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1

Foreword

These notes are based on a postgraduate course given at the University of Warwick in spring 2008 and
2011, at the Courant Institute in spring 2009, and at Imperial College London in autumn 2018. It is
an attempt to give a reasonably self-contained presentation of the basic theory of stochastic partial
differential equations, taking for granted elementary measure theory, functional analysis and probability
theory, but nothing else. Since the aim was to present most of the material covered in these notes during
a 30-hours series of postgraduate lectures, such an attempt is doomed to failure unless drastic choices
are made. This is why many important facets of the theory of stochastic PDEs are missing from these
notes. In particular, we treat equations with multiplicative noise only superficially, we do not treat
equations driven by Lévy noise, we do not consider equations with “rough” (that is not locally Lipschitz,
even in a suitable space) nonlinearities, we do not treat measure-valued processes, we do not consider
hyperbolic or elliptic problems, we do not cover Malliavin calculus and densities of solutions, etc. The
reader who is interested in a more detailed exposition of some of these more advanced aspects of the
theory is advised to read the excellent works [DPZ92b, DPZ96, PZ07, PR07, SS05] or to dive into the
current literature. These notes also do not cover at all the various recently developed approaches to
treating singular SPDEs, namely SPDEs that require “renormalisation” in order to make sense. The
reader interested in this topic is referred to the articles [Hai14, GIP15, Hai18].

Instead, the approach taken in these notes is to focus on semilinear parabolic problems driven by
additive noise. These can be treated as stochastic evolution equations in some infinite-dimensional
Banach or Hilbert space that usually have nice regularising properties and they already form (in my
humble opinion) a very rich class of problems with many interesting properties. Furthermore, this class
of problems has the advantage of allowing to completely pass under silence many subtle technical
problems (both functional analytical and measure theoretical) arising from stochastic integration in
infinite-dimensional spaces and from the general theory of stochastic processes.

1.1 Acknowledgements

These notes would never have been completed, were it not for the enthusiasm of the attendants of the
course. Many dozens of typos and mistakes were spotted and corrected. I am particularly indebted to
David Epstein and Jochen Voß who carefully worked their way through a very preliminary version of
these notes when they were still in a state of wilderness. Special thanks are also due to Pavel Bubak and
Hendrik Weber who organised the tutorials for the courses given at the University of Warwick.
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2

Some Motivating Examples

In this chapter, we will discuss two situations in which stochastic PDEs of the type discussed in these
notes arise naturally. We will then take the simplest of these examples, the stochastic heat equation, and
perform a few explicit calculations to start to develop a “gut feeling” for the behaviour of the solutions
of these objects.

2.1 A model for a random string (polymer)

Our first motivating example is a toy model for the evolution of a polymer in a fluid. For simplicity,
we model the polymer by a chain of particles with harmonic nearest-neighbour interactions. In other
words, we consider N + 1 particles with positions un and mass m immersed in a fluid and assume that
nearest-neighbours are connected by harmonic springs. If the particles are furthermore subject to an
external force field F , their equations of motion are given by

m
d2u0

dt2
= k(u1 − u0)− du0

dt
+ F (u0) ,

m
d2un
dt2

= k(un+1 + un−1 − 2un)− dun
dt

+ F (un) , n = 1, . . . , N − 1 ,

m
d2uN
dt2

= k(uN−1 − uN)− duN
dt

+ F (uN) .

Here, the terms −dun
dt

are used to model the friction caused by the interaction between the particles and
the fluid.

At this stage, we simplify the model even further by assuming that we are in the overdamped regime
where the forces acting on the particle are more important than inertia. Formally, we obtain this by
setting the masses of the particles to zero, so that our equations of motion become

du0

dt
= k(u1 − u0) + F (u0) ,

dun
dt

= k(un+1 + un−1 − 2un) + F (un) , n = 1, . . . , N − 1 ,

duN
dt

= k(uN−1 − uN) + F (uN) .

This model does however not take into account the effect of the molecules of water that would
randomly “kick” the particles that make up our polymer. Assuming that these kicks occur randomly and
independently at high rate, this effect can be modelled in first instance by independent white noises
acting on all degrees of freedom of our model. We thus obtain a system of coupled stochastic differential
equations:

du0 = k(u1 − u0) dt+ F (u0) dt+ σ dw0(t) ,

dun = k(un+1 + un−1 − 2un) dt+ F (un) dt+ σ dwn(t) , n = 1, . . . , N − 1 ,

duN = k(uN−1 − uN) dt+ F (uN) dt+ σ dwN(t) ,

2



2.2 The stochastic Navier-Stokes equations 3

where the wn are independent Wiener processes. At a formal level at least, this means that dwn/dt are
independent centred Gaussian “processes” (actually distributions) such that

E
dwn(t)

dt

dwm(s)

ds
= δm,nδ(t− s) , (2.1)

where δ denotes the Dirac distribution.
We would like to take a continuum limit for this process. Setting n ≈ Nx with x ∈ [0, 1], we

see that the interaction between nearest neighbours converges to a second derivative with respect to
x, provided that we choose k such that k ≈ νN2. It is less obvious to guess what is the correct
scaling for σ to obtain a non-trivial limit. A hint can be taken from (2.1): it seems plausible to look
for a scaling such that, in the continuous limit, our equation is driven by a “process” W such that
EdW (x,t)

dt

dW (y,s)

ds
= δ(x− y)δ(t− s). Since, with our scaling, an integral over x is approximated by

N−1 times a sum over n, we conclude from (2.1) that the correct scaling to consider is σ ≈
√
N .

This heuristic discussion suggests that, if N is very large and we choose k ≈ νN2 and σ ≈
√
N ,

our toy model is well described by the solution to a stochastic partial differential equation

du(x, t) = ν∂2
xu(x, t) dt+ F (u(x, t)) dt+ dW (x, t) , (2.2)

endowed with the boundary conditions ∂xu(0, t) = ∂xu(1, t) = 0 and such that, at least on a formal
level, EdW (x,t)

dt

dW (y,s)

ds
= δ(x− y)δ(t− s). The precise meaning of this formula will be discussed in

Chapter 5.

2.2 The stochastic Navier-Stokes equations

The Navier-Stokes equations describing the evolution of the velocity field u(x, t) of an incompressible
viscous fluid are given by

du

dt
= ν∆u− (u · ∇)u−∇p+ f , (2.3)

complemented with the (algebraic) incompressibility condition divu = 0. Here, f denotes some
external force acting on the fluid, whereas the pressure p is given implicitly by the requirement that
divu = 0 at all times.

While it is not too difficult in general to show that solutions to (2.3) exist in some weak sense, in the
case where x ∈ Rd with d ≥ 3, their uniqueness (globally in time) is an extremely hard open problem
that has been endowed with a $1,000,000 prize by the Clay Mathematics Institute. We will of course not
attempt to solve this long-standing problem here, so we are going to restrict ourselves to the case d = 2.
(The case d = 1 makes no sense since there the condition divu = 0 would imply that u is constant.
However, one could also consider Burgers’ equation which has similar features to the Navier-Stokes
equations.)

For simplicity, we consider solutions that are periodic in space, so that we view u as a function from
T2 × R+ to R2. In the absence of external forcing f , one can use the incompressibility assumption to
see that

d

dt

∫
T2

|u(x, t)|2 dx = −2ν

∫
T2

trDu(x, t)∗Du(x, t) dx ≤ −2ν

∫
T2

|u(x, t)|2 dx ,

where we used the Poincaré inequality to obtain the last bound (assuming that
∫
T2 u(x, t) dx = 0).

Therefore, by Gronwall’s inequality, the solutions decay to 0 exponentially fast. This shows that energy
needs to be pumped into the system continuously if one wishes to maintain an interesting regime.

One way to achieve this from a mathematical point of view is to add a force f that is randomly
fluctuating. We are going to show in Chapter 6 that if one takes a random force that is Gaussian and
such that

Ef(x, t)f(y, s) = δ(t− s)C(x− y) ,
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for some correlation function C then, provided that C is sufficiently regular, one can show that (2.3)
has solutions for all times. Furthermore, these solutions do not blow up in the sense that one can find a
constant K such that, for any solution to (2.3), one has

lim sup
t→∞

E‖u( · , t)‖2 ≤ K ,

for some suitable norm ‖ · ‖. This allows to provide a construction of a model for homogeneous
turbulence which is amenable to mathematical analysis.

2.3 The stochastic heat equation

In this section, we focus on the particular example of the stochastic heat equation, namely (2.2) with
F = 0. We will perform a number of calculations that give us a feeling for what the solutions to
this equation look like. These calculations will not be completely rigorous but could be made so with
minimal additional effort. Most tools required to make them rigorous will be introduced later on.

2.3.1 Setup

Recall that the heat equation is the partial differential equation:

∂tu = ∆u , u: Rn × R+ → R . (2.4)

Given any bounded continuous initial condition u0: Rn → R, there exists a unique solution u to (2.4)
which is continuous on Rn × R+ and such that u(x, 0) = u0(x) for every x ∈ Rn.

It is a tedious but straightforward calculation to check that this solution is given by the formula

u(x, t) =
1

(4πt)n/2

∫
Rn
e−
|x−y|2

4t u0(y) dy .

We will denote this by the shorthand u( · , t) = e∆tu0 by analogy with the solution to an Rd-valued
linear equation of the type ∂tu = Au.

Let us now go one level up in difficulty by considering (2.4) with an additional “forcing term” f :

∂tu = ∆u+ f , u: Rn × R+ → R . (2.5)

From the variations of constants formula, we obtain that the solution to (2.5) is given by

u( · , t) = e∆tu0 +

∫ t

0

e∆(t−s)f( · , s) ds . (2.6)

Since the kernel defining e∆t is very smooth, this expression actually makes sense for a large class of
distributions f , in particular it still makes sense if f is “space-time white noise”. We do not define this
rigorously for the moment, but characterise it as a (distribution-valued) centred Gaussian process ξ such
that Eξ(x, s)ξ(y, t) = δ(t− s)δ(x− y).

The stochastic heat equation is then the stochastic partial differential equation

∂tu = ∆u+ ξ , u: R+ × Rn → R . (2.7)

Consider the simplest case u0 = 0, so that its solution is given from (2.6) by

u(t, x) =

∫ t

0

1

(4π|t− s|)n/2
∫

Rn
e−
|x−y|2
4(t−s) ξ(y, s) dy ds . (2.8)

This is again a centred Gaussian process, but its covariance function is more complicated. The aim of
this section is to get some idea about the space-time regularity properties of (2.8). While the solutions
to ordinary stochastic differential equations are in general α-Hölder continuous (in time) for every
α < 1/2 but not for α = 1/2, we will see that in dimension n = 1, u as given by (2.8) is only “almost”
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1/4-Hölder continuous in time and “almost” 1/2-Hölder continuous in space. In higher dimensions, it
is not even function-valued... The reason for this lower time-regularity is that the driving space-time
white noise is not only very singular as a function of time, but also as a function of space. Therefore,
some of the regularising effect of the heat equation is required to turn it into a continuous function in
space.

Heuristically, the appearance of the Hölder exponents 1/2 for space and 1/4 for time in dimension
n = 1 can be understood by the following argument. If we were to remove the term ∂tu in (2.7), then
u would have the same time-regularity as ξ, but two more derivatives of space regularity. If on the
other hand we were to remove the term ∆u, then u would have the same space regularity as ξ, but
one more derivative of time regularity. The consequence of keeping both terms is that we can “trade”
space-regularity against time-regularity at a cost of one time derivative for two space derivatives. Now
we know that white noise (that is the centred Gaussian process η with Eη(t)η(s) = δ(t− s)) is the
time derivative of Brownian motion, which itself is “almost” 1/2-Hölder continuous. Therefore, the
regularity of η requires “a bit more than half a derivative” of improvement if we wish to obtain a
continuous function.

Turning back to ξ, we see that it is expected to behave like η both in the space direction and in the
time direction. So, in order to turn it into a continuous function of time, roughly half of a time derivative
is required. This leaves a bit less than half of a time derivative, which we trade against one spatial
derivative, thus concluding that for fixed time, u is expected to be almost 1/2-Hölder continuous in
space. Concerning the time regularity, we note that half of a space derivative is required to turn ξ into a
continuous function of space, thus leaving one and a half space derivative. These can be traded against
3/4 of a time derivative, thus explaining the 1/4-Hölder continuity in time.

In Section 5.1, we are going to see more precisely how the space-regularity and the time-regularity
interplay in the solutions to linear SPDEs, thus allowing us to justify rigorously this type of heuristic
arguments. For example, one can interpret Theorem 5.18 as stating that a fraction δ of a time derivative
can be traded against an index δ in the scale of interpolation spaces corresponding to the linear operator.
Since in our case this linear operator is the Laplacian, an index of one in the corresponding interpolation
spaces corresponds precisely to two spatial derivatives. For the moment however, let us justify these
statements on the regularity of the solution by an explicit calculation in the particular case of the
stochastic heat equation.

2.3.2 A formal calculation

Define the covariance for the solution to the stochastic heat equation by

C(s, t, x, y) = Eu(x, s)u(y, t) , (2.9)

where u is given by (2.8).
By (statistical) translation invariance, it is clear that C(s, t, x, y) = C(s, t, 0, x− y). Using (2.8)

and the expression for the covariance of ξ, one has

C(s, t, 0, x)

=
1

(4π)n
E
∫ t

0

∫ s

0

∫
Rn

∫
Rn

1

|s− r′|n/2|t− r|n/2
e
− |x−y|

2

4(t−r)−
|y′|2

4(s−r′) ξ(y, r)ξ(y′, r′) dy dy′ dr′ dr

=
1

(4π)n

∫ s∧t

0

∫
Rn

1

|s− r|n/2|t− r|n/2
e−
|x−y|2
4(t−r)−

|y|2
4(s−r) dy dr

=
1

(4π)n

∫ s∧t

0

∫
Rn

1

|s− r|n/2|t− r|n/2

× exp
(
− |x|2

4(t− r)
− 〈x, y〉

2(t− r)
− |y|2

4(s− r)
− |y|2

4(t− r)

)
dy dr .
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The integral over y can be performed explicitly by “completing the square” and one obtains

C(s, t, 0, x) =
1

(4π)n/2

∫ s∧t

0

(s+ t− 2r)−n/2 exp
(
− |x|2

4(s+ t− 2r)

)
dr

=
1

2(4π)n/2

∫ s+t

|s−t|
`−n/2 exp

(
−|x|

2

4`

)
d` . (2.10)

We notice that the singularity at ` = 0 is integrable if and only if n < 2, so that C(t, t, 0, 0) is finite
only in the one-dimensional case. We therefore limit ourselves to this case in the sequel.

Remark 2.1 Even though the random variable u defined by (2.8) is not function-valued in dimension
2, it is “almost” the case since the singularity in (2.10) diverges only logarithmically. The stationary
solution to (2.7) is called the Gaussian free field and has been the object of intense studies over the
last few years, especially in dimension 2. Its interest stems from the fact that many of its features are
conformally invariant (as a consequence of the conformal invariance of the Laplacian), thus linking
probability theory to quantum field theory on one hand and to complex geometry on the other hand.
The Gaussian free field also relates directly to the Schramm-Loewner evolutions (SLEs) for the study
of which Werner was awarded the Fields medal in 2006, see [Law04, SS06]. For more information on
the Gaussian free field, see for example the review article by Sheffield [She07].

The regularity of u is determined by the behaviour of C near the “diagonal” s = t, x = y. We first
consider the time regularity. We therefore set x = 0 and compute

C(s, t, 0, 0) =
1

4
√
π

∫ s+t

|s−t|
`−1/2 d` =

1

2
√
π

(|s+ t| 12 − |s− t| 12 ) .

This shows that, in the case n = 1 and for s ≈ t, one has the asymptotic behaviour

E|u(0, s)− u(0, t)|2 ≈ |t− s| 12 .

Comparing this with the standard Brownian motion for which E|B(s)−B(t)|2 = |t− s|, we conclude
that the process t 7→ u(x, t) is, for fixed x, almost surely α-Hölder continuous for any exponent
α < 1/4 but not for α = 1/4. This argument is a special case of Kolmogorov’s celebrated continuity
test, of which we will see a version adapted to Gaussian measures in Section 3.3.

If, on the other hand, we fix s = t, we obtain (still in the case n = 1) via the change of variables
z = |x|2/4`, the expression

C(t, t, 0, x) =
|x|

8
√
π

∫ ∞
|x|2
8t

z−
3
2 e−z dz .

Integrating by parts, we get

C(t, t, 0, x) =

√
t√

2π
e−
|x|2
8t − |x|

4
√
π

∫ ∞
|x|2
8t

z−
1
2 e−z dz ,

so that to leading order we have for small values of x:

C(t, t, 0, x) ≈
√

t

2π
− |x|

4
√
π

∫ ∞
0

z−
1
2 e−z dz =

√
t

2π
− |x|

4
+O(|x|2/

√
t) .

This shows that, at any fixed instant t, the solution to (2.7) looks like a Brownian motion in space over
lengthscales of order t1/2 (this is the scale at which |x|2/

√
t becomes comparable to |x|). Note that

over such a lengthscale the Brownian motion fluctuates by about t1/4, which is precisely the order of
magnitude of E|u(x, t)|.
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2.3.3 What have we learned?

Here are some conclusions that we can draw from these calculations:

1. At a “hand-waving” level, we have forced our equation with a term that has a temporal evolution
resembling white noise, so that one would naively expect its solutions to have a temporal regularity
resembling Brownian motion. However, for any fixed location in space, the solution to the stochastic
heat equation has a time-regularity which is only almost Hölder-1

4
, as opposed to the almost Hölder-1

2

time-regularity of Brownian motion. This is due to the fact that the forcing term is also very “rough”
in space, and not just in time.

2. Unlike the solutions to an ordinary parabolic PDE, the solutions to a stochastic PDE tend to be
spatially “rough”. It is therefore not obvious a priori how the formal expression that we obtained is
to be related to the original equation (2.7), since even for positive times, the map x 7→ u(t, x) is
certainly not twice differentiable.

3. Even though the deterministic heat equation has the property that e∆tu→ 0 as t→∞ for every
u ∈ L2, the solution to the stochastic heat equation has the property that E|u(x, t)|2 →∞ for fixed
x as t→∞. This shows that in this particular case, the stochastic forcing term pumps energy into
the system faster than the deterministic evolution can dissipate it.

Exercise 2.2 Perform the same calculation, but for the equation

∂tu = ∆u− au+ ξ , u: R+ × R→ R .

Show that as t→∞, the law of its solution converges to the law of an Ornstein-Uhlenbeck process (if
the space variable is viewed as “time”):

lim
t→∞

Eu(x, t)u(y, t) = Ce−c|x−y| .

Compute the constants C and c as functions of the parameter a.



3

Elements of Gaussian Measure Theory

While most of this chapter is devoted to Gaussian measure theory, we start with an introductory section
on the general theory of probability measures on Polish (that is complete, separable, metric) spaces.
This theory is of course much too vast to be done any sort of justice in these few short pages. We
therefore refer the interested reader to the excellent and quite extensive treatise by Bogachev [Bog07]
and to the much shorter but maybe more readily accessible book by Billingsley [Bil68] which still
covers a large part of the material required for the basic study of stochastic PDEs.

3.1 Convergence of probability measures

The focus of this section will be mainly on the question of convergence of probability measures on
Polish spaces. We will introduce a number of different topologies on the space of probability measures
on an arbitrary Polish space and we will discuss the relations between these topologies and the metrics
that generate them.

Recall that the Borel σ-algebra B(X ) of a Polish spaceX is the smallest collection of sets containing
all the open sets of X that is furthermore closed under countable unions and taking complements. A
probability measure µ on X is then a map µ: B(X ) → [0, 1] such that µ(X ) = 1 and µ(

⋃
Ai) =∑

µ(Ai) for any countable collection of mutually disjoint sets Ai ∈ B(X ). We denote by P(X ) the
set of all (Borel) probability measures on X . In order of increasing strength, here are the two main
notions of convergence that will be used in this book:

• Weak convergence: A sequence of probability measures µn converges weakly to a limiting prob-
ability measure µ if limn→∞

∫
ϕ(x)µn(dx) =

∫
ϕ(x)µ(dx) for every bounded continuous

function ϕ:X → R.

• Total variation convergence: This notion of convergence is defined by the total variation metric
given by

‖µ− ν‖TV = sup
‖ϕ‖∞≤1

∣∣∣∫ ϕ(x)µ(dx)−
∫
ϕ(x) ν(dx)

∣∣∣ . (3.1)

Here, ‖ϕ‖∞ denotes the supremum norm of ϕ.

Remark 3.1 Another widespread notion of convergence is that of strong convergence: a sequence µn
converges strongly to a limiting measure µ if limn→∞ µn(A) = µ(A) for every A ∈ B(X ). However,
this notion of convergence does have somewhat more pathological properties. For example, it is possible
to find several non-equivalent topologies on the space of signed measures on X giving rise to this
notion of convergence for countable sequences, see [Bog07, Section 4.7(v)].

Furthermore, these topologies are not “nice”. For example, if we consider the set M (X ) of finite
signed measures on X endowed with the total variation norm, then this is a Banach space (call it MTV).
It is then a very unfortunate fact that one of the topologies on M (X ) giving rise to the notion of strong
convergence for sequences is actually the weak (in the usual sense of functional analysis) topology on
MTV. Since, just like MTV itself, the dual of MTV is not separable (unless X is finite of course), it

8



3.1 Convergence of probability measures 9

follows from general principles (see for example [FHH+01, Ziz03]) that this topology is not metrisable
(not even on bounded sets), which greatly limits its use in practice.

Remark 3.2 If X is a compact metric space, then the Riesz-Markov theorem [Rud91] tells us that
the dual of Cb(X ), the space of bounded continuous functions, is precisely given by the space M (X )
of finite signed measures on X . Furthermore, in this language, the topology of weak convergence
is nothing but the weak-* topology on M (X ), viewed as the dual of Cb(X ). Since the dual of an
infinite-dimensional Banach space is never metrisable for the weak-* topology [FHH+01, Ziz03], one
may think then that the notion of weak convergence for probability measure suffers from the same
problems as those pointed out in the previous remark for the strong convergence. Fortunately, it turns
out that bounded subsets of the dual of a separable Banach space are weak-* metrisable, which is
sufficient for our purpose since we are mostly interested in probability measures.

We will sometimes use slightly different notions of convergence, but they will be only minor variations
on the general themes given here. The above notions of convergence give rise to two non-equivalent
metrisable topologies on P(X ). This is obvious for the notion of total variation convergence, but much
less so for the notion of weak convergence. Before we turn to the construction of metrics for weak
convergence, let us give a few classical examples illustrating the differences between them.

Example 3.3 Let X = R and let µn be the Dirac measure located at 1/n. Then it converges weakly,
but neither strongly nor in total variation to the Dirac measure located at the origin.

Example 3.4 Let µn be the measure on [0, π] given by µn(dx) = 2
π

sin2(nx) dx. Then, µn converges
to the normalised Lebegsue measure both in the weak and the strong sense. However, the total variation
distance between µn and its limit dx

π
is equal to 2

π
for every n.

3.1.1 Total variation convergence

ν

µThe total variation distance between two probability measures µ and
ν is relatively straightforward to comprehend: it consists of the total
amount of mass that doesn’t overlap between µ and ν. Since a picture
is worth a thousand words, we illustrate this by the figure shown on
the right: the total variation distance between µ and ν is given by the
dark gray area.

If µ and ν have densitiesDµ andDν with respect to some common
positive reference measure π (by the Radon-Nikodym theorem, it is
always possible to take π = 1

2
(µ+ ν) for example), then one has the identity

‖µ− ν‖TV =

∫
X
|Dµ(x)−Dν(x)|π(dx) , (3.2)

which is also sometimes taken as the definition of the total variation distance.

Exercise 3.5 Show that the characterisation (3.2) of the total variation distance does not depend on the
particular choice of a reference measure π and that it does indeed agree with the definition previously
given in (3.1). Hint: Consider the test function ϕ(x) such that ϕ(x) = 1 if Dµ(x) > Dν(x) and
ϕ(x) = −1 otherwise.

As a consequence of the characterisation (3.2), we have the following very important fact:

Corollary 3.6 For µ and ν two probability measures, one has ‖µ− ν‖TV = 2 if and only if µ and ν
are mutually singular and ‖µ− ν‖TV < 2 otherwise.
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Proof. Let µ and ν be mutually singular, denoted by µ ⊥ ν. Then there exists a set A such that
µ(A) = 1 and ν(A) = 0. Setting ϕ(x) = 21A(x)− 1, it follows from (3.1) that ‖µ− ν‖TV ≥ 2. On
the other hand, one has ‖µ− ν‖TV ≤ 2 as a consequence of the definition, so that the first implication
follows.

To show the converse, assume that µ and ν are not mutually singular and denote by Dµ and Dν their
densities with respect to a common reference measure π. Let Aµ = {x : Dµ(x) > 0} and similarly
for Aν , and set A = Aµ ∩ Aν . With this notation, one must have π(A) > 0, for otherwise µ ⊥ ν.
Since for two positive numbers a and b we have the identity |a − b| = a + b − 2(a ∧ b), it follows
from (3.2) that

‖µ− ν‖TV = 2− 2

∫
A

(Dµ(x) ∧ Dν(x))π(dx) .

Since π(A) > 0 and Dµ(x) ∧ Dν(x) > 0 for x ∈ A by definition, the claim follows.

There is a third very useful (and more probabilistically appealing) interpretation of the total variation
distance between two probability measures. Indeed, the total variation distance between two probability
measures µ and ν on a Polish space X is given by

‖µ− ν‖TV = 2 inf
π∈C (µ,ν)

π({x 6= y}) , (3.3)

where the infimum runs over the set C (µ, ν) of all probability measures π on X × X with marginals
µ and ν. (This set is also called the set of all couplings of µ and ν.) In other words, if the total
variation distance between µ and ν is smaller than 2ε, then it is possible to construct X -valued random
variables X and Y with respective laws µ and ν such that X = Y with probability 1− ε. This gives a
straightforward probabilistic interpretation of the total variation distance as twice the probability that a
random sample drawn from µ can be distinguished from a sample drawn at random from ν.

Exercise 3.7 Show that the identity (3.3) holds and that the infimum is attained. Hint: The optimal cou-
pling can be constructed explicitly by considering a combination of the measure (Dµ(x)∧Dν(x))π(dx)
on the diagonal (x, x) and the measure (Dµ(x)−Dν(x))+(Dν(y)−Dµ(y))+ π(dx)π(dy) off the
diagonal.

Remark 3.8 Some authors define the total variation distance between measures as the expression (3.3),
but without the factor 2. Being aware of this helps to navigate a literature that could otherwise cause
some confusion.

Exercise 3.9 Given a function V :X → R+, we can also define a weighted total variation distance by

‖µ− ν‖TV,V =

∫
X

(1 + V (x))|Dµ(x)−Dν(x)|π(dx) .

By (3.2), we recover the usual total variation distance as a special case when V = 0. This distance is
only defined on the subspace of finite signed measures that integrate V and turns this subspace into a
Banach space. Show that one does have, similarly to (3.3), the characterisation

‖µ− ν‖TV,V = inf
π∈C (µ,ν)

∫
x 6=y

(2 + V (x) + V (y))π(dx, dy) . (3.4)

3.1.2 Weak convergence

It is obvious that if X is uncountable, then P(X ) endowed with the total variation metric is not a
separable space. Indeed, the collection {δx}x∈X yields an uncountable set of elements that are all at
distance 2 of each other. On the other hand, if we endow P(X ) with the topology of weak convergence,
then it turns out to be separable. Even better, it is actually itself a Polish space and one can construct a
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number of natural distance functions that generate its topology. In this section, we collect without proofs
a few important results about the properties of the weak convergence topology. For a more detailed
account, including complete proofs, we refer for example to [Bil68, Bog07, Vil03].

If one had to choose one, the single most import result in the theory of weak convergence of
probability measures would probably be Prohorov’s characterisation of those subsets of the set of
probability measures that are precompact for the weak convergence topology. Before we state this
theorem, we introduce the concept of a tight family of probability measures, which is a fundamental
concept in the theory of weak convergence:

Definition 3.10 Given a collection M ⊂P(X ) of probability measures on a Polish space X , we say
that M is tight if, for every ε > 0, there exists a compact set K ⊂ X such that µ(K) ≥ 1 − ε for
every µ ∈M .

In other words, M is tight if its elements are uniformly concentrated on compact sets. It turns out
that sets comprising of a single measure (or finitely many measures) are always tight. While this is
obvious if the space X can be covered by a countable collection of compact sets (like it is the case
for Rn for example), it is not so obvious if X is an infinite-dimensional space. Using the Heine-Borel
theorem, it is however not to difficult to prove it, and this is the content of the next lemma:

Lemma 3.11 Let µ ∈P(X ) for a Polish space X . Then the singleton {µ} is tight.

Proof. Fix ε > 0. Since X is separable it can be covered by countably many balls of fixed, but arbitrary,
radius. Therefore, for every n > 0, one can find a set Kn consisting of finitely many balls of radius
1/n and such that µ(Kn) > 1− 2−nε. Setting K =

⋂
n>0Kn, it follows that µ(K) ≥ 1− ε, which

concludes the proof since K is totally bounded1 and therefore compact by the Heine-Borel theorem
which characterises compact sets in Polish spaces as closed totally bounded sets.

Another interesting fact is that tightness follows from the following property which may appear
weaker at first sight:

Lemma 3.12 Let M ⊂ P(X ) for X a Polish space width metric d. Assume that, for every ε > 0,
there exists K ⊂ X compact such that µ(Kε) ≥ 1− ε, where Kε is the ε-fattening of K: Kε = {x ∈
X : d(x,K) ≤ ε}. Then M is tight.

Proof. The proof works as before since, for every n, we can find Kn such that µ(Kε2−n

n ) ≥ 1− ε2−n
by assumption, and then set K =

⋂
n>0Kn as before.

So why is tightness so important? The following theorem due to Prohorov [Pro56] shows that tight
families of probability measure coincide with precompact subsets of P(X ) in the topology of weak
convergence:

Theorem 3.13 (Prohorov) A subsetM ⊂P(X ) is precompact for the topology of weak convergence
if and only if it is tight.

Before we give the proof of this theorem, let us prove the following particular case:

Lemma 3.14 If X is compact, then both P(X ) and the unit ball in M (X ) are compact for the
topology of weak convergence.

1 A subset of a metric space is totally bounded if, for every ε > 0, it can be covered by finitely many balls of radius ε.
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Proof. Take any sequence µn of uniformly bounded measures on X . Since X is compact, the space
C(X ) is separable, so we can find a dense countable subset ϕn of the unit ball in C(X ). A simple
diagonal extraction argument, combined with the fact that there exists C such that µn(ϕm) ≤ C by
assumption, allows to extract a subsequence µnk such that µnk(ϕn)→ cn for every n. By density of
the ϕn and boundedness of the µn, it follows that there exists a continuous linear functional µ on C(X )
such that µnk(ϕ)→ µ(ϕ) for every ϕ ∈ C(X ). The conclusion then follows from the Riesz-Markov
theorem that identifies the dual of C(X ) with M (X ).

Note that in particular the set of probability measures is compact since, by testing against the constant
function 1 and positive functions, we conclude that the limit for any converging subsequence is again a
probability measure.

Remark 3.15 The above proof is nothing but a special case of the Banach-Alaoglu theorem [Rud91,
Thm 3.15], but its proof is sufficiently short and elementary so that we reproduced it here. It works for
the unit ball of the dual space of any separable Banach space, endowed with the weak-* topology.

We are now ready to give the proof of Prohorov’s theorem, which follows rather closely the exposition
given in [Bog07, Theorem 8.6.2]. The original proof can be found in [Pro56], but see also [Bil68] for a
clean proof in the special case X = R.

Proof of Prohorov’s theorem. We first show that tightness is sufficient by extracting a weakly convergent
subsequence from M under the assumption that M is tight. By assumption, we can find an increasing
sequence of compact setsKn ⊂ X for that µ(X \Kn) ≥ 1−2−n for every µ ∈M . Using Lemma 3.14
and a diagonal extraction argument, we can find a sequence {µn} in M such that, for every m > 0, the
restricted sequence {µn|Km} converges to some element µ̂m, which is a positive measure on Km with
|µ̂m(Km)− 1| ≤ 2−m. Since µ̂m|Kn = µ̂n for n ≤ m, this is an increasing and bounded sequence,
which therefore has a limit µ with µ|Km = µ̂m. We conclude that, for every continuous function ϕ
bounded by 1 and every m ≥ 1, we have

|µn(ϕ)− µ(ϕ)| ≤ |(µn|Km)(ϕ)− (µ|Km)(ϕ)|+ |(µn|Km)(ϕ)− µn(ϕ)|+ |(µ|Km)(ϕ)− µ(ϕ)| .

The first term converges to 0 and the other two terms are each bounded by 2−m. Since m was arbitrary,
this shows that {µn} → µ as required.

We now show the converse statement, namely that if M is not tight, then it cannot be precompact.
Assuming that M is not tight, we use the contrapositive of Lemma 3.12 to conclude that there exists
a fixed ε > 0 such that, for every compact K ⊂ X , there is an element µK ∈ M such that
µK(X \Kε) ≥ ε. We now fix a value δ > 0 (think of δ as being much smaller than the ε that we
just found), and we construct a sequence of measures µn ∈ M and two sequences of compact sets
(An,Kn) recursively in the following way:

• Choose for µ0 any element of M (it has to contain infinitely many elements since it is not tight),
choose K0 compact such that µ0(K0) ≥ 1− δ, and set A0 = K0.

• Given data up to the nth index, choose µn+1 ∈ M such that µn+1(X \ Aεn) ≥ ε, which
is possible by the lack of tightness of M . Then, choose a compact set K ⊂ X such that
µn+1(K) ≥ 1− δ and set An+1 = An ∪K and Kn+1 = K \Aεn.

Actually, the only properties of this construction that we are going to use are that µn(Kn) ≥ ε − δ,
µn(

⋃
k>nKk) ≤ δ, and Kε/2

n ∩Kε/2
m = 6# for every n 6= m.

Our aim is to show that the sequence µn constructed in this way contains no convergent subsequence.
If µ̄n = µkn is an arbitrary subsequence then, by setting K̄n = Kkn and Ān = Akn , the sequence
(µ̄n, Ān, K̄n) also has the properties mentioned in the last paragraph, so that it suffices to show that
any sequence {µn} with these properties cannot be convergent.

We do this by exhibiting a continuous test function ϕ such that µn(ϕ) does not converge. Define
first continuous functions ϕn by ϕn(x) = 1 if x ∈ Kn, ϕn(x) = 0 if x 6∈ Kε/2

n , and ϕn(x) =
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1 − 2ε−1d(x,Kn) otherwise. Note that since these functions all have disjoint supports and are all
Lipschitz continuous with the same Lipschitz constant, the function

ϕλ(x)
def
=
∑
n>0

λnϕn(x) ,

is continuous and bounded for every bounded sequence λ. Given the sequence µn, we now construct in
a recursive way a sequence λ with |λn| ≤ 1 for every n and such that |µn(ϕλ)− µn+1(ϕλ)| ≥ c for
some fixed c > 0 and for every n.

Choose first λ0 = 0, say. For arbitrary n ≥ 0, once λ0, . . . , λn are given, it follows from the property
µn(

⋃
k>nKk) ≤ δ and the fact that |λi| ≤ 1 that µn(ϕλ) is determined to within an error of at most δ

by λ0, . . . , λn. On the other hand, we have µn+1(Kn+1) ≥ ε− δ so that, by adjusting λn+1 ∈ [−1, 1],
we can cover a range of values of width at least 2(ε− δ) for µn+1(ϕλ). This guarantees that we can
find λn+1 in such a way that |µn+1(ϕλ̄)− µn(ϕλ̄)| ≥ ε− 3δ for every sequence λ̄ such that λ̄k = λk
for k ≤ n+ 1 and |λ̄i| ≤ 1. Since ε was fixed but δ was arbitrary in this construction, the claim follows
by choosing δ sufficiently small.

Now that we have some understanding how compact sets look like in P(X ), we turn to the
construction of a family of metrics that generate this topology. Given any bounded lower semicontinuous
metric d on X (note that d does not necessarily need to generate the topology of X !), we can “lift” it to
the space of probability measures on X in a natural way by setting:

d(µ, ν) = inf
π∈C (µ,ν)

∫
X

∫
X
d(x, y)π(dx, dy) . (3.5)

This distance is called the 1-Wasserstein distance2 for d on P(X ). (The p-Wasserstein distances can
be defined similarly for every p ≥ 1 by setting their pth power equal to the right hand side of (3.5) with
d replaced by dp.) The reason why we assumed that d is lower semicontinuous is the following:

Exercise 3.16 Show that the infimum in (3.5) is achieved. Hint: Use the fact that single measures are
tight to conclude that the set C (µ, ν) is compact for any two probability measures µ and ν. Then use
the lower semicontinuity of d to show that any accumulation point of approximate minimisers must be
a minimiser.

Theorem 3.17 If the metric d is bounded and generates the topology of X , then its p-Wasserstein lift
to P(X ) generates the topology of weak convergence.

Finally, a very useful feature of the Wasserstein-1 distances is that they can also be viewed as the
dual norm to the Lipschitz norm on functions. This is the content of the celebrated Monge-Kantorovich-
Rubinstein duality theorem (see for example [Vil09]) which we state here without proof.

Theorem 3.18 For d any lower semicontinuous metric on X , the identity

d(µ, ν) = sup
Lipd(ϕ)≤1

(∫
X
ϕ(x)µ(dx)−

∫
X
ϕ(y)µ(dy)

)
(3.6)

holds for all pairs (µ, ν) of probability measures. Here, Lipd(ϕ) denotes the best Lipschitz constant
for ϕ with respect to the metric d.

Remark 3.19 The metric d does not need to be bounded in general, so there might be pairs of
probability measures for which d(µ, ν) is infinite.
2 This is really a misnomer since these distances were introduced by Kantorovich and the special case p = 1 was already

studied by Monge. However, the name “Wasserstein distance” is now being used in most of the literature on the subject so
we’ll stick with it.
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Remark 3.20 There exists a generalisation of the duality (3.6) that holds also if d is not a distance
function (and therefore also for the p-Wasserstein distances for p > 1), but it is slightly more compli-
cated to state. See [Vil03, Vil09] for a very nice treatment of many questions related to Wasserstein
distances.

Remark 3.21 It may appear surprising at first sight that an explicit bound on the rate of convergence
of integrals of a sequence {µn} against Lipschitz continuous functions should yield convergence of the
same integrals against any continuous function. However, recall that Prohorov’s theorem tells us that
any converging sequence of probability measures is essentially concentrated on compact sets. Since
on a compact set, any continuous function can be approximated uniformly by Lipschitz continuous
functions, this should make it much more plausible that (3.6) does indeed define the topology of weak
convergence.

Remark 3.22 Although P(X ) is complete under d, the space of signed measures with finite mass is
not complete, if we endow it with the norm defined in (3.6). To see this, take for example X = [0, 1]
and let d be the usual distance function. Then, the sequence

fn =
n∑
k=1

k2(δ3−k − δ2·3−k) ,

is Cauchy, but it obviously does not converge to a measure with finite mass.

One special case of the Monge-Kantorovich-Rubinstein duality is of particular interest. Setting dTV

to be the trivial distance function which is equal to 2 for all pairs (x, y) with x 6= y, we see that the
1-Wasserstein lift of dTV to P(X ) as in (3.5) is nothing but the total variation distance as characterised
in (3.3).

On the other hand, the set of dTV-Lipschitz continuous functions ϕ with best Lipschitz constant 1 is,
up to translations by constants, equal to the set of bounded functions with supx |ϕ(x)| ≤ 1, so that the
dual representation of the 1-Wasserstein lift of dTV as in (3.6) is nothing but the original definition of
the total variation distance given in (3.1).

Exercise 3.23 Convince yourself that the identity (3.4) is also a special case of the Monge-Kantorovich-
Rubinstein duality. What is the corresponding distance function?

Exercise 3.24 Show that every probability measure µ on X can be approximated by a finite convex
combination of Dirac measures in the topology of weak convergence. Hint: Take a dense sequence
{xn} in X and, for given ε > 0, put a Dirac measure at xn with mass

µ
(
B(xn, ε) \

⋃
k<n

B(xk, ε)
)

,

for sufficiently many values of n so that the total mass adds up to at least 1− ε.

3.2 Basic properties of Gaussian measures

This section is devoted to the study of Gaussian measures on general Banach spaces. Throughout this
section and throughout most of the remainder of these notes, we will denote by B an arbitrary separable
Banach space. Recall that a space is separable if it contains a countable dense subset, see for example
the monograph [Yos95]. This separability assumption turns out to be crucial for measures on B to
behave in a non-pathological way. It can be circumvented by trickery in most natural situations where
non-separable spaces arise, but we choose not to complicate our lives by considering overly general
cases in these notes. Another convention that will be used throughout these notes is that all of the
measures that we consider are Borel probability measures, meaning that we consider every open set
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to be measurable and that we assume that they are normalised in such a way that the whole space has
measure 1.

Remark 3.25 Another natural σ-algebra on B is the one generated by all linear functionals, i.e. the
smallest σ-algebra containing `−1(I) for every open interval I ⊂ R and every ` ∈ B∗. We will see in
Proposition 3.31 below that this in fact equals the Borel σ-algebra of B thanks to the separability of B.

One additional assumption that would appear to be natural in the context of Gaussian measure theory
is that B be reflexive (that is B∗∗ = B). This is because, for example, the mean of a measure µ appears
at first sight to be an element of B∗∗ rather than of B, since the natural3 way of defining the mean m of
µ is to set m(`) =

∫
B `(x)µ(dx) for any ` ∈ B∗. This turns out not to be a problem, since the mean of

a Gaussian measure on a separable Banach space B is always an element of B itself, see the monograph
[Bog98]. However this result is not straightforward to prove, so we will take here the more pragmatic
approach that whenever we consider Gaussian measures with non-zero mean, we simply take the mean
m ∈ B as given.

Example 3.26 Before we proceed, let us just mention a few examples of Banach spaces. The spaces
Lp(M, ν) (with (M, ν) any countably generated measure space, like for example any Polish space
equipped with a positive Radon measure ν) for p ∈ (1,∞) are both reflexive and separable. However,
reflexivity fails in general for L1 spaces and both properties fail to hold in general for L∞ spaces
[Yos95]. The space of bounded continuous functions on a compact space is separable, but not reflexive.
The space of bounded continuous functions from Rn to R is neither separable nor reflexive, but the
space of continuous functions from Rn to R vanishing at infinity is separable. (The last two statements
are still true if we replace Rn by any Polish space that is locally compact but not compact.) Hilbert
spaces are obviously reflexive sinceH∗ = H for every Hilbert spaceH by the Riesz representation
theorem [Yos95]. There exist non-separable Hilbert spaces, but they have rather pathological properties
and do not appear very often in practice. An example of a non-separable Hilbert space would be
the set of functions f : [0, 1] → R that vanish at all except countably many points, and such that
‖f‖2 def

=
∑
t∈[0,1] |f(t)|2 <∞.

We start with the definition of a Gaussian measure on a Banach space. Since there is no equivalent to
Lebesgue measure in infinite dimensions (one could never expect it to be σ-additive), we cannot define
it by prescribing the form of its density. However, it turns out that Gaussian measures on Rn can be
characterised by prescribing that the projections of the measure onto any one-dimensional subspace of
Rn are all Gaussian. This is a property that can readily be generalised to infinite-dimensional spaces:

Definition 3.27 A Gaussian probability measure µ on a Banach space B is a Borel measure such that
`]µ is a Gaussian probability measure on R for every continuous linear functional `:B → R. (Here,
Dirac measures are considered to be Gaussian measures with zero variance.) We call it centred if `]µ is
centred for every `.

Remark 3.28 We used here the notation f ]µ for the push-forward of a measure µ under a map f ,
which is defined by the relation (f ]µ)(A) = µ(f−1(A)). Some authors use the notation f∗ instead,
but we reserve this notation for adjoints in a probably futile attempt to minimise confusion.

Remark 3.29 We could also have defined Gaussian measures by imposing that T ]µ is Gaussian
for every bounded linear map T :B → Rn and every n. These two definitions are equivalent since
probability measures on Rn are characterised by their Fourier transform and these are constructed from
one-dimensional marginals, see Proposition 3.34 below.
3 Without further assumption, we do not know a priori whether x 7→ ‖x‖ is integrable, so that the even more natural definition
m =

∫
B xµ(dx) is prohibited at this stage. See however Theorem 3.36 below.
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Exercise 3.30 Let {ξn} be a sequence of i.i.d.N (0, 1) random variables and let {an} be a sequence
of real numbers. Show that the law of (a0ξ0, a1ξ1, . . .) determines a Gaussian measure on `2 if and
only if

∑
n≥0 a

2
n <∞.

One first question that one may ask is whether this is indeed a reasonable definition. After all, it only
makes a statement about the one-dimensional projections of the measure µ, which itself lives on a huge
infinite-dimensional space. However, this turns out to be reasonable since, provided that B is separable,
the one-dimensional projections of any probability measure carry sufficient information to characterise
it. This statement can be formalised as follows:

Proposition 3.31 Let B be a separable Banach space and let µ and ν be two probability measures on
B. If `]µ = `]ν for every ` ∈ B∗, then µ = ν.

Proof. Denote by Cyl(B) the algebra of cylindrical sets on B, that is A ∈ Cyl(B) if and only if there
exists n > 0, a continuous linear map T :B → Rn, and a Borel set Ã ⊂ Rn such that A = T−1Ã. It
follows from the fact that measures on Rn are determined by their one-dimensional projections that
µ(A) = ν(A) for every A ∈ Cyl(B) and therefore, by a basic uniqueness result in measure theory
(see Lemma II.4.6 in [RW94] or Theorem 1.5.6 in [Bog07] for example), for every A in the σ-algebra
E(B) generated by Cyl(B). It thus remains to show that E(B) coincides with the Borel σ-algebra of B.
Actually, since every cylindrical set is a Borel set, it suffices to show that all open (and therefore all
Borel) sets are contained in E(B).

Since B is separable, every open set U can be written as a countable union of closed balls. (Fix any
dense countable subset {xn} of B and check that one has for example U =

⋃
xn∈U B̄(xn, rn), where

rn = 1
2

sup{r > 0 : B̄(xn, r) ⊂ U} and B̄(x, r) denotes the closed ball of radius r centred at x.)
Since E(B) is invariant under translations and dilations, it remains to check that B̄(0, 1) ∈ E(B). Let
{xn} be a countable dense subset of {x ∈ B : ‖x‖ = 1} and let `n be any sequence in B∗ such
that ‖`n‖ = 1 and `n(xn) = 1 (such elements exist by the Hahn-Banach extension theorem [Yos95]).
Define now K =

⋂
n≥0{x ∈ B : |`n(x)| ≤ 1}. It is clear that K ∈ E(B), so that the proof is

complete if we can show that K = B̄(0, 1).
Since obviously B̄(0, 1) ⊂ K, it suffices to show that the reverse inclusion holds. Let y ∈ B with
‖y‖ > 1 be arbitrary and set ŷ = y/‖y‖. By the density of the xn’s, there exists a subsequence xkn such
that ‖xkn − ŷ‖ ≤ 1

n
, say, so that `kn(ŷ) ≥ 1− 1

n
. By linearity, this implies that `kn(y) ≥ ‖y‖(1− 1

n
),

so that there exists a sufficiently large n so that `kn(y) > 1. This shows that y 6∈ K and we conclude
that K ⊂ B̄(0, 1) as required.

From now on, we will mostly consider centred Gaussian measures, since one can always reduce
oneself to the general case by a simple translation. Given a centred Gaussian measure µ, we define a
map Cµ:B∗ × B∗ → R by

Cµ(`, `′) =

∫
B
`(x)`′(x)µ(dx) . (3.7)

Remark 3.32 In the case B = Rn, this is just the covariance matrix, provided that we perform the
usual identification of Rn with its dual.

Remark 3.33 One can identify in a canonical way Cµ with an operator Ĉµ:B∗ → B∗∗ via the identity
Ĉµ(`)(`′) = Cµ(`, `′).

The map Cµ will be called the Covariance operator of µ. It follows immediately from the definitions
that the operator Cµ is bilinear and positive definite, although there might in general exist some ` such
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that Cµ(`, `) = 0. Furthermore, the Fourier transform of µ is given by

µ̂(`)
def
=

∫
B
ei`(x) µ(dx) = exp(− 1

2
Cµ(`, `)) , (3.8)

where ` ∈ B∗. This can be checked by using the explicit form of the one-dimensional Gaussian measure.
Conversely, (3.8) characterises Gaussian measures in the sense that if µ is a measure such that there
exists Cµ satisfying (3.8) for every ` ∈ B∗, then µ must be centred Gaussian. The reason why this is so
is that two distinct probability measures necessarily have distinct Fourier transforms:

Proposition 3.34 Let µ and ν be any two probability measures on a separable Banach space B. If
µ̂(`) = ν̂(`) for every ` ∈ B∗, then µ = ν.

Proof. In the particular case B = Rn, if ϕ is a smooth function with compact support, it follows from
Fubini’s theorem and the invertibility of the Fourier transform that one has the identity∫

Rn
ϕ(x)µ(dx) =

1

(2π)n

∫
Rn

∫
Rn
ϕ̂(k)e−ikx dk µ(dx) =

1

(2π)n

∫
Rn
ϕ̂(k) µ̂(−k) dk ,

so that, since bounded continuous functions can be approximated by smooth functions, µ is indeed
determined by µ̂. The general case then follows immediately from Proposition 3.31.

As a simple consequence, we have the following trivial but useful property:

Proposition 3.35 Let µ be a Gaussian measure on B and, for every ϕ ∈ R, define the “rotation”
Rϕ:B2 → B2 by

Rϕ(x, y) = (x sinϕ+ y cosϕ, x cosϕ− y sinϕ) .

Then, one has R]
ϕ(µ⊗ µ) = µ⊗ µ.

Proof. Since we just showed in Proposition 3.34 that a measure is characterised by its Fourier transform,
it suffices to check that ̂µ⊗ µ ◦Rϕ = ̂µ⊗ µ, which is an easy exercise.

3.3 A-priori bounds on Gaussian measures

We are going to show now that the operator Cµ has to be bounded, as a straightforward consequence
of the fact that x 7→ ‖x‖2 is integrable for any Gaussian measure. Actually, we are going to show
much more, namely that there always exists a constant α > 0 such that exp(α‖x‖2) is integrable! In
other words, the norm of any Banach-space valued Gaussian random variable has Gaussian tails, just
like in the finite-dimensional case. Amazingly, this result uses the Gaussianity of the measure only
indirectly through the rotation invariance shown in Proposition 3.35, and even this property is only used
for rotations by the angle ϕ = π/4. This is the content of the following fundamental result in the theory
of Gaussian measures, which can be found in the original article [Fer70]:

Theorem 3.36 (Fernique) Let µ be a Gaussian probability measure on a separable Banach space B.
Then, there exists α > 0 such that

∫
B exp(α‖x‖2)µ(dx) <∞.

Proof. Amazingly, the only property of Gaussian measures that will be used in the proof is the conclusion
of Proposition 3.35 with ϕ = π/4. Indeed, for any two positive numbers t and τ with t > τ , it implies
the bound

µ(‖x‖ ≤ τ)µ(‖x‖ > t) =

∫
‖x‖≤τ

∫
‖y‖>t

µ(dx)µ(dy) =

∫
‖ x−y√

2
‖≤τ

∫
‖ x+y√

2
‖>t

µ(dx)µ(dy)
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≤
∫
‖x‖> t−τ√

2

∫
‖y‖> t−τ√

2

µ(dx)µ(dy) = µ
(
‖x‖ > t−τ√

2

)2

. (3.9)

In order to go from the first to the second line, we have used the fact that, by the triangle inequality,

min{‖x‖, ‖y‖} ≥ 1
2
(‖x+ y‖ − ‖x− y‖) ,

so that ‖x+ y‖ >
√

2t and ‖x− y‖ ≤
√

2τ do indeed imply that both ‖x‖ and ‖y‖ are greater than
t−τ√

2
. Since ‖x‖ is µ-almost surely finite, there exists some τ > 0 such that µ(‖x‖ ≤ τ) ≥ 3

4
. Set now

t0 = τ and define tn for n > 0 recursively by the relation tn = tn+1−τ√
2

. It follows from (3.9) that

µ(‖x‖ > tn+1) ≤ µ
(
‖x‖ > tn+1−τ√

2

)2

/µ(‖x‖ ≤ τ) ≤ 4
3
µ(‖x‖ > tn)2 .

Setting yn = 4
3
µ(‖x‖ > tn+1), this yields the recursion yn+1 ≤ y2

n with y0 ≤ 1/3. Applying this
inequality repeatedly, we obtain

µ(‖x‖ > tn) =
3

4
yn ≤

3

4
y2n

0 ≤
1

4
3−1−2n ≤ 3−2n .

On the other hand, one can check explicitly that tn =
√

2
n+1−1√
2−1

τ ≤ 2n/2 · (2 +
√

2)τ , so that in
particular tn+1 ≤ 2n/2 · 5τ . This shows that one has the bound

µ(‖x‖ > tn) ≤ 3−
t2
n+1

25τ2 ,

implying that there exists a universal constantα > 0 such that the bound µ(‖x‖ > t) ≤ exp(−2αt2/τ 2)
holds for every t ≥ τ . Integrating by parts, we finally obtain∫

B
exp
(α‖x‖2

τ 2

)
µ(dx) ≤ eα +

2α

τ 2

∫ ∞
τ

teα
t2

τ2 µ(‖x‖ > t) dt

≤ eα + 2α

∫ ∞
1

te−αt
2

dt <∞ , (3.10)

which is the desired result.

As an immediate corollary of Fernique’s theorem, we have

Corollary 3.37 There exists a constant ‖Cµ‖ < ∞ such that Cµ(`, `′) ≤ ‖Cµ‖‖`‖‖`′‖ for any
`, `′ ∈ B∗. Furthermore, the operator Ĉµ defined in Remark 3.33 is a continuous operator from B∗ to
B.

Proof. The boundedness of Cµ implies that Ĉµ is continuous from B∗ to B∗∗. However, B∗∗ might be
strictly larger than B in general. The fact that the range of Ĉµ actually belongs to B follows from the
fact that one has the identity

Ĉµ` =

∫
B
x `(x)µ(dx) . (3.11)

Here, the right-hand side is well-defined as a Bochner integral [Boc33, Hil53] because B is assumed to
be separable and we know from Fernique’s theorem that ‖x‖2 is integrable with respect to µ.

Remark 3.38 In Theorem 3.36, one can actually take for α any value smaller than 1/(2‖Cµ‖). Fur-
thermore, this value happens to be sharp, see [Led96, Thm 4.1].

Another consequence of the proof of Fernique’s theorem is an even stronger result, namely all
moments (including exponential moments!) of the norm of a Banach-space valued Gaussian random
variable can be estimated in a universal way in terms of its first moment. More precisely, we have



3.3 A-priori bounds on Gaussian measures 19

Proposition 3.39 There exist universal constants α,K > 0 with the following properties. Let µ be a
centred Gaussian measure on a separable Banach space B and let f : R+ → R+ be any measurable
function such that f(x) ≤ Cf exp(αx2) for every x ≥ 0. Define furthermore the first moment of µ by
M =

∫
B ‖x‖µ(dx). Then, one has the bound

∫
B f(‖x‖/M)µ(dx) ≤ KCf .

In particular, the higher moments of µ are bounded by
∫
B ‖x‖2n µ(dx) ≤ n!Kα−nM2n.

Proof. It suffices to note that the bound (3.10) is independent of τ and that by Chebychev’s inequality,
one can choose for example τ = 4M . The last claim then follows from the fact that eαx

2 ≥ αnx2n

n!
.

Actually, the covariance operator Cµ is more than just bounded. If B happens to be a Hilbert space,
one has indeed the following result, which allows us to characterise in a very precise way the set of all
centred Gaussian measures on a Hilbert space:

Proposition 3.40 If B = H is a Hilbert space, then the operator Ĉµ:H → H defined as before by the
identity 〈Ĉµh, k〉 = Cµ(h, k) is trace class and one has the identity∫

H
‖x‖2 µ(dx) = tr Ĉµ . (3.12)

(Here, we used Riesz’s representation theorem to identifyH with its dual.)
Conversely, for every positive trace class symmetric operator K:H → H, there exists a Gaussian

measure µ onH such that Ĉµ = K.

Proof. Fix an arbitrary orthonormal basis {en} of H. We know from Theorem 3.36 that the second
moment of the norm is finite:

∫
H ‖x‖2 µ(dx) <∞. On the other hand, one has∫

H
‖x‖2 µ(dx) =

∞∑
n=1

∫
H
〈x, en〉2 µ(dx) =

∞∑
n=1

〈en, Ĉµen〉 = tr Ĉµ ,

which is precisely (3.12). Here, to pull the sum out of the integral in the first equality, we used Lebesgue’s
dominated convergence theorem.

In order to prove the converse statement, since K is compact, we can find an orthonormal basis {en}
ofH such that Ken = λnen and λn ≥ 0,

∑
n λn <∞. Let furthermore {ξn} be a collection of i.i.d.

N (0, 1) Gaussian random variables (such a family exists by Kolmogorov’s extension theorem). Then,
since

∑
n λnEξ2

n = trK < ∞, the series
∑
n

√
λnξnen converges in mean square, so that it has a

subsequence converging almost surely inH. One can easily check that the law of the limiting random
variable is Gaussian and has the requested covariance.

No such precise characterisation of the covariance operators of Gaussian measures exists in Banach
spaces. One can however show that Ĉµ is at least a little bit better than bounded, namely that it is always
a compact operator. We leave this statement as an exercise for the interested reader, since we will not
make any use of it in these notes:

Exercise 3.41 Show that in the case of a Gaussian measure µ on a general separable Banach space
B, the covariance operator Ĉµ:B∗ → B is compact in the sense that it maps the unit ball on B∗ into
a compact subset of B. Hint: Proceed by contradiction by first showing that if Ĉµ wasn’t compact,
then it would be possible to find a constant c > 0 and a sequence of elements {`k}k≥0 such that
‖`k‖ = 1, Cµ(`k, `j) = 0 for k 6= j, and Cµ(`k, `k) ≥ c for every k. Conclude that if this was
the case, then the law of large numbers applied to the sequence of random variables `n(x) would
imply that supk≥0 `k(x) = ∞ µ-almost surely, thus obtaining a contradiction with the fact that
supk≥0 `k(x) ≤ ‖x‖ <∞ almost surely.

In many situations, it is furthermore helpful to find out whether a given covariance structure can be
realised as a Gaussian measure on some space of Hölder continuous functions. This can be achieved
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through the following version of Kolmogorov’s continuity criterion, which can be found for example in
[RY94, p. 26]:

Theorem 3.42 (Kolmogorov) For d > 0, let C: [0, 1]d × [0, 1]d → R be a symmetric function such
that, for every finite collection {xi}mi=1 of points in [0, 1]d, the matrix Cij = C(xi, xj) is positive
definite. If furthermore there exists α > 0 and a constant K > 0 such that C(x, x) + C(y, y) −
2C(x, y) ≤ K|x− y|2α for any two points x, y ∈ [0, 1]d then there exists a unique centred Gaussian
measure µ on C([0, 1]d,R) such that∫

C([0,1]d,R)

f(x)f(y)µ(df) = C(x, y) , (3.13)

for any two points x, y ∈ [0, 1]d. Furthermore, for every β < α, one has µ(Cβ([0, 1]d,R)) = 1, where
Cβ([0, 1]d,R) is the space of β-Hölder continuous functions.

Proof. Set B = C([0, 1]d,R) and B∗ its dual, which consists of the set of Borel measures with finite
total variation [Yos95, p. 119]. Since convex combinations of Dirac measures are dense (in the topology
of weak convergence) in the set of probability measures, it follows that the set of linear combinations
of point evaluations is weakly dense in B∗. Therefore, the claim follows if we are able to construct a
measure µ on B such that (3.13) holds and such that, if f is distributed according to µ, then for any
finite collection of points {xi} ⊂ [0, 1]d, the joint law of the f(xi) is Gaussian.

By Kolmogorov’s extension theorem, we can construct a measure µ0 on X = R[0,1]d endowed with
the product σ-algebra such that the laws of all finite-dimensional marginals are Gaussian and satisfy
(3.13). We denote by X an X -valued random variable with law µ0. At this stage, one would think that
the proof is complete if we can show that X almost surely has finite β-Hölder norm. The problem with
this statement is that the β-Hölder norm is not a measurable function on X ! The reason for this is that it
requires point evaluations of X at uncountably many locations, while functions that are measurable
with respect to the product σ-algebra on X are allowed to depend on at most countably many function
evaluations.

This problem can be circumvented very elegantly in the following way. Denote by D ⊂ [0, 1]d

the subset of dyadic numbers (actually any countable dense subset would do for now, but the dyadic
numbers will be convenient later on) and define the event Ωβ by

Ωβ =
{
X : X̂(x)

def
= lim

y→x
y∈D

X(y) exists for every x ∈ [0, 1]d and X̂ belongs to Cβ([0, 1]d,R)
}
.

Since the event Ωβ can be constructed from evaluating X at only countably many points, it is a
measurable set. For the same reason, the map ι:X → Cβ([0, 1]d,R) given by

ι(X) =

{
X̂ if X ∈ Ωβ ,
0 otherwise

is measurable with respect to the product σ-algebra on X (and the Borel σ-algebra on Cβ), so that
the claim follows if we can show that µ0(Ωβ) = 1 for every β < α. (Take µ = ι]µ0.) Denoting
the β-Hölder norm of X restricted to the dyadic numbers by Mβ(X) = supx 6=y : x,y∈D{|X(x) −
X(y)|/|x− y|β}, we see that Ωβ can alternatively be characterised as Ωβ = {X : Mβ(X) <∞},
so that the claim follows if we can show for example that EMβ(X) <∞.

Denote by Dm ⊂ D the set of those numbers whose coordinates are integer multiples of 2−m and
denote by ∆m the set of pairs x, y ∈ Dm such that |x−y| = 2−m. In particular, note that ∆m contains
at most 2(m+2)d such pairs.

We are now going to make use of our simplifying assumption that we are dealing with Gaussian
random variables, so that pth moments can be bounded in terms of second moments. More precisely,
for every p ≥ 1 there exists a constant Cp such that if X is a Gaussian random variable, then one has
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the bound E|X|p ≤ Cp(E|X|2)
p/2. Setting Km(X) = supx,y∈∆m

|X(x) −X(y)| and fixing some
arbitrary β′ ∈ (β, α), we see that for p ≥ 1 large enough, there exists a constant Kp such that

EKp
m(X) ≤

∑
x,y∈∆m

E|X(x)−X(y)|p ≤ Cp
∑

x,y∈∆m

(E|X(x)−X(y)|2)p/2

= Cp
∑

x,y∈∆m

(C(x, x) + C(y, y)− 2C(x, y))
p/2 ≤ Ĉp2(m+2)d−αmp

≤ Ĉp2−β
′mp ,

for some constants Ĉp. (In order to obtain the last inequality, we had to assume that p ≥ d
α−β′

m+2
m

which can always be achieved by some value of p independent of m since we assumed that β′ < α.)
Using Jensen’s inequality, this shows that there exists a constant K such that the bound

EKm(X) ≤ K2−β
′m (3.14)

holds uniformly in m. Fix now any two points x, y ∈ D with x 6= y and denote by m0 the largest m
such that |x− y| < 2−m. One can then find sequences {xn}n≥m0

and {yn}n≥m0
with the following

properties:

1. One has limn→∞ xn = x and limn→∞ yn = y.
2. Either xm0

= ym0
or both points belong to the vertices of the same “dyadic hypercube” in Dm0

, so
that they can be connected by at most d “bonds” in ∆m0

.
3. For every n ≥ m0, xn and xn+1 belong to the vertices of the same “dyadic hypercube” in Dn+1, so

that they can be connected by at most d “bonds” in ∆n+1 and similarly for (yn, yn+1).

x

xn

One way of constructing this sequence is to order elements in Dm by
lexicographic order and to choose xn = max{x̄ ∈ Dn : x̄j ≤ xj ∀j}, as
illustrated in the picture to the right. This shows that one has the bound

|X(x)−X(y)| ≤ |X(xm0
)− Y (xm0

)|+
∞∑

n=m0

|X(xn+1)−X(xn)|

+
∞∑

n=m0

|X(yn+1)−X(yn)|

≤ dKm0
(X) + 2d

∞∑
n=m0

Kn+1(X) ≤ 2d
∞∑

n=m0

Kn(X) .

Note at this stage that since we have x, y ∈ D, the above sums are actually always finite since, if for
example x ∈ DN , then xn = x for every n > N .

Since m0 was chosen in such a way that |x− y| ≥ 2−m0−1, one has the bound

Mβ(X) ≤ 2d sup
m≥0

2β(m+1)
∞∑
n=m

Kn(X) ≤ 2β+1d
∞∑
n=0

2βnKn(X) .

It follows from this and from the bound (3.14) that

E|Mβ(X)| ≤ 2β+1d
∞∑
n=0

2βnEKn(X) ≤ 2β+1dK
∞∑
n=0

2(β−β′)n <∞ ,

since β′ was chosen strictly larger than β.

Combining Kolmogorov’s continuity criterion with Fernique’s theorem, we note that we can apply it
not only to real-valued processes, but to any Gaussian Banach-space valued process:
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Proposition 3.43 Let B be a separable Banach space and let {X(x)}x∈[0,1]d be a collection of B-
valued Gaussian random variables such that

E‖X(x)−X(y)‖ ≤ C|x− y|α ,

for some C > 0 and some α ∈ (0, 1]. Then, there exists a unique Gaussian measure µ on C([0, 1]d,B)
such that, if Y is a random variable with law µ, then Y (x) is equal in law to X(x) for every x.
Furthermore, µ(Cβ([0, 1]d,B)) = 1 for every β < α.

Proof. The proof is identical to that of Theorem 3.42, noting that the bound E‖X(x) − X(y)‖p ≤
Cp|x− y|αp follows from the assumption and Proposition 3.39.

Remark 3.44 The space Cβ([0, 1]d,R) is not separable. However, the space Cβ0 ([0, 1]d,R) of Hölder
continuous functions that furthermore satisfy limy→x

|f(x)−f(y)|
|x−y|β = 0 uniformly in x is separable

(polynomials with rational coefficients are dense in it). This is in complete analogy with the fact that
the space of bounded measurable functions is not separable, while the space of continuous functions is.

It is furthermore possible to check that Cβ′ ⊂ Cβ0 for every β′ > β, so that Exercise 3.64 below
shows that µ can actually be realised as a Gaussian measure on Cβ0 ([0, 1]d,R).

Exercise 3.45 Try to find conditions on G ⊂ Rd that are as weak as possible and such that Kol-
mogorov’s continuity theorem still holds if the cube [0, 1]d is replaced by G. Hint: One possible
strategy is to embed G into a cube and then to try to extend C(x, y) to that cube.

Exercise 3.46 Show that if G is as in the previous exercise,H is a Hilbert space, and C:G×G→
L(H,H) is such that C(x, y) positive definite, symmetric, and trace class for any two x, y ∈ G, then
Kolmogorov’s continuity theorem still holds if its condition is replaced by trC(x, x) + trC(y, y)−
2 trC(x, y) ≤ K|x− y|α. More precisely, one can construct a measure µ on the space Cβ([0, 1]d,H)
such that ∫

Cβ([0,1]d,R)

〈h, f(x)〉〈f(y), k〉µ(df) = 〈h,C(x, y)k〉 ,

for any x, y ∈ G and h, k ∈ H.

A very useful consequence of Kolmogorov’s continuity criterion is the following result:

Corollary 3.47 Let {ηk}k≥0 be countably many i.i.d. standard Gaussian random variables (real or
complex). Moreover let {fk}k≥0 ⊂ Lip(G,C) where the domain G ⊂ Rd is sufficiently regular for
Kolomgorov’s continuity theorem to hold. Suppose there is some δ ∈ (0, 2) such that

S2
1 =

∑
k∈I
‖fk‖2L∞ <∞ and S2

2 =
∑
k∈I
‖fk‖2−δL∞ Lip(fk)

δ <∞ , (3.15)

and define f =
∑
k∈I ηkfk. Then f is almost surely bounded and Hölder continuous for every Hölder

exponent smaller than δ/2.

Proof. From the assumptions we immediately derive that f(x) and f(x)− f(y) are a centred Gaussian
for any x, y ∈ G. Moreover, the corresponding series converge absolutely. Using that the ηk are i.i.d.,
we obtain

E|f(x)− f(y)|2 =
∑
k∈I
|fk(x)− fk(y)|2 ≤

∑
k∈I

min{2‖fk‖2L∞ ,Lip(fk)
2|x− y|2}

≤ 2
∑
k∈I
‖fk‖2−δL∞ Lip(fk)

δ|x− y|δ = 2S2
2 |x− y|δ ,
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where we used that min{a, bx2} ≤ a1−δ/2bδ/2|x|δ for any a, b ≥ 0. The claim now follows from
Kolmogorov’s continuity theorem.

Remark 3.48 One should really think of the fk’s in Corollary 3.47 as being an orthonormal basis of
the Cameron-Martin space of some Gaussian measure. (See Section 3.4 below for the definition of the
Cameron-Martin space associate to a Gaussian measure.) The criterion (3.15) then provides an effective
way of deciding whether the measure in question can be realised on a space of Hölder continuous
functions.

3.4 The Cameron-Martin space

Given a Gaussian measure µ on a separable Banach space B, it is possible to associate to it in a canonical
way a Hilbert space Hµ ⊂ B, called the Cameron-Martin space of µ. One of the main features of
the Cameron-Martin space is that it characterises precisely those directions in B in which translations
leave the measure µ “quasi-invariant” in the sense that the translated measure has the same null sets
as the original measure. In general, the spaceHµ will turn out to be strictly smaller than B. Actually,
this is always the case as soon as dimHµ = ∞ and, even worse, we will see that in this case one
necessarily has µ(Hµ) = 0! Contrast this to the case of finite-dimensional Lebesgue measure which is
invariant under translations in any direction! This is a striking illustration of the fact that measures in
infinite-dimensional spaces have a strong tendency of being mutually singular.

Another remarkable feature ofHµ is that even though it is in general of measure 0, it is sufficient to
specify the action of a linear map onHµ to guarantee that it can uniquely be extended to a measurable
linear map on a subset of full measure! This will be the content of Section 3.5.1 below.

There are several equivalent definitions of the Cameron-Martin space, and we will see some of its
equivalent characterisations in this section. We settle on the following definition as our starting point, as
it naturally yields the “correct” norm onHµ. Here, we postpone to Remark 3.51 and Proposition 3.54
the verification that ‖h‖µ is well-defined and that ‖h‖µ > 0 for h 6= 0:

Definition 3.49 The Cameron-Martin spaceHµ of µ is the completion of the linear subspace H̊µ ⊂ B
defined by

H̊µ = {h ∈ B : ∃h∗ ∈ B∗ with Cµ(h∗, `) = `(h) ∀` ∈ B∗} ,

under the norm ‖h‖2µ = 〈h, h〉µ = Cµ(h∗, h∗). It is a Hilbert space when endowed with the scalar
product 〈h, k〉µ = Cµ(h∗, k∗) = h∗(k) = k∗(h).

Exercise 3.50 Convince yourself that the space H̊µ is nothing but the range of the operator Ĉµ defined
in Remark 3.33. This shows that in general, it is not guaranteed thatHµ is dense in B. However, we
will see in Proposition 3.68 below that this is always the case if µ has full support.

Remark 3.51 Even though the map h 7→ h∗ may not be one to one, the norm ‖h‖µ is well-defined.
To see this, assume that for a given h ∈ H̊µ, there are two corresponding elements h∗1 and h∗2 in B∗.
Then, defining k = h∗1 + h∗2, one has

Cµ(h∗1, h
∗
1)− Cµ(h∗2, h

∗
2) = Cµ(h∗1, k)− Cµ(h∗2, k) = k(h)− k(h) = 0 ,

showing that ‖h‖µ does indeed not depend on the choice of h∗.

Exercise 3.52 Show that in the case B = Rn, the Cameron-Martin space is given by the range of the
covariance matrix. Write an expression for ‖h‖µ in this case.
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Exercise 3.53 Show that the Cameron-Martin space of a Gaussian measure determines it. More
precisely, if µ and ν are two centred Gaussian measures on B such that Hµ = Hν and such that
‖h‖µ = ‖h‖ν for every h ∈ Hµ, then they are identical.

For this reason, a Gaussian measure on B is sometimes given by specifying the Hilbert space structure
(Hµ, ‖ · ‖µ). Such a specification is then usually called an abstract Wiener space.

Let us discuss a few properties of the Cameron-Martin space. First of all, we show that it is a subspace
of B despite the completion procedure and that all non-zero elements ofHµ have strictly positive norm:

Proposition 3.54 One hasHµ ⊂ B. Furthermore, one has the bound

〈h, h〉µ ≥ ‖Cµ‖−1‖h‖2 , (3.16)

where the norms on the right hand side are understood to be taken in B.

Proof. One has the chain of inequalities

‖h‖2 = sup
`∈B∗\{0}

`(h)2

‖`‖2
= sup

`∈B∗\{0}

Cµ(h∗, `)2

‖`‖2
≤ sup

`∈B∗\{0}

Cµ(h∗, h∗)Cµ(`, `)

‖`‖2
≤ ‖Cµ‖〈h, h〉µ ,

which yields the bound on the norms. The fact thatHµ is a subset of B (or rather that it can be interpreted
as such) then follows from the fact that B is complete and that Cauchy sequences in H̊µ are also Cauchy
sequences in B by (3.16).

A simple example showing that the correspondence h 7→ h∗ in the definition of H̊µ is not necessarily
unique is the case µ = δ0, so that Cµ = 0. If one chooses h = 0, then any h∗ ∈ B has the required
property that Cµ(h∗, `) = `(h), so that this is an extreme case of non-uniqueness. However, if we
view B∗ as a subset of L2(B, µ) (by identifying linear functionals that agree µ-almost surely), then the
correspondence h 7→ h∗ is always an isomorphism. One has indeed

∫
B h
∗(x)2 µ(dx) = Cµ(h∗, h∗) =

‖h‖2µ. In particular, if h∗1 and h∗2 are two distinct elements of B∗ associated to the same element h ∈ B,
then h∗1 − h∗2 is associated to the element 0 and therefore

∫
B(h∗1 − h∗2)

2
(x)µ(dx) = 0, showing that

h∗1 = h∗2 as elements of L2(B, µ). We have:

Proposition 3.55 There is a canonical isomorphism ι:h 7→ h∗ betweenHµ and the closureRµ of B∗
in L2(B, µ). In particular,Hµ is separable.

Proof. We have already shown that ι:Hµ → L2(B, µ) is an isomorphism onto its image, so it remains
to show that all of B∗ belongs to the image of ι. For h ∈ B∗, define h∗ ∈ B as in (3.11) by

h∗ =

∫
B
xh(x)µ(dx) . (3.17)

This integral converges since ‖x‖2 is integrable by Fernique’s theorem. Since one has the identity
`(h∗) = Cµ(`, h), it follows that h∗ ∈ H̊µ and h = ι(h∗), as required to conclude the proof.

The separability ofHµ then follows immediately from the fact that L2(B, µ) is separable whenever
B is separable, since its Borel σ-algebra is countably generated.

Remark 3.56 The spaceRµ defined in Proposition 3.55 is called the reproducing kernel Hilbert space
for µ (or just reproducing kernel for short). However, since it is isomorphic to the Cameron-Martin
space in a natural way, there is considerable confusion between the two in the literature. We retain in
these notes the terminology from [Bog98], but we urge the reader to keep in mind that there are authors
who use a slightly different terminology.
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Remark 3.57 In general, there do exist Gaussian measures with non-separable Cameron-Martin space,
but they are measures on more general vector spaces. One example would be the measure on RR

(yes, the space of all functions from R to R endowed with the product σ-algebra) given by the
uncountable product of one-dimensional Gaussian measures. The Cameron-Martin space for this
somewhat pathological measure is given by those functions f that are non-zero on at most countably
points and such that

∑
t∈R |f(t)|2 <∞. This is a prime example of a non-separable Hilbert space.

Exercise 3.58 The Wiener measure µ is defined on B = C([0, 1],R) as the centred Gaussian measure
with covariance operator given by Cµ(δs, δt) = s ∧ t. Show that the Cameron-Martin space for the
Wiener measure on B = C([0, 1],R) is given by the space H1,2

0 ([0, 1]) of all absolutely continuous
functions h such that h(0) = 0 and

∫ 1

0 ḣ
2(t) dt <∞. Hint: If we denote by W a process with law µ,

one way of proceeding is to first use the particular form of the covariance of µ to show that elements
in Rµ can be represented as W 7→

∫ 1

0 g(s) dW (s) for g ∈ L2([0, 1],R). One can then use the map
(3.17) to show that the corresponding element h ∈ Hµ is given by h(t) =

∫ t
0 g(s) ds.

Exercise 3.59 Let µ be a Gaussian measure on a Hilbert space H with covariance K and consider
the spectral decomposition of K: Ken = λnen with

∑
n≥1 λn <∞ and {en} an orthonormal basis

of eigenvectors. Such a decomposition exists since we already know that K must be trace class from
Proposition 3.40.

Assume now that λn > 0 for every n. Show that H̊µ is given by the range of K and that the
correspondence h 7→ h∗ is given by h∗ = K−1h. Show furthermore that the Cameron-Martin space
Hµ consists of the image of K1/2, i.e. those elements h ofH such that

∑
n≥1 λ

−1
n 〈h, en〉2 <∞, and

that 〈h, k〉µ = 〈K−1/2h,K−1/2k〉.

Exercise 3.60 Show that one has the alternative characterisation

‖h‖µ = sup{`(h) : Cµ(`, `) ≤ 1} , (3.18)

and Hµ = {h ∈ B : ‖h‖µ < ∞}. Hint: Use the fact that in any Hilbert space H, one has
‖h‖ = sup{〈k, h〉 : ‖k‖ ≤ 1}, and that this characterisation still holds if we restrict k to a dense
subspace. (Prove it!)

Since elements inRµ are built from the space of all bounded linear functionals on B, it should come
as little surprise that its elements are “almost” linear functionals on B in the following sense:

Proposition 3.61 For every ` ∈ Rµ there exists a measurable linear subspace V` of B such that
µ(V`) = 1 and a linear map ˆ̀:V` → R such that ` = ˆ̀µ-almost surely.

Proof. Fix ` ∈ Rµ. By the definition ofRµ and Borel-Cantelli, we can find a sequence `n ∈ B∗ such that
limn→∞ `n(x) = `(x) for µ-almost every x ∈ B. (Take for example `n such that ‖`n − `‖2µ ≤ n−4.)
It then suffices to define

V` =
{
x : lim

n→∞
`n(x) exists

}
,

and to set ˆ̀(x) = limn→∞ `n(x) on V`.

Another very useful fact about the reproducing kernel space is given by:

Proposition 3.62 The law of any element h∗ = ι(h) ∈ Rµ is a centred Gaussian with variance ‖h‖2µ.
Furthermore, any two elements h∗, k∗ have covariance 〈h, k〉µ.

Proof. We already know from the definition of a Gaussian measure that the law of any element of B∗
is a centred Gaussian. Let now h∗ be any element of Rµ and let hn be a sequence in Rµ ∩ B∗ such
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that hn → h∗ inRµ. We can furthermore choose this approximating sequence such that ‖hn‖Rµ =
‖h∗‖Rµ = ‖h‖µ, so that the law of each of the hn is equal toN (0, ‖h‖2µ).

Since L2-convergence implies convergence in law, we conclude that the law of h∗ is also given by
N (0, ‖h‖2µ). The statement about the covariance then follows by polarisation, since

Eh∗k∗ =
1

2
(E(h∗ + k∗)2 − E(h∗)2 − E(k∗)2) =

1

2
(‖h+ k‖2µ − ‖h‖2µ − ‖k‖2µ) = 〈h, k〉µ ,

by the previous statement.

Remark 3.63 Actually, the converse of Proposition 3.61 is also true: if `:B → R is measurable and
linear on a measurable linear subspace V of full measure, then ` belongs toRµ. This is not an obvious
statement. It can be viewed for example as a consequence of the highly non-trivial fact that every
Borel measurable linear map between two sufficiently “nice” topological vector spaces is bounded,
see for example [Sch66, Kat82]. (The point here is that the map must be linear on the whole space
and not just on some “large” subspace as is usually the case with unbounded operators.) This implies
by Proposition 3.67 that ` is a measurable linear extension of some bounded linear functional onHµ.
Since such extensions are unique (up to null sets) by Theorem 3.73 below, the claim follows from
Proposition 3.55.

Exercise 3.64 Show that if B̃ ⊂ B is a continuously embedded Banach space with µ(B̃) = 1, then the
embedding B∗ ↪→ Rµ extends to an embedding B̃∗ ↪→ Rµ. Deduce from this that the restriction of µ
to B̃ is again a Gaussian measure. In particular, Kolmogorov’s continuity criterion yields a Gaussian
measure on Cβ0 ([0, 1]d,R).

The properties of the reproducing kernel space of a Gaussian measure allow us to give another
illustration of the fact that measures on infinite-dimensional spaces behave in a rather different way
from measures on Rn:

Proposition 3.65 Let µ be a centred Gaussian measure on a separable Banach space B such that
dimHµ =∞. Denote by Dc the dilatation by a real number c on B, that is Dc(x) = cx. Then, µ and
D]
cµ are mutually singular for every c 6= ±1.

Proof. Since the reproducing Kernel spaceRµ is a separable Hilbert space, we can find an orthonormal
basis {en}n≥0. Consider the sequence of random variables XN(x) = 1

N

∑N
n=1 |en(x)|2 over B. If B

is equipped with the measure µ then, since the en are independent under µ, we can apply the law of
large numbers and deduce that

lim
N→∞

XN(x) = 1 , (3.19)

for µ-almost every x. On the other hand, it follows from the linearity of the en that when we equip B
with the measure D]

cµ, the en are still independent, but have variance c2, so that

lim
N→∞

XN(x) = c2 ,

for D]
cµ-almost every x. This shows that if c 6= ±1, the set on which the convergence (3.19) takes

place must be of D]
cµ-measure 0, which implies that µ and D]

cµ are mutually singular.

Note that this example also shows that just because two Gaussian measure share the same Cameron-
Martin space, this does not mean that they are mutually equivalent! However, as already mentioned
earlier, the importance of the Cameron-Martin space is that it represents precisely those directions in
which one can translate the measure µ without changing its null sets:



3.4 The Cameron-Martin space 27

Theorem 3.66 (Cameron-Martin) For h ∈ B, define the map Th:B → B by Th(x) = x+ h. Then,
the measure T ]hµ is absolutely continuous with respect to µ if and only if h ∈ Hµ. Furthermore, in the
latter case, its Radon-Nikodym derivative is given by

dT ]hµ

dµ
(x) = exp(h∗(x)− 1

2
‖h‖2µ) .

Proof. Fix h ∈ Hµ and let h∗ ∈ L2(B, µ) be the corresponding element of the reproducing kernel.
Since the law of h∗ is Gaussian by Proposition 3.62, the map x 7→ exp(h∗(x)) is integrable. Since
furthermore the variance of h∗ is given by ‖h‖2µ, the function

Dh(x) = exp(h∗(x)− 1
2
‖h‖2µ) (3.20)

is strictly positive, belongs toL1(B, µ), and integrates to 1. It is therefore the Radon-Nikodym derivative
of a measure µh that is absolutely continuous with respect to µ. To check that one has indeed µh = T ]hµ,
it suffices to show that their Fourier transforms coincide. Assuming that h∗ ∈ B∗, one has

µ̂h(`) =

∫
B

exp(i`(x) + h∗(x)− 1
2
‖h‖2µ)µ(dx) = exp( 1

2
Cµ(i`+ h∗, i`+ h∗)− 1

2
‖h‖2µ)

= exp(− 1
2
Cµ(`, `)− iCµ(`, h∗)) = exp(− 1

2
Cµ(`, `) + i`(h)) .

Using Proposition 3.62 for the joint law of ` and h∗, it is an easy exercise to check that this equality
still holds for arbitrary h ∈ Hµ.

On the other hand, we have

T̂ ]hµ(`) =

∫
B

exp(i`(x))T ]hµ(dx) =

∫
B

exp(i`(x+ h))µ(dx) = ei`(h)

∫
B

exp(i`(x))µ(dx)

= exp(− 1
2
Cµ(`, `) + i`(h)) ,

showing that µh = T ]hµ.
To show the converse, note first that one can check by an explicit calculation that ‖N (0, 1) −
N (h, 1)‖TV ≥ 2 − 2 exp(−h2

8
). Fix now some arbitrary n > 0. If h 6∈ Hµ then, by Exercise 3.60,

there exists ` ∈ B∗ with Cµ(`, `) = 1 such that `(h) ≥ n. Since the image `]µ of µ under ` isN (0, 1)
and the image of T ]hµ under ` isN (−`(h), 1), this shows that

‖µ− T ]hµ‖TV ≥ ‖`]µ− `]T ]hµ‖TV = ‖N (0, 1)−N (−`(h), 1)‖TV ≥ 2− 2 exp(−n
2

8
) .

Since this is true for every n, we conclude that ‖µ− T ]hµ‖TV = 2, thus showing that they are mutually
singular.

As a consequence, we have the following characterisation of the Cameron-Martin space:

Proposition 3.67 The spaceHµ ⊂ B is the intersection of all (measurable) linear subspaces of full
measure. However, ifHµ is infinite-dimensional, then one has µ(Hµ) = 0.

Proof. Take an arbitrary linear subspace V ⊂ B of full measure and take an arbitrary h ∈ Hµ. It follows
from Theorem 3.66 that the affine space V − h also has full measure. Since (V − h) ∩ V = 6# unless
h ∈ V , one must have h ∈ V , so thatHµ ⊂

⋂
{V ⊂ B : µ(V ) = 1}.

Conversely, take an arbitrary x 6∈ Hµ and let us construct a linear space V ⊂ B of full measure,
but not containing x. Since x 6∈ Hµ, one has ‖x‖µ = ∞ with ‖ · ‖µ extended to B as in (3.18).
Therefore, we can find a sequence `n ∈ B∗ such that Cµ(`n, `n) ≤ 1 and `n(x) ≥ n. Defining the
norm |y|2 =

∑
n n
−2(`n(y))

2, we see that∫
B
|y|2 µ(dy) =

∞∑
n=1

1

n2

∫
B
(`n(y))

2
µ(dy) ≤ π2

6
,
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so that the linear space V = {y : |y| <∞} has full measure. However, |x| =∞ by construction, so
that x 6∈ V .

To show that µ(Hµ) = 0 if dimHµ = ∞, consider an orthonormal sequence en ∈ Rµ so that
the random variables {en(x)} are i.i.d. N (0, 1) distributed. By the second Borel-Cantelli lemma, it
follows that supn |en(x)| = ∞ for µ-almost every x, so that in particular ‖x‖2µ ≥

∑
n e

2
n(x) = ∞

almost surely.

We conclude by showing that while Hµ has measure 0, its closure always has full measure, and
is actually the smallest closed subspace of B with that property. Recall that the (topological) support
suppµ of a Borel measure µ on a complete separable metric space consists of those points x such that
µ(U) > 0 for every neighbourhood U of x. Alternatively, it consists of the intersection of all closed
sets of full measure, and it does itself have full measure, see for example [Bog07, Chapter 7]. One then
has

Proposition 3.68 The support of a Gaussian measure µ coincides with the closure H̄µ ofHµ in B.

Proof. Similarly to the proof of Proposition 3.31, we see that one can find a countable number of linear
functionals `n ∈ B∗ such that `n(H̄µ) = 0 and such that x ∈ H̄µ if and only if `n(x) = 0 for all n.

On the other hand, combining Definition 3.49 and Proposition 3.54, we see that H̄µ is given by the
closure of the range of Ĉµ, so that Cµ(`n, `n) = 0 for every n. Combining this with (3.8) shows that
`]nµ = δ0 for every n, so that µ(

⋂
n ker `n) = µ(H̄µ) = 1, which shows that suppµ ⊂ H̄µ.

Conversely, x ∈ suppµ implies that x+ h ∈ suppµ for every h ∈ Hµ (and therefore also for every
h ∈ H̄µ) by Theorem 3.66. Since suppµ cannot be empty, we conclude that suppµ = Hµ.

3.5 Images of Gaussian measures

It follows immediately from the definition of a Gaussian measure and the expression for its Fourier
transform that if µ is a Gaussian measure on some Banach space B and A:B → B2 is a bounded linear
map for B2 some other Banach space, then ν = A]µ is a Gaussian measure on B2 with covariance
given by

Cν(`, `
′) = Cµ(A∗`, A∗`′) . (3.21)

In this expression, A∗:B∗2 → B∗ is the adjoint to A, that is the operator such that (A∗`)(x) = `(Ax)
for every x ∈ B and every ` ∈ B∗2 .

Recall now thatHµ is the intersection over all linear subspaces of B that have full measure under µ.
This suggests that in order to determine the image of µ under a linear map, it is sufficient to know how
that map acts on elements ofHµ. This intuition is made precise by the following theorem:

Theorem 3.69 Let µ be a centred Gaussian probability measure on a separable Banach space B. Let
furthermoreH be a separable Hilbert space and let A:Hµ → H be a Hilbert-Schmidt operator. (That
is AA∗:H → H is trace class.) Then, there exists a measurable map Â:B → H such that ν = Â]µ is
Gaussian with covariance Cν(h, k) = 〈A∗h,A∗k〉µ. Furthermore, there exists a measurable linear
subspace V ⊂ B of full µ-measure such that Â restricted to V is linear and Â restricted toHµ ⊂ V
agrees with A.

Proof. Let {en}n≥1 be an orthonormal basis forHµ and denote by e∗n the corresponding elements in
Rµ ⊂ L2(B, µ) and define SN(x) =

∑N
n=0 e

∗
n(x)Aen. Recall from Proposition 3.61 that we can find

subspaces Ven of full measure such that e∗n is linear on Ven . Define now a linear subspace V ⊂ B by

V =
{
x ∈

⋂
n≥0

Ven : the sequence {SN(x)} converges inH
}

,
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(the fact that V is linear follows from the linearity of each of the e∗n) and set

Â(x) =

{
limN→∞ SN(x) for x ∈ V ,

0 otherwise.

Since the random variables {e∗n} are i.i.d.N (0, 1)-distributed under µ, the sequence {SN} forms an
H-valued martingale and one has

sup
N

Eµ‖SN(x)‖2 =
∞∑
n=0

‖Aen‖2 ≤ trA∗A <∞ ,

where the last inequality is a consequence of A being Hilbert-Schmidt. It follows that µ(V ) = 1 by
Doob’s martingale convergence theorem.

To see that ν = Â]µ has the stated property, fix an arbitrary h ∈ H and note that the series∑
n≥1 e

∗
n〈Aen, h〉 converges inRµ to an element with covariance ‖A∗h‖2. The statement then follows

from Proposition 3.62 and the fact that Cν(h, h) determines Cν by polarisation. To check that ν is
Gaussian, we can compute its Fourier transform in a similar way.

The proof of Theorem 3.69 can easily be extended to the case where the image space is a Banach
space rather than a Hilbert space. However, in this case we cannot give a straightforward characterisation
of those maps A that are “admissible”, since we have no good complete characterisation of covariance
operators for Gaussian measures on Banach spaces. However, we can take the pragmatic approach and
simply assume that the new covariance determines a Gaussian measure on the target Banach space.
With this approach, we can formulate the following version for Banach spaces:

Proposition 3.70 Let B1 and B2 be two separable Banach space and let µ be a centred Gaussian
probability measure on B1. Let A:Hµ → B2 be a bounded linear operator such that there exists a
centred Gaussian measure ν on B2 with covariance Cν(h, k) = 〈A∗h,A∗k〉µ. Then, there exists a
measurable map Â:B1 → B2 such that ν = Â]µ and such that there exists a measurable linear
subspace V ⊂ B of full µ-measure such that Â restricted to V is linear and Â restricted toHµ ⊂ V
agrees with A.

Proof. As a first step, we construct a Hilbert spaceH2 such that B2 ⊂ H2 as a Borel subset. Denote by
Hν ⊂ B2 the Cameron-Martin space of ν and let {en} ⊂ Hν be an orthonormal basis of elements such
that e∗n ∈ B∗2 for every n. (Such an orthonormal basis can always be found by using the Grahm-Schmidt
procedure.) We then define a norm on B2 by

‖x‖22 =
∑
n≥1

e∗n(x)2

n2‖e∗n‖2
,

where ‖e∗n‖ is the norm of e∗n in B∗2 . It is immediate that ‖x‖2 <∞ for every x ∈ B2, so that this turns
B2 into a pre-Hilbert space. We finally defineH2 as the completion of B2 under ‖ · ‖2.

Denote by ν ′ the image of the measure ν under the inclusion map ι:B2 ↪→ H2. It follows that the
map A′ = ι ◦ A satisfies the assumptions of Theorem 3.69, so that there exists a map Â:B1 → H2

which is linear on a subset of full µ-measure and such that Â]µ = ν ′. On the other hand, we know by
construction that ν ′(B2) = 1, so that the set {x : Âx ∈ B2} is of full measure. Modifying Â outside
of this set by for example setting it to 0 and using Exercise 3.64 then yields the required statement.

To conclude this section, we show that the Cameron-Martin space of the image measure is given by
the image of the Cameron-Martin space of the original measure. More precisely, one has:

Proposition 3.71 In the setting of Proposition 3.70, we have Hν = AHµ and ‖h‖ν = inf{‖k‖µ :
Ak = h}.
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Proof. It follows immediately from the characterisation (3.18) that ‖Ak‖ν ≤ ‖k‖µ, so thatAHµ ⊂ Hν .
On the other hand, since ν(V ) ≥ µ(ÂV ) for every measurable linear subspace V , one has Hν ⊂⋂
{ÂV : µ(V ) = 1} = ÂHµ = AHµ.
It remains to show that for every h ∈ Hν there exists k ∈ Hµ such that Ak = h and such that
‖h‖ν = ‖k‖µ. For this, consider the adjoint map A∗:Hν → Hµ. If we identify (the dual space
of) Hν with Rν via h ↔ h∗ as in Proposition 3.55, then we can check that one has the identity
(A∗h)

∗
(x) = h∗(Âx). This follows from the fact that for k ∈ Hµ one has

(A∗h)
∗
(k) = 〈A∗h, k〉µ = 〈h,Ak〉ν = h∗(Ak) ,

where the middle identity follows from the definiton of the adjoint and the two remaining identities
follow from Definition 3.49. On the other hand, since ν = Â]µ, composition with Â is an isometry
from L2(B2, ν) into L2(B1, µ), so thatAA∗ is the identity. We conclude that k = A∗h has the required
properties since Ak = (AA∗)h = h and ‖k‖2µ = ‖A∗h‖2µ = ‖h‖2ν .

add proof
Exercise 3.72 Show that if µ is a Gaussian measure on a separable Banach space B with Cameron-
Martin spaceHµ, then every bounded map A:Hµ → Hµ can be extended uniquely to a measurable
map Â:B → B which is linear on a subspace of full measure and such that Â]µ is again Gaussian on
B.

3.5.1 Uniqueness of measurable extensions and the isoperimetric inequality

This section is devoted to a proof of the converse of Theorem 3.69 and Proposition 3.70, namely

Theorem 3.73 Let µ be a Gaussian measure on a separable Banach space B1 with Cameron-Martin
spaceHµ and let A:Hµ → B2 be a linear map satisfying the assumptions of Proposition 3.70. Then
the extension Â of A is unique (up to sets of measure 0) in the class of maps such that there exists
a measurable linear subspace V with µ(V ) = 1 such that Â is linear on V , and Âx = Ax for
x ∈ Hµ ⊂ V .

Remark 3.74 Note that unlike in the statement of Proposition 3.70, we do not a priori impose that
any two extensions Â1 and Â2 are such that Â]1µ = Â]2µ! As a consequence of this result, the precise
Banach spaces B1 and B2 are completely irrelevant when one considers the image of a Gaussian
measure under a linear transformation. The only thing that matters is the Cameron-Martin space for the
starting measure and the way in which the linear transformation acts on this space. This fact will be
used repeatedly in the sequel.

This is probably one of the most remarkable results in Gaussian measure theory. At first sight, it
appears completely counterintuitive: the Cameron-Martin space Hµ has measure 0, so how can the
specification of a measurable map on a set of measure 0 be sufficient to determine it on a set of measure
1? Part of the answer lies of course in the requirement that the extension Â should be linear on a
set of full measure. However, even this requirement would not be sufficient by itself to determine
Â since the Hahn-Banach theorem provides a huge number of different extension of A that do not
coincide anywhere except onHµ. The missing ingredient that solves this mystery is the requirement
that Â is not just any linear map, but a measurable linear map. This additional constraint rules out all
of the non-constructive extensions of A provided by the Hahn-Banach theorem and leaves only one
(constructive) extension of A.

The main ingredient in the proof of Theorem 3.73 is the Borell-Sudakov-Cirel’son inequality [SC74,
Bor75], a general form of isoperimetric inequality for Gaussian measures which is very interesting
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and useful in its own right. In order to state this result, we first introduce the notation Bε for the open
Hµ-ball of radius ε centred at the origin. We also denote by A+B the sum of two sets defined by

A+B = {x+ y : x ∈ A , y ∈ B} ,

and we denote by Φ the distribution function of the normal Gaussian: Φ(t) = 1√
2π

∫ t
−∞ e

−s2/2 ds.
With these notations at hand, we have the following:

Theorem 3.75 (Borell-Sudakov-Cirel’son) Let µ be a Gaussian measure on a separable Banach
space B with Cameron-Martin space Hµ and let A ⊂ B be a measurable subset with measure
µ(A) = Φ(α) for some α ∈ R. Then, for every ε > 0, one has the bound µ(A+Bε) ≥ Φ(α+ ε).

Remark 3.76 Theorem 3.75 is remarkable since it implies that even thoughHµ itself has measure 0,
whenever A is a set of positive measure, no matter how small, the set A+Hµ has full measure!

Remark 3.77 The bound given in Theorem 3.75 is sharp whenever A is a half space, in the sense that
A = {x ∈ B : `(x) ≥ c} for some ` ∈ Rµ and c ∈ R. In the case where ε is small, (A+Bε) \A is
a fattened boundary for the setA, so that µ(A+Bε)−µ(A) can be interpreted as a kind of “perimeter”
for A. The statement can then be interpreted as stating that in the context of Gaussian measures,
half-spaces are the sets of given perimeter that have the largest measure. This justifies the statement that
Theorem 3.75 is an isoperimetric inequality.

We are not going to give a proof of Theorem 3.75 in these notes because this would lead us too far
astray from our main object of study. The interested reader may want to look into the monograph [LT91]
for a more exhaustive treatment of probability theory in Banach spaces in general and isoperimetric
inequalities in particular. Let us nevertheless remark shortly on how the argument of the proof goes,
as it can be found in the original papers [SC74, Bor75]. In a nutshell, it is a consequence of the two
following remarks:

• Let νM be the uniform measure on a sphere of radius
√
M in RM and let ΠM,n be the orthogonal

projection from RM to Rn. Then, the sequence of measures ΠM,nνM converges as M →∞ to
the standard Gaussian measure on Rn. This remark is originally due to Poincaré.

• A claim similar to that of Theorem 3.75 holds for the uniform measure on the sphere, in the
sense that the volume of a fattened set A + Bε on the sphere is bounded from below by the
volume of a fattened “cap” of volume identical to that of A. Originally, this fact was discovered
by Lévy, and it was then later generalised by Schmidt, see [Sch48] or the review article [Gar02].

These two facts can then be combined in order to show that half-spaces are optimal for finite-dimensional
Gaussian measures. Finally, a clever approximation argument is used in order to generalise this statement
to infinite-dimensional measures as well.

An immediate corollary is given by the following zero-one law for Gaussian measures:

Corollary 3.78 Let V ⊂ B be a measurable linear subspace. Then, one has either µ(V ) = 0 or
µ(V ) = 1.

Proof. Let us first consider the case whereHµ 6⊂ V . In this case, just as in the proof of Proposition 3.67,
we conclude that µ(V ) = 0, for otherwise we could construct an uncountable collection of disjoint sets
with positive measure.

If Hµ ⊂ V , then we have V + Bε = V for every ε > 0, so that if µ(V ) > 0, one must have
µ(V ) = 1 by Theorem 3.75.

We have now all the necessary ingredients in place to be able to give a proof of Theorem 3.73:

Proof of Theorem 3.73. Assume by contradiction that there exist two measurable extensions Â1 and Â2

of A. In other words, we have Âix = Ax for x ∈ Hµ and there exist measurable subspaces Vi with
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µ(Vi) = 1 such that the restriction of Âi to Vi is linear. Denote V = V1 ∩ V2 and ∆ = Â2 − Â1, so
that ∆ is linear on V and ∆|Hµ = 0.

Let ` ∈ B∗2 be arbitrary and consider the events V c
` = {x : `(∆x) ≤ c}. By the linearity of ∆, each

of these events is invariant under translations inHµ, so that by Theorem 3.75 we have µ(V c
` ) ∈ {0, 1}

for every choice of ` and c. Furthermore, for fixed `, the map c 7→ µ(V c
` ) is increasing and it follows

from the σ-additivity of µ that we have limc→−∞ µ(V c
` ) = 0 and limc→∞ µ(V c

` ) = 1. Therefore,
there exists a unique c` ∈ R such that µ(V c

` ) jumps from 0 to 1 at c = c`. In particular, this implies
that `(∆x) = c` µ-almost surely. However, the measure µ is invariant under the map x 7→ −x, so that
we must have c` = −c`, implying that c` = 0. Since this is true for every ` ∈ B∗2 , we conclude from
Proposition 3.31 that the law of ∆x is given by the Dirac measure at 0, so that ∆x = 0 µ-almost surely,
which is precisely what we wanted.

The remainder of this chapter is devoted to two applications of the extension theorem for Gaussian
measures, Theorem 3.73. First, we show that a Gaussian measure on a product space can always be
“disintegrated” against one factor into regular conditional probabilities that are Gaussian on the other
factor. Then, we will see how we can take advantage of the extension theorem to construct a theory of
stochastic integration with respect to a “cylindrical Wiener process”, which is the infinite-dimensional
analogue of a standard n-dimensional Wiener process.

3.6 Disintegration of Gaussian measures

The setup considered in the section is the following. We are given a Gaussian measure µ on a space B
which can be written as B = B1 ⊕ B2 for two separable Banach spaces Bi. We denote by Πi:B → Bi
the canonical projections so that Π2Π1 = Π1Π2 = 0. We also denote as before by Hµ ⊂ B the
Cameron-Martin space of µ. The aim is to find a (reasonably) explicit expression for a map P from B1

into the set of probability measures on B2 such that the identity∫
B
ϕ(x)µ(dx) =

∫
B1

∫
B2

ϕ(x1 + x2)P(x1)(dx2)µ1(dx1) ,

holds for every measurable bounded function ϕ:B → R, where µ1 = Π]
1µ is the projection of µ onto

the first factor. In order to keep notations simple, we make the slight abuse of notation by identifying
the spaces Bi with closed subspaces of B. In the finite-dimensional case, the measures P(x1) always
consist of translates of a common centred Gaussian measure µc2 by an amount Px1 for some linear map
P :B1 → B2. Maybe not surprisingly, this is still the case for Gaussian measures on arbitrary Banach
spaces. The aim of this section is to justify this fact rigorously and to give explicit expressions for the
conditional measure µc2 and the conditional mean P .

Example 3.79 Consider the measure µ on R2 with covariance given by

Cµ =

(
2 1
1 3

)
⇒ C−1

µ =
1

5

(
3 −1
−1 2

)
.

The projected measure µ1 then has variance 2. Furthermore, the density of µ with respect to Lebesgue
measure is proportional to exp(− 1

2
〈x,C−1

µ x〉), so that the conditional measure for x2 given x1 is
proportional to exp(− 1

5
x2

2 + 1
5
x1x2), which in turn is proportional to exp(− 1

5
(x2 − 1

2
x1)2). In this

particular case, we thus see that P(x1) is Gaussian with variance 5
2

and mean − 1
2
x1.

We start by denoting by Hp
i the Cameron-Martin spaces of the projected measures µi = Π]

iµ,
which by Proposition 3.71 are given by Hp

i = ΠiHµ ⊂ Bi. We also denote by Ci their covariance
operators, which we interpret in this section as operators from B∗i to Bi. It follows from (3.21) that
these covariances are given by Ci = ΠiCµΠ∗i . Furthermore, we note that the Cameron-Martin norm of
elements h in the image of Ci is given by

‖h‖2i,p = 〈h,C−1
i h〉 ,
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where we denote by 〈·, ·〉 the pairing between Bi and B∗i .
It may be worth to note at this stage thatHp

i is in general not a subspace ofHµ. This can be seen
already in the simplest possible case B = R2 and Bi = R by taking for µ image of the normal Gaussian
N (0, 1) under the map x 7→ (x, x). However, there exists a natural isomorphism betweenHp

i and some
closed subspace ofHµ in the following way. For x in the image of Ci, define Uix = CµΠ∗iC

−1
i x ∈ B.

One then has:

Lemma 3.80 For every x in the image of Ci, one has Uix ∈ Hµ. Furthermore, the map Ui extends to
an isometry betweenHp

i and UiHp
i ⊂ Hµ.

Proof. Since Uix belongs to the image of Cµ by construction, one has ‖Uix‖2 = 〈Uix,C−1
µ Uix〉 =

〈CµΠ∗iC
−1
i x,Π∗iC

−1
i x〉 = 〈CiC−1

i x,C−1
i x〉 = 〈x,C−1

i x〉 = ‖x‖2i,p. The claim follows from the
fact that the image of Ci is dense inHp

i .

Remark 3.81 This calculation also shows that although C−1
i x is only defined modulo elements in the

kernel of Ci, Uix is well-defined as an element ofHp
i .

We denote by Ĥp
i the images ofHp

i under Ui. If we identifyHµ withRµ, we see that Ĥp
i is actually

nothing but the closure inRµ of the image of B∗i under the dual map Π∗i . Denoting by Π̂p
i :Hµ → Hµ

the orthogonal projection (inHµ) onto Ĥp
i , it is a straightforward calculation to check that one has the

identity Π̂p
ix = UiΠix. On the other hand, it follows from the definition of Ci that ΠiUix = x, so that

Πi: Ĥp
i → H

p
i is the inverse of the isomorphism Ui.

We can also define subspacesHc
i ofH by

Hc
i = Hµ ∩ Bi = Hµ ∩Hp

i , (3.22)

Here, the closures are taken with respect to the topology ofHµ. The spacesHc
i are again Hilbert spaces.

(They inherit their structure fromHµ, not fromHp
i !) Since they are contained inHµ, it follows from

Exercise 3.72 that the orthogonal projection Πc
i :Hµ → Hci extends to a set of full measure, so that we

can construct measures µci = (Πc
i)
]
µ on Bi. Note that for x ∈ Hc

i ∩H
p
i , one has ‖x‖µ ≥ ‖x‖i,p, so

that the inclusionHc
i ⊂ H

p
i holds. The relation between the spacesHc

i and Ĥp
i is the following:

Lemma 3.82 One hasHc
1 = (Ĥp

2)
⊥ and vice-versa.

Proof. Under the identification h↔ h∗, Ĥp
2 is nothing but the closure of the image of Π∗2 inRµ. On the

other hand,Hc
1 is a subset of the image of Π1. Note now that the scalar product inHµ is an extension

of the duality pairing between B and B∗.

We now define a (continuous) operator P :Hp
1 → Hp2 by Px = Π2U1x. It follows from the previous

remarks that P is unitarily equivalent to the orthogonal projection (inH) from Ĥp
1 to Ĥp

2. Furthermore,
one has Px = U1x− x, so that

‖Px‖µ ≤ ‖x‖1,p + ‖x‖µ , (3.23)

which, combined with (3.22), shows that P can be extended to a bounded operator from Hc
1 to Hc

2.
It follows from the Gaussian measurable extension theorem that P can be extended uniquely to a
measurable map P̂ :B1 → B2 which is linear on a set of full µ1-measure. With these notations at hand,
the main statement of this section is given by:

Proposition 3.83 The measure µ admits the disintegration∫
ϕ(x)µ(dx) =

∫
B1

∫
B2

ϕ(x+ P̂ x+ y)µc2(dy)µ1(dx) . (3.24)
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Proof. Denote by ν the measure on the right hand side. Since ν is the image of the Gaussian measure µ1⊗
µc2 under the measurable linear map A: (x, y) 7→ x+ P̂ x+ y, the claim follows from Proposition 3.70
if we can show that A is an isometry betweenHp

1 ⊕Hc2 andHµ. This is equivalent to the fact that the
operator x 7→ x+ Px = x+ Π2U1x fromHp

1 toH is an isometry betweenHp
1 and (Hc

2)
⊥. On the

other hand, we know from Lemma 3.82 that (Hc
2)
⊥

= Ĥp
1 and we know from Lemma 3.80 that U1 is an

isomorphism betweenHp
1 and Ĥp

1. Finally, it follows from the definitions that Π1U1x = C1C
−1
1 x = x

for every x ∈ Hp1, so that one has x+ Π2U1x = (Π1 + Π2)U1x = U1x, which completes the proof.

Exercise 3.84 Suppose that B = Rn ⊕ Rm and that the covariance matrix C of the Gaussian measure
µ on B is given in block form as

C =

(
C11 C12

CT
12 C22

)
.

Show that in this case, the covariance matrix of µ1 is given by C11, the covariance of µc2 is given by
C22 − CT

12C
−1
11 C12, and the linear map P is given by P = CT

12C
−1/2
11 .

3.7 Cylindrical Wiener processes and stochastic integration

Central to the theory of stochastic PDEs is the notion of a cylindrical Wiener process, which can be
thought of as an infinite-dimensional generalisation of a standard n-dimensional Wiener process. Before
we proceed to the definition and construction of such a cylindrical Wiener process, let us recall a few
basic facts about stochastic process.

In general, a stochastic process X over a probability space (Ω,P) and taking values in a separable
Banach space B is nothing but a collection {X(t)} of B-valued random variables indexed by time
t ∈ R (or taking values in some subset of R). By Kolmogorov’s extension theorem, we can also view
this as a map X: Ω→ BR, where BR is endowed with the product sigma-algebra. A notable special
case which will be of interest here is the case where the probability space is taken to be for example
Ω = C([0, T ],B) (or some other space of B-valued continuous functions) endowed with some Gaussian
measure P and where the process X is given by

X(t)(ω) = ω(t) , ω ∈ Ω .

In this case, X is called the canonical process on Ω.
The usual (one-dimensional) Wiener process is a real-valued centred Gaussian process B(t) such

that B(0) = 0 and E|B(t)−B(s)|2 = |t− s| for any pair of times s, t. From our point of view, the
Wiener process on any finite time interval I can always be realised as the canonical process for the
Gaussian measure on C(I,R) with covariance function C(s, t) = s∧ t = min{s, t}. (Note that such a
measure exists by Kolmogorov’s continuity criterion.)

Since the space C(R,R) is not a Banach space and we have not extended our study of Gaussian
measures to Fréchet spaces, we refrain from defining a measure on it. However, one can define Wiener
measure on a separable Banach space of the type

C%(R+,R) =
{
f ∈ C(R+,R) : lim

t→∞
f(t)/%(t) exists

}
, ‖f‖% = sup

t∈R

|f(t)|
%(t)

,

for a suitable weight function %: R→ [1,∞). For example, we will see that %(t) = 1 + t2 is suitable,
and we will therefore define CW = C% for this particular choice.

Proposition 3.85 There exists a Gaussian measure µ on CW with covariance function C(s, t) = s∧ t.
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Proof. We use the fact that f ∈ C([0, π],R) if and only if the function T (f) given by T (f)(t) =
(1 + t2)f(arctan t) belongs to CW . Our aim is then to construct a Gaussian measure µ0 on C([0, π],R)
which is such that T ]µ0 has the required covariance structure.

The covariance C0 for µ0 is then given by

C0(x, y) =
tanx ∧ tan y

(1 + tan2 x)(1 + tan2 y)
.

It is now a straightforward exercise to check that this covariance function does indeed satisfy the
assumption of Kolmogorov’s continuity theorem.

The standard n-dimensional Wiener process is simply given by n independent copies of a standard
one-dimensional Wiener process, so that its covariance is given by

EWi(s)Wj(t) = (s ∧ t)δi,j .

In other words, if u and v are any two elements in Rn, we have

E〈u,W (s)〉〈Wj(t), v〉 = (s ∧ t)〈u, v〉 .

This is the characterisation that we will now extend to an arbitrary separable Hilbert space H. One
natural way of constructing such an extension would be to fix an orthonormal basis {en}n≥1 ofH and
a countable collection {Wn} of independent one-dimensional Wiener processes, and to set

W (t)
def
=
∑
n≥1

Wn(t) en . (3.25)

The problem with such a construction is that this sum will almost surely not converge inH! We therefore
have to be a little bit more careful, but (3.25) is nevertheless how one should think of a cylindrical
Wiener process onH.

From now on, we fix a (separable) Hilbert spaceH, as well as a larger Hilbert spaceH′ containing
H as a dense subset and such that the inclusion map ι:H → H′ is Hilbert-Schmidt. Given H, it is
always possible to construct a spaceH′ with this property: choose an orthonormal basis {en} ofH and
takeH′ to be the completion ofH under the norm

‖x‖2H′ =
∞∑
n=1

1

n2
〈x, en〉2 .

One can check that in the framework of this construction, the map ιι∗ is then given by ιι∗en = 1
n2 en,

so that, since {nen} is an orthonormal basis ofH′, it is indeed trace class.

Definition 3.86 Let H and H′ be as above. We then call a cylindrical Wiener process on H any
H′-valued Gaussian process W such that

E〈h,W (s)〉H′〈W (t), k〉H′ = (s ∧ t)〈ι∗h, ι∗k〉 = (s ∧ t)〈ιι∗h, k〉H′ , (3.26)

for any two times s and t and any two elements h, k ∈ H′. By Kolmogorov’s continuity theorem, this
can be realised as the canonical process for some Gaussian measure on CW (R,H′).

Alternatively, we could have defined the cylindrical Wiener process onH as the canonical process
associated to any Gaussian measure with Cameron-Martin space H1,2

0 ([0, T ],H), see Exercise 3.58.

Proposition 3.87 In the same setting as above, the Gaussian measure µ onH′ with covariance ιι∗ has
H as its Cameron-Martin space. Furthermore, ‖h‖2µ = ‖h‖2 for every h ∈ H.

Proof. It follows from the definition of H̊µ that this is precisely the range of ιι∗ and that the map
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h 7→ h∗ is given by h∗ = (ιι∗)−1h. In particular, H̊µ is contained in the range of ι. Therefore, for any
h, k ∈ H̊µ, there exist ĥ, ĝ ∈ H such that h = ιĥ and k = ιk̂. Using this, we have

〈h, k〉µ = 〈(ιι∗)h∗, k∗〉H′ = 〈h, (ιι∗)−1k〉H′ = 〈ιĥ, (ιι∗)−1ιk̂〉H′ = 〈ĥ, ι∗(ιι∗)−1ιk̂〉 = 〈ĥ, k̂〉 ,

from which the claim follows.

The name “cylindrical Wiener process onH” may sound confusing at first, since it is actually not an
H-valued process. (A better terminology may have been “cylindrical Wiener process overH”, but we
choose to follow the convention that is found in the literature.) Note however that if h is an element in
H that is in the range of ι∗ (so that ιh belongs to the range of ιι∗ and ι∗(ιι∗)−1ιh = h), then

〈h, k〉 = 〈ι∗(ιι∗)−1ιh, k〉 = 〈(ιι∗)−1ιh, ιk〉H′ .

In particular, if we just pretend for a moment that W (t) belongs toH for every t (which is of course
not true!), then we get

E〈h,W (s)〉〈W (t), k〉 = E〈(ιι∗)−1ιh, ιW (s)〉H′〈(ιι∗)−1ιk, ιW (t)〉H′
= (s ∧ t)〈ιι∗(ιι∗)−1ιh, (ιι∗)−1ιk〉H′
= (s ∧ t)〈ιh, (ιι∗)−1ιk〉H′ = (s ∧ t)〈h, ι∗(ιι∗)−1ιk〉H′
= (s ∧ t)〈h, k〉 .

Here we used (3.26) to go from the first to the second line. This shows that W (t) should be thought of
as anH-valued random variable with covariance given by t times the identity operator. This of course
does not make sense since the identity is not a trace class operator ifH is infinite-dimensional, so that
such an object cannot exist if dimH =∞, but it helps to think of it in this way when calculating with
it. Combining Proposition 3.87 with Theorem 3.69, we see furthermore that if K is some Hilbert space
and A:H → K is a Hilbert-Schmidt operator, then the K-valued random variable AW (t) is perfectly
well-defined.

Here we made an abuse of notation and also used the symbol A for the measurable extension of A to
H′, but since we know that such a measurable extension is defined uniquely by the values of A onH,
this abuse of notation is rather harmless. Furthermore, the distribution of AW does not depend on the
choice of the larger spaceH′, thus further justifying this abuse of notation.

Example 3.88 (White noise) Recall that we informally defined “white noise” as a Gaussian process ξ
with covariance Eξ(s)ξ(t) = δ(t− s). In particular, if we denote by 〈·, ·〉 the scalar product in L2(R),
this suggests that

E〈g, ξ〉〈h, ξ〉 = E
∫∫

g(s)h(t)ξ(s)ξ(t) ds dt =

∫∫
g(s)h(t)δ(t− s) ds dt = 〈g, h〉 . (3.27)

This calculation shows that white noise can be constructed as a Gaussian random variable on any
Hilbert space H of distributions containing L2(R) and such that the embedding L2(R) ↪→ H is
Hilbert-Schmidt. Furthermore, by Theorem 3.69, integrals of the form

∫
g(s)ξ(s) ds are well-defined

random variables, provided that g ∈ L2(R). Taking for g the indicator function of the interval [0, t], we
can check that the process B(t) =

∫ t
0 ξ(s) ds is a Brownian motion, thus justifying the statement that

“white noise is the derivative of Brownian motion”.
The interesting fact about this construction is that we can use it to define space-time white noise in

exactly the same way, simply replacing L2(R) by L2(R2).

We can now define a Hilbert space-valued stochastic integral against a cylindrical Wiener process in
very much the same way as what is usually done in finite dimensions. In the sequel, we fix a cylindrical
Wiener process W on some Hilbert space H ⊂ H′, which we realise as the canonical coordinate
process on Ω = CW (R+,H′) equipped with the measure constructed above. We also denote by Fs the
σ-field on Ω generated by {Wr : r ≤ s}.
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Consider now a finite collection of disjoint intervals (sn, tn] ⊂ R+ with n = 1, . . . , N and a
corresponding finite collection of Fsn-measurable random variables Φn taking values in the space
L2(H,K) of Hilbert-Schmidt operators fromH into some other fixed Hilbert space K. Let furthermore
Φ be the L2(R+ × Ω,L2(H,K))-valued function defined by

Φ(t, ω) =
N∑
n=1

Φn(ω)1(sn,tn](t) ,

where we denoted by 1A the indicator function of a set A. We call such a Φ an elementary process on
H.

Definition 3.89 Given an elementary process Φ and a cylindrical Wiener process W onH, we define
the K-valued stochastic integral∫ ∞

0

Φ(t) dW (t)
def
=

N∑
n=1

Φn(W ) (W (tn)−W (sn)) .

Note that since Φn is Fsn-measurable, Φn(W ) is independent of W (tn) −W (sn), therefore each
term on the right hand side can be interpreted in the sense of the construction of Theorems 3.69 and
3.73.

Remark 3.90 If Φ is an elementary process onH and t > 0 is some fixed time, then s 7→ Φ(s)1(0,t](s)
is again an elementary process onH. This allows us to define an indefinite stochastic integral by∫ t

0

Φ(s) dW (s)
def
=

∫ ∞
0

Φ(s)1(0,t](s) dW (s) .

Remark 3.91 Thanks to Theorem 3.73, this construction is well-posed without requiring to specify
the larger Hilbert space H′ on which W can be realised as an H′-valued process. This justifies the
terminology of W being “the cylindrical Wiener process onH” without any mentioning ofH′, since
the value of stochastic integrals against W is independent of the choice ofH′.

It follows from Theorem 3.69 and (3.12) that one has the identity

E
∥∥∥∫ ∞

0

Φ(t) dW (t)
∥∥∥2

K
=

N∑
n=1

E tr(Φn(W )Φ∗n(W ))(tn − sn) = E
∫ ∞

0

tr Φ(t)Φ∗(t) dt , (3.28)

which is an extension of the usual Itô isometry to the Hilbert space setting. As a consequence, the
stochastic integral that we just defined is an isometry from the subset of elementary processes in
L2(R+ × Ω,L2(H,K)) to L2(Ω,K).

Let now Fpr be the “predictable” σ-field, that is the σ-field over R+ ×Ω generated by all subsets of
the form (s, t]× A with t > s and A ∈ Fs. This is the smallest σ-algebra with respect to which all
elementary processes are Fpr-measurable. One furthermore has:

Proposition 3.92 The set of elementary processes is dense in the space L2
pr(R+ × Ω,L2(H,K)) of

all predictable L2(H,K)-valued processes.

Proof. Denote by F̂pr the set of all sets of the form (s, t] × A with A ∈ Fs. Denote furthermore
by L̂2

pr the closure of the set of elementary processes in L2. One can check that F̂pr is closed under
intersections, so that 1G ∈ L̂2

pr for every set G in the algebra generated by F̂pr. It follows from the
monotone class theorem that 1G ∈ L̂2

pr for every set G ∈ Fpr. The claim then follows from the
definition of the Lebesgue integral, just as for the corresponding statement in R.

By using the Itô isometry (3.28) and the completeness of L2(Ω,K), it follows that:
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Corollary 3.93 The stochastic integral
∫∞

0 Φ(t) dW (t) can be uniquely defined for every process
Φ ∈ L2

pr(R+ × Ω,L2(H,K)).

This concludes our presentation of the basic properties of Gaussian measures on infinite-dimensional
spaces. The next chapter deals with the other main ingredient to solving stochastic PDEs, which is the
behaviour of deterministic linear PDEs.
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Elements of Semigroup Theory

This chapter is strongly based on Davies’s excellent monograph [Dav80] for the first part on strongly
continuous semigroups and very loosely follows [Yos95] and [Lun95] for the second part on analytic
semigroups. Another good reference on some of the material covered here is the monograph [Paz83].
The aim of this chapter is to give a rigorous meaning to solutions to linear equations of the type

∂tx = Lx , x(0) = x0 ∈ B , (4.1)

where x takes values in some Banach space B and L is a possibly unbounded operator on B. From a
formal point of view, if such a solution exists, one expects to be able to describe it by a family of linear
operators S(t) that map the initial condition x0 onto the solution x(t) of (4.1) at time t. If such a solution
is unique, then the family of operators S(t) should satisfy S(0) = 1 and S(t) ◦S(s) = S(t+ s). This
is called the semigroup property.

Furthermore, such a family of solution operators S(t) should have some regularity as t→ 0 in order
to give a meaning to the notion of an initial condition. (The family given by S(t) = 0 for t > 0 and
S(0) = 1 does satisfy the semigroup property but clearly does not define a family of solution operators
for any equation of the type (4.1).)

These considerations motivate the following definition:

Definition 4.1 A semigroup S(t) on a Banach space B is a family of bounded linear operators
{S(t)}t≥0 with the properties that S(t) ◦ S(s) = S(t + s) for any s, t ≥ 0 and that S(0) = Id. A
semigroup is furthermore called

• strongly continuous if, for every x ∈ B, the map t 7→ S(t)x is continuous in B.

• analytic if there exists θ > 0 such that the operator-valued map t 7→ S(t) has a strongly analytic
extension to {λ ∈ C : | arg λ| < θ}, satisfies the semigroup property there, and is such that
t 7→ S(eiϕt) is a strongly continuous semigroup for every angle ϕ with |ϕ| < θ.

A strongly continuous semigroup is also sometimes called a C0-semigroup. Here, we say that an
operator-valued function S on a Banach space B is strongly analytic if t 7→ S(t)x is analytic as a
B-valued function for every fixed x ∈ B.

Remark 4.2 It follows from the Banach-Steinhaus theorem [BS27] that if S is strongly continuous,
then supt≤1 ‖S(t)‖ < ∞. Surprisingly, if we trade strong continuity for weak continuity, namely
continuity of t 7→ S(t)x in the weak topology, then this property fails. See Exercise 5.20 for an
example.

Exercise 4.3 Show that the previous remark implies that if S is a C0-semigroup, then the map (t, x) 7→
S(t)x is jointly continuous from R+ × B into B.

Exercise 4.4 Show that being strongly continuous is equivalent to t 7→ S(t)x being continuous at
t = 0 for every x ∈ D with D some dense subset of B, and the operator norm of S(t) being bounded
by Meat for some constants M and a.

39
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Remark 4.5 If we only know the strong continuity of t 7→ S(t)x for x in a dense subset of B, then
the second condition in Exercise 4.4 cannot be relaxed in general. In Exercise 5.20 below, we will see
how to construct a semigroup of bounded operators such that ‖S(t)‖ is unbounded near t = 0, even
though limt→0 S(t)x = x in the strong topology of B for a dense set of elements x ∈ B.

Remark 4.6 Some authors, like [Lun95], do not impose strong continuity in the definition of an
analytic semigroup. This can result in additional technical complications due to the fact that the
generator may then not have dense domain. The approach followed here has the slight drawback that
with our definitions the heat semigroup is not analytic on L∞(R). (It lacks strong continuity as can be
seen by applying it to a step function.)

In most examples relevant for applications, these kind of problems can be circumvented by a suitable
choice of ambient space B. For example, in the case of the heat semigroup, it is strongly continuous on
C0(R), the space of continuous functions vanishing at infinity.

This section is going to assume some familiarity with functional analysis. All the necessary results
can be found for example in the classical monograph by Yosida [Yos95]. Recall that an unbounded
operator L on a Banach space B consists of a linear subspace D(L) ⊂ B called the domain of L and a
linear map L:D(L)→ B. The graph of an operator is the subset of B × B consisting of all elements
of the form (x, Lx) with x ∈ D(L). An operator is closed if its graph is a closed subspace of B × B
(endowed with the strong topology). It is closable if the closure of its graph is again the graph of a
linear operator and that operator is called the closure of L.

The domain D(L∗) of the adjoint L∗ of an unbounded operator L:D(L) → B is defined as
the set of all elements ` ∈ B∗ such that there exists an element L∗` ∈ B∗ with the property that
(L∗`)(x) = `(Lx) for every x ∈ D(L). It is clear that in order for the adjoint to be well-defined, we
have to require that the domain of L is dense in B. Fortunately, this will be the case for all the operators
that will be considered in these notes.

Exercise 4.7 Show that L being closed is equivalent to the fact that if {xn} ⊂ D(L) is Cauchy in B
and {Lxn} is also Cauchy, then x = limn→∞ xn belongs to D(L) and Lx = limn→∞ Lxn.

Exercise 4.8 Show that the adjoint of an operator with dense domain is always closed.

The resolvent set %(L) of an operator L is defined by

%(L) = {λ ∈ C : range(λ− L) is dense in B and λ− L has a continuous inverse.} ,

and the resolvent Rλ is given for λ ∈ %(L) by Rλ = (λ−L)−1. (Here and in the sequel we view B as
a complex Banach space. If an operator is defined on a real Banach space, it can always be extended
to its complexification in a canonical way and we will identify the two without further notice in the
sequel.) The spectrum of L is the complement of the resolvent set.

The most important results regarding the resolvent of an operator that we are going to use are that any
closed operator L with non-empty resolvent set is defined in a unique way by its resolvent. Furthermore,
the resolvent set is open and the resolvent is an analytic function from %(L) to the space L(B) of
bounded linear operators on B endowed with the topology of convergence in operator norm. Finally,
the resolvent operators for different values of λ all commute and satisfy the resolvent identity

Rλ −Rµ = (µ− λ)RµRλ ,

for any two λ, µ ∈ %(L).
The fact that the resolvent is operator-valued should not be a conceptual obstacle to the use of notions

from complex analysis. Indeed, for D ⊂ C an open domain, a function f :D → B̂ where B̂ is any
complex Banach space (typically the complexification of a real Banach space which we identify with the
original space without further ado) is said to be analytic in exactly the same way as usual by imposing
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that its Taylor series at any point a ∈ D converges to f uniformly in B̂ on a neighbourhood of a. The
same definition applies if D ⊂ R and analytic continuation then works in exactly the same way as
for complex-valued functions. In particular, Cauchy’s residue theorem, which is the main result from
complex analysis that we are going to use later on, works for Banach-space valued functions in exactly
the same way as for complex-valued functions.

4.1 Strongly continuous semigroups

We start our investigation of semigroup theory with a discussion of the main results that can be obtained
for strongly continuous semigroups. Given a C0-semigroup, one can associate to it a “generator”, which
is essentially the derivative of S(t) at t = 0:

Definition 4.9 The generator L of a C0-semigroup is given by

Lx = lim
t→0

t−1(S(t)x− x) , (4.2)

on the set D(L) of all elements x ∈ B such that this limit exists (in the sense of strong convergence in
B).

The following result shows that if L is the generator of a C0-semigroup S(t), then x(t) = S(t)x0 is
indeed the solution to (4.1) in a weak sense.

Proