we have for small values of x:
t oo
C(t,1,0,7) ~ \4[ + ’Z‘/ 2Tre dr =i+ ‘/T:‘ + O(|z|2/8V7) .
0

This shows that, at any fixed instant ¢, the solution to looks like a Brownian motion in space
over lengthscales of order ¢'/2. Note that over such a lengthscale the Brownian motion fluctuates by
about ¢'/4, which is precisely the order of magnitude of E|u(t, z)|.

2.4 What have we learned?

1. At a ‘hand-waving’ level, we have forced our equation with a term that has a temporal
evolution resembling white noise, so that one would naively expect its solutions to have
a temporal regularity resembling Brownian motion. However, for any fixed location in
space, the solution to the stochastic heat equation has a time-regularity which is only almost
%—Hblder continuous, as opposed to the almost %—Hélder time-regularity of Brownian motion.

2. Unlike the solutions to an ordinary parabolic PDE, the solutions to a stochastic PDE tend to
be spatially ‘rough’. It is therefore not obvious a priori how the formal expression that we
obtained is to be related to the original equation (2.5)), since even for positive times, the map
x — u(t, x) is certainly not twice differentiable.



8 SoME MoTIVATING ExAMPLES

3. Even though the deterministic heat equation has the property that e2*u, — Oast — oo forevery
u € L2, the solution to the stochastic heat equation has the property that E|u(z, t)|?> — oo for
fixed x as ¢ — oo. This shows that in this particular case, the stochastic forcing term pumps
energy into the system faster than the deterministic evolution can dissipate it.

Exercise 2.2. Perform the same calculation, but for the equation
ou=Au—au+¢&, u:RyxR—=R.

Show that as t — oo, the law of its solution converges to the law of an Ornstein-Uhlenbeck process
(if the space variable is viewed as ‘time’):

lim Eu(t, 2)u(t,y) = Cecle—ul
t—o00

Compute the constants C' and c as functions of the parameter a. Hint: Show first that, similarly to
(2-8), the above limit is given by

oo [0 _la—yl? d
Glo—gh & [~ e T
0

Show then that, away from the origin, G satisfies an ODE of the form G’ = +¢G. For this, a change
of variables of the form s = k/r for a suitable choice of £ might come in handy.

One much more robust way of deriving the exponents 1/2 and 1/4 appearing above is given by
the following exercises. Here, we take it for granted that the law of ¢ is characterised by the fact
that, for any two test functions ¢ and ), one has

def

E{(@)EW) = (o, ) = /R i o(t, x)p(t, z) dt dz .

(This will be justified in Section )

Exercise 2.3. Given an exponent o € R a scaling factor A > 0, h = (hy, hy) € R and a
function f: R*1 — R, set

(SOt 2) = A""fFN\*, ), (ThHt,x) = ft — hy, o — hy) . (2.9)

This is extended to distributions on R%*! by

(SY@) =E(S 5 727%) (D)) = E(Tny) -

Show that this definition is consistent with the canonical embedding of smooth functions into the
space of distributions.

Let now & denote space-time white noise. Show that, for any A and h as above, and for
a = —%, the laws of S$¢ and of T, equal that of £&. We say that £ is stationary and scale
invariant with scaling exponent «. Finally, show that if « is a random function / distribution that is
stationary and scale invariant with exponent 3, then (0; — A)u is stationary and scale invariant with
exponent 3 — 2.

Exercise 2.4. Let o € (0, 1) and, given a continuous function f: R — R, define S§ f as above,
but ignoring the ¢ variable. Show that f is uniformly a-Holder continuousT]if and only if the

1j.e. there exists K such that |f(z) — f(y)| < K|z — y|® uniformly over all pairs =,y with |z — y| < 1.
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quantity (ST} f, ) is bounded, uniformly over all & € R, all A € (0, 1], and all functions ¢ that
are bounded by 1, are supported in the centred ball of radius 1, and are such that [ ¢(z)dz = 0.
Hint: Consider successive approximations of f(z) (with z € {z,y}) by testing f against a suitable
multiple of the indicator function of an interval of length 27" |z — y| centred around z.

Show that the same statement also holds for functions on R4 with S{ as in (2.g), provided
that Holder continuity is measured with respect to the distance function d((t,x),(t',z")) =
V|t =t| + |z — 2'|. Note then that a-Holder continuity with respect to d implies a-Holder
continuity in the x variable and «/2-Holder continuity in the ¢ variable.

Exercise makes it at least plausible that the solution to the stochastic heat equation is
translation and scale invariant with exponent 2 — % = %, which is 1/2 in the special case
d = 1. Exercise [2.4]then suggests that this implies the claimed Holder continuity. The reason why
one actually looses a little bit is that translation and scale invariance in law does not actually imply

the uniform boundedness required in Exercise

Remark 2.5. It is in fact note quite true that w is translation and scale invariant in the above sense,
but it is the case if one quotients it by constant functions. Since the above criterion for Holder
regularity only requires test functions that annihilate constants, this does not affect the argument.

3 Probability Measures on Polish Spaces

While most of the probability theory appearing in these notes is constructed from Gaussian measures
(but on infinite-dimensional spaces!), we start with a foundational section on the general theory of
probability measures on Polish (that is complete, separable, metrisable) spaces.

The typical example of a Polish space one should have in mind is that of a separable Banach
(or Hilbert) space, like for example the Lebesgue spaces LP(R"™) (with n # oo) or the Sobolev
spaces H?®(R"™). More interestingly, we will see that, when equipped with the topology of weak
convergence, the space of probability measures on a Polish space is itself Polish! An example of a
“large” Polish space which is very far from linear is the Gromov—Hausdorft space of all isometry
classes of compact metric spaces.

This theory is of course much too vast to be done any sort of justice in these few short pages.
We therefore refer the interested reader to the excellent and quite extensive treatise by Bogachev
[Bogo7]l and to the much shorter but maybe more readily accessible book by Billingsley [Bil68]]
which still covers a large part of the material required for the basic study of stochastic PDEs.

3.1 Convergence of probability measures

The focus of this section will be mainly on the question of convergence of probability measures
on Polish spaces. We will introduce a number of different topologies on the space of probability
measures on an arbitrary Polish space and we will discuss the relations between these topologies
and the metrics that generate them.

Recall that the Borel o-algebra (X)) of a Polish space X is the smallest collection of sets
containing all the open sets of X’ that is furthermore closed under countable unions and taking
complements. A probability measure g on X is then a map p: AB(X) — [0, 1] such that pu(X) =1
and p(lJ A;) = > u(A;) for any countable collection of mutually disjoint sets 4; € A(X). We
denote by (X)) the set of all (Borel) probability measures on X. In order of increasing strength,
here are the two main notions of convergence that will be used in these notes:

e Weak convergence: A sequence of probability measures pu, converges weakly to a
limiting probability measure p if lim,, o f p(x) pp(dx) = f o(x) p(dz) for every bounded
continuous function ¢: X — R.
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e Total variation convergence: This notion of convergence is defined by the total variation
metric given by

vl = sup | [t utdn) ~ [ o). (3.1)

llplloo<1
Here, ||¢||~ denotes the supremum norm of ¢.
Exercise 3.1. Show that the “total variation metric” defined above is indeed a metric.

Remark 3.2. Another widespread notion of convergence is that of strong convergence: a sequence
1y, converges strongly to a limiting measure g if 1imy, o0 1 (A) = p(A) for every A € B(X).
However, this notion of convergence does have somewhat more pathological properties. For
example, it is possible to find several non-equivalent topologies on the space of signed measures on
X giving rise to this notion of convergence for countable sequences, see [Bogo7, Section 4.7(v)].
Furthermore, these topologies are not “nice”. For example, if we consider the set .Z (X') of
finite signed measures on X endowed with the total variation norm, then this is a Banach space
(call it .#7v). It is then a very unfortunate fact that one of the topologies on .Z (X') giving rise to
the notion of strong convergence for sequences is actually the weak (in the usual sense of functional
analysis) topology on .Ztvy. Since, just like .Ztv itself, the dual of .Ztv is not separable (unless X’
is finite of course), it follows from general principles (see for example [FHH" 01, Zizo3])) that this
topology is not metrisable (not even on bounded sets), which greatly limits its use in practice.

Remark 3.3. If X" is a compact metric space, then the Riesz—Markov theorem [Rudg1] tells us that
the dual of Cp(X), the space of bounded continuous functions, is precisely given by the space .Z (X))
of finite signed measures on X. Furthermore, in this language, the topology of weak convergence
is nothing but the weak-* topology on .Z (X), viewed as the dual of C;(X). Since the dual of an
infinite-dimensional Banach space is never metrisable for the weak-* topology [FHH 01!, [Zizo3)],
one may think then that the notion of weak convergence for probability measure suffers from the
same problems as those pointed out in the previous remark for the strong convergence. Fortunately,
it turns out that bounded subsets of the dual of a separable Banach space are weak-* metrisable,
which is sufficient for our purpose since we are mostly interested in probability measures.

We will sometimes use slightly different notions of convergence, but they will be only minor
variations on the general themes given here. The above notions of convergence give rise to two
non-equivalent metrisable topologies on &?(X). Metrisability is obvious for the notion of total
variation convergence, but much less so for the notion of weak convergence. Before we turn to the
construction of metrics for weak convergence, let us give a few classical examples illustrating the
differences between them.

Example 3.4. Let X = R and let y,, be the Dirac measure located at 1/n. Then it converges
weakly, but neither strongly nor in total variation to the Dirac measure located at the origin.
Example 3.5. Let p,, be the measure on [0, 7] given by p,(dx) = %sinz(nx) dx. Then, u,
converges to the normalised Lebesgue measure both in the weak and the strong sense. However, the
total variation distance between p,, and its limit df is equal to % for every n.

Note that the theory of probability measures on arbitrary metric (or metrisable) spaces is much
more pathological. This can be seen by the following example which shows in particular that the
rule of thumb that “every map you can define unambiguously is measurable” can be broken in that
case.
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Exercise 3.6. Let H: R — {0, 1} denote the Heaviside function and write Hy(z) = H(x — t).
Show that the map ©: R — L*°(R) given by ¢ — H, is not even Borel measurable. (You may take
it for granted that there do exist subsets of the real line that are not Borel.) Hint: Use the fact that

an arbitrary union of open sets is open to show that given any subset A C R there exists an open set
A* C L™ with @~ 1(4*) = A.

Exercise 3.7. Show that for subsets X' C X with X" a Polish space, the following four characterisa-
tions of compactness are equivalent:

1. Every open cover of K admits a finite subcover. (K is compact.)

2. K is closed and, given any metric d generating the topology of X, for every € > 0, K can be
covered with finitely many balls of radius . (K is closed and totally bounded.)

3. Every sequence (x,,) of elements of K admits a subsequence that converges to a limit x € K.
(K is sequentially compact.)

Hint: The hard part is to show that 3 implies 1. For this, show first that if 3 holds and we have an
open cover {V,} of K, then we can find a countable subcover. This can be seen by fixing some
dense countable subset {y,, }nen of K and, for each m,n € N, choose exactly one V,, containing
the open ball of radius 1/m around y,, (if such a V,, exists). Writing V,, the countable cover of K
obtained in this way, we define a decreasing family of closed sets by F,, = K \ | i<n Vj- Show
that either one of the F},’s must be empty (thus showing that we have a finite cover of K), or
ﬂn>0 F,, # 0, thus contradicting the fact that the V},’s are a cover of K.

3.2 Total variation convergence

The total variation distance between two probability measures u
and v is relatively straightforward to comprehend: it consists of the K .
total amount of mass that doesn’t overlap between y and v. Since \

a picture is worth a thousand words, we illustrate this by the figure
shown on the right: the total variation distance between p and v
is given by the dark gray area.

If 1 and v have densities D, and D, with respect to some
common positive reference measure ¢ (by the Radon—Nikodym
theorem, it is always possible to take ( = %(u + v) for example),
then one has the identity

[ — vy = /X |Du(z) — Dy(z)| ((dx) , (3.2)

which is also sometimes taken as the definition of the total variation distance.

Exercise 3.8. Show that the characterisation of the total variation distance does not depend
on the particular choice of a reference measure ¢ and that it does indeed agree with the definition
previously given in . Hint: Consider the test function ¢(x) such that o(x) = 1if D, (z) > D, (v)
and p(x) = —1 otherwise.

As a consequence of the characterisation (3.2)), we have the following very important fact:

Corollary 3.9. For u and v two probability measures, one has ||pn — v||tv = 2 if and only if p and
v are mutually singular and ||u — v||tv < 2 otherwise.
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Proof. Let p and v be mutually singular, denoted by . L v. Then there exists a set A such that
w(A) = 1 and v(A) = 0. Setting p(x) = 214(x) — 1, it follows from (3.1) that ||x — v|Tv > 2.
On the other hand, one has ||x — v|[tv < 2 as a consequence of the definition, so that the first
implication follows.

To show the converse, assume that ;4 and v are not mutually singular and denote by D,, and D,
their densities with respect to a common reference measure ¢. Let A, = {x : D,(z) > 0} and
similarly for A,, and set A = A, N A,. With this notation, one must have ((A) > 0, for otherwise
w L v. Since for two positive numbers a and b we have the identity |a — b] = a + b — 2(a A D), it
follows from that

o= vy =2 -2 /A (Dy(@) A Dy(@) C(da)

Since ((A) > 0 and D, (x) A D,(x) > 0 for x € A by definition, the claim follows. O

There is a third very useful (and more probabilistically appealing) interpretation of the total
variation distance between two probability measures. Indeed, the total variation distance between
two probability measures 1 and v on a Polish space X is given by

lp—vl[rv=2 inf =({z#y}, (3-3)
TEC (V)

€
where the infimum runs over the set €’ (i, v) of all probability measures 7 on X' x X with marginals
wand v. (This set is also called the set of all couplings of 1 and v.) In other words, if the total
variation distance between . and v is smaller than 2e, then it is possible to construct X'-valued
random variables X and Y with respective laws p and v such that X = Y with probability 1 — €.
This gives a straightforward probabilistic interpretation of the total variation distance as twice
the probability that a random sample drawn from p can be distinguished from a sample drawn at
random from v.

Exercise 3.10. Show that the identity (3.3) holds and that the infimum is attained. Hint: The
optimal coupling can be constructed explicitly by considering a combination of the measure
(Du(z) A Dy(x)) ((dr) on the diagonal (z,r) and the measure (D, (z) — D,(v))  (Du(y) —
D(y)), ¢(dz) ((dy) off the diagonal.

Remark 3.11. Some authors define the total variation distance between measures as the expression
(3-3), but without the factor 2. Being aware of this helps to navigate a literature that could otherwise
cause some confusion.

Exercise 3.12. Given a function V: X — R, we can also define a weighted total variation distance
by

= vl = [ 0+ V@)D~ Duto)] o).
X
By (3.2), we recover the usual total variation distance as a special case when V' = 0. This distance

is only defined on the subspace of finite signed measures that integrate V' and turns this subspace
into a Banach space. Show that one does have, similarly to (3.3)), the characterisation

| —v|rvy = inf / (2 + V(z)+ V() n(dz, dy) . (3.4)
TEE (1,v) Ty
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3.3 Weak convergence

It is obvious that if X" is uncountable, then & (X)) endowed with the total variation metric is not
itself a separable space. Indeed, the collection {J, },cx yields an uncountable set of elements that
are all at distance 2 of each other. On the other hand, if we endow &7(X’) with the topology of weak
convergence, then it turns out to be separable. Even better, it is actually itself a Polish space and
one can construct a number of natural distance functions that generate its topology. In this section,
we collect a few important results about the properties of the weak convergence topology. For a
more detailed account, including complete proofs, we refer for example to [Bil68, Bogo7, Vilo3].

If one had to choose one, the single most import result in the theory of weak convergence of
probability measures would probably be Prohorov’s characterisation of those subsets of the set
of probability measures that are precompact for the weak convergence topology. Before we state
this theorem, we introduce the concept of a tight family of probability measures, which will is a
fundamental concept in the theory of weak convergence:

Definition 3.13. Given a collection M C Z(X) of probability measures on a Polish space X', we
say that M is tight if, for every € > 0, there exists a compact set K C X such that uy(K) > 1 —¢
for every p € M.

In other words, M is tight if its elements are uniformly concentrated on compact sets. It turns
out that sets comprising of a single measure (or finitely many measures) are always tight. While
this is obvious if the space X’ can be covered by a countable collection of compact sets (like it is
the case for R™ for example), it is not so obvious if X is an infinite-dimensional space. Using the
Heine—Borel theorem, it is however not to difficult to prove it, and this is the content of the next
lemma:

Lemma 3.14. Let p € P (X) for a Polish space X. Then the singleton {u} is tight.

Proof. Fix € > 0. Since X is separable it can be covered by countably many balls of fixed, but
arbitrary, radius. Therefore, for every n > 0, one can find a set K, consisting of finitely many
closed balls of radius 1/n and such that p(K,,) > 1 — 27 "¢. Setting K = ﬂn>0 K, it follows that
w(K) > 1 — ¢, which concludes the proof since K is closed and totally bounded, and therefore
compact by Exercise[3.7] O

Another interesting fact is that tightness follows from the following property which may appear
weaker at first sight:

Lemma 3.15. Let M C P (X) for X a Polish space width metric d. Assume that, for every
€ > 0, there exists K C X compact such that, for every u € M, (K*®) > 1 — ¢, where K¢ is the
e-fattening of K: K€ ={x € X : d(x,K) < e}. Then M is tight.

Proof. The proof works as before since, for every n, we can find K, such that (K2 ") > 1 -2
by assumption, and then set K = (), K&2™" similarly to before. To show that K is totally
bounded, given 0 > 0 arbitrary, take n large enough so that e2~" < 4/2. Since K, is compact, it
can be covered by finitely many balls of radius ¢ /2 and, since £2™" < §/2, the balls of radius ¢ and

.o —n
same radii do cover K52 ", and therefore K. O

So why is tightness so important? The following theorem due to Prohorov [Pro56| shows that
tight families of probability measure coincide with precompact subsets of (X)) in the topology of
weak convergence:
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Theorem 3.16 (Prohorov). A subset M C (X)) is precompact for the topology of weak convergence
if and only if it is tight.

Before we give the proof of this theorem, let us prove the following particular case:

Lemma 3.17. If X is compact, then both 2(X) and the unit ball in /(X)) are compact for the
topology of weak convergence.

Proof. Take any sequence (., of uniformly bounded measures on X. Since X is compact, the space
C(X) is separable, so we can find a dense countable subset ,, of the unit ball in C(X). A simple
diagonal extraction argument, combined with the fact that there exists C' such that i, (v.,,) < C by
assumption, allows to extract a subsequence i, such that p,,, (¢,) — ¢, for every n. By density
of the ¢,, and boundedness of the p,, it follows that there exists a continuous linear functional
w1 on C(X) such that yi,, () — u(p) for every ¢ € C(X). The conclusion then follows from the
Riesz—Markov theorem that identifies the dual of C(X) with .Z (X).

Note that in particular the set of probability measures is compact since, by testing against
the constant function 1 and positive functions, we conclude that the limit for any converging
subsequence is again a probability measure. O

Remark 3.18. The above proof is nothing but a special case of the Banach—Alaoglu theorem
[Rudg1, Thm 3.15], but its proof is sufficiently short and elementary so that we reproduced it here.
It works for the unit ball of the dual space of any separable Banach space, endowed with the weak-*

topology.

We are now ready to give the proof of Prohorov’s theorem, which follows rather closely the
exposition given in [Bogo7, Theorem 8.6.2]. The original proof can be found in [Pro56], but see
also [Bil68] for a clean proof in the special case X = R.

Proof of Prohorov’s theorem. We first show that tightness is sufficient by extracting a weakly
convergent subsequence from M under the assumption that M is tight. By assumption, we can find
an increasing sequence of compact sets /,, C & such that u(X \ Kp) > 1 — 27" forevery u € M.
Using Lemma and a diagonal extraction argument, we can find a sequence {1, } in M such
that, for every m > 0, the restricted sequence {u,, | K, } converges to some element /i,,,, which
is a positive measure on K, with |f,,,(K,,) — 1| < 27™. This is furthermore an increasing and
bounded sequence, which therefore has a limit u with p|x,, = fi,,. We conclude that, for every
continuous function ¢ bounded by 1 and every m > 1, we have

(@) — ()] < |(ptn T K ) (@) = fom(@)] + [ (ptn [ Ko ) (@) — pin(@)] + | firm (@) — p()] -

The first term converges to 0 and the other two terms are each bounded by 27. Since m was
arbitrary, this shows that {1, } — p as required.

We now show the converse statement, namely that if M is not tight, then it cannot be precompact.
Assuming that M is not tight, we use the contrapositive of Lemma to conclude that there
exists a fixed € > 0 such that, for every compact K C X, there is an element px € M such that
ur (X \ K¢) > e. We now fix a value § > 0 (think of § as being much smaller than the ¢ that we
just found), and we construct a sequence of measures p, € M and two sequences of compact sets
(A, K,) recursively in the following way:

e Choose for py any element of M (it has to contain infinitely many elements since it is not
tight), choose K such that pg(Kg) > 1 — 9, and set Ag = K.
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e Given data up to the nth index, choose pi,+1 € M such that pi,+1(X \ AS5) > e, which
is possible by the lack of tightness of M. Then, choose a compact set K C X such that
pny1(K)>1—0andset A,y1 = A, UK and K,,11 = K \ 45.

Actually, the only properties of this construction that we are going to use are that 1, (K,) > & — 0,
pn(Upsr Ki) < 6, and Kf/Q N Kfn/Q = () for every n # m.

Our aim is to show that the sequence p, constructed in this way contains no convergent
subsequence. If ji,, = i, is an arbitrary subsequence then, by setting K,, = K}, and A,, = Ay, ,
the sequence (ji,,, Ay, K,,) also has the properties mentioned in the last paragraph, so that it suffices
to show that any sequence { ., } with these properties cannot be convergent.

We do this by exhibiting a continuous test function ¢ such that u,(¢) does not converge.
Define first continuous functions ¢, by p,(z) = 1 if x € K,, pp(x) = 0if x & Kf/ % and
on(x) = 1 — 2¢d(x, K,,) otherwise. Note that since these functions all have disjoint supports
and are all Lipschitz continuous with the same Lipschitz constant, the function

oA@) =D Angpn(@)

n>0

is continuous and bounded for every bounded sequence A. Given the sequence (t,,, We now construct
in a recursive way a sequence A with |\,,| < 1 for every n and such that |1, (©)) — tnt+1(0x)| > ¢
for some fixed ¢ > 0 and for every n.

Choose first Ay = 0, say. For arbitrary n > 0, once A, ..., A, are given, it follows from the
property /i, ( Uy, Kr) < 0 that 1, (p)) is determined to within an error of at most J by Ao, . .., Ap.
On the other hand, we have pi,,+1(K,+1) > € — J so that, by adjusting A\,,+1 € [—1, 1], we can
cover a range of values of width at least 2(¢ — 9) for p,,4+1(¢y). This guarantees that we can find
Ant1 in such a way that |1,41(¢3) — fin(@3)| > € — 39 for every sequence A such that A\, = )y, for
k < mn+ 1. Since ¢ was fixed but ¢ was arbitrary in this construction, the claim follows by choosing
0 sufficiently small. O

3.4 Wasserstein distance

Now that we have some understanding how compact sets look like in &(&X’), we turn to the
construction of a family of metrics that generate this topology. Given any bounded lower
semicontinuous metric d on X’ (note that d does not necessarily need to generate the topology of
X'!), we can “lift” it to the space of probability measures on X" in a natural way by setting:

TEE (u,v)

du,v) = inf //dmwmmwy (3.5)
X JX

This distance is called the 1-Wasserstein distancd?|for d on Z(X). (The p-Wasserstein distances
can be defined similarly for every p > 1 by setting their pth power equal to the right hand side of
(3.5) with d replaced by dP.) The reason why we assumed that d is lower semicontinuous is the
following:

Exercise 3.19. Show that the infimum in is achieved. Hint: Use the fact that single measures
are tight to conclude that the set €’ (u, ) is compact for any two probability measures 4 and v. Then
use the lower semicontinuity of d to show that any accumulation point of approximate minimisers
must be a minimiser.

2This is really a misnomer since these distances were introduced by Kantorovich and the special case p = 1 was
already studied by Monge. However, the name “Wasserstein distance” is now being used in most of the literature on the
subject so we’ll stick with it.
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Exercise 3.20. Use disintegration of measures to show that (3.5) does indeed determine a distance
function, i.e. that it satisfies the triangle inequality.

Theorem 3.21. If the metric d is bounded and generates the topology of X, then its p-Wasserstein
lift to P2(X) generates the topology of weak convergence.

Proof. We only consider the case p = 1, the general case is similar. Consider a sequence
tn € P(X) such that d(u, ) — 0 for some p € (X)), so that one can find 7, € € (i, pr,) such
that f d(z,y) mp(dx, dy) — 0. Let now f be an arbitrary continuous function on X with absolute
value bounded by 1, fix € > 0 arbitrary, and let K’ C X compact be such that y(K) > 1 —e. Let
furthermore & > 0 be such that, for every x € K, and every y € X with d(z,y) < ¢, we have
|f(y) — f(x)] < e. (Such a ¢ exists, otherwise we could find sequences z,, € K and y,, € X with
d(zy, yn) — 0 and | f(x,) — f(yn)| > €. This would contradicts continuity of f at accumulation
points of the sequence z,,, which exist by compactness of K.)

Setting As = {(x,y) € X2 : d(x,y) < 6}, we can find N large enough such that 7,(As) >
1 — e forevery n > N. It follows that

[ = [ sau] =] [t~ roymidnan| < [ (5@ = sl mde,dp + 2
<[ 1@ - @l mdndy 442 < 5z
(K xX)NAs

Since & was arbitrary, this shows that | f dp,, — [ f dp and, since f was also arbitrary, the desired
weak convergence follows.

Conversely, let p, — p weakly, let € > 0, and let K be as above. By compactness of K,
it is straightforward to find a collection of continuous functions ¥ : X — [0,1] with & > 1
such that only finitely many of the v;’s are non-zero, ), -, ¥r(z) = 1 for every z € K, and
diam supp ¢/}, < € for every k. For every k > 1, we also choose some z;, € supp 11, and we write
1o =1 =~ Y. Given any probability measure v, we then set

Fo) = b+ 3 [ndvdn . m= M)+ Y0000, (O
k>1 k>1

where A: x — (x, x) is the diagonal map. Note that F'(v) is again a probability measure and that
m, € C(F(v),v).

Since d(x,y) < € for every k > 1 and every y € supp ¢, and assuming without loss of
generality that the distance d is bounded by 1, it furthermore follows that

/d(:r, Y m(dr,dy) < e+ /% dv . (3-7)
We then estimate

d(pin, 1) < d(pin, F(pn)) + d(F (pn), F(p) + d(F(w), @) -

Since g is supported outside of K, it follows from (3.7) that d(F'(u), ) < 2¢ and, since g is
bounded and continuous, the weak convergence of the p,, implies that d(u,, F'(11,,)) < 3¢ (say) for
all n sufficiently large. For the remaining term, we write

o = [wedmn [oedn, 5 =1-3alb,

k>1



PrROBABILITY MEASURES ON POLISH SPACES 17

so that, since lim,,_, o aﬁf) = f Y du, one has lim,, _,~, 6, < €. Furthermore, one has decomposi-
tions

Flpn) =Y alP0s, +6umn . Fu) =Y alP8s, + i ,
k>1 E>1

for n,,, 7y, some probability measures. It follows immediately that

T = Z a8 w0y + Ot @ T € C(F (1), F(p))
k>1

so that d(F'(uy,), F'(1)) < 0y, and the proof that d(p,, 1) — 0 is complete. [

A very useful feature of the Wasserstein-1 distances is that they can also be viewed as the
dual norm to the Lipschitz norm on functions. This is the content of the celebrated Monge—
Kantorovich—Rubinstein duality theorem (see for example [Vilog|]) which we state here without
proof.

Theorem 3.22. For d any lower semicontinuous metric on X, the identity

d(p,v) = sup ( /X o(x) p(dr) — /X @(y)u(dy)) (3-8)

Lip(p)<1

holds for all pairs (u, v) of probability measures. Here, Lip () denotes the best Lipschitz constant
for @ with respect to the metric d.

Remark 3.23. The metric d does not need to be bounded in general, so there might be pairs of
probability measures for which d(y, v) is infinite.

Remark 3.24. There exists a generalisation of the duality that holds also if d is not a distance
function (and therefore also for the p-Wasserstein distances for p > 1), but it is slightly more
complicated to state. See [Vilo3| [Vilog] for a very nice treatment of many questions related to
Wasserstein distances.

Remark 3.25. It may appear surprising at first sight that an explicit bound on the rate of convergence
of integrals of a sequence {1, } against Lipschitz continuous functions should yield convergence of
the same integrals against any continuous function. However, recall that Prohorov’s theorem tells
us that any converging sequence of probability measures is essentially concentrated on compact
sets. Since on a compact set, any continuous function can be approximated uniformly by Lipschitz
continuous functions, this should make it much more plausible that (3.8)) does indeed define the
topology of weak convergence.

Remark 3.26. Although &7(X’) is complete under d, the space of signed measures with finite
mass is not complete, if we endow it with the norm defined in (3.8)). To see this, take for example
X = [0, 1] and let d be the usual distance function. Then, the sequence

n

fn = Z k2(537k — 0y.3-k)

k=1
is Cauchy, but it obviously does not converge to a measure with finite mass.

One special case of the Monge—Kantorovich—Rubinstein duality is of particular interest. Setting
drv to be the trivial distance function which is equal to 2 for all pairs (x, y) with x # y, we see
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that the 1-Wasserstein lift of dry to (X)) as in @) is nothing but the total variation distance as
characterised in (3.3).

On the other hand, the set of dyv-Lipschitz continuous functions ¢ with best Lipschitz constant
1 is, up to translations by constants, equal to the set of bounded functions with sup,, |o(z)| < 1, so
that the dual representation of the 1-Wasserstein lift of drv as in is nothing but the original
definition of the total variation distance given in (3.1)).

Exercise 3.27. Convince yourself that the identity (3.4]) is also a special case of the Monge—
Kantorovich—Rubinstein duality. What is the corresponding distance function?

Exercise 3.28. Show that every probability measure p on X can be approximated by a finite
convex combination of Dirac measures in the topology of weak convergence. Hint: Use a slight
modification of the construction (3.6).

4 Gaussian Measure Theory

This section is devoted to the study of Gaussian measures on general Banach spaces, but we start by
recalling the definition of a Gaussian measure on the reals:

Definition 4.1. A probability measure p on R is sait to be Gaussian if there exist o > 0O and m € R
such that, for every £ € R,

/eimu(dm) = exp ( — %52 + iEm) . 4.1)

It is said to be centred if furthermore m = 0.

Remark 4.2. The advantage of this definition is that it covers the case 0 = 0, where p is a Dirac
measure. It also avoids having factors of /27 appearing in the definition. When ¢ > 0, one can
invert the Fourier transform to recover the usual expression, identifying ¢ as the variance of 1 and
m as its mean.

Throughout this section and throughout most of the remainder of these notes, we will denote by
B an arbitrary separable Banach space. Recall that a space is separable if it contains a countable
dense subset, see for example the monograph [Yosgs|l. This separability assumption turns out to be
crucial for measures on I3 to behave in a non-pathological way. It can be circumvented by trickery
in most natural situations where non-separable spaces arise, but we choose not to complicate our
lives by considering overly general cases in these notes. Another convention that will be used
throughout these notes is that all of the measures that we consider are Borel measures, meaning that
we consider every open set to be measurable.

One additional assumption that would appear to be natural in the context of Gaussian measure
theory is that I3 be reflexive (that is B** = B). This is for example because the mean of a measure
(v appears at first sight to be an element of B** rather than of 5, since the natural’| way of defining
the mean m of y is to set m(f) = f g U(x) p(dz) for any £ € B*. This turns out not to be a problem,
since the mean of a Gaussian measure on a separable Banach space B is always an element of
B itself, see the monograph [Bogo8|]. However this result is not straightforward to prove, so we
will take here the more pragmatic approach that whenever we consider Gaussian measures with
non-zero mean, we simply take the mean m € B as given.

3Without further assumption, we do not know a priori whether = — ||z|| is integrable, so that the more natural
definition m = [, « pu(dx) is prohibited.
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Example 4.3. Before we proceed, let us just mention a few examples of Banach spaces. The spaces
LP(M, v) (with (M, v) any countably generated measure space like for example any Polish space
equipped with a Radon measure v) for p € (1, 00) are both reflexive and separable. However,
reflexivity fails in general for L' spaces and both properties fail to hold in general for L> spaces
[Yosgs]l[f] The space of bounded continuous functions on a compact space is separable, but not
reflexive. The space of bounded continuous functions from R" to R is neither separable nor
reflexive, but the space of continuous functions from R” to R vanishing at infinity is separable.
(The last two statements are still true if we replace R™ by any locally compact complete separable
metric space.) Hilbert spaces are obviously reflexive since H* ~ H for every Hilbert space H
by the Riesz representation theorem [[Yosgs|]. There exist non-separable Hilbert spaces, but they
have rather pathological properties and do not appear very often in practice. One such example is
the space of all functions f: R — R that vanish at all but countably many values and such that

Sier [f @B < oo

We start with the definition of a Gaussian measure on a Banach space. Since there is no
equivalent to Lebesgue measure in infinite dimensions (one could never expect it to be o-additive),
we cannot define it by prescribing the form of its density. However, it turns out that Gaussian
measures on R™ can be characterised by prescribing that the projections of the measure onto any
one-dimensional subspace of R™ are all Gaussian. This is a property that can readily be generalised
to infinite-dimensional spaces:

Definition 4.4. A Gaussian probability measure 11 on a Banach space B is a Borel measure such
that £* 4 is a real Gaussian probability measure on R for every linear functional /: B — R. We call
it centred if £* u is centred for every /.

Remark 4.5. We used here the notation f*u for the push-forward of a measure p under a map f.
This is defined by the relation (f*11)(A) = pu(f~1(A)).

Remark 4.6. We could also have defined Gaussian measures by imposing that 7™ i is Gaussian for
every bounded linear map 7': B — R" and every n. These two definitions are equivalent because
probability measures on R” are characterised by their Fourier transforms and these are determined
by one-dimensional marginals, see Proposition [4.11]below.

Exercise 4.7. Let {&,} be a sequence of i.i.d. A/(0, 1) random variables and let {a,, } be a sequence
of real numbers. Show that the law of (ag&o, a1&1, . . .) determines a Gaussian measure on ¢ if and
only if 37 - a7 < co.

One first question that one may ask is whether this is indeed a reasonable definition. After all,
it only makes a statement about the one-dimensional projections of the measure p, which itself
lives on a huge infinite-dimensional space. However, this turns out to be reasonable since, provided
that B is separable, the one-dimensional projections of any probability measure carry sufficient
information to characterise it. This statement can be formalised as follows:

Proposition 4.8. Let B be a separable Banach space and let ;1 and v be two probability Borel
measures on B. If 0* 1w = 0*v for every £ € B*, then i = v.

Proof. Denote by Cyl(B) the algebra of cylindrical sets on B, thatis A € Cyl(B) if and only if there
exists n > 0, a continuous linear map 7': B — R", and a Borel set A C R" such that A = T-1A.

4This is actually a very subtle question which depends on the full axiom of choice. If one replaces it by the slightly
weaker axiom of dependent choice, which is sufficient to develop all of “concrete” mathematics, then the question of
whether L' = (L°°)* is independent of the axioms.
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It follows from the fact that measures on R” are determined by their one-dimensional projections
that u(A) = v(A) for every A € Cyl(B) and therefore, by a basic uniqueness result in measure
theory (see Lemma I1.4.6 in [RWo4]] or Theorem 1.5.6 in [Bogo7] for example), for every A in the
o-algebra £(B) generated by Cyl(). It thus remains to show that £(3) coincides with the Borel
o-algebra of 5. Actually, since every cylindrical set is a Borel set, it suffices to show that all open
(and therefore all Borel) sets are contained in £(3).

Since B is separable, every open set U can be written as a countable union of closed balls. (Fix
any dense countable subset {x;,} of B and check that one has for example U = |, <y B(xn, ),
where r,, = % sup{r >0 : B(x,,r)C U } and B(x, r) denotes the closed ball of radius r centred at
x.) Since £(B) is invariant under translations and dilations, it remains to check that B(0, 1) € £(B).
Let {x,} be a countable dense subset of {x € B : ||z|| = 1} and let 4,, be any sequence in B*
such that ||¢,,|| = 1 and ¢,,(x;,) = 1 (such elements exist by the Hahn—Banach extension theorem
[Yosgs]]). Define now K = (), ~o{z € B : |{y(x)| < 1}. Itis clear that K € £(B), so that the
proof is complete if we can show that K = B(0, 1).

Since obviously B(0,1) C K, it suffices to show that the reverse inclusion holds. Lety € B
with |ly|| > 1 be arbitrary and set § = y/||y||. By the density of the z,’s, there exists a subsequence
xy, such that ||zg, — 9| < %, say, so that {;, (y) > 1 — % By linearity, this implies that
Uk, (y) > [lyll(1 — 1), so that there exists a sufficiently large n so that ¢, (y) > 1. This shows that
y € K and we conclude that K C B(0, 1) as required. ]

From now on, we will mostly consider centred Gaussian measures, since one can always reduce
oneself to the general case by a simple translation. Given a centred Gaussian measure j, we define
amap C,: B* x B* — Rby

Cult, 0) = /B ()0 @) () (42)

Remark 4.9. In the case B = R", this is just the covariance matrix, provided that we perform the
usual identification of R™ with its dual.

Remark 4.10. One can identify in a canonical way C), with an operator C’“: B* — B** via the
identity C,(0)(¢") = Cp(¢, ).

The map C), will be called the Covariance operator of ji. It follows immediately from the
definitions that the operator C, is bilinear and positive definite, although there might in general
exist some £ such that C,(¢, £) = 0. Furthermore, it immediately follows from that a measure
w1 is Gaussian if and only if its Fourier transform /i is given by

fue) = /B '™ j(dx) = exp(—3Cu (L, 0)) 4-3)

where ¢ € B*. It will be convenient to know that a version of Bochner’s theorem still holds in this
case, namely that probability measures on B are determined by their Fourier transforms:

Proposition 4.11. Let i and v be any two probability measures on a separable Banach space B. If
() = v() for every £ € B*, then = v.

Proof. In the particular case B = R, if ¢ is a smooth function with compact support, it follows
from Fubini’s theorem and the invertibility of the Fourier transform that one has the identity

1 . 1
[ ewudn = o [ [ s ks = o [ g -k,
R T JRJR 21 Jr
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so that, since bounded continuous functions can be approximated by smooth functions, u is indeed
determined by fi. The general case then follows immediately from Proposition |4.8 0

As a simple consequence, we have the following trivial but useful property:

Proposition 4.12. Let p be a Gaussian measure on B and, for every ¢ € R, define the ‘rotation’
R,: B* — B% by

R (x,y) = (xsinp + ycosp,xcosp —ysinyp) .
Then, one has R, (1 @ p) = p @ p.

Proof. Since we just showed in Proposition that a measure is characterised by its Fourier
transform, it suffices to check that y ® p o R, = p ® p, which is an easy exercise. U

4.1 A-priori bounds on Gaussian measures

We are going to show now that the operator C), has to be bounded, as a straightforward consequence
of the fact that = — ||z||? is integrable for any Gaussian measure. Actually, we are going to show
much more, namely that there always exists a constant o > 0 such that exp(c||z||?) is integrable!
In other words, the norm of any Banach-space valued Gaussian random variable has Gaussian tails,
just like in the finite-dimensional case. Amazingly, this result uses the Gaussianity of the measure
only indirectly through the rotation invariance shown in Proposition and even this property is
only used for rotations by the angle ¢ = 7/4. This is the content of the following fundamental
result [Fer7o[| in the theory of Gaussian measures:

Theorem 4.13 (Fernique, 1970). Let p1 be any probability measure on a separable Banach space B
such that the conclusion of Proposition holds for o = w/4. Then, there exists a > 0 such that

Jgexp(az]|) u(dz) < oo.

Proof. Note first that, from Proposition one has for any two positive numbers ¢ and 7 the
bound

wel <oulal > o= [ [ panudp= [ [ o)
lzl| <7 JlylI>¢ =5 I<r ||Lj5y||>t

2
S/ / p(dz) (dy) = p(llzll > 5 ) . (4.4)
llll>ZF Syl >2F ( \/5)

In order to go from the first to the second line, we have used the fact that the triangle inequality
implies

min{]|z], [yll} > 3(lz +yl = = —yl) .

so that ||z 4 y|| > /2t and ||z — y|| < v/27 do indeed imply that both ||z|| and ||y|| are greater
than % Since ||z|| is p-almost surely finite, there exists some 7 > 0 such that u([|z|| < 7) > 3.

tpni1—T

Set now ty = 7 and define ¢,, for n > 0 recursively by the relation ¢,, = . It follows from

(4.4) that
2
plle] > tor) < p(llzl > 257) Judle] <7 < dudlal] > ta)?
Setting y,, = %,U(HCUH > t,11), this yields the recursion 3,11 < y2 with yo < 1/3. Applying this

inequality repeatedly, we obtain

n

3 3 1 on Con
M(!\Il|>tn)21yn§1y§ < Zgmim2t 32t
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n+1
On the other hand, one can check explicitly that ¢, = %7’ < 22 .(2 4 /2)7, so that in

particular ¢,,41 < 9"/2 . 57. This shows that one has the bound

t%ﬂ
plllz|| > t,) <3727,

implying that there exists a universal constant o« > 0 such that the bound u(||z] > t) <
exp(—2at?/7%) holds for every t > 7. Integrating by parts, we finally obtain

/exp(a”ﬁ) p(dz) < e + 2‘/ 152 (||| > £ dt
B T T T
e 2
<e*+ 2a/ te™ " dt < o0, (4.5)
1

which is the desired result. OJ

As an immediate corollary of Fernique’s theorem, we have

Corollary 4.14. There exists a constant |C,,|| < oo such that C,,(¢,¢") < ||C,||[|€|||¢'|| for any
¢, 0" € B*. Furthermore, the operator C), defined in Remark is a continuous operator from B*

to B.

Proof. The boundedness of C), implies that éu is continuous from B* to B**. However, 5** might
be strictly larger than B in general. The fact that the range of C), actually belongs to B follows from
the fact that one has the identity

Cl = /B z 0(x) p(dz) . (4.6)

Here, the right-hand side is well-defined as a Bochner integral [Boc33, [Hil53]] because B is assumed
to be separable and we know from Fernique’s theorem that ||z ||? is integrable with respect to p. [

Remark 4.15. In Theorem [4.13] one can actually take for  any value smaller than 1/(2[|C|].
Furthermore, this value happens to be sharp, see [Ledg6, Thm 4.1].

Another consequence of the proof of Fernique’s theorem is an even stronger result, namely
all moments (including exponential moments!) of the norm of a Banach-space valued Gaussian
random variable can be estimated in a universal way in terms of its first moment. More precisely,
we have

Proposition 4.16. There exist universal constants o, K > 0 with the following properties. Let
u be a centred Gaussian measure on a separable Banach space B and let f: Ry — R, be any
measurable function such that f(x) < Cy exp(ax?) for every x > 0. Define furthermore the first
moment of 1 by M = [ ||z|| p(dx). Then, one has the bound [ f(||z|| /M) p(dx) < KCy.

In particular, the higher moments of (i are bounded by [, ||x||*" p(dax) < n!Ko " M>",

Proof. It suffices to note that the bound (4.5) is independent of 7 and that by Chebychev’s
inequality, one can choose for example 7 = 4M. The last claim then follows from the fact that
05322 > alxg2n D

€ T
n.

Actually, the covariance operator C), is more than just bounded. If 3 happens to be a (separable)
Hilbert space, one has indeed the following result, which allows us to characterise in a very precise
way the set of all centred Gaussian measures on a Hilbert space:
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Proposition 4.17. If B = H is a Hilbert space, then the operator éu : 'H — H defined as before by
the identity (C,,h, k) = C,,(h, k) is trace class and one has the identity

/H |2? p(da) = tr C, . (4.7)

(Here, we used Riesz’s representation theorem to identify H with its dual.)
Conversely, for every positive symmetric trace class operator K: H — H, there exists a
Gaussian measure |, on ‘H such that C, = K.

Proof. Fix an arbitrary orthonormal basis {e,, } of H. We know from Theoremthat the second
moment of the norm is finite: [, |h||? 11(dh) < co. On the other hand, one has

oo [e.e]
/ 1B]1? p(dh) = / (hyen)? p(dh) =3 (en, Cuen) = tr Gy,
H n=1"M" n=1
which is precisely (4.7). To pull the sum out of the integral in the first equality, we used Lebesgue’s
dominated convergence theorem.

In order to prove the converse statement, since K is compact, we can find an orthonormal basis
{en} of H such that Ke,, = \,e,. Since K is positive and symmetric, one further has \,, > 0,
while the trace class property reads > A, < co. Let now {&,} be a collection of i.i.d. AV'(0,1)
Gaussian random variables (such a family exists by Kolmogorov’s extension theorem but can also
be realised explicitly over the probability space [0, 1]). Then, since MEE = tr K < oo, the
series vV Anénen converges in mean square, so that it has a subsequence converging almost
surely in H. One can check as in Exercise that the law of the limiting random variable is
Gaussian and has the requested covariance. O

No such precise characterisation of the covariance operators of Gaussian measures exists in
general Banach spaces. One can however show that éu is at least a little bit better than bounded,
namely that it is always a compact operator. We leave this statement as an exercise for the interested
reader, since we will not make any use of it in these notes:

Exercise 4.18. Show that in the case of a Gaussian measure y on a general separable Banach
space B, the covariance operator C’“ : B* — B is compact in the sense that it maps the unit ball on
B* into a compact subset of B. Hint: Combine Fernique’s theorem with Lebesgue’s dominated
convergence theorem and the fact that, since B is separable, the unit ball in 5* is weak-* compact.

In many situations, it is furthermore helpful to find out whether a given covariance structure
can be realised as a Gaussian measure on some space of Holder continuous functions. This can be
achieved through the following version of Kolmogorov’s continuity criterion, which can be found
for example in [RY 94l p. 26]:

Theorem 4.19 (Kolmogorov). Ford > 0, let C': [0, 119 x [0,11 - R be a symmetric function
such that, for every finite collection {x;}", of points in [0, 114, the matrix Cij = C(x,xj)
is positive semi-definite. If furthermore there exists o > 0 and a constant K > 0 such that
C(x,z) + C(y,y) — 20(z,y) < K|z — y|>* for any two points x,y € [0, 11% then there exists a
unique centred Gaussian measure [ on C([0, 1]d, R) such that

/ J@) fy) uldf) = C(z,y), (4.8)
C([0,1]1¢4,R)

for any two points x,y € [0,11%. Furthermore, for every 8 < «, one has M(CB([O, 114, R)) =1,
where C5([0, 119, R) is the space of 3-Holder continuous functions.
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Proof. Set B = C([0, 114, R) and B* its dual, which consists of the set of Borel measures with finite
total variation [Yosgs), p. 119]. Since convex combinations of Dirac measures are dense (in the
topology of weak convergence) in the set of probability measures, it follows that the set of linear
combinations of point evaluations is weakly dense in B*. Therefore, the claim follows if we are
able to construct a measure y on B such that holds and such that, if f is distributed according
to 4, then for any finite collection of points {x;} C [0, 114, the joint law of the f(x;) is Gaussian.

By Kolmogorov’s extension theorem, we can construct a measure (g on X = RO endowed
with the product o-algebra such that the laws of all finite-dimensional marginals are Gaussian and
satisfy (4.8)[’] We denote by X an X'-valued random variable with law 1. At this stage, one would
think that the proof is complete if we can show that X almost surely has finite 5-Holder norm.
The problem with this statement is that the S-Holder norm is not a measurable function on X!
The reason for this is that it requires point evaluations of X at uncountably many locations, while
functions that are measurable with respect to the product o-algebra on X" are allowed to depend on
at most countably many function evaluations.

This problem can be circumvented very elegantly in the following way. Denote by D C [0, 1
the subset of dyadic numbers (actually any countable dense subset would do for now, but the dyadic
numbers will be convenient later on) and define the event {23 by

]d

Qg = {X c X(2) & ;13915 X (y) exists for every z € [0, 1]¢ and X belongs to CA([0, 1]d,R)} .

yeD

Since the event {13 can be constructed from evaluating X at only countably many points, it is a
measurable set. For the same reason, the map +: X — C?([0,1]%, R) given by

X if X €Qp
X) = ’
X { 0 otherwise

is measurable with respect to the product o-algebra on X’ (and the Borel o-algebra on C?), so that
the claim follows if we can show that 110(€2g) = 1 for every 8 < a. (Take p = ¢*19.) Denoting
the 3-Holder norm of X restricted to the dyadic numbers by Mg(X) = sup, .., ,ept|X () —
X@)|/|z — y|P}, we see that Q5 can alternatively be characterised as Q5 = {X : Mg(X) < oo},
so that the claim follows if we can show for example that EM(X) < oo.

Denote by D,,, C D the set of those numbers whose coordinates are integer multiples of 27
and denote by A, the set of pairs x,y € D,, such that |x — y| = 27"". In particular, note that A,
contains at most 224 such pairs.

We are now going to make use of our simplifying assumption that we are dealing with Gaussian
random variables, so that pth moments can be bounded in terms of second moments. More precisely,
for every p > 1 there exists a constant C, such that if X is a Gaussian random variable, then one
has the bound E| X |P < Cp(E]X\Q)p/Q. Setting Kp,(X) = sup, yen,, [X () — X(y)| and fixing
some arbitrary 5’ € (3, ), we see that for p > 1 large enough, there exists a constant /,, such that

EKL(X)< Y EX@-X@PP<C, > (EX@) - X@Py"?

:&yEAm IvyeAm
=G0, Y (C@,@)+ Cly,y) — 20z, y)"* < Cp2m+Dd-amp
T, YEA
< G2

SIf the uncountable product appearing here makes you queasy, you can restrict yourself to the countable set of points
with dyadic coordinates, which is all our construction will rely on.
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for some constants C’p. (In order to obtain the last inequality, we had to assume that p > af 7 mT“

which can always be achieved by some value of p independent of m since we assumed that 3’ < «.)
Using Jensen’s inequality, this shows that there exists a constant K such that the bound

EK,(X) < K279m (4.9)

holds uniformly in m. Fix now any two points x,y € D with z # y and denote by m the largest
m such that |z — y| < 27™. One can then find sequences {zy, }n>m, and {y, }n>m, with the
following properties:

1. One has lim;,_, o x,, = x and lim,, 00 Yy, = .

2. Either x;,,, = ym, or both points belong to the vertices of the same ‘dyadic hypercube’ in
Dy, so that they can be connected by at most d ‘bonds’ in A,,,,,.

3. For every n > myg, x, and z,41 belong to the vertices of the same ‘dyadic hypercube’
in D,,11, so that they can be connected by at most d ‘bonds’ in A,,; and similarly for

(yna yn-‘rl)-

One way of constructing this sequence is to order elements in D,,, by

lexicographic order and to choose x,, = max{z € D,, : 7; < z; Vj}, as
illustrated in the picture to the right. This shows that one has the bound o
00 Ty
‘X(I‘) - X(y)‘ < ’X(xmo) - Y(xmo)‘ + Z ‘X(wn-i-l) - X((L‘n)‘
n=my
[e.9]
+ 3 X)) — X))
n=my
o0 [e.e]
< dEpy(X)+2d Y Kp(X) <2d ) Kn(X).
n=myo n=mo
Since mg was chosen in such a way that |z — y| > 2701, one has the bound
o0 [e.9]
Mp(X) < 2d sup 200D N " K, (X) < 20714 Y 2P K(X)
m20 n=m n=0
It follows from this and from the bound that
oo [e.9]
E[Ms(X)| < 2°71d ) " 2P"EK,(X) < 2971dK Y " 207" < o0
n=0 n=0
since /3’ was chosen strictly larger than f3. O

Combining Kolmogorov’s continuity criterion with Fernique’s theorem, we note that we can
apply it not only to real-valued processes, but to any Gaussian Banach-space valued process:

Proposition 4.20. Let B be a separable Banach space and let { X()},¢(9.1)¢ be a collection of
B-valued Gaussian random variables such that

E[X(@) - X < Clz —y|*,

for some C > 0 and some o € (0,1]. Then, there exists a unique Gaussian measure [ on
C([o0, l]d, B) such that, if Y is a random variable with law u, then Y (x) is equal in law to X (x) for
every x. Furthermore, 11(C5([0,11%, B)) = 1 for every 3 < o
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Proof. The proof is identical to that of Theorem[4.19] noting that the bound E|| X (z) — X (y)||P <
Cplz — y|*P follows from the assumption and Proposition O

Remark 4.21. The space ch ([0, 1]d7 R) is not separable. However, the space Cg ([0, 1]d, R) of

[f@—fwl _
o ) S o
separable (polynomials with rational coefficients are dense in it). This is in complete analogy

with the fact that the space of bounded measurable functions is not separable, while the space of
continuous functions is.
It is furthermore possible to check that C#* Cg for every 8’ > 3, so that Exercise below

shows that ¢ can actually be realised as a Gaussian measure on Cg ([0, 114, R).

Holder continuous functions that furthermore satisfy lim, ., 0 uniformly in z is

Exercise 4.22. Given a compact metric space (X, d), define its e-entropy by
H(X) = loginf{N : Jer,. .., ay € X with | Baa, o) = X} .

Show that the statement of Kolmogorov’s theorem still holds if we replace [0, 1]¢ by X', provided
that limsup,__, Ho(X)/|loge| < oo.

Using a slightly different union bound to obtain (4.9), show that if we wish to obtain Kolmogorov’s
theorem for some fixed 3 < a, then it is sufficient that lim sup,_,, H(X)e% @~ < oo, which also
allows for infinite-dimensional domains X'

Exercise 4.23. Using Proposition show that, setting D = [0, 1]%, if H is a separable Hilbert
space and C: D x D — L(H,H) is such that C'(z, y) is positive definite, symmetric, and trace
class for any two x,y € D, then Kolmogorov’s continuity theorem still holds if its condition is
replaced by tr C(z, x) + tr C(y,y) — 2tr C(z,y) < K|z — y|*. More precisely, one can construct
a measure ;. on the space C%([0, 1]%, ) with jointly Gaussian marginals such that

/ (h, F@YFW), ) p(df) = (h, Cla k) |
CB([O,I]d,H)

forany z,y € D and h, k € H.
A very useful consequence of Kolmogorov’s continuity criterion is the following result:

Corollary 4.24. Let {n;, }r>0 be countably many i.i.d. standard Gaussian random variables (real
or complex). Moreover let { f. } >0 C Lip(G, C) where the domain G C R is sufficiently regular
for Kolomgorov’s continuity theorem to hold. Suppose there is some § € (0,2) such that

ST =) Ifulie <oo and S5 =" | fill}oLip(fr)’ < o0, (4.10)

kel kel

and define [ = Y, ;M fx. Then f is almost surely bounded and Holder continuous for every
Hélder exponent smaller than 6 /2.

Proof. From the assumptions we immediately derive that f(x) and f(z) — f(y) are a centred
Gaussian for any =,y € G. Moreover, the corresponding series converge absolutely. Using that the
My, are i.i.d., we obtain

E[f@) — f@)? =) |fe@) — fu@)® <) min{2|| fil|7 o, Lip(fe)*[ — y[*}

kel kel
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<2 Al 72Lip(f)’ e =yl = 283w —y°
kel

where we used that min{a, bz?} < a'~%/2b%/2|2|° for any a, b > 0. The claim now follows from
Kolmogorov’s continuity theorem. 0

Remark 4.25. One should really think of the f’s in Corollary as being an orthonormal basis
of the Cameron—Martin space of some Gaussian measure. (See Section [4.2] below for the definition
of the Cameron—Martin space associate to a Gaussian measure.) The criterion then provides
an effective way of deciding whether the measure in question can be realised on a space of Holder
continuous functions.

4.2 The Cameron-Martin space

Given a Gaussian measure p on a separable Banach space B, it is possible to associate to it in
a canonical way a Hilbert space H,, C B, called the Cameron—Martin space of x. The main
importance of the Cameron—Martin space is that it characterises precisely those directions in 3 in
which translations leave the measure p ‘quasi-invariant’ in the sense that the translated measure has
the same null sets as the original measure. In general, the space H,, will turn out to be strictly smaller
than BB. Actually, this is always the case as soon as dim #,, = oo and, even worse, we will see that
in this case one necessarily has p(H,,) = 0! Contrast this to the case of finite-dimensional Lebesgue
measure which is invariant under translations in any direction! This is a striking illustration of the
fact that measures in infinite-dimensional spaces have a strong tendency of being mutually singular.

The definition of the Cameron—Martin space is the following, where we postpone to Remark[4.28§|
and Proposition [4.32| the verification that |||, is well-defined and that ||hl|,, > 0 for h % 0:

Definition 4.26. The Cameron—Martin space H,, of y is the completion of the linear subspace
H,, C B defined by

H, ={h e B : In* € B with Cu(h",0) = l(h) VL € B'},

under the norm [|A|2 = (h, h),, = C,(h*, h*). It is a Hilbert space when endowed with the scalar
product (h, k), = Cu(h*, k").

Exercise 4.27. Show that the space ’;CLH is nothing but the range of the operator éu defined in
Remark and that C,h* = h.

Remark 4.28. Even though the map i — h* may not be one to one, the norm ||a||,, is well-defined.
To see this, assume that for a given h € H,,, there are two corresponding elements h7 and A3 in B*.
Then, defining k = h] + h3, one has

Cu(hi, hy) — Cu(hs, hy) = Cu(hi, k) — Cu(hy, k) = k(h) — k(h) =0,
showing that ||h||,, does indeed not depend on the choice of h*.

Exercise 4.29. The Wiener measure p is defined on B = C([0, 1], R) as the centred Gaussian
measure with covariance operator given by C,(ds,9;) = s At. Show that the Cameron-Martin
space for the Wiener measure on B = C([0, 1], R) is given by the space Hé ’2([0, 1]) of all absolutely
continuous functions A such that 2(0) = 0 and fol h2(t) dt < oo.

Exercise 4.30. Show that in the case B = R", the Cameron—Martin space is given by the range of
the covariance matrix. Write an expression for ||h|,, in this case.
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Exercise 4.31. Show that the Cameron—Martin space of a Gaussian measure determines it. More
precisely, if 1 and v are two Gaussian measures on 3 such that 7, = H,, and such that || ||, = ||k,
for every h € H,, then they are identical.

For this reason, a Gaussian measure on B is sometimes given by specifying the Hilbert space
structure (#H,,, || - ||,.)- Such a specification is then usually called an abstract Wiener space.

Let us discuss a few properties of the Cameron—Martin space. First of all, we show that it is a
subspace of B despite the completion procedure and that all non-zero elements of H,, have strictly
positive norm:

Proposition 4.32. One has H,, C B. Furthermore, one has the bound
(hsh)u = ||CuHithH2 ) (4.11)

where the norms on the right hand side are understood to be taken in .

Proof. One has the chain of inequalities

((h)? Cou(h*, 0)? Cu(h*, h*) Cu(, 0)
IB]* = sup e =, Sup o gz S sup = e £ < | Cull{h; h)y
eefoy I1? resgoy 1€l eB*\{0} 14]]

which yields the bound on the norms. It follows immediately that the canonical inclusion ¢ : 7 p— B
extends to a bounded linear map ¢: H,, — B. To show that H, is a subset of 13 (or rather that it can
be interpreted as such), it then remains to show that ¢ is injective on H,.

Assume that it is not, so that there exists a sequence f,, € 7-[ with H fall = 0Obut f, = f#0
in H,. Forany h € 7—[“, we then have

[(hs ) ul = IR < NPT full =0

where we used the fact that 2* € B* (and in particular its norm [|2*|| is finite) by the definition of
”;’—[,l It follows that one necessarily has (h, f), = 0 forevery h € ’H and, since Hu is dense in H,,,
it follows that f = 0. 0

Remark 4.33. The reader familiar with functional analysis will surely have remarked the analogy
between the proof of injectivity of ¢ and the proof of the fact that symmetric operators on a
Hilbert space are always closable. In general, given a linear subspace £ C BB and a norm | - | on
€ with |h| > ||h] it may be the case that the completion of £ under | - | cannot be interpreted
naturally as a subspace of 3. Think for example of the case B = L?([—1,1]), £ = C([—1,1]), and
|h] = ||| 4+ |h(0)|. In this case, the completion of £ is canonically isomorphic to B @ R but has
no natural embedding into B.

A simple example showing that the correspondence i +— h* in the definition of 7—0[# is not
necessarily unique is the case p = dp, so that C), = 0. If one chooses h = 0, then any h* € B
has the required property that C,(h*, £) = £(h), so that this is an extreme case of non-uniqueness.
However, if we view B* as a subset of L?(3, 1) (by identifying linear functionals that agree
p-almost surely), then the correspondence h +— h* is always an isomorphism. One has indeed
Jg P*(@)? u(dx) = Cpu(h*, h*) = ||h||%. In particular, if h} and h3 are two distinct elements of B*
associated to the same element i € B, then h] — hj is associated to the element 0 and therefore
fB(hi‘ - h;)Q(x) p(dz) = 0, showing that h{ = h3 as elements of L2(3, 1). We have:
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Proposition 4.34. There is a canonical isomorphism v: h — h* between H,, and the closure R,
of B* in L*(B, ). In particular, H,, is separable.

Proof. We have already shown that ¢: H,, — L?(B, i) is an isomorphism onto its image, so it
remains to show that all of B* belongs to the image of «. For h € B*, define h, € B as in by

hy, = / x h(z) p(dz) .
B

This integral converges since ||z||? is integrable by Fernique’s theorem. Since one has the identity
U(hy) = CL (L, h), it follows that h, € 73[# and h = 1(h,), as required to conclude the proof.

The separability of H, then follows immediately from the fact that L?(B, i) is separable
whenever B is separable, since its Borel o-algebra is countably generated. 0

Remark 4.35. The space R, is called the reproducing kernel Hilbert space for ji (or just reproducing
kernel for short). However, since it is isomorphic to the Cameron—Martin space in a natural way,
there is considerable confusion between the two in the literature. We retain in these notes the
terminology from [Bogg8||, but we urge the reader to keep in mind that there are authors who use a
slightly different terminology.

Remark 4.36. In general, there do exist Gaussian measures with non-separable Cameron—Martin
space, but they are measures on more general vector spaces. One example would be the measure on
RR (yes, the space of all functions from R to R endowed with the product o-algebra) given by the
uncountable product of one-dimensional Gaussian measures. The Cameron—Martin space for this
somewhat pathological measure is given by those functions f that are non-zero on at most countably
points and such that ), _p | f (t)|? < occ. This is a prime example of a non-separable Hilbert space.

Exercise 4.37. Let i be a Gaussian measure on a Hilbert space 7 with covariance K and consider
the spectral decomposition of K: Ke, = A,e, with > -, A, < 0o and {e, } an orthonormal
basis of eigenvectors. Such a decomposition exists since we already know that K must be trace
class from Proposition

Assume now that \,, > 0 for every n. Show that ’}-0[# is given by the range of K and that
the correspondence h — h* is given by h* = K ~'h. Show furthermore that the Cameron—
Martin space H,, consists of those elements h of H such that Y, <; A, }(h, e,)? < oo and that

(h, k), = (K~Y2h, K—1/2k).
Exercise 4.38. Show that one has the alternative characterisation
Al = sup{e(h) : Cu(£,0) <1}, (4.12)

and H,, = {h € B : ||h||, < co}. Hint: For the second statement, show first that if ||h[|, < oo,
then h determines a bounded linear functional on R ,. Then use Riesz’s representation theorem, the
isometry of Proposition |4.34} and the fact that 3* is dense in R ,.

Since elements in R, are built from the space of all bounded linear functionals on B, it should
come as little surprise that its elements are ‘almost’ linear functionals on B in the following sense:

Proposition 4.39. For every { € R, there exists a measurable linear subspace Vy of B such that
w(Vy) = 1 and a linear map £: Vy — R such that £ = ¢ p-almost surely.
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Proof. Fix { € R,,. By the definition of R, and Borel-Cantelli, we can find a sequence ¢,, € B*
such that lim,,_,o ¢n(x) = ¢(x) for p-almost every x € B. (Take for example ¢,, such that
1€ — €]|% < n~?.) It then suffices to define

Ve = {x : lim £4,(x) exists} ,
n—oo

and to set @(:c) = lim,,—yo0 £ () on V4. O

Another very useful fact about the reproducing kernel space is given by:

Proposition 4.40. The law of any element h* = 1(h) € R, is a centred Gaussian with variance
[|h||%. Furthermore, any two elements h*, k* have covariance (h, k).

Proof. We already know from the definition of a Gaussian measure that the law of any element of
B* is a centred Gaussian. Let now h* be any element of R, and let h,, be a sequence in R, N B*
such that h,, — h* in R,,. We can furthermore choose this approximating sequence such that
1hnllr, = IF*[[R,, = |h]lu so that the law of each of the h,, is equal to N'(0, [|h[|2).

Since L2-convergence implies convergence in law, we conclude that the law of h* is also given
by N, || hHZ). The statement about the covariance then follows by polarisation, since

ER* k" = (B + k) — B0 = BG?) = S (1 + k[ — 105 = (1615 = (b k)
by the previous statement. O

Remark 4.41. Actually, the converse of Proposition is also true: if £: B — R is measurable
and linear on a measurable linear subspace V' of full measure, then £ belongs to R ,. This is not an
obvious statement. It can be viewed for example as a consequence of the highly non-trivial fact
that every Borel measurable linear map between two sufficiently ‘nice’ topological vector spaces
(separable Banach will do) is continuous, see for example [Sch66, [Kat82l]. (The point here is that
the map must be linear on the whole space and not just on some “large” subspace as is usually the
case with unbounded operators.) This implies by Proposition that ¢ is a measurable linear
extension of some bounded linear functional on H,. Since such extensions are unique (up to null
sets) by Theorem [4.51]below, the claim follows from Proposition [4.34}

Exercise 4.42. Show that if B C B is a continuously embedded Banach space with p(B) = 1,
then the embedding B* — R, extends to an embedding B* — R,.. Deduce from this that the
restriction of y to B is again a Gaussian measure. In particular, Kolmogorov’s continuity criterion
yields a Gaussian measure on Cg (0,114, R).

The properties of the reproducing kernel space of a Gaussian measure allow us to give another
illustration of the fact that measures on infinite-dimensional spaces behave in a rather different way
from measures on R™:

Proposition 4.43. Let i be a centred Gaussian measure on a separable Banach space B such that
dimH,, = oo. Denote by D, the dilatation by a real number c on B, that is D.(x) = cx. Then, i
and D} are mutually singular for every ¢ # £1.

Proof. Since the reproducing Kernel space R, is a separable Hilbert space, we can find an
orthonormal basis {e,, },>0. Consider the sequence of random variables X y(z) = + ZnNzl len(x)]?
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over B. If B is equipped with the measure y then, since the e, are independent under 1, we can
apply the law of large numbers and deduce that

lim Xy(z)=1, (4.13)
N—oo

for p-almost every x. On the other hand, it follows from the linearity of the e,, that when we equip
B with the measure D} ju, the e, are still independent, but have variance c?, so that

lim Xn(z) =2,
N—oo

for D7 p-almost every . This shows that if ¢ # £1, the set on which the convergence (4.13])) takes
place must be of D7 p-measure 0, which implies that o and D} i are mutually singular. U

As already mentioned earlier, the importance of the Cameron—Martin space is that it represents
precisely those directions in which one can translate the measure p without changing its null sets:

Theorem 4.44 (Cameron—Martin). For h € B, define the map Ty,: B — B by Typ(x) = x + h.
Then, the measure T} i is absolutely continuous with respect to i if and only if h € H,,.

Proof. Fix h € H,, and let h* € L*(B, y1) be the corresponding element of the reproducing kernel.
Since the law of 2* is Gaussian by Proposition [4.40} the map x — exp(h*(x)) is integrable. Since

furthermore the variance of h* is given by HhHi, the function

Di(x) = exp(h*(z) — 5|2 (4.14)

is strictly positive, belongs to L'(1, 11), and integrates to 1. It is therefore the Radon-Nikodym
derivative of a measure py, that is absolutely continuous with respect to . To check that one
has indeed pj, = T} p, it suffices to show that their Fourier transforms coincide. Assuming that
h* € B*, one has

[ () = /B exp(il(z) + h*(x) — 5[|h]12) p(dx) = exp(3C,u (il + h*, il + h*) — ||h||2%)
= exp(—3Cu(l, 0) — iCu(l, h*)) = exp(—3C (L, O) + il(h)) .

Using Proposition for the joint law of £ and h*, it is an easy exercise to check that this equality
still holds for arbitrary h € H,,.
On the other hand, we have

T u(l) = / exp(il(x)) T} u(da) = / exp(il(z + h)) p(dz) = ‘™ / exp(il(x)) (dz)
B B B
= exp(—1Cu(l, ) + il(h)) ,

showing that yi5, = T} pu.

To show the converse, note first that one can check by an explicit calculation that ||A/(0, 1) —
N, Dty > 2 -2 exp(—%z). Fix now some arbitrary n > 0. If h & H,, then, by Exercise
there exists £ € B* with C,(¢,¢) = 1 such that /(h) > n. Since the image ¢*j: of ;1 under £ is
N(0, 1) and the image of T} 1 under £ is N'(—€(h), 1), this shows that

2
* * * * n
| —Typlltv > || p — 0Ty pllrv = [N, 1) — N(=L(h), )|ty > 2 — 2eXP(—§) .

Since this is true for every n, we conclude that ||z — T} pu|ltv = 2, thus showing that they are
mutually singular. 0

As a consequence, we have the following characterisation of the Cameron—Martin space
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Proposition 4.45. The space H,, C B is the intersection of all (measurable) linear subspaces of
full measure. However, if H,, is infinite-dimensional, then one has j(H,) = 0.

Proof. Take an arbitrary linear subspace V' C B of full measure and take an arbitrary h € H,,. It
follows from Theoremthat the affine space V' — h also has full measure. Since (V —h)NV = ()
unless 4 € V, one must have h € V,sothat H, C (\[{V C B : w(V) =1}.

Conversely, take an arbitrary x € H,, and let us construct a linear space V' C B of full measure,
but not containing z. Since x ¢ H,,, one has ||z||,, = oo with || - ||, extended to B as in (4.12).
Therefore, we can find a sequence ¢,, € B* such that C,(¢,,, ¢;,) < 1 and £,,(x) > n. Defining the
norm |y[2 = 3, n2(£a(y))?, we see that

2

2 N~ L 2 n’
/B ly] u(dy)—nzzjln2 /B (€a@)” pu(dy) <

so that the linear space V = {y : |y| < oo} has full measure. However,
sothatx € V.

To show that pu(H,) = 0 if dimH, = oo, consider an orthonormal sequence e, € R, so
that the random variables {e,(x)} are i.i.d. N(0, 1) distributed. By Exerciseand the second
Borel-Cantelli lemma, it follows that ||x||,, > sup,, |e,(2)| = oo for p-almost every , so that the
claim follows. O

x| = oo by construction,

Exercise 4.46. Recall that the (topological) support supp iz of a Borel measure on a complete
separable metric space consists of those points x such that (U) > 0 for every neighbourhood U of
x. Show that, if 1 is a Gaussian measure, then its support is the closure ﬁu of H,, in B.

4.3 Images of Gaussian measures

It follows immediately from the definition of a Gaussian measure and the expression for its Fourier
transform that if 1 is a Gaussian measure on some Banach space Band A: B — B is a bounded
linear map for B some other Banach space, then v = A*u is a Gaussian measure on B with
covariance

Cy(l, 0y = Cu(A*L, A

where A*: B* — B* is the adjoint to A, that is the operator such that (A*¢)(x) = ¢(Ax) for every
x € Bandevery { € B*.

Recall now that H, is the intersection over all linear subspaces of 3 that have full measure under
. This suggests that in order to determine the image of ; under a linear map, it is sufficient to know
how that map acts on elements of H,,. This intuition is made precise by the following theorem:

Theorem 4.47. Let 1 be a centred Gaussian probability measure on a separable Banach space
B. Let furthermore H be a separable Hilbert space and let A: H,, — H be a Hilbert-Schmidt
operator. (That is AA*: H — H is trace class.) Then, there exists a measurable map A: B — H
such that v = A*,u is Gaussian with covariance Cy,(h,k) = (A*h, A*k),. Furthermore, there
exists a measurable linear subspace V- C B of full y-measure such that A restricted to V is linear
and A restricted to Hu CV agrees with A.

Proof. Let {ey, }n>1 be an orthonormal basis for #,, and denote by e}, the corresponding elements
inR, C L?(B, 1) and define Sy (z) = ZN e’ (r)Ae,. Recall from Proposition that we can

n=0"*n
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find subspaces V., of full measure such that e}, is linear on V,, . Define now a linear subspace
V C Bby
V= {:c € m Ve, : the sequence {Sn(z)} converges in ’H} ,

n>0

(the fact that V' is linear follows from the linearity of each of the e}, ) and set

/l( )= limy_ oo Sn(x) forxz eV,
€)= 0 otherwise.

Since the random variables {e} } are i.i.d. A(0, 1)-distributed under yx, the sequence {Sy } forms
an H-valued martingale and one has

sjli[pEuHSN(a;)HQ = |lAen| SwrA*A < oo,

n=0

where the last inequality is a consequence of A being Hilbert-Schmidt. It follows that 1(V) = 1 by
Doob’s martingale convergence theorem.

To see that v = A* 1 has the stated property, fix an arbitrary h € H and note that the series
31 €h(Aen, h) converges in R, to an element with covariance || A*h||?. The statement then
follows from Proposition [§.40and the fact that C,,(h, h) determines C,, by polarisation. To check
that v is Gaussian, we can compute its Fourier transform in a similar way. O

Remark 4.48. In fact, we will show in Theorembelow that the extension A in Theoremm
is unique up to sets of p-measure 0.

The proof of Theorem 4.47|can easily be extended to the case where the image space is a Banach
space rather than a Hilbert space. However, in this case we cannot give a straightforward characteri-
sation of those maps A that are ‘admissible’, since we have no good complete characterisation of
covariance operators for Gaussian measures on Banach spaces. However, we can take the pragmatic
approach and simply assume that the new covariance determines a Gaussian measure on the target
Banach space. With this approach, we can formulate the following version for Banach spaces:

Proposition 4.49. Let B1 and By be two separable Banach spaces and let 11 be a centred Gaussian
probability measure on By. Let A: H,, — Bo be a bounded linear operator such that there exists a
centred Gaussian measure v on By with covariance Cy,(h, k) = (A*h, A*k),.. Then, there exists a
measurable map A: By — B such that v = A* w and such that there exists a measurable linear
subspace V' C B of full pu-measure such that A restricted to V is linear and A restricted to H,CV
agrees with A.

Proof. As a first step, we construct a Hilbert space Hs such that Bo C Ho as a Borel subset. Denote
by H, C By the Cameron—Martin space of v and let {e¢,} C #, be an orthonormal basis of
elements such that e}, € 35 for every n. (Such an orthonormal basis can always be found by using
the Grahm-Schmidt procedure.) We then define a norm on B by

* 2
2l = 3 -

2 27
2 w2le;]

where ||e}; || is the norm of e}, in B3. It is immediate that ||x|2 < oo for every x € B, so that this
turns B, into a pre-Hilbert space. We finally define Hs as the completion of By under || - ||2.
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Denote by 1/ the image of the measure v under the inclusion map ¢: By < Hs. It follows
that the map A’ = ¢ o A satisfies the assumptions of Theorem so that there exists a map
A: By — Mo which is linear on a subset of full p-measure and such that A*;, = /. On the other
hand, we know by construction that 2/(B3) = 1, so that the set {x : Az € Bs} is of full measure.
Modifying A outside of this set by for example setting it to 0 and using Exercise then yields
the required statement. O

Exercise 4.50. In the context of Proposition[4.49] show that the Cameron—Martin space H,, for v is
given by H, = range H,, with ||h[|, = inf{||u||, : Au = h}.

4.3.1  Uniqueness of measurable extensions and the isoperimetric inequality

This section is devoted to a proof of the converse of Theorem and Proposition [4.49] namely

Theorem 4.51. Let p be a Gaussian measure on a separable Banach space 31 with Cameron—Martin
space H,, and let A: H,, — Ba be a linear map satisfying the assumptions of Proposition
Then the linear measurable extension A of A is unique, up to sets of measure 0.

Remark 4.52. As a consequence of this result, the precise Banach spaces B and 35 are completely
irrelevant when one considers the image of a Gaussian measure under a linear transformation. The
only thing that matters is the Cameron—Martin space for the starting measure and the way in which
the linear transformation acts on this space. This fact will be used repeatedly in the sequel.

This is probably one of the most remarkable results in Gaussian measure theory. At first sight, it
appears completely counterintuitive: the Cameron—-Martin space H,, has measure 0, so how can
the specification of a measurable map on a set of measure 0 be sufficient to determine it on a set
of measure 1?7 Part of the answer lies of course in the requirement that the extension A should be
linear on a set of full measure. However, even this requirement would not be sufficient by itself to
determine A since the Hahn—Banach theorem provides a huge number of different extension of A
that do not coincide anywhere except on H,,. The missing ingredient that solves this mystery is
the requirement that A be not just any linear map, but a measurable linear map. This additional
constraint rules out all of the non-constructive extensions of A provided by the Hahn—Banach
theorem and leaves only one (constructive) extension of A.

The main ingredient in the proof of Theorem is the Borell-Sudakov—Cirel’son inequality
[SC74l Bor74]l, a general form of isoperimetric inequality for Gaussian measures which is very
interesting and useful in its own right. In order to state this result, we first introduce the notation B,
for the H ,-ball of radius € centred at the origin. We also denote by A 4 B the sum of two sets
defined by

A+B={z+y:2€A, yeB},

and we denote by ® the cumulative distribution function of the normal Gaussian: ®(t) =
\/% [ foo e~*"/2 ds. With these notations at hand, we have the following:

Theorem 4.53 (Borell-Sudakov—Cirel’son). Let i be a Gaussian measure on a separable Banach
space B with Cameron—Martin space H,, and let A C B be a measurable subset with measure
uw(A) = ®(«) for some oo € R. Then, for every € > 0, one has the bound /(A + B:) > ®(a + ¢).

Remark 4.54. Theorem is remarkable since it implies that even though H, itself has measure
0, whenever A is a set of positive measure, no matter how small, the set A + #, has full measure!
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Remark 4.55. The bound given in Theorem is sharp whenever A is a half space, in the
sense that A = {x € B : {(x) > c} for some £ € R, and ¢ € R. In the case where ¢ is small,
(A+ B.)\ A is a fattened boundary for the set A, so that (A + B.) — u(A) can be interpreted as
a kind of ‘perimeter’ for A. The statement can then be interpreted as stating that in the context of
Gaussian measures, half-spaces are the sets of given perimeter that have the largest measure. This
justifies the statement that Theorem [4.53]is an isoperimetric inequality.

We are not going to give a proof of Theorem [4.53]in these notes because this would lead us too
far astray from our main object of study. The interested reader may want to look into the monograph
[CTg1]] for a more exhaustive treatment of probability theory in Banach spaces in general and
isoperimetric inequalities in particular. Let us nevertheless remark shortly on how the argument
of the proof goes, as it can be found in the original papers [SC74, Bor75[l. In a nutshell, it is a
consequence of the two following remarks:

o Let vys be the uniform measure on a sphere of radius v M in RM and let II M,n be the
orthogonal projection from RM to R™. Then, the sequence of measures II M,nVM converges
as M — oo to the standard Gaussian measure on R™. This remark is originally due to
Poincaré.

e A claim similar similar to that of Theorem[4.53]holds for the uniform measure on the sphere,
in the sense that the volume of a fattened set A + B. on the sphere is bounded from below
by the volume of a fattened ‘cap’ of volume identical to that of A. Originally, this fact was
discovered by Lévy, and it was then later generalised by Schmidt, see [Sch48]| or the review
article [|Garo2|.

These two facts can then be combined in order to show that half-spaces are optimal for finite-
dimensional Gaussian measures. Finally, a clever approximation argument is used in order to
generalise this statement to infinite-dimensional measures as well.

An immediate corollary is given by the following type of zero-one law for Gaussian measures:

Corollary 4.56. Let V C B be a measurable linear subspace. Then, one has either (V) = 0 or
uwV) = 1.

Proof. Let us first consider the case where H,, ¢ V. In this case, just as in the proof of
Proposition |4.45| we conclude that p(V') = 0, for otherwise we could construct an uncountable
collection of disjoint sets with positive measure.

If H,, C V, then we have V' + B. = V for every ¢ > 0, so that if (V') > 0, one must have

(V) =1 by Theorem[4.53] O
We have now all the necessary ingredients in place to be able to give a proof of Theorem[4.51}

Proof of Theorem - Assume by contradiction that there exist two measurable extensions Ay and
Ay of A. In other words, we have A;z = Az for z € H,, and there exist measurable subspaces V;
with p(V;) = 1 such that the restriction of A; to Vs hnear. Denote V = Vi NViaand A = Ay — Ay,
so that A is linearon V and A | H,, = 0.

Let ¢ € Bj be arbitrary and consider the events V,* = {z : {(Azx) < c}. By the linearity
of A, each of these events is invariant under translations in H,., so that by Theorem we
have p(V) € {0,1} for every choice of ¢ and c. Furthermore, for fixed ¢, the map ¢ — (V)"
is increasing and it follows from the o-additivity of x4 that we have lim., o (V%) = 0 and
lim._, o (V) = 1. Therefore, there exists a unique ¢, € R such that p(V;°) jumps from 0 to 1 at
¢ = ¢g. In particular, this implies that {(Ax) = ¢, p-almost surely. However, the measure j is
invariant under the map x — —z, so that we must have ¢, = —cy, implying that ¢, = 0. Since this
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is true for every ¢ € B3, we conclude from Proposition |4.8| that the law of Az is given by the Dirac
measure at 0, so that Az = 0 p-almost surely, which is precisely what we wanted. 0

Exercise 4.57. Let (b;;); jen be such that ZZ ; bfj < oo and let (&;);en be a sequence of i.i.d.
N (0, 1) random variables. Show first that the sum Zz j bi;(&:€; — 0i,5) converges in L? to some
random variable F'. Use Theorem to show that F' has exponential tails, i.e. there exists a
constant ¢ such that P(|F'| > K) < ¢ 'e=¢K. Hint: Writing B: £2 — (2 for the map such that
Be; = b;je; (the e;’s are the canonical basis vectors), one can take the event A to be the realisations

such that |F(§)| + || B¢|| + || B*¢|| < C for some sufficiently large C'.

Exercise 4.58. Show that any unitary operator on +,, uniquely extends to a measure-preserving
transformation of (B, w). In particular, show that if W is an n-dimensional Wiener process (i.e. a
sample from the Gaussian measure on C([0, 1], R™) with covariance C;;(s,t) = d; j(s A t)) and if
O: [0,1] = O(n) is a measurable map with values in the space of orthogonal matrices, then the
process W(t) = fg O(s) dW (s) is well-defined and is again a Wiener process.

In the next section, we will see how we can take advantage of this fact to construct a theory of
stochastic integration with respect to a “cylindrical Wiener process”, which is the infinite-dimensional
analogue of a standard n-dimensional Wiener process.

4.4 Cylindrical Wiener processes and stochastic integration

Central to the theory of stochastic PDEs is the notion of a cylindrical Wiener process. Recall that
in general a stochastic process X taking values in a separable Banach space B is nothing but a
collection { X ()} of B-valued random variables indexed by time ¢ € R (or taking values in some
subset of R). A notable special case which will be of interest here is the case where the probability
space is taken to be for example €2 = C([0, 1], B) (or some other space of B-valued continuous
functions) endowed with some Gaussian measure P and where the process X is given by

X)) (w) = w(t), we.

In this case, X is called the canonical process on €.

Recall that the usual (one-dimensional) Wiener process is a real-valued centred Gaussian process
B(t) such that B(0) = 0 and E|B(t) — B(s)|?> = |t — s| for any pair of times s, . From our point
of view, the Wiener process on any finite time interval I can always be realised as the canonical
process for the Gaussian measure on C(I, R) with covariance function C(s,t) = s A t = min{s, t}.
(Note that such a measure exists by Kolmogorov’s continuity criterion.)

Since the space C(R, R) is not a Banach space and we have not extended our study of Gaussian
measures to Fréchet spaces, we refrain from defining a measure on it. However, one can define
Wiener measure on a separable Banach space of the type

C,(Ry,R) = {f € C(R+,R) : lim f(t)/p(t) eXIsts} SN VPSS 523% )

for a suitable weight function p: R — [1,00). For example, we will see that p(t) = 1 + 2 is
suitable, and we will therefore define Cyyy = C,, for this particular choice.

Proposition 4.59. There exists a Gaussian measure [, on Cyy with covariance function C(s,t) = sAL.
Proof. We use the fact that f € C([0, 7], R) if and only if the function T'(f) given by T'(f)(t) =

(1+t%) f(arctan t) belongs to Cyyr. Our aim is then to construct a Gaussian measure 19 on C([0, ], R)
which is such that T* i has the required covariance structure.
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The covariance Cy for g is then given by

tanx A tany
(1 + tan? 2)(1 + tan? y)

OO(:E> y) =

It is now a straightforward exercise to check that this covariance function does indeed satisfy the
assumption of Kolmogorov’s continuity theorem. O

Let us now fix a (separable) Hilbert space H, as well as a larger Hilbert space 1’ containing H
as a dense subset and such that the inclusion map ¢: H — H’ is Hilbert-Schmidt. Given #, it is
always possible to construct a space M’ with this property: choose an orthonormal basis {e,, } of H
and take H' to be the closure of H under the norm

o0

1
2l =37 5 (a.en)?.

n=1
One can check that the map «* is then given by t.*e,, = #en, so that it is indeed trace class.

Definition 4.60. Let 7 and H’ be as above. We then call a cylindrical Wiener process on H any
H’-valued Gaussian process W such that

E(h, W ()1 (W (@), k)3 = (s NO)(L*h, k) = (s At)(et*hy k) (4.15)

for any two times s and ¢ and any two elements h, k € H'. By Kolmogorov’s continuity theorem,
this can be realised as the canonical process for some Gaussian measure on Cyy (R, H').

Proposition 4.61. In the same seiting as above, the Gaussian measure i, on H' with covariance 1.*
has H as its Cameron—Martin space. Furthermore, hHi = ||R||? for every h € H.

Proof. It follows from the definition of H u that this is precisely the range of +.* and that the map
h+— h* is given by h* = (.t*)"'h. In particular, H,, is contained in the range of ¢. Therefore, for
any h, k € H,, there exist h, g € H such that h = +h and k = k. Using this, we have

(hy k) = ((WHR* kg = (hy () k) = (th, (W) k) = (hy ) Nk) = (b k)

from which the claim follows. O

Exercise 4.62. As in Exercise show that the Cameron—Martin space of a cylindrical Wiener
1,2
process on H equals Hy ([0, T], H).

In view of this exercise, we could also have defined the cylindrical Wiener process on H as
the canonical process for any Gaussian measure with Cameron—Martin space Hé ’2([0, T1,H). The
name ‘cylindrical Wiener process on H’ may sound confusing at first, since it is actually not an
‘H-valued process. Note however that if h is an element in  that is in the range of +* (so that th
belongs to the range of «.* and ¢*(1t*)~'th = h), then

(hy k) = (F () L k) = () e, kg

In particular, if we just pretend for a moment that W (¢) belongs to ‘H for every ¢ (which is of course
not true!), then we get

E(h, W()) (W (), k) = E((tt") " thy WV (8)) g0 (™) ™ e, .V (80
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= (s At)(w*(u*) " Lih, (LL*)_lLk:)H/
= (s At)(uh, (") Lik)yy = (s At)(h, () ek gy
=(sAt)(h, k) .

Here we used to go from the first to the second line. This shows that W (¢) should be thought
of as an ‘H-valued random variable with covariance ¢ times the identity operator (which is of course
not trace class if H is infinite-dimensional, so that such an object cannot exist if dimH = o0).
Combining Proposition with Theorem[4.47] we see however that if I is some Hilbert space
and A: H — K is a Hilbert-Schmidt operator, then the IC-valued random variable AW (t) is
well-defined. (Here we made an abuse of notation and also used the symbol A for the measurable
extension of A to H'.) Furthermore, its law does not depend on the choice of the larger space H'.

Example 4.63 (White noise). Recall that we informally defined ‘white noise’ as a Gaussian process
¢ with covariance E£(s)£(t) = d(t — s). In particular, if we denote by (-, -) the scalar product in
L?(R), this suggests that

E{g,§)(h, &) = E// 9(SB)E()E(E) ds dt = // g(Hh(t — s)dsdt = (g, h) . (4.16)

This calculation shows that white noise can be constructed as a Gaussian random variable on
any Hilbert space H of distributions containing L2(R) and such the embedding L2(R) — H
is Hilbert—Schmidt. Furthermore, by Theorem (and in fact already by definition of the
reproducing kernel space), integrals of the form | g(s)¢(s) ds are well-defined random variables,
provided that g € L%(R).

Exercise 4.64. Taking for A: L? - H& 2 the integration map, namely (Ah)(t) = fot h(s) ds, show
that if 4 is the white noise measure, then A*,u is Wiener measure, thus justifying the statement that
“white noise is the derivative of Brownian motion”.

The interesting fact about this construction is that we can use it to define space-time white noise
in exactly the same way, simply replacing L2(R) by L?(R?).

Exercise 4.65. Let T? be the d-dimensional torus and let £ be white noise on R%. Show that one
can realise £ as a sample of a Gaussian measure on the negative Sobolev space H ~° if and only if
s>d/2.

This will allow us to define a Hilbert space-valued stochastic integral against a cylindrical
Wiener process in pretty much the same way as what is usually done in finite dimensions. In the
sequel, we fix a cylindrical Wiener process W on some Hilbert space H C H’, which we realise
as the canonical coordinate process on 2 = Cy (R, H') equipped with the measure constructed
above. We also denote by .7 the o-field on 2 generated by {W,. : r < s}.

Consider now a finite collection of disjoint intervals (s,,t,] C Ry withn =1,..., N and
a corresponding finite collection of .%;, -measurable random variables ®,, taking values in the
space Lo(H, K) of Hilbert-Schmidt operators from # into some other fixed Hilbert space K. Let
furthermore ® be the L2(R. x Q, Lo(H, K))-valued function defined by

N
Ot w) =D n(W) Lsy 1,08

n=1

where we denoted by 14 the indicator function of a set A. We call such a ® an elementary process
onH.
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Definition 4.66. Given an elementary process ¢ and a cylindrical Wiener process W on H, we
define the KC-valued stochastic integral

def

- N
/0 DO AW D) =3 (W) (W(ta) — W(sn))

n=1

Note that since ®,, is .%;, -measurable, ®,, (V) is independent of W (t,,) — W (s,,), therefore each
term on the right hand side can be interpreted in the sense of the construction of Theorems[4.47]and

Remark 4.67. Thanks to Theorem[4.51] this construction is well-posed without requiring to specify
the larger Hilbert space H’ on which W can be realised as an H’-valued process. This justifies
the terminology of W being “the cylindrical Wiener process on H” without any mentioning of #’,
since the value of stochastic integrals against W is independent of the choice of H'.

It follows from Theorem and (4.7) that one has the identity

o0 N (o)
EH / o(t) dW(t)H2 = 3" Ea(®,(W)®5(W))(ty — 5,) = E / wdOP (H)dt,  (4.17)
0 K= 0

which is an extension of the usual Itd isometry to the Hilbert space setting. It follows that the
stochastic integral is an isometry from the subset of elementary processes in L?(R x Q, Lo(H, K))
to L%(Q, K).

Let now .7, be the ‘predictable’ o-field, that is the o-field over R x €2 generated by all subsets
of the form (s,t] x A witht > sand A € .%. This is the smallest o-algebra with respect to which
all elementary processes are .7p,-measurable. One furthermore has:

Proposition 4.68. The set of elementary processes is dense in the space Lgr(R+ x Q, Lo(H, K)) of
all predictable Lo(H, IC)-valued processes.

Proof. Denote by fpr the set of all sets of the form (s, t] x A with A € .%,. Denote furthermore
by ﬁgr the closure of the set of elementary processes in L2. One can check that Fpr 18 closed under
intersections, so that 15 € ﬁgr for every set GG in the algebra generated by jpr. It follows from the

monotone class theorem that 15 € ﬁgr for every set G € ... The claim then follows from the
definition of the Lebesgue integral, just as for the corresponding statement in R. O

By using the Itd isometry (4.17)) and the completeness of L2(£2, K), it follows that:

Corollary 4.69. The stochastic integral fooo D (t) dW (t) can be uniquely defined for every process
® e L3Ry x Q, Lo(H, K)).

This concludes our presentation of the basic properties of Gaussian measures on infinite-
dimensional spaces. The next section deals with the other main ingredient to solving stochastic
PDEs, which is the behaviour of deterministic linear PDEs.

5 A Primer on Semigroup Theory

This section is strongly based on Davies’s excellent monograph [Dav8a] for the first part on strongly
continuous semigroups and very loosely follows [[Yosgs]] and [Lungs] for the second part on analytic
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semigroups. Another good reference on some of the material covered here is the monograph
[Paz83]). Its aim is to give a rigorous meaning to solutions to linear equations of the type

Ox=Lxr, xz(0)=x9€B, (5-1)

where « takes values in some Banach space B and L is a possibly unbounded operator on B. From
a formal point of view, if such a solution exists, one expects the existence of a linear operator S(t)
that maps the initial condition zy onto the solution z(¢) of at time ¢. If such a solution is
unique, then the family of operators S(t) should satisfy S(0) = 1 and S(t) o S(s) = S(t + s). This
is called the semigroup property.

Furthermore, such a family of solution operators S(t) should have some regularity as ¢ — 0
in order to give a meaning to the notion of an initial condition. (The family given by S(t) = 0
for ¢t > 0 and S(0) = 1 does satisfy the semigroup property but clearly doesn’t define a family of
solution operators to an equation of the type (5.1).)

This motivates the following definition:

Definition 5.1. A semigroup S(¢) on a Banach space B is a family of bounded linear operators
{S(®)}+>0 with the properties that S(t) o S(s) = S(t + s) for any s,¢ > 0 and that S(0) = Id. A
semigroup is furthermore called

o strongly continuous if the map (x,t) — S(t)x is strongly continuous.

e analytic if there exists 6 > 0 such that the operator-valued map ¢ — S(¢) has an analytic
extension to {\ € C : |arg \| < 0}, satisfies the semigroup property there, and is such that
t — S(e’t) is a strongly continuous semigroup for every angle ¢ with |¢| < 6.

A strongly continuous semigroup is also sometimes called a Cy-semigroup.

Exercise 5.2. Show that being strongly continuous is equivalent to ¢t — S(¢)x being continuous at
t = 0 for every z € B and the operator norm of S(t) being bounded by M e for some constants
M and a. Show then that the first condition can be relaxed to ¢ — S(t)z being continuous for all
x in some dense subset of B. (However, the second condition cannot be relaxed in general. See
Exercise on how to construct a semigroup of bounded operators such that ||S(¢)|| is unbounded
neart = 0.)

Remark 5.3. Some authors, like [Lungs]], do not impose strong continuity in the definition of an
analytic semigroup. This can result in additional technical complications due to the fact that the
generator may then not have dense domain. The approach followed here has the slight drawback
that with our definitions the heat semigroup is not analytic on L°°(R). (It lacks strong continuity
as can be seen by applying it to a step function.) It is however analytic for example on Cy(R), the
space of continuous functions vanishing at infinity.

This section is going to assume some familiarity with functional analysis. All the necessary
results can be found for example in the classical monograph by Yosida [Yosgs|l. Recall that an
unbounded operator L. on a Banach space B consists of a linear subspace D(L) C B called the
domain of L and a linear map L: D(L) — B. The graph of an operator is the subset of 5 x B
consisting of all elements of the form (z, Lz) with z € D(L). An operator is closed if its graph is a
closed subspace of B x B. It is closable if the closure of its graph is again the graph of a linear
operator and that operator is called the closure of L.

The domain D(L*) of the adjoint L* of an unbounded operator L: D(L) — B is defined as
the set of all elements ¢ € B* such that there exists an element L*¢ € B* with the property that
(L*0)(x) = ¢(Lx) for every 2 € D(L). It is clear that in order for the adjoint to be well-defined,
we have to require that the domain of L is dense in 3. Fortunately, this will be the case for all the
operators that will be considered in these notes.
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Exercise 5.4. Show that L being closed is equivalent to the fact that if {x,,} C D(L) is Cauchy in
B and {Lx,} is also Cauchy, then x = lim,,_,~ =, belongs to D(L) and Lz = lim,,_, o Lxy,.

Exercise 5.5. Show that the adjoint of an operator with dense domain is always closed.

The resolvent set p(L) of an operator L is defined by
p(L) = {\ € C : range(\ — L) is dense in B and A — L has a continuous inverse. } ,

and the resolvent R) is given for A € p(L) by Ry = (A — L)~!. (Here and in the sequel we view
B as a complex Banach space. If an operator is defined on a real Banach space, it can always be
extended to its complexification in a canonical way and we will identify the two without further
notice in the sequel.) The spectrum of L is the complement of the resolvent set.

The most important results regarding the resolvent of an operator that we are going to use are
that any closed operator L with non-empty resolvent set is defined in a unique way by its resolvent.
Furthermore, the resolvent set is open and the resolvent is an analytic function from p(L) to the
space L£(I3) of bounded linear operators on B. Finally, the resolvent operators for different values of
A all commute and satisfy the resolvent identity

R/\ - Ru = (,U - )\)R;LR)\ )

for any two A, i € p(L).

The fact that the resolvent is operator-valued should not be a conceptual obstacle to the use
of notions from complex analysis. Indeed, for D C C an open domain, a function f: D — B
where B is any complex Banach space (typically the complexification of a real Banach space which
we identify with the original space without further ado) is said to be analytic in exactly the same
way as usual by imposing that its Taylor series at any point a € D converges to f uniformly in B
on a neighbourhood of a. The same definition applies if D C R and analytic continuation then
works in exactly the same way as for complex-valued functions. In particular, Cauchy’s residue
theorem, which is the main result from complex analysis that we are going to use later on, works for
Banach-space valued functions in exactly the same way as for complex-valued functions.

5.1 Strongly continuous semigroups

We start our investigation of semigroup theory with a discussion of the main results that can be
obtained for strongly continuous semigroups. Given a Cy-semigroup, one can associate to it a
‘generator’, which is essentially the derivative of S(t) att = 0:

Definition 5.6. The generator L of a Cy-semigroup is given by
Lz =limt Stz — z) , (5.2)
t—0

on the set D(L) of all elements x € B such that this limit exists (in the sense of strong convergence
in B).

The following result shows that if L is the generator of a Cy-semigroup S(t), then x(t) = S(t)zg
is indeed the solution to in a weak sense.

Proposition 5.7. The domain D(L) of L is dense in B, invariant under S, and the identities
0:St)x = LS@t)x = St)Lx hold for every x € D(L) and every t > 0. Furthermore, for
every { € D(L*) and every x € B, the map t — ({,S(t)x) is differentiable and one has
o (l, S(t)x)y = (L*L, S(t)x).
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Proof. Fix some arbitrary = € B and set x; = fg S(s)x ds. One then has

t+h

t
lim A~ (S, — ) = lim h™! ( /h S(s)x ds — /0 S(s)x ds)

= lim h*1<
h—>0 t

where the last equality follows from the strong continuity of .S. This shows that z; € D(L). Since
t~lz; — x ast — 0 and since = was arbitrary, it follows that D(L) is dense in B. To show that it is
invariant under S, note that for x € D(L) one has

t+h

h
S(s)x ds —/ S(s)x ds) =Sz — =z,
0

}llir% R7Y(S(h)St)z — S(t)x) = S(t) }lbirr%) h=Y(S(h)x — z) = S(t)Lx ,

so that S(t)x € D(L) and LS(t)x = S(t)Lx. To show that it this is equal to 0;S(t)x, it suffices to
check that the left derivative of this expression exists and is equal to the right derivative. This is left
as an exercise.

To show that the second claim holds, it is sufficient (using the strong continuity of S) to
check that it holds for x € D(L). Since one then has S(¢)x € D(L) for every ¢, it follows from
the definition of D(L) that ¢ — S(t)x is differentiable and that its derivative is equal to
LS(t)x. O

It follows as a corollary that no two semigroups can have the same generator (unless the
semigroups coincide of course), which justifies the notation S(t) = e that we are occasionally
going to use in the sequel.

Corollary 5.8. If a function x: [0,1] — D(L) satisfies Osx; = Lxy for every t € [0,1], then

xr = S(t)xg. In particular, no two distinct Cy-semigroups can have the same generator.

Proof. It follows from an argument almost identical to that given in the proof of Proposition
that the map t — S(t)x7—_; is continuous on [0, 7] and differentiable on (0,7"). Computing its
derivative, we obtain 0;S(t)x7_; = LS@®)x7_; — S(t)Lxr_; = 0, so that xp = S(T)xy. O

Exercise 5.9. Show that the semigroup S(t) on L?(R) given by

(SO = fE+1),

is strongly continuous and that its generator is given by L = ¢ with D(L) = H !, Similarly, show
that the heat semigroup on L?(R) given by

_ 1 € —nl?
S0N© = = [exp(=E 7).

is strongly continuous and that its generator is given by L = E)g with D(L) = H?. Hint: Use
Exercise [5.2|to show strong continuity.

Remark 5.10. We did not make any assumption on the structure of the Banach space B. However,
it is a general rule of thumb (although this is not a theorem) that semigroups on non-separable
Banach spaces tend not to be strongly continuous. For example, neither the heat semigroup nor the
translation semigroup from the previous exercise are strongly continuous on L*°(R) or even on
Cp(R), the space of all bounded continuous functions.
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Recall now that the resolvent set for an operator L consists of those A € C such that the operator
A — L is one to one. For ) in the resolvent set, we denote by R) = (A — L)~ ! the resolvent of L. It
turns out that the resolvent of the generator of a Cp-semigroup can easily be computed:

Proposition 5.11. Let S(t) be a Co-semigroup such that ||S(@t)|| < Me* for some constants M and a.
If R\ > a, then )\ belongs to the resolvent set of L and one has the identity Ryx = fooo e MS(t)x dt.

Proof. By the assumption on the bound on S, the expression Z) = fooo e~ MS(t)x dt is well-defined
for every A with RA > a. In order to show that Z, = R), we first show that Zyx € D(L) for every
x € B and that (A — L)Z\x = x. We have

LZyx = lim h™Y(S(h)Zyz — Zyz) = lim h™* / e M(S(t + hyx — S(Hz) dt
h—0 h—0 0

A 1 o] Ah h
= lim (6 - / e MS (e dt — % e M8ty dt)
0 0

which is the required identity. To conclude, it remains to show that A — L is an injection on
D(L). If it was not, we could find z € D(L) \ {0} such that Lz = Az. Setting 2; = ez and
applying Corollary [s5.8} this yields S(t)z = ¢ .z, thus contradicting the bound || S(#)|| < Me?* if
RA > a. O

‘We can deduce from this that:

Proposition 5.12. The generator L of a Co-semigroup is a closed operator.

Proof. We are going to use the characterisation of closed operators given in Exercise Shifting

L by a constant if necessary (which does not affect it being closed or not), we can assume that

a = 0. Take now a sequence x,, € D(L) such that {x,} and {Lz, } are both Cauchy in BB and set

x = limy,_ x, and y = limy, o Lx,,. Setting z, = (1 — L)x,, we have lim,,_, 2, = = — ¥.
On the other hand, we know that 1 belongs to the resolvent set, so that

r= lim z, = lim Riz, = Ri(x —y) .
n—oo n—o0

By the definition of the resolvent, this implies that x € D(L) and that x — Lz = x — y, so that
Lx = y as required. O

We are now ready to give a full characterisation of the generators of Cy-semigroups. This is the
content of the following theorem:

Theorem 5.13 (Hille-Yosida). A closed densely defined operator L on the Banach space B is the
generator of a Co-semigroup S(t) with ||S(t)|| < Me® if and only if all X with R\ > a lie in its
resolvent set and the bound | RY|| < M (RX — a)™" holds there for every n > 1.

Proof. The generator L of a Cyp-semigroup is closed by Proposition The fact that its resolvent
satisfies the stated bound follows immediately from the fact that

o0 oo
RYx :/ / e Mttt Gt 4 ) dty - dty,
0 0

by Proposition
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To show that the converse also holds, we are going to construct the semigroup S(t) by using the
so-called ‘Yosida approximations’ Ly = ALR) for L. Note first that lim)_,, LR x = 0 for every
x € B: itobviously holds for z € D(L) since then | LRyx| = |RaLz|| < ||Ra||||Lz| < M (RA—
a)"!||Lz|. Furthermore, || LRyz|| = |ARzz — z|| < (MAN —a)~! + 1)||z|| < (M + 2)||z| for
A large enough, so that limy_, ., LRyx = 0 for every z by a standard density argument.

Using this fact, we can show that the Yosida approximation of L does indeed approximate L in
the sense that limy_,, Lz = Lx for every x € D(L). Fixing an arbitrary z € D(L), we have

lim ||Lyz — Lz|| = lim |[(ARy — 1)La|| = lim |LRyLz| = 0. (5.3)
A—00 A—00 A—r00

Define now a family of bounded operators Sy (t) by Sy(t) = et = Y on>0 % This series

converges in the operator norm since Ly is bounded and one can easily check that S is indeed a
Co-semigroup (actually a group) with generator Ly. Since Ly = —\ 4+ A2R), one has for A > a
the bound

B tn)\Qn R" AQ
ISA@| = e Z n|||)‘H = Mexp(—)\t + .
n>0 )

D)= v

sothatlimsup, ., . [[Sx(®)]| < Me®. Letus show next that the limit lim)_, ., Sy (t)z exists for every
t > 0 and every x € B. Fixing A and p large enough so that max{||Sx(®)||, | S, (||} < Me?*, and
fixing some arbitrary ¢ > 0, we have for s € [0, ¢]

10sSA(t — $)Su(9)x|| = ||Sa(t — 8)(Ly — La)Su(s)x| = ||Sat — $)Su(s)(L, — Ly)z||
< MPe*|[(Ly — Loz -

Integrating this bound between 0 and ¢, we obtain
1S3z — Stz < MPte*| Ly — Lzl (5-5)

which converges to 0 for every z € D(L) as A, u — oo since one then has Lyxz — Lx. We can
therefore define a family of linear operators S(t) by S(t)x = limy_,s Sx(t)x.

It is clear from that | S(t)|| < Me® and it follows from the semigroup property of S that
S(s)S(t) = S(s + t). Furthermore, it follows from (5.5) and that for every fixed x € D(L),
the convergence S)(t)x — S(t)x is uniform in bounded intervals of ¢, so that the map ¢ — S(t)x
is continuous. Combining this wit our a priori bounds on the operator norm of S(t), it follows
from Exercise . that S is indeed a Cyp-semigroup. It remains to show that the generator LofSs
coincides with L. Taking first the limit A — oo and then the limit ¢ — 0 in the identity

t
S\ — ) =t / S\(s)Lyz ds ,
0

we see that z € D(L) implies x € D(ﬁ) and Lz = Lz, so that L is an extension of L. However,
for A > a, both A — L and A — L are one-to-one between their domain and 13, so that they must
coincide. ]

One might think that the resolvent bound in the Hille—Yosida theorem is a consequence of
the fact that the spectrum of L is assumed to be contained in the half plane {\ : R\ < a}. This
however isn’t the case, as can be seen by the following example:
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Example 5.14. We take B = @nZl C? (equipped with the usual Euclidean norms) and we define
L =@, Ln, where L,,: C* — C? is given by the matrix

m n
Ln_(O zn) ’

In particular, the resolvent R(A") of L,, is given by

A (A —in)? 0 A—in)’

so that one has the upper and lower bounds

n__ . V2
IA—in|2  |[A—in|

L<H
A —in|> —

RYV|| <

Note now that the resolvent Ry of L satisfies || Ry|| = sup,,~; ||R()\”)H On one hand, this shows that
the spectrum of L is given by the set {in? : n > 1}, so that it does indeed lie in a half plane. On
the other hand, for every fixed value a > 0, we have || Ry1in|| > 75, so that the resolvent bound of
the Hille—Yosida theorem is certainly not satisfied.

It is therefore not surprising that L does not generate a Cy-semigroup on 3. Even worse, trying to
define S(t) = ®p>15,(t) with S, (t) = el results in || S, (t)|| > nt, so that S(t) is an unbounded
operator for every ¢t > 0!

5.1.1 Adjoint semigroups

It will be very useful in the sequel to have a good understanding of the behaviour of the adjoints of
strongly continuous semigroups. The reason why this is not a completely trivial topic is that, in
general, it is simply not true that the adjoint semigroup S*(t): B* — B* of a strongly continuous
semigroup is again strongly continuous. This is probably best illustrated by an example.

Take B = C([0, 1], R) and let S(¢) be the heat semigroup (with Neumann boundary conditions,
say). Then S*(t) acts on finite signed measures by convolving them with the heat kernel. While it
is true that S*(t)u — p weakly as ¢ — 0, it is not true in general that this convergence is strong.
For example, S*(t)d, does not converge to ¢, in the total variation norm (which is the dual to the
supremum norm on C([0, 1], R)). However, this difficulty can always be overcome by restricting
S*(t) to a slightly smaller space than B*. This is the content of the following result:

Proposition 5.15. If S(t) is a Co-semigroup on B, then S*(t) is a Co-semigroup on the closure B of
D(L*) in B* and its generator Ltis given by the restriction of L* to the set DL = {x € D(L*) :
L*x € B}.

Proof. We first show that S*(t) is strongly continuous on Bt and we will then identify its generator.
Note first that it follows from Proposition that S*(¢) maps D(L*) into itself, so that it does
indeed define a family of bounded operators on B'. Since the norm of S*(t) is O(1) as t — 0 and
since D(L*) is dense in B by definition, it is sufficient to show that lim;_,o S*(t)x = x for every
x € D(L*). It follows immediately from Proposition that for x € D(L*) one has the identity

t
S*tx —x = / S*(s)L*z ds
0

from which we conclude that S*(t)z — =x.
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It follows from Proposition that the resolvent R; for S*(t) on B' is nothing but the
restriction of Iy to BT. This immediately implies that D(LT) is given by the stated expression. [

Remark 5.16. As we saw in the example of the heat semigroup, BT is in general strictly smaller
than B*. This fact was first pointed out by Phillips in [Phi55]]. In our example, B* consists of all
finite signed Borel measures on [0, 1], whereas Bt only consists of those measures that have a
density with respect to Lebesgue measure.

Even though BT is in general a proper closed subspace of B, it is large enough to be dense in
B*, when equipped with the (much weaker) weak-* topology. This the content of our last result in
the theory of strongly continuous semigroups:

Proposition 5.17. For every [ € B* there exists a sequence {,, € BY such that £,,(x) — ((z) for
every x € B.

Proof. It suffices to choose ¢,, = nR;¢. Since we have ¢,, € D(L"), it is clear that ¢,, € Bf. On the
other hand, we know from the proof of the Hille-Yosida theorem that lim,,_,~ [|[nRyz — || = 0
for every x € B, from which the claim follows at once. O

5.2 Semigroups with selfadjoint generators

In this section, we consider the particular case of strongly continuous semigroups consisting of
self-adjoint operators on a Hilbert space /. The reason why this is an interesting case is that it
immediately implies very strong smoothing properties of the operators S(?) in the sense that for
every t > 0, they map H into the domain of arbitrarily high powers of L. Furthermore, it is very
easy to obtain explicit bounds on the norm of S(¢) as an operator from H into one of these domains.
We will then see later in Section [5.3]on analytic semigroups that most of these properties still hold
true for a much larger class of semigroups.

Let L be a selfadjoint operator on H which is bounded from above. Without loss of generality,
we are going to assume that it is actually negative definite, so that (x, Lz) < 0 for any z € H. In
this case, we can use functional calculus (see for example [RS80], in particular chapter VIII in
volume I) to define selfadjoint operators f(L) for any measurable map f: R — R. This is because
the spectral decomposition theorem can be formulated as:

Theorem 5.18 (Spectral decomposition). Let L be a selfadjoint operator on a separable Hilbert
space H. Then, there exists a measure space (M, 1), an isomorphism K : H — L?>(M, ), and
a function fr: M — R such that via K, L is equivalent to the multiplication operator by fr, on
L2(M, p). In other words, one has L = K~ fy K and KD(L) = {g : frg € L>(M, u)}.

In particular, this allows one to define f(L) = K~ '(f o fr)K, which has all the nice
properties that one would expect from functional calculus, like for example (fg)(L) = f(L)g(L),
| f(D = [|fllLeoam, ), ete. Defining S(t) = elt, it is an exercise to check that S is indeed
a Cp-semigroup with generator L (either use the Hille—Yosida theorem and make sure that the
semigroup constructed there coincides with S or check ‘by hand’ that S(¢) is indeed Cy with
generator L).

The important property of semigroups generated by selfadjoint operators is that they do not
only leave D(L) invariant, but they have a regularising effect in that they map H into the domain of
any arbitrarily high power of L. More precisely, one has:
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Proposition 5.19. Let L be self-adjoint and negative definite and let S(t) be the semigroup on H
generated by L. Then, S(t) maps H into the domain of (1 — L)* for any o, t > 0 and there exist
constants Cy, such that ||(1 — L)*S@)|| < Co(1 +t7%).

Proof. By functional calculus, it suffices to show that supy>o(1 + N M < Cu (1 +t). One
has

sup A% M = 7 sup (A)%e M =t ¥ sup A\ = ate .

A>0 A>0 A>0
The claim now follows from the fact that there exists a constant C/, such that (1 — M) <
Cl (14 (=\)*) for every A < 0. O

5.3 Analytic semigroups

Obviously, the conclusion of Proposition does not hold for arbitrary Cy-semigroups since the
group of translations from Example[5.9]does not have any smoothing properties. It does however
hold for a very large class of semigroups, the so-called analytic semigroups. The study of these
semigroups is the object of the remainder of this section, and the equivalent of Proposition
is going to be one of our two main results. The other result is a characterisation of generators
for analytic semigroups that is analogous to the Hille—Yosida theorem for Cy-semigroups. The
difference will be that the role of the half-plane A\ > a will be played by the complement of a
sector of the complex plane with an opening angle strictly smaller than 7.

Recall that a semigroup S on a Banach space B is analytic if there exists § > 0 such that the
map t — S(t) (taking values in £(3)) admits an analytic extension to the sector Sy = {\ € C :
|arg A\| < 6}, satisfies the semigroup property there, and is such that ¢t — S, (t) = S(e*?t) is a
strongly continuous semigroup for every |p| < 6. If 0 is the largest angle such that the above
property holds, we call S analytic with angle . The strong continuity of ¢ + S(e’#t) implies that
there exist constants M () and a(y) such that

1S < M(p)e#* .

Using the semigroup property, it is not difficult to show that M and a can be chosen bounded over
compact intervals:

Proposition 5.20. Let S be an analytic semigroup with angle 0. Then, for every 6 < 0, there exist
M and a such that || S,(t)|| < Me® for every t > 0 and every |p| < 6.

Proof. Fix 0/ € (0,0), so that in particular § < /2. Then there exists a constant C' such that,
for every t > 0 and every ¢ with |p| < ¢, there exist numbers ¢, ,¢_ € [0, Ct] such that te’? =
tye? 4t e~ Tt follows that one has the bound ||S,(t)|| < M(6")M(—@")e®@Ct+a(=00Ct thyg
proving the claim. O

We next compute the generators of the semigroups S, obtained by evaluating S along a ‘ray’
extending out of the origin into the complex plane:

Proposition 5.21. Let S be an analytic semigroup with angle 6. Then, for |p| < 6, the generator
Ly, of S, is given by L., = €'? L, where L is the generator of S.

Proof. Recall Proposition[5.11]showing that for R\ large enough the resolvent R for L is given by

Rz = / e NStz dt .
0
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Since the map ¢t — e~ S(t) is analytic in Sy by assumption and since, provided again that R\ is
large enough, it decays exponentially to 0 as || — oo, we can deform the contour of integration to
obtain

o) . .
Ryx = ew/ e S () di
0
Denoting by RY the resolvent for the generator L, of S, we thus have the identity Ry = ei‘PRfew,
which is equivalent to (A — L)™' = (A — e "% L)L, thus showing that L, = ¢’¢L as stated. [

We now use this to show that if S is an analytic semigroup, then the resolvent set of its generator
L not only contains the right half plane, but it contains a larger sector of the complex plane.
Furthermore, this characterises the generators of analytic semigroups, providing a statement similar
to the Hille—Yosida theorem:

Theorem 5.22. A closed densely defined operator L on a Banach space B is the generator of an
analytic semigroup if and only if there exists 6 € (0, 5) and a > 0 such that the spectrum of L is
contained in the sector

Spa={A€C:argla—Nec[-F+0,5 01},

and there exists M > 0 such that the resolvent Ry, satisfies the bound ||Ry|| < Md(\, Sp.a)~" for
every A & Sp q.

Proof. The fact that generators of analytic semigroups are of the prescribed form is a consequence
of Proposition and the Hille-Yosida theorem.
To show the converse statement, let L be such an
operator, let ¢ € (0, 0), let b > a, and let 7, be the
curve in the complex plane obtained by going in a

counterclockwise way around the boundary of S AN
(see the figure on the right). For ¢t with |argt| < ¢, N .
define S(¢) by
1
S(t) = — / "R, dz (5.6)
211 Yoo —a,l >
1 Re
= e?(z— L)y tdz .
271 Yo
It follows from the resolvent bound that || R, || is uni- .7

formly bounded for z € ~7,;. Furthermore, since P
|argt| < ¢, it follows that e'* decays exponentially
as |z| — oo along 7,4, so that this expression is
well-defined, does not depend on the choice of b and ¢, and (by choosing ¢ arbitrarily close to )
determines an analytic function ¢ — S(t) on the sector {¢ : |argt| < #}. As in the proof of the
Hille-Yosida theorem, the function (z,t) — S(t)x is jointly continuous because the convergence of
the integral defining S is uniform over bounded subsets of {t : |argt| < ¢} for any |p| < 6.

It therefore remains to show that .S satisfies the semigroup property on the sector {¢ : |argt| < 6}
and that its generator is indeed given by L. Choosing s and ¢ such that |arg s| < # and | argt| <
and using the resolvent identity R, — R,, = (2’ — 2)R, R./, we have

1 / 1 'R, — R,
SISt = —— * T R.Rydzdy = ——— R — R P )
472 472 2 — 2z
Yo,b! Y Veo,b Yo, b Y Vo,b
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/ !
1 eS? 1 etz
=52 e*R, ; dz dz — 2 e*’R, - dz dz .
™ Jyep Yot © T F ™ Iy, Yop T %

©

Here, the choice of b and b’ is arbitrary, as long as b # b’ so that the inner integrals are well-defined,
say b’ > b for definiteness. In this case, since the contour 7, , can be ‘closed up’ to the left but not

92/ . . .
S— d?' is equal to 2ime®* for every z € 7,5, Whereas the integral

to the right, the integral fv y
»,

with b and o’ inverted vanishes, so that

1
S8 = 5 / SR, — S(s 4 1)
Ye,b

as required. The continuity of the map ¢ — S(t)x is a straightforward consequence of the resolvent
bound, noting that it arises as a uniform limit of continuous functions. Therefore S is a strongly
continuous semigroup; let us call its generator L and R) the corresponding resolvent.

To show that L = L, it suffices to show that Ry = Ry, so we make use again of Proposition
Choosing A > b so that R(z — \) < 0 for every z € 7,5, we have

. o0 1 [ee]
R\ = / e MSH) dt = — / / VR, dz dt
0 271 0 Yeorb

1 o0 1 R
:_/ / et(z_)‘)dtdez:_/ 2 _dz=R,.
2mi Jy,, Jo 21 Jy,, 2 — A

The last inequality was obtained by using the fact that || R.|| decays like 1/|z| for large enough z
with | arg z| < T + ¢, so that the contour can be ‘closed’ to enclose the pole at z = . O

As a consequence of this characterisation theorem, we can study perturbations of generators of
analytic semigroups. The idea is to give a constructive criterion which allows to make sure that
an operator of the type L = Lg + B is the generator of an analytic semigroup, provided that L
is such a generator and B satisfies a type of ‘relative total boundedness’ condition. The precise
statement of this result is:

Theorem 5.23. Let L be the generator of an analytic semigroup and let B: D(B) — B be an
operator such that

e The domain D(B) contains D(Lyg).
e Forevery e > 0 there exists C > 0 such that || Bz|| < ¢||Lox|| + C||z|| for every x € D(Ly).

Then the operator L = Lg + B (with domain D(L) = D(Ly)) is also the generator of an analytic
semigroup.

Proof. In view of Theorem it suffices to show that there exists a sector Sy , containing the
spectrum of L and such that the resolvent bound R) < Md(A, b’(;,a)_1 holds away from it.
Denote by R?\ the resolvent for Ly and consider the resolvent equation for L:

A—Lo—Bx=y, ze€DWULy).

Since (at least for \ outside of some sector) z belongs to the range of R, we can set z = Rf{z SO
that this equation is equivalent to
z—BRYz=y.
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The claim therefore follows if we can show that there exists a sector Sp , and a constant ¢ < 1 such
that | BRY|| < ¢ for A € Sp,. This is because one then has the bound

254
1Ryl = B2 < =Myl -

Using our assumption on B, we have the bound
IBRY2|| < €| LoRyz|| + C||R32]] - (5.7)

Furthermore, one has the identity LoRg = )\Rg — 1 and, since Ly is the generator of an analytic
semigroup by assumption, the resolvent bound || RY|| < Md(), S, ) "' for some parameters «, b.
Inserting this into (5.7), we obtain the bound

N +CO)M

BRY|| <
|BRy|| < 0% Son)

+e

Note now that by choosing 6 € (0, ), we can find some ¢ > 0 such that d(\, S, ) > J|A| for all
A& Spqandalla > 1V (b+ 1). We fix such a 6 and we make ¢ sufficiently small such that one
hasbothe < 1/4and e~ ! < 1/4.

We can then make a large enough so that d(), S, 5) > 4CM for X € Sy 4, so that ||BR9\ | < 3/4.
for these values of ), as requested. ]

Remark 5.24. As one can see from the proof, one actually needs the bound || Bz || < ¢||Loz||+C||x]|
only for some particular value of € that depends on the characteristics of L.

As a consequence, we have:
Proposition 5.25. Let f € L>°(R). Then, the operator
(Lg)(x) = ¢"(x) + f(x)g'(x) ,
on L*(R) with domain D(L) = H? is the generator of an analytic semigroup.
Proof. Ttis well-known that the operator (Log)(z) = ¢"(x) with domain D(L) = H 2 is self-adjoint

and negative definite, so that it is the generator of an analytic semigroup with angle § = 7 /2.
Setting Bg = fg’, we have for g € H? the bound

1Bgl* = /Rf2($)(g’(x))2dfv < IflIZoe (g’ o) = =lflIZ< (9. 9") < Ifllz=llglll| Zogll -

It now suffices to use the fact that 2|zy| < ex? + e 1y? to conclude that the assumptions of
Theorem are satisfied. O

Similarly, one can show:

Exercise 5.26. Show that the generator of an elliptic diffusion with smooth coefficients on a compact
Riemannian manifold M generates an analytic semigroup on L?(M, p), where p is the volume
measure given by the Riemannian structure.
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5.4 Interpolation spaces

The remainder of this section will be devoted to the study of the domains of fractional powers of the
generator L of an analytic semigroup S(¢). For simplicity, we will assume throughout this section
that there exist M > 0 and w > 0 such that || S(¢)|| < Me~%*, thus making sure that the resolvent
set of L contains all the right half of the complex plane. The general case can be recovered easily
by ‘shifting the generator to the left’. For av > 0, we define negative fractional powers of L by

1 o0
D)= —— [ 7Syt 8
o7 s [T s (5%

which is a bounded operator by the decay assumption on ||.S(¢)||. Since I'(1) = 1, note thatif & = 1
one does indeed recover the resolvent of L evaluated at 0. Furthermore, it is straightforward to
check that one has the identity (=L)~%(—L)# = (L), which together justify the definition
(5-9).

Note that it follows from this identity that (—L)™“ is injective for every o > 0. Indeed, given
some « > 0, one can find an integer n > 0 such that (—L)™" = (—L) ""*(—L)~“. A failure for
(—L)™“ to be injective would therefore result in a failure for (—L)™ and therefore (L)' tobe
injective. This is ruled out by the fact that 0 belongs to the resolvent set of L. We can therefore
define (—L)* as the unbounded operator with domain D((—L)%) = range(—L)~® given by the
inverse of (—L)™“. This definition is again consistent with the usual definition of (—L)“ for integer
values of . This allows us to set:

Definition 5.27. For & > 0 and given an analytic semigroup S on a Banach space B, we define the
interpolation space B, as the domain of (—L)® endowed with the norm ||z ||, = ||(—L)%x||. We
similarly define 5_,, as the completion of B for the norm ||z||— = ||[(—L)"*z||.

Remark 5.28. If the norm of S(¢) grows instead of decaying with ¢, then we use A — L instead of
— L for some X sufficiently large. The choice of different values of X leads to equivalent norms on
Ba.

Exercise 5.29. Show that the inclusion B, C Bg for a > /3 hold, whatever the signs of o and 3.
Exercise 5.30. Show that for o € (0,1) and = € D(L), one has the identity

sin am

(—L)%x = / - Yt — L)y Y (=L)z dt . (5.9)
™ 0

Hint: Write the resolvent appearing in (5.9) in terms of the semigroup and apply the resulting
expression to (—L)™*x, as defined in . The aim of the game is then to perform a smart change
of variables.

Exercise 5.31. Use (5.9) to show that, for every a € (0, 1), there exists a constant C' such that the
bound ||(—L)*z| < C||Lx||*|lz||*~* holds for every = € D(L).

Hint: Split the integral as [ = fOK + [/ and optimise over K. (The optimal value for K will turn
out to be proportional to || Lz || /||z||.) Inthe firstintegral, the identity (t— L)~ '(—L) = 1—t(t—L)™*
might come in handy.

Exercise 5.32. Let L be the generator of an analytic semigroup on 5 and denote by B, the
corresponding interpolation spaces. Let B be a (possibly unbounded) operator on 5. Using the
results from the previous exercise, show that if there exists a € [0, 1) such that B, C D(B) so that
B is a bounded operator from 5, to B, then one has the bound

1Ba|| < ClellLa]| +e=*/ 4 a]])
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for some constant C' > 0 and for all € < 1. In particular, L 4+ B is also the generator of an analytic
semigroup on B.
Hint: The assumption on B implies that there exists a constant C' such that || Bz|| < C||z]|q.

Exercise 5.33. Let L and B be as in Exercise and denote by Sp the analytic semigroup with
generator L + B. Use the relation Ry — R} = RgB R to show that one has the identity

¢
Spt)r = St)x —I—/ St — s)BSp(s)xds .
0

Hint: Start from the right hand side of the equation and use an argument similar to that of the proof

of Theorem

Exercise 5.34. Show that (—L)“ commutes with S(t) for every ¢ > 0 and every o € R. Deduce
that S(t) leaves B, invariant for every o > 0.

Exercise 5.35. It follows from Theoremthat the restriction L' of the adjoint L* of the generator
of an analytic semigroup on B to the ‘semigroup dual’ space B' is again the generator of an

analytic semigroup on B'. Denote by B, the corresponding interpolation spaces. Show that one
has B}, = D((—L"H*) c D(((—L)*)*) = (B_qa)" for every a > 0.

We now show that an analytic semigroup S(¢) always maps B into B, for ¢ > 0, so that it has a
‘smoothing effect’. Furthermore, the norm in the domains of integer powers of L can be bounded by:

Proposition 5.36. For every t > 0 and every integer k > 0, S(t) maps B into D(L*) and there
exists a constant C, such that

C
|L*St)z| < t—,f

foreveryt € (0,1].

Proof. In order to show that .S maps B into the domain of every power of L, we use (5.6)), together

with the identity LR) = ARy — 1 which is an immediate consequence of the definition of the

resolvent R of L. Since fv , e!?dz = 0 for every t such that | argt| < ¢ and since the domain of
@,

LFis complete under the graph norm, this shows that S(¢)x € D(LF) and

1
kS = — / 2Fe*R, dz .
21 Yob

It follows that there exist positive constants ¢; such that

k 1
sl < 5 [

Yo,b

o0
\z|k|etZIHRZ|| dlz] < /0 1+ x)kefcﬁ(w*%)(l + ) Ydr .

Integrating by parts £ — 1 times, we obtain

cs eCGt

tk 7’

[o¢]
IFsol < o / e dy =
0

which implies the announced bound. O

It turns out that a similar bound also holds for interpolation spaces with non-integer indices:
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Proposition 5.37. For every t > 0 and every a > 0, S(t) maps B into B, and there exists a
constant C,, such that

Co
[(=L)*St)z|| < T (5.10)

foreveryt € (0,1].

Proof. The fact that S(t) maps B into B, follows from Proposition since there exists n such
that D(L"™) C B,. We assume again that the norm of S(t) decays exponentially for large t. The
claim for integer values of « is known to hold by Proposition[5.36] so we fix some a > 0 which is
not an integer. Note first that (—L)® = (—L)*~ @=L~ L)lel+1 were we denote by [a] the integer
part of a. We thus obtain from the identity

(—Dled+1

R S > [a]—aL[aH—lSt ds .
T(ol—a+D )y ° (¢ +s)ds

(=D)*S®) =

Using the previous bound for & = [«], we thus get for some C' > ( the bound

« > [a]—a eiw(tJrs) —« > S[Q]ia

where we used the substitution s — ¢s. Since the last function is integrable for every a > 0, the
claim follows at once. O

Exercise 5.38. Using the fact that S(¢) commutes with any power of its generator, show that S(t)
maps B, into Bg for every «, 5 € R and that, for 3 > «, there exists a constant C,, g such that
1SM)x|3, < Capllz|p,t* " forall t € (0,1].

Exercise 5.39. Using the bound from the previous exercise and the definition of the resolvent,
show that for every o € R and every § € [, o + 1) there exists a constant C' such that the bound
It — L)'z, < C( + )"~ 1|z, holds for all ¢ > 0.

Exercise 5.40. Consider an analytic semigroup S(¢) on 5 and denote by 5, the corresponding
interpolation spaces. Fix some v € R and denote by S(t) the semlgroup S viewed as a semigroup
on B,. Denoting by B,, the interpolation spaces corresponding to S(t), show that one has the
identity B, = +a for every o € R.

Another question that can be answered in a satisfactory way with the help of interpolation spaces
is the speed of convergence of S(t)x to x as t — 0. We know that if z € D(L), then t — S(t)x
is differentiable at ¢t = 0, so that ||S(t)r — z|| = t||Lx|| + o(t). Furthermore, one can in general
find elements = € B so that the convergence S(t)r — =z is arbitrarily slow. This suggests that if
x € D(—L)*) for a € (0,1), one has || S(t)x — z|| = O@*). This is indeed the case:

Proposition 5.41. Let S be an analytic semigroup with generator L on a Banach space B. Then,
for every a € (0, 1), there exists a constant C,, so that the bound

IStz — x|| < Cot®||x||B, (5.11)

holds for every x € B,, and every t € (0, 1].
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Proof. By density, it is sufficient to show that holds for every « € D(L). For such an z, one
has indeed the chain of inequalities

t t
1Stz — 2| = H/O S(s)L:rdxH - H/O (—L)l_O‘S(s)(—L)O‘xdxH

t t
< Cllals, / I(—L)'S(s) da < Clalls, / 521 ds = Olle||s.t° .
0 0

Here, the constant C depends only on « and changes from one expression to the next. O

We conclude this section with a discussion on the interpolation spaces arising from a perturbed
analytic semigroup. As a consequence of Exercises[5.31} [5.32} and[5.39] we have the following
result:

Proposition 5.42. Let L be the generator of an analytic semigroup on B and denote by Bg the
corresponding interpolation spaces. Let B be a bounded operator from B2 to B for some o € [0, 1).
Let furthermore B., be the interpolation spaces associated to L = Lo + B. Then, one has B, = Bg
for every v € [0, 1].

Proof. The statement is clear for v = 0 and v = 1. For intermediate values of ~, we will show
that there exists a constant C' such that C~!||[(—Lo)'z|| < |[(—L)?z|| < C||(—Lo)?z|| for every
x € D(Lyg).

Since the domain of L is equal to the domain of L, we know that the operator B R; is bounded
for every t > 0, where R; is the resolvent of L. Making use of the identity

R; = RY + R’BR; , (5.12)

(where we similarly denoted by RY the resolvent of Lg) it then follows from Exercise and the
assumption on B that one has for every x € Bg the bound

|BRex|| < ||BRYz|| + | BRY BRyx|| < C(|| Rl sy + || R BRex|g0)
< O+ 0" Yjzllgg + O+ || BRyx|| -

It follows that, for ¢ sufficiently large, one has the bound
IBRiz|| < C(L+ )|l gg - (5.13)

(Note that this bound is also valid for v = 0.) Since one furthermore has the resolvent identity
Rs = R + (t — s)Rs Ry, this bound can be extended to all £ > 0 by possibly changing the value of
the constant C'.

We now show that ||(—L)7z|| can be bounded by ||(—Lo)”z||. We make use of Exercise to
get, for ¢ € D(Ly), the bound

|z, = CH/ O LRy di
0
< CH/ ﬂ—lLoRSxdtH +C/ 77 Y|(LoR? + 1) BRy x| dt
0 . 0
< |=lgo +O/ Y| BRyx|| dt
0

o0
< lzllsg +(J/O T+ O di |2 g -
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Here, we used again the identity to obtain the first inequality and we used in the last
step. Since this integral converges, we have obtained the required bound.
In order to obtain the converse bound, we have similarly to before

(0.9]
/gy < llzlls, +C/ 77| BRex| dt .
0
Making use of the resolvent identity, this yields for arbitrary KX > 0 the bound
oo [e.e]
lllge < llzlls, +C / 7 |BRyxcal dt + CK / {7 | BRys i Rea| dt
0 0

o0 [e.e]
< |zlls, + C/ N+ KT | o + CK/ 7N )7 dt ||
0 0

< |llls, + CK*Hz] g + CK|l]| -

By making K sufficiently large, the prefactor of the second term can be made smaller than 1, say,
so that the required bound follows by the usual trick of moving the term proportional to ||z || B to
the left hand side of the inequality. O

Exercise 5.43. Assume that B = H is a Hilbert space and that the antisymmetric part of L is
‘small’ in the sense that D(L*) = D(L) and, for every £ > 0 there exists a constant C' such that
(L — L*)x|| < ¢||Lz| + C||z|| for every = € D(L). Show that in this case the space H_,, can be
identified with the dual of H, (under the pairing given by the scalar product of ) for o € [0, 1].

It is interesting to note that the range [0, 1] appearing in the statement of Proposition
is not just a restriction of the technique of proof employed here. There are indeed examples of
perturbations of generators of analytic semigroups of the type considered here which induce changes
in the corresponding interpolation spaces B,, for a & [0, 1].

Consider for example the case B = L?([0,1]) and Ly = A, the Laplacian with periodic
boundary conditions. Denote by BY the corresponding interpolation spaces. Let now & € (0, 1) be
some arbitrary index and let g € B be such that g ¢ Bg. Such an element g exists since A is an
unbounded operator. Define B as the operator with domain C'([0, 1]) C B given by

(Bf)@) = f'(1/2)g(x) . (5.14)

It turns out that Bg c C1([0,1]) for o > 3 /4 (see for example Lemma below), so that the
assumptions of Proposition are indeed satisfied. Consider now the interpolation spaces of
index 1 + §. Since we know that By = Bg, we have the characterisations

Bips={f €DQ) : Af + f'(1/2)g € BY},
B s={f D) : Af € BY}.

Since on the other hand g ¢ Bj by assumption, it follows that By N BY 1 consists precisely of
those functions in D(A) that have a vanishing derivative at 1/2. In particular, By 5 # B? s

One can also show that B_ /4 # 891 /4 in the following way. Let { f,} C D(L) be an arbitrary
sequence of elements that form a Cauchy sequence in Bj/4. Since we have already shown that
B3y = Bg /40 this implies that { f,,} is Cauchy in Bg /43S well. It then follows from the definition
of the interpolation spaces that the sequence {Af,,} is Cauchy in Bgl /4 and that the sequence

{(A + B)fn} is Cauchy in B_; /4. Assume now by contradiction that B_; /4 = 691/4.
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This would entail that both {A f,,} and {A f,, + B f,, } are Cauchy in B_, /4, so that { f,(1/2)g}
is Cauchy in B_; /4. This in turn immediately implies that the sequence { f1(1/2)} must be Cauchy
in R. Define now f,, by

n

sin(4mkx)
fu(x) = Z W .

It is then straightforward to check that, since ), (k log? k)~! converges, this sequence is Cauchy in
Bg Ja- On the other hand, we have f),(1/2) = >}'_,(klog k)~! which diverges, thus leading to the
required contradiction.

Exercise 5.44. Show, again in the same setting as above, that if g € Bg for some 6 > 0, then one
has B, = Bg for every a € [0, 1 4+ 9).

Remark 5.45. The operator B defined in (5.14)) is not a closed operator on 5. In fact, it is not even
closable! This is however of no consequence for Proposition [5.42|since the operator L = Lo + B is
closed and this is all that matters.

6 Linear SPDEs / Stochastic Convolutions

We now apply the knowledge gathered in the previous sections to discuss the solution to linear
stochastic PDEs. Most of the material from this section can also be found in one way or the other in
the monographs [DPZg2b, DPZg6] by Da Prato and Zabczyk. The aim of this section is to define
what we mean by the solution to a linear stochastic PDE of the form

dr = Lxdt+QdW (), xz(0)=xg, (6.1)

where we want x to take values in a separable Banach space B, L is the generator of a Cy semigroup
on B, W is a cylindrical Wiener process on some Hilbert space K, and @): X — B is a bounded
linear operator.

We do not in general expect z to take values in D(L) and we do not even in general expect
QW (t) to be a B-valued Wiener process, so that the usual way of defining solutions to by
simply integrating both sides of the identity does not work. However, if we apply some ¢ € D(L*)
to both sides of (6.1]), then there is much more hope that the usual definition makes sense. This
motivates the following definition:

Definition 6.1. A B-valued process x(t) is said to be a weak solution to (6.1)) if, for every ¢ > 0,
fot |z(s)|| ds < oo almost surely and the identity

t

t
(0, z(t)) = (£, xq) +/ (L0, x(s)) ds —i—/ (Q* L, dW (s)) , (6.2)
0 0

holds almost surely for every ¢ € D(L*).

Remark 6.2. (Very important!) The term ‘weak’ refers to the PDE notion of a weak solution
and not to the probabilistic notion of a weak solution to a stochastic differential equation. From a
probabilistic point of view, we are always going to be dealing with strong solutions in these notes,
in the sense that can be solved pathwise for almost every realisation of the cylindrical Wiener
process W.

Just as in the case of stochastic ordinary differential equations, there are examples of stochastic
PDEs that are sufficiently irregular so that they can only be solved in the probabilistic weak sense.
We will however not consider any such example in these notes.
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Remark 6.3. The stochastic integral in (6.2)) can be interpreted in the sense of Section |4.4]since the
map Q*¢: K — R is Hilbert-Schmidt for every ¢ € B*.

Remark 6.4. Although separability of 5 was not required in the previous section on semigroup
theory, it is again needed in this section, since many of the results from the section on Gaussian
measure theory would not hold otherwise.

On the other hand, suppose that f: R, — D(L) is a continuous function and consider the
function x: Ry — D(L) given by x(t) = S(t)xo+ fot S(t—s)f(s)ds, where S is the Cy-semigroup
generated by L. If g € D(L) as well, then this function is differentiable and it is easy to check,
using Proposition that it satisfies the differential equation 0,z = Lx + f. Formally replacing
f(s)ds by Q dW (s), this suggests the following alternative definition of a solution to (6.1):

Definition 6.5. A B-valued process z(t) is said to be a mild solution to if the identity

t
x(t) = St)zo + / St —s)QdW(s), (6.3)
0

holds almost surely for every ¢ > 0. The right hand side of is also sometimes called a stochastic
convolution.

Remark 6.6. By the results from Section[4.4] the right hand side of (6.3]) makes sense in any Hilbert
space H containing B and such that fg treS(t — s)QQ*S(t — s)*1* ds < oo, where v: B — H is
the inclusion map. The statement should then be interpreted as saying that the right hand side
belongs to B C H almost surely. In the case where B is itself a Hilbert space, (6.3)) makes sense if
and only if fg tr S(t — s)QQ*S(t — s)*ds < oo.

It turns out that these two notions of solutions are actually equivalent:

Proposition 6.7. If the mild solution is almost surely integrable, then it is also a weak solution.
Conversely, every weak solution is a mild solution.

Proof. Note first that, by considering the process x(t) — S(t)zo and using Proposition we can
assume without loss of generality that zg = 0.

We now assume that the process x(t) defined by takes values in 3 almost surely and we
show that this implies that it satisfies . Fixing an arbitrary ¢ € D(L), applying L*¢ to both
sides of (6.3)), and integrating the result between 0 and ¢, we obtain:

t t S t t
/ (L*0, 2(s)) ds = / / (L*0,S(s — 1Q dW (r)) ds = / < / S*(s — rL*ds, Q dW(r)> .
0 0 JO 0 r

Using Proposition [5.7)and the fact that, by Proposition[s.15] S* is a strongly continuous semigroup
on B, the closure of D(L*) in B*, we obtain

t

t t
/ (L*0, z(s)) ds = / (S*(t — r)t, Q dW (r)) —/ (€, Q dW (r))
0 0 0
t t
= (& [ sa=neaww) - [ w.oawe)

t
=@MM—A%QMWM
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thus showing that holds for every ¢ € D(L"). To show that z is indeed a weak solution to
(6.1)), we have to extend this to every ¢ € D(L*). This however follows immediately from the fact
that B' is weak-* dense in 3%, which was the content of Proposition
To show the converse, let now z(t) be any weak solution to (again with ¢ = 0). Fix an
arbitrary ¢ € D(L"), some final time ¢ > 0, and consider the function f(s) = S*(t — s){. Since
def

¢ € D(LY), it follows from Proposition that this function belongs to £ = C([0, ], DL N
C1([0,t], BY). We are going to show that one has for such functions the almost sure identity

t

t .
(f@®),zt) = /0 (f(8)+ L f(s), 2(s)) ds +/0 (f(9),QdW(s)) . (6.4)
Since in our case f(s) + L* f(s) = 0, this implies that the identity

t
(£, () = /0 (4,5t — QAW (s) (6.5)

holds almost surely for all ¢ € D(L'). By the closed graph theorem, B is large enough to separate
points in BEI Since D(L') is dense in BT and since B is separable, it follows that countably many
elements of D(L) are already sufficient to separate points in B. This then immediately implies
from (6.5) that x is indeed a mild solution.

It remains to show that holds for all f € £. Since linear combinations of functions
of the type (s) = Ly(s) for ¢ € C1([0,t],R) and ¢ € D(L') are dense in £ (see Exercise
below) and since x is almost surely integrable, it suffices to show that holds for f = .
Since (¢, QW (s)) is a standard one-dimensional Brownian motion, we can apply It6’s formula to
o(s)(¢, x(s)), yielding
t

t t
PO, x (1)) 2/0 w(S)(L*&x(S))Jr/O @(8)<€,$(8)>+/0 P(s)(C, QdW(s))

which coincides with as required. O

Remark 6.8. It is actually possible to show that if the right hand side of (6.3) makes sense for some
t, then it makes sense for all ¢ and the resulting process belongs almost surely to LP([0, T'], B) for
every p. Therefore, the concepts of mild and weak solution actually always coincide. This follows
from the fact that the covariance of x(t) increases with ¢ (which is a concept that can easily be made
sense of in Banach spaces as well as Hilbert spaces), see for example [DJTgs5].

Exercise 6.9. Consider the setting of the proof of Proposition Let f € £ =C([0,1],D(LT) N
CY([0,1], BY) and, for n > 0, define f, on the interval s € [k/n,(k + 1)/n] by cubic spline
interpolation:

fn(s) = f(k/n)(k + 1 —ns)?(1 + 2ns — 2k) + f((k + 1)/n)(ns — k)*(3 — 2ns + 2k)
+ (ns — k)(k + 1 = ns)’n(f((k + $)/n) — f((k — $)/n))
+ (ns — k)’(ns — k — Dn(f((k+ 3)/n) — f((k+ $)/n)) .
Show that f,, is a finite linear combinations of functions of the form £ (s) with ¢ € C1([0, 1], R)
and that f, — f in C([0, 1], D(L")) nC'([0, 1], BM).

6Assume that, for some x,y € B, we have (¢, x) = (¢, y) for every £ € D(L"). We can also assume without loss
of generality that the range of L is B, so that z = Lz’ and y = Ly/, thus yielding (L*¢,x") = (L*¢,y’). Since L is
injective and has dense domain, the closed graph theorem states that the range of L* is all of B*, so that ' = y’ and thus
alsox = y.




LiNearR SPDEs / StocHAsTIC CONVOLUTIONS 59

6.1 Time and space regularity

In this subsection, we are going to study the space and time regularity of solutions to linear stochastic
PDEs. For example, we are going to see how one can easily derive the fact that the solutions
to the stochastic heat equation are ‘almost’ ;-Holder continuous in time and ‘almost’ 5-Holder
continuous in space. Since we are often going to use the Hilbert-Schmidt norm of a linear operator,
we introduce the notation

|All3s = trAA* .

For most of this section, we are going to make use of the theory of analytic semigroups. However,
we start with a very weak regularity result for the solutions to stochastic PDEs whose linear operator
L generates an arbitrary Cy-semigroup:

Theorem 6.10. Let H and K be separable Hilbert spaces, let L be the generator of a Cy-semigroup
onH, let Q: K — H be a bounded operator and let W be a cylindrical Wiener process on K.
Assume furthermore that |S(t)Q||us < oo for every t > 0 and that there exists o € (0, %) such

that fol t=29S(HQ||3 dt < oc. Then the solution x to has almost surely continuous sample
paths in H.
Proof. Note first that ||.S(t 4+ $)Q||lus < ||5(s)]|||S()Q]us, so that the assumptions of the theorem

imply that fOT t729)S(H)Q||3g dt < oo for every T > 0. Let us fix an arbitrary terminal time 7'
from now on. Defining the process y by

t
y(t) = / (t— St — QAW (s)
0
we obtain the existence of a constant C' such that
t t
E|ly@)||* = / (t — )72 St — Qs ds = / s72|S(s)Q|lfs ds < €,
0 0

uniformly for ¢ € [0,7T']. It therefore follows from Fernique’s theorem that for every p > 0 there
exist a constant C), such that

T
E/ ly@|Pdi < C, . 6.6)
0

Note now that there exists a constant ¢, (actually ¢, = (sin 2w«)/m) such that the identity

¢ 1
/ (t — T)O‘_l(r —8) %dr = —

Ca

holds for every ¢ > s. It follows that one has the identity
t ot
x(t) = Sxo + co / / t =)L — $)"*S(t — s)dr Q dW (s)
0 Js
t T
= SW)xo + co / / t—r)* " — )~ St — 8)Q dW (s) dr
0o Jo
t T
= S(t)xo + ca / St —r) / (r — )" S(r — )QdW(s) (t — r)* L dr
0 0

t
= SW)xo + co / St —ryy(r)(t — r*Ldr. (6.7)
0
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The claim thus follows from if we can show that for every a € (0, %) there exists p > 0 such
that the map

t
y—F,, F,t) = / (t — > LSt — r)y(r) dr
0

maps LP([0,T], H) into C([0, T'], H). Since the semigroup ¢ — S(t) is uniformly bounded (in the
usual operator norm) on any bounded time interval and since ¢ — (t — r)®~! belongs to L9 for
q € [1,1/(1 — a)), we deduce from Holder’s inequality that there exists a constant C'p such that one
does indeed have the bound sup;co 1 | F, )P < Cr fOT |y(®)||P dt, provided that p > 1. Since
continuous functions are dense in L?, the proof is complete if we can show that F}, is continuous
for every continuous function y with y(0) = 0.

Fixing such a y, we first show that F}, is right-continuous and then that it is left continuous.
Fixing ¢t > 0, we have for 2 > 0 the bound

¢
| Fy(t + h) — Fyt)]| < / (t+h— ) LS(h) — (t — T)afl)s(t —r)y(r)| dr
0
t+h
+/ (t—l—h—1")0‘_1||S(t+h—r)y(r)|]dr
t

The second term is bounded by O(h°) for some 6 > 0 by Holder’s inequality. It follows from the

strong continuity of .S that the integrand of the first term converges to 0 pointwise as h — 0. Since

on the other hand the integrand is bounded by C(t — r)*~!||y(r)|| for some constant C, this term

also converges to 0 by the dominated convergence theorem. This shows that F}, is right continuous.
To show that F, is also left continuous, we write

t—h
[Fy(#) — Fy(t = b < /0 1t =) S(h) = (t = h = 1) 1) St — h = r)y(r)|| dr

t
+ h(t — ) HS(t — ryy(r)|| dr .
tf

We bound the second term by Holder’s inequality as before. The second term can be rewritten as

t
/ (@ +h =) S(h) = (t = )1 SE — ry(r — b dr
0

with the understanding that y(r) = 0 for » < 0. Since we assumed that y is continuous, we can
again use the dominated convergence theorem to show that this term tends to 0 as h — 0. O

Remark 6.11. The trick employed in (6.7)) is sometimes called the “factorisation method” and
was introduced in the context of stochastic convolutions by Da Prato, Kwapien,, and Zabczyk
[DPKZ87,, [DPZg2al.

This theorem is quite sharp in the sense that, without any further assumption on ) and L, it is
not possible in general to deduce that £ — x(¢) has more regularity than just continuity, even if we
start with a very regular initial condition, say o = 0. We illustrate this fact with the following
exercise:

Exercise 6.12. Consider the case # = L?(R), K =R, L = 9, and Q = g for some g € L*(R)
such that g > 0 and g(z) = |2|~” for some 3 € (0, 1) and all || < 1. This satisfies the conditions
of Theorem [6.10]for any o < 1.
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Since L generates the translation group, the solution to
du(z,t) = dpu(z, t)dt + g(x) dW (@), w(z,0)=0,

is given by
t
u(x,t) = / gx +1t—s5)dW(s).
0

Convince yourself that for fixed ¢, the map x — wu(x,t) is in general y-Holder continuous for
v < % — 3, but no better. Deduce from this that the map ¢ — wu(-,t) is in general also y-Holder
continuous for vy < % — [ (if we consider it either as an H-valued map or as a C(R)-valued map),
but cannot be expected to have more regularity than that. Since 3 can be chosen arbitrarily close to
%, it follows that the exponent « appearing in Theorem is in general independent of the Holder
regularity of the solution.

One of the main insights of regularity theory for parabolic PDEs (both deterministic and
stochastic) is that space regularity is intimately linked to time regularity in several ways. Very often,
the knowledge that a solution has a certain spatial regularity for fixed time implies that it also has a
certain temporal regularity at a given spatial location.

From a slightly different point of view, if we consider time-regularity of the solution to a PDE
viewed as an evolution equation in some infinite-dimensional space of functions, then the amount of
regularity that one obtains depends on the functional space under consideration. As a general rule,
the smaller the space (and therefore the more spatial regularity it imposes) the lower the regularity
of the solution, viewed as a function with values in that space.

We start by giving a general result that tells us precisely in which interpolation space one can
expect to find the solution to a linear SPDE associated with an analytic semigroup. This provides us
with the optimal spatial regularity for a given SPDE:

Theorem 6.13. Consider (6.1) on a Hilbert space H, assume that L generates an analytic
semigroup, and denote by H,, the corresponding interpolation spaces. If there exists o > 0 such
that Q: K — H,, is bounded and 3 € (0, % + o] such that ||(—L)™?||us < oo then the solution x
takes values in H., for every v < vo = % +a—B.

Proof. As usual, we can assume without loss of generality that O belongs to the resolvent set of L.
It suffices to show that

T
1) [ -LrsOQlsde <o, ¥ 0.
0

Since () is assumed to be bounded from /C to H,,, there exists a constant C' such that
T T
Im<c / (=LY SE)(—L)*|fs dt = C / (=LY =S| dt .
0 0

Since (— L)~ is Hilbert-Schmidt, we have the bound
|(=L)""*S®)||us < ||(—L)7BHHSH(—L)ﬁﬂwS(t)H <c( \/ta*”ffﬁ) ‘

For this expression to be square integrable neart = 0, weneedav — vy — 3 > — %, which is precisely
the stated condition. O
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Exercise 6.14. Show that if we are in the setting of Theorem and L is selfadjoint, then the
solutions to actually belong to H., for v = .

Exercise 6.15. Show that the solution to the stochastic heat equation on [0, 1] with periodic
boundary conditions has solutions in the fractional Sobolev space H* for every s < 1/2. Recall
that /° is the Hilbert space with scalar product (f, g)s = > ;. frdi(l + k), where fj, denotes the
kth Fourier coefficient of f.

Exercise 6.16. Consider the following modified stochastic heat equation on [0, 1]¢ with periodic
boundary conditions:

de =Axdt+ (1 —A)7dW ,

where T is a cylindrical Wiener process on L2([0, 1]%). For any given s > 0, how large does 7
need to be for x to take values in H° ?

Using this knowledge about the spatial regularity of solutions, we can now turn to the time-
regularity. We have:

Theorem 6.17. Consider the same setting as in Theorem|[6.13|and fix v < ~o. Then, at all times
t > 0, the process x is almost surely 0-Holder continuous in H, for every 6 < % A (vo — )

Proof. Tt follows from Kolmogorov’s continuity criteria, Proposition that it suffices to check
that the bound

E|z(t) — 2(s)||? < Ct — s|'"?G=D

holds uniformly in s, t € [£g, T'] for every tg, T > 0 and for every 4 < ~y. Here and below, C' is an
unspecified constant that changes from expression to expression. Assume that ¢ > s from now on. It
follows from the semigroup property and the independence of the increments of W that the identity

t
z(t) = St — s)x(s) + / St —r)QdW(r), (6.8)

holds almost surely, where the two terms in the sum are independent. This property is also called
the Markov property. Loosely speaking, it states that the future of  depends on its present, but not
on its past. This transpires in through the fact that the right hand side depends on x(s) and on
the increments of W between times s and ¢, but it does not depend on z(r) for any r < s.

Furthermore, x(s) is independent of the increments of W over the interval [s,?], so that
Proposition allows us to get the bound

t—s
Bo(t) — o) [2 = ES(t — 512~ 22 + [ LISl dr
0
t—s
< CJt — 5OV n(s) |2 + c/ (1Vra7-8)2 gy |
0

Here, we obtained the bound on the second term in exactly the same way as in the proof of
Theorem The claim now follows from the fact that « — v — 8 = (g — ) — % O]
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6.2 Long-time behaviour

This section is devoted to the behaviour of the solutions to for large times. Let’s again start
with an example that illustrates some of the possible behaviours.

Example 6.18. Let = — V() be some smooth ‘potential’ and let H = L?(R, exp(—V (x)) dx).
Let S denote the translation semigroup (to the right) on # and denote its generator by —0,.. Let us
first discuss which conditions on V' ensure that S is a strongly continuous semigroup on . It is
clear that it is a semigroup and that S(t)u — u for v any smooth function with compact support. It
therefore only remains to show that ||S(¢)|| is uniformly bounded for ¢ € [0, 1] say. We have

|Styu|? = /u2(1: — e V@ dg = /u2(x)e_v(x)ev($)_v($+t) dz . (6.9)

This shows that a necessary and sufficient condition for S to be a strongly continuous semigroup on
H is that, for every ¢ > 0, there exists C; such that sup, g(V(x) — V(x + t)) < C} and such that
C remains bounded as ¢t — 0. Examples of potentials leading to a Cp-semigroup are z, v/1 + z2,
log(1 4 22), etc or any increasing function. Note however that the potential V(x) = 22 does not lead
to a strongly continuous semigroup. One different way of interpreting this is to consider the unitary
transformation K : u > exp(%V)u from the ‘flat’ space L? into . Under this transformation, the
generator —Q,, is turned into

—(K'0, Ku)(2) = —0,u(x) — 3V (2)u(@) .

Considering the characterisation of generators of Cy-semigroups given by the Hille—Yosida theorem,
one would expect this to be the generator of a strongly continuous semigroup if V' is bounded from
below, which is indeed a sufficient condition.

Let now V be such that S is a Cyp-semigroup and consider the SPDE on # given by

du(z,t) = —0zu(z, t)dt + f(x)dW(t) , (6.10)

where IV is a one-dimensional Wiener process and f is some function in . The solution to (6.10)
with initial condition ug = 0 is given as before by

t
u(x,t) = / flx+s—t)dW(s). (6.11)
0

If we fix the time ¢, we can make the change of variable s — ¢ — s, so that u(x, t) is equal in
distribution to [} f(x — ) dW ().

We see that if f happens to be also square integrable (we will assume that this is the case in the
sequel and we will also assume that f is not identically zero), then has a limit in distribution
as t — oo given by

u(r) = /OO flx—s)dW(s) . (6.12)
0

It is however not clear a priori that @ does belong to H. On one hand, we have the bound

E/ ﬂ(l,)2e—V(r) dr = / / fz(CL‘ —b)dt e V@ g, < / f2(7f) dt/ e V@ 1. ’
R R JO R R

thus showing that @ definitely belongs to # if e~ has finite mass. On the other hand, there are
examples where @ € H even though e~"" has infinite mass. For example, if f(z) = 0 for x < 0,
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then it is necessary and sufficient to have [, e~V dx < co. Denote by v the law of 4 for further
reference.

Furthermore, if e~" is integrable, there are many measures on # that are invariant under the
action of the semigroup S. For example, given a function h € H which is periodic with period
7 (that is S(7)h = h), we can check that the push-forward of the Lebesgue measure on [0, 7]
under the map ¢ — S(¢)h is invariant under the action of S. This is simply a consequence of the
invariance of Lebesgue measure under the shift map. Given any invariant probability measure p
of this type, let v be an H-valued random variable with law p, that is independent of W. We can
then consider the solution to with initial condition v. Since the law of S(t)v is equal to the
law of v by construction, it follows that the law of the solution converges to the distribution of the
random variable @ + v, with the understanding that % and v are independent.

This shows that in the case [ e V@ dx < o0, it is possible to construct solutions u to
such that the law of u(- , t) converges to u x v for any periodic function h.

Exercise 6.19. Construct an example of a potential V' such that the semigroup S from the
previous example is not strongly continuous by choosing it such that limy_,q ||S(?)|| = +oo,
even though each of the operators S(t) for ¢ > 0 is bounded! Hint: Choose V of the form
V(z) = 23 — Zn>0 nW(“;f" ), where W is an isolated ‘spike’ and c, are suitably chosen
constants.

This example shows that in general, the long-time behaviour of solutions to (6.1]) may depend
on the choice of initial condition. It also shows that depending on the behaviour of H, L and @,
the law of the solutions may or may not converge to a limiting distribution in the space in which
solutions are considered.

In order to formalise the concept of ‘long-time behaviour of solutions’ for (6.1)), it is convenient
to introduce the Markov semigroup associated to (6.1). Given a linear SPDE with solutions in B,
we can define a family P, of bounded linear operators on Z(B), the space of Borel measurable
bounded functions from 5 to R by

t
(Prp)(@) = By (S(t)x n /O S(t — )0 dW(s)) . (6.13)

The operators P; are Markov operators in the sense that the map A — Pi14(x) is a probability
measure on 3 for every fixed z. In particular, one has P;1 =1 and Py > 0if ¢ > 0, that is the
operators Py preserve positivity. It follows furthermore from (6.8)) and the independence of the
increments of W over disjoint time intervals that P, satisfies the semigroup property P;+s = ProPs
for any two times s,t > 0.

Exercise 6.20. Show that 7°; maps the space C(3) of continuous bounded functions from B to R
into itself. (Recall that we assumed B to be separable.)

If we denote by P(x, - ) the law of S(¢)x + fg S(t — s)Q dW (s), then P; can alternatively be
represented as

(Pup) () = / oY) Pi(x, dy) -
B
It follows that its dual P/ acts on measures with finite total variation by

(P u)(A) = /B Pz, A) p(dzx) .

Since it preserves the mass of positive measures, P; is a continuous map from the space & (3) of
Borel probability measures on B (endowed with the total variation topology) into itself. It follows
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from (6.13) and the definition of the dual that P;x is nothing but the law at time ¢ of the solution to
with its initial condition ug distributed according to p, independently of the increments of W
over [0, t]. With these notations in place, we define:

Definition 6.21. A Borel probability measure p on B is an invariant measure for (6.1)) if P;'pn = p
for every t > 0, where P; is the Markov semigroup associated to solutions of via (6.13).

In the case B = H where we consider (6.1)) on a Hilbert space H, the situations in which such
an invariant measure exists are characterised in the following theorem:

Theorem 6.22. Consider ([6.1)) with solutions in a Hilbert space H and define the self-adjoint
operator Q¢: H — H by

t
Qi = /0 SQQ S (1) dt .

Then there exists an invariant measure ji for (6.1) if and only if one of the following two equivalent
conditions are satisfied:

1. There exists a positive definite trace class operator Qu: H — H such that the identity
2R(Quo L*z, x) + ||Q*x||? = 0 holds for every x € D(L*).
2. One has sup;q tr Qy < oo.

Furthermore, any invariant measure is of the form v % (i, where v is a measure on H that is
invariant under the action of the semigroup S and L is the centred Gaussian measure with
covariance .

Proof. The proof goes as follows. We first show that u being invariant implies that 2. holds. Then
we show that 2. implies 1., and we conclude the first part by showing that 1. implies the existence of
an invariant measure.

Let us start by showing that if y is an invariant measure for (6.1)), then 2. is satisfied. By
choosing p(z) = e*"% for arbitrary h € H, it follows from that the Fourier transform of
P satisfies the equation

Pu(x) = US*@)w)e ™2 @) (6.14)
Taking logarithms and using the fact that |/i(z)| < 1 for every = € H and every probability measure
u, It follows that if p is invariant, then

(x,Qixy < —2log|i(x)|, VeeH, Vt>0. (6.15)

Choose now a sufficiently large value of R > 0 so that u(||z|| > R) < 1/8 (say) and define a
symmetric positive definite operator Ag: H — H by

(h, Agh) = / [z, 1) P u(d)

=l <R

Since, for any orthonormal basis, one has ||z[|? = 3" |(x, e,)|?, it follows that Ap is trace class

and that tr A < RZ. Furthermore, one has the bound

1 —ah] < / 1 — '] p(dx) < \/(h, ARh) + i .
H

Combining this with (6.15), it follows that (x, Q;x) is bounded by 21og4 for every « € H such
that (x, Agx) < 1/4 so that, by homogeneity,

<$7th> < (810g4)<$,ARZL‘> :
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It follows that tr Q; < (8log4)R?, so that 2. is satisfied. To show that 2. implies 1., note that
suptr Q; < oo implies that

Qo — /0 S(HQQ*S* (1) dt ,

is a well-defined positive definite trace class operator (since ¢t — Q% /2 forms a Cauchy sequence in
the space of Hilbert-Schmidt operators). Furthermore, one has the identity

t
(2, Qoett) = (S™ (D), QuoS™ (D) + /0 1Q*S* ()] ds

for x € D(L*), both terms on the right hand side of this expression are differentiable. Taking the
derivative at t = 0, we get
0= 2R(QuoL*z, ) + ||Q*z|? ,

which is precisely the identity in 1.

Let now (), be a given operator as in 1., we want to show that the centred Gaussian
measure [, With covariance (), is indeed invariant for P;. For z € D(L*), it follows from
Propositionthat the map F: t — (QooS™(t)x, S*(t)z) is differentiable with derivative given
by OiF,(t) = 2R(Qoo L* S*(t)x, S*(t)x). It follows that

t t
F.(t) — Fp(0) = 2/ R(QooL*S™ (), S™(s)x) ds = —/ HQ*S’"(S):CH2 ds ,
0 0

so that one has the identity

t
Qoo = SRS (1) +/0 S()QQ*S(s)ds = SHQoc S™(1) + Q-

Inserting this into , the claim follows. Here, we used the fact that D(L*) is dense in H, which
is always the case on a Hilbert space, see [ Yosgs), p. 196].

Since it is obvious from that every measure of the type v * jio, with v invariant for S
is also invariant for P;, it remains to show that the converse also holds. Let u be invariant for P
and define y; as the push-forward of 1 under the map S(¢). Since [i.(x) = a(S*(t)x), it follows
from and the invariance of y that there exists a function v: H — R such that () — ¥(x)
uniformly on bounded sets, ) o S(t)* = ), and such that ji(z) = () exp(—%(:n, Qoor)). Tt
therefore only remains to show that there exists a probability measure v on A such that ¢ = o.

In order to show this, it suffices to show that the family of measures {y} is tight, that is for
every € > 0 there exists a compact set K such that p;(K) > 1 — ¢ for every ¢. Prokhorov’s theorem
[Bil68, p. 37] then ensures the existence of a sequence ¢,, increasing to co and a measure v such
that p, — v weakly. In particular, fi;, (z) — D(x) for every x € H, thus concluding the proof.

To show tightness, denote by 1, the centred Gaussian measure on H with covariance (); and
note that one can find a sequence of bounded linear operators A,,: H — H with the following
properties:

a. One has || A, +12|| > ||Anz|| for every x € H and every n > 0.
b. The set Bg = {x : sup,, || Anz| < R} is compact for every R > 0.
c. One has sup,, tr 4, Qsc A}, < 00.

(By diagonalising (), the construction of such a family of operators is similar to the construction,
given a positive sequence { A, } with >~ \,, < 0o, of a positive sequence a,, withlim,,_,~ a,, = +00
and ), ap\, < 00.) Let now € > 0 be arbitrary. It follows from Prokhorov’s theorem that there
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exists a compact set K C # such that (4 \ K) < 5. Furthermore, it follows from property c.
above and the fact that Qo > @ that there exists R > 0 such that v,(H \ Bg) < % Define a set
K C Hby

K={z—y:z2€K,yeBg}.

It is straightforward to check, using the Heine-Borel theorem, that K is precompact.

If we now take X and Y to be independent #-valued random variables with laws p; and 14
respectively, then it follows from the definition of a mild solution and the invariance of j that
Z = X +Y has law p1. Since one has the obvious implication {Z € K}&{Y € Br} = {X € K},
it follows that

M\ K)=P(X ¢ K)<P(Z ¢ K)+PY ¢ Bp) <¢,
thus showing that the sequence {1} is tight as requested. 0

It is clear from Theorem [6.22] that if does have a solution in some Hilbert space # and if
IS(t)|| — 0 as ¢t — oo in that same Hilbert space, then it also possesses a unique invariant measure
on H. It turns out that as far as the “uniqueness” part of this statement is concerned, it is sufficient
to have lim;_,~ ||S(¢)z|| = 0 for every x € H:

Proposition 6.23. If lim;_,« ||S(t)z|| = 0 for every x € H, then can have at most one
invariant measure. Furthermore, if an invariant measure [~ exists in this situation, then one has
Piv — pso weakly for every probability measure v on H.

Proof. In view of Theorem[6.22] the first claim follows if we show that d is the only measure that
is invariant under the action of the semigroup .S. Let v be an arbitrary probability measure on H
such that S(¢)*v = v for every t > 0 and let ¢: H — R be a bounded continuous function. On
then has indeed

/ p(x)v(dz) = lim / p(Sz)v(dr) = ¢(0) , (6.16)
H t—o00 H

where we first used the invariance of v and then the dominated convergence theorem.

To show that P/v — 1, whenever an invariant measure exists we use the fact that in this
case, by Theorem [6.22] one has Q; T Q in the trace class topology. Denoting by 1 the centred
Gaussian measure with covariance @, the fact that L? convergence implies weak convergence
then implies that there exists a measure fio, such that u; — fio, weakly. Furthermore, the same
reasoning as in (6.16) shows that S(¢)*v — Jp weakly as ¢ — co. The claim then follows from
the fact that P;v = (S(¢)*v) 11 and from the fact that convolving two probability measures is a
continuous operation in the topology of weak convergence. 0

Note that the condition lim;_,, ||S(t)x|| = 0 for every z is nor sufficient in general to guarantee
the existence of an invariant measure for (6.1). This can be seen again with the aid of Example[6.18]
Take an increasing function V' with lim,_, o, V() = oo, but such that fooo e V@ dx = co. Then,
since exp(V(z) — V(x+1t)) < 1and lim;_, exp(V(z) — V(z+1t)) = 0 forevery x € R, it follows
from and the dominated convergence theorem that lim;_, ||S(t)u|| = 0 for every u € H.
However, the fact that [~ e~ da = oo prevents the random process @ defined in (6.12) from
belonging to H, so that has no invariant measure in this particular situation.

Exercise 6.24. Show that if (6.1)) has an invariant measure pi, but there exists x € H such that
limsup,_, . [|S()x| > 0, then one cannot have P; 6, — 1 Weakly. In this sense, the statement

of Proposition is sharp.
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6.3 Convergence in other topologies

Proposition [6.23] shows that if has an invariant measure (., One can in many cases expect to
have P} v — po, weakly for every initial measure v. It is however not clear a priori whether such a
convergence also holds in some stronger topologies on the space of probability measures. If we
consider the finite-dimensional case (that is H = R" for some n > 0), the situation is clear: the
condition lim;_, || S(t)x|| = 0 for every = € H then implies that lim;_,, ||S(¢)|| = 0, so that L
has to be a matrix whose eigenvalues all have strictly negative real parts. One then has:

Proposition 6.25. In the finite-dimensional case, assume that all eigenvalues of L strictly negative
real parts and that )~ has full rank. Then, there exists T > 0 such that P; 0, has a smooth density
Dt.o With respect to Lebesgue measure for every t > T. Furthermore, |1 has a smooth density ps,
with respect to Lebesgue measure and there exists ¢ > 0 such that, for every X > 0, one has

lim e sup EAly‘|poo(y) — Pty =0.
t—o0 yER™

In other words, p; . converges 1o p exponentially fast in any weighted norm with exponentially
increasing weight.

The proof of Proposition is left as an exercise. It follows in a straightforward way from the
explicit expression for the density of a Gaussian measure.

In the infinite-dimensional case, the situation is much less straightforward. The reason is that
there exists no natural reference measure (the equivalent of the Lebesgue measure) with respect to
which one could form densities.

In particular, even though one always has || — fiool|co — O in the finite-dimensional case
(provided that 1 exists and that all eigenvalues of L have strictly negative real part), one cannot
expect this to be true in general. Consider for example the SPDE

de = —xdt+QdW(t), z(i)eH,
where W is a cylindrical process on H and () : H — H is a Hilbert-Schmidt operator. One then has

—2t
Q=100 Qu=,00"
Combining this with Proposition (dilates of an infinite-dimensional Gaussian measure are
mutually singular) shows that if QQ* has infinitely many non-zero eigenvalues, then i and pi.o are
mutually singular in this case.
Recall from (3.3) that the total variation distance between two probability measures 1 and v on
a separable Banach space B is given by

lp—virv=2 inf w({z#y}), (6.17)
TEE (1,v)

where the infimum runs over the set €’ (u, v) of all probability measures 7 on I3 x B with marginals z
and v. This yields a straightforward interpretation to the total variation convergence Py — jioo: for
large times, a sample drawn from the invariant distribution is with high probability indistinguishable
from a sample drawn from the Markov process at time ¢. Compare this with the notion of weak
convergence which relies on the topology of the underlying space and only asserts that the two
samples are close with high probability in the sense determined by the topology in question. For
example, ||0, — 0, || is always equal to 2 if x # y, whereas 0, — 0, weakly if z — y.
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Exercise 6.26. Show that the two definitions of the total variation distance given above are indeed
equivalent by constructing a coupling that realises the infimum in (3.3). It is useful for this to
consider the measure ;1 A v which, in ; and v have densities D), and D, with respect to some
common reference measure 7, is given by (Du(m) A Dy(x))m(dz).

An alternative characterisation of the total variation norm is as the dual norm to the supremum
norm on the space %;(B) of bounded Borel measurable functions on B:

= vl = supd{ [ ot~ [ e = sup o) <1}
xeB

It turns out that, instead of showing directly that P;v — po in the total variation norm, it is
somewhat easier to show that one has P;v — [ in a type of ‘weighted total variation norm’,
which is slightly stronger than the usual total variation norm. Given a weight function V: B — R,
we define a weighted supremum norm on measurable functions by

el = sup 12T
zeB 1+ V(x)
as well as the dual norm on measures by
= vlirey = sup{ [ comdn - [e@mn  felv <1}, ©19)

Since we assumed that V' > 0, it is obvious that one has the relation || — v|ltv < ||i — v||tv.v,
so that convergence in the weighted norm immediately implies convergence in the usual total
variation norm. By considering the Jordan decomposition of  — v = p4 — p_, it is clear that the
supremum in (6.18]) is attained at functions ¢ such that o(z) = 1 + V(z) for p,-almost every x
and p(z) = —1 — V(z) for p_-almost every x. In other words, an alternative expression for the
weighted total variation norm is given by

In=vlirvy = [ (14 V@) =i . (6.19)

just like the total variation norm is given by ||u — v||v = |p — v|(X).

The reason why it turns out to be easier to work in a weighted norm is the following: For a
suitable choice of V, we are going to see that in a large class of examples, one can construct a
weight function V' and find constants ¢ < 1 and T' > 0 such that

|Pru— Prvlltv,y < cllp— VHTV,V ) (6.20)

for any two probability measures p and v. This implies that the map Pr is a contraction on the
space of probability measures, which must therefore have exactly one fixed point, yielding both
the existence of an invariant measure (i, and the exponential convergence of P;v to i for every
initial probability measure v which integrates V.

This argument is based on the following abstract result that works for arbitrary Markov
semigroups on Polish (that is separable, complete, metric) spaces:

Theorem 6.27 (Harris). Let P be a Markov semigroup on a Polish space X such that there exists a
time Ty > 0 and a function V : X — R such that:

o The exist constants v < 1 and K > 0 such that P,V (z) < vV (x) + K for every x € X.
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e Forevery K' > 0, there exists 0 > 0 such that ||Py, 0. — Py, dylltv < 2 — 4 for every pair
x,y such that V(z) + V(y) < K'.

Then, there exists T > 0 such that holds for some ¢ < 1.

In a nutshell, the argument for the proof of Theorem is the following. There are two
mechanisms that allow to decrease the weighted total variation distance between two probability
measures:

2. The mass of the two measures moves into regions where the weight V' (z) becomes smaller.

1. The two measures ‘spread out’ in such a way that there is an increase in the overlap between
them.

The two conditions of Theorem are tailored such as to combine these two effects in order to
obtain an exponential convergence of P; 1 to the unique invariant measure for P; as t — oo.

Remark 6.28. The condition that there exists 6 > 0 such that | P, 0 — Pz, 6y[[tv < 2 — d for any
x,y € A is sometimes referred to in the literature as the set A being a small set.

Remark 6.29. Traditional proofs of Theorem[6.27]as given for example in [MTg3] tend to make use
of coupling arguments and estimates of return times of the Markov process described by P; to level
sets of V. The basic idea is to make use of to get a bound on the total variation between P 1
and P7v by constructing an explicit coupling between two instances ; and y; of a Markov process
with transition semigroup {P;}. Because of the second assumption in Theorem one can
construct this coupling in such a way that every time the process (x;, y;) returns to some sufficiently
large level set of V, there is a probability § that 2y = yu for t' > ¢ + Tp. The first assumption then
guarantees that these return times have exponential tails and a renewal-type argument allows to
conclude.

Such proofs are quite involved at a technical level and are by consequent not so easy to follow,
especially if one wishes to get a spectral gap bound like and not “just” an exponential decay
bound like

P10 — Prdyllrv < Cce T,

with a constant C' depending on x and y. Furthermore, they require more background in advanced
probability theory than what is assumed for the scope of these notes.

The elementary proof given here is taken from [HM11] and is based on the arguments first
exposed in [HMog]. It has the disadvantage of being less intuitively appealing than proofs based
on coupling arguments, but this is more than offset by the advantage of fitting into less than two
pages without having to appeal to advanced mathematical concepts. It also has the advantage of
being generalisable to situations where level sets of the Lyapunov function are not small sets, see
[HMS11]].

Before we turn to the proof of Theorem|[6.27, we define for every 5 > 0 the distance function

B 0 ifr=y
dg(x,y) = { 24 6V(x)+ pBV(y) ifx#y.

One can check that the positivity of V' implies that this is indeed a distance function, albeit a rather
strange one. We define the corresponding ‘Lipschitz’ seminorm on functions ¢: X — R by

@) — (y)|

Pl|Lipy; = Sup
lellLip,; P )

We are going to make use of the following lemma:
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Lemma 6.30. With the above notations, one has ||¢||Lip, = infcer [|¢ + ¢|| v

Proof. Itis obvious that [|¢[|Lip, < [|¢ + c[|gy for every ¢ € R. On the other hand, if zy is any
fixed point in X, one has

lp@)] < [p(o)| + [[¢llLip, (2 + BV (@) + BV (20)) , (6.21)

forall z € X. Set now
— sup (¢(x) — [lllLip, (1 + BV (2))) -
zeX
It follows from (6.21]) that c is finite. Furthermore, one has

o) + ¢ < o) — (@) — lelluip, (1 + BV ®))) = llellLip, (1 + BV (1) ,

and
py) +c= int (py) = @) + [lollLip, (1 + BV ()))
> inf plip, (14 BV (@) — dae,9) = =l ¢llp, (1 + BV )
which implies that [|¢ + c[| gy < [[¢0]|Lip- O

Proof of Theorem During this proof, we use the notation P = ‘P, for simplicity. We are
going to show that there exists a choice of 3 € (0, 1) such that there is o < 1 satisfying the bound

Po(x) — Poy)| < ads(x, e, (6.22)

uniformly over all measurable functions ¢: X — R and all pairs z,y € X. Note that this is

equivalent to the bound || Py ||Lip, < all@|lLip,- Combining this with Lemmaand 1| we
obtain that, for ' = nT{y, one has the bound

P — Prvlry,y =  inf / (Pro)(@) (u— v)(dx)

lellv<iJx

= inf inf/ ((Pre)(x) + ¢) (u — v)(dx)
X

ol <1ceR

< inf 1nf |Pre + CHv/ (1+ V(@) |p — v|(dx)
el < X

= inf 5 clfHPTSDJrCllﬁVIIM—VIITv,v

lloellv <1
=p" 1” h ||PT<P”L1ngM VHTV,V
an
5 o ” <1H80||L1p5”ﬂ V”Tvv— ﬁQHM VHTVV

Since o < 1, the result then follows at once by choosing n sufficiently large.

Let us turn now to (6.22). If x = y, there is nothing to prove, so we assume that x # y.
Fix an arbitrary non-constant function ¢ and assume without loss of generality that ||¢||Lip, = 1.
It follows from Lemma that, by adding a constant to it if necessary, we can assume that
lp(x) + ¢ < (14 BV (2)).
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This immediately implies the bound

[Po(x) — Po(y)| < (2+ BPV(x) + FPV ()
<2+ 28K + ByV(x) + ByV(y) .

Suppose now that x and y are such that V' (z) + V(y) > % A straightforward calculation shows
that in this case, for every 5 > 0 there exists a; < 1 such that (6.22]) holds. One can choose for

example
1 s

21—~y +BK+8°

Take now a pair z,y such that V(z) + V(y) < 21%22 Note that we can write ¢ = @1 + @2
with |p1(z)| < 1 and |pa2(x)| < BV (x). (Set pi(z) = (p(x) A1) V (—1).) It follows from the
assumptions on V' that there exists some ¢ > 0 such that

(11:1

[Po(x) — Po)] < |[Pei(z) — Pe1(y)| + [Pypa(x) — Ppa(y)|
< ||P*6, — P*0yllTv + B(PV )(x) + B(PV)(y)
<2-6+4B2K +4V (@) +V(y)) < 2—5+25K1+z .

If we now choose 3 < %;—YY, holds with . = 1 — %(5 < 1. Combining this estimate with
the one obtained previously shows that one can indeed find v and 3 such that (6.22) holds for all

and y in X, thus concluding the proof of Theorem [6.27} O

One could argue that this theorem does not guarantee the existence of an invariant measure
since the fact that P7u = p does not guarantee that P = p for every ¢t. However, one has:

Lemma 6.31. If there exists a probability measure such that Py = i for some fixed time T' > 0,
then there also exists a probability measure Lo such that P} lieo = oo for all t > 0.

Proof. Define the measure (i, by

1 T
poo(A) = /0 Pru(A)dt |

It is then a straightforward exercise to check that it does have the requested property. O

We are now able to use this theorem to obtain the following result on the convergence of the
solutions to to an invariant measure in the total variation topology:

Theorem 6.32. Assume that (6.1)) has a solution in some Hilbert space H and that there exists

a time T such that ||S(T)|| < 1 and such that S(T') maps H into the image of Q;/Q. Then
admits a unique invariant measure [i~, and there exists v > 0 such that

1P v — poslltv < C)e™ ",

for every probability measure v on H with finite second moment.

Proof. Let V(z) = ||z|| and denote by 1, the centred Gaussian measure with covariance (). We
then have

PV(@) < 1S®] + /H | pe(da) .
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which shows that the first assumption of Theoreml6.27]is satisfied. A simple variation of Exercise[4.37
(use the decomposition H = H @ ker K') shows that the Cameron—Martin space of pp is given by
R QlT/ % endowed with the norm

. 1/2
IRl = inf{||z]| : h = QY ?z} .

Since we assumed that S(7") maps H into the image of Qflp/ ?_ it follows from the closed graph
theorem that there exists a constant C' such that ||S(T)z| 7 < C||z| for every x € H. It follows
from the Cameron—Martin formula that the total variation distance between Pr.0, and P10, is
equal to the total variation distance between N (0, 1) and N(||S(T)z — S(T)y||r, 1), so that the
second assumption of Theorem[6.27]is also satisfied.

Both the existence of p, and the exponential convergence of P;v towards it is then a
consequence of Banach’s fixed point theorem in the dual to the space of measurable functions with
lellv < oo. O

Remark 6.33. The proof of Theorem [6.32] shows that if its assumptions are satisfied, then the map
x +— P}, is continuous in the total variation distance for t > T'.

Remark 6.34. Since & S(t) decreases with ¢ and & Qtl /% increases with t, it follows that if
ISP CS Qi /2 for some t, then this also holds for any subsequent time. This is consistent with the
fact that Markov operators are contraction operators in the supremum norm, so that if = — P/, is
continuous in the total variation distance for some ¢, the same must be true for all subsequent times.

While Theorem is very general, it is sometimes not straightforward at all to verify its
assumptions for arbitrary linear SPDEs. In particular, it might be complicated a priori to determine

the image of Qg /2 The task of identifying this subspace can be made easier by the following result:

Proposition 6.35. The image of Qi 2 s equal to the image of the map Ay given by

t
As: L*([0,1],K) — H., At:h'—>/ S(s)Qh(s)ds .
0

Proof. Since (Q; = A; A}, we can use polar decomposition [RS80, Thm VI.10] to find an isometry

J; of (ker A;)™ C H (which extends to H by setting J;z = 0 for 2 € ker A;) such that Qtl /2 _ A .

Alternatively, one can show that, in the situation of Theorem[4.47] the Cameron—Martin space
of ji = A*y is given by the image under A of the Cameron—Martin space of y. This follows from
Proposition |4.34] since, as a consequence of the definition of the push-forward of a measure, the
composition with A yields an isometry between L?(3, i) and L?(B, fi). O

One case where it is straightforward to check whether S(t) maps # into the image of Qtl /s
the following:

Example 6.36. Consider the case where K = H, L is selfadjoint, and there exists a function
f: R — Ry such that @ = f(L). (This identity should be interpreted in the sense of the functional
calculus already mentioned in Theorem|5.18])

If we assume furthermore that f(\) > 0 for every A € R, then the existence of an invariant
measure is equivalent to the existence of a constant ¢ > 0 such that (z, Lz) < —c||x||? for every
x € ‘H. Using functional calculus, we see that the operator Q7 is then given by

LA _oLT
QT_ 27, (1_6 )7
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and, for every 1" > 0, the Cameron—Martin norm for pr is equivalent to the norm
el = | 7]
x| =||—=—=x| -
Pl

In order to obtain convergence P;' v — i in the total variation topology, it is therefore sufficient
that there exist constants ¢, C' > 0 such that f(\) > Ce~* for A > 0.

This shows that one cannot expect convergence in the total variation topology to take place
under similarly weak conditions as in Proposition In particular, convergence in the total
variation topology requires some non-degeneracy of the driving noise which was not the case for
weak convergence.

Exercise 6.37. Consider again the case K = H and L selfadjoint with (x, Lz) < —c||z||? for some
¢ > 0. Assume furthermore that () is selfadjoint and that () and L commute, so that there exists
a space L2(M, u) isometric to H and such that both ) and L can be realised as multiplication
operators (say f and g respectively) on that space. Show that:

e In order for there to exist solutions in #, the set Ag = {\ € M : f(\) # 0} must be
‘essentially countable’ in the sense that it can be written as the union of a countable set and a
set of y-measure 0.

o If there exists 7' > 0 such that I S(I") C & QlT/ ?_then  is purely atomic and there exists
some possibly different time ¢ > 0 such that S(¢) is trace class.

Exercise suggests that there are many cases where, if S(¢) maps H to & Qi /2 for some
t > 0, then it does so for all ¢ > 0. It also shows that, in the case where L and () are selfad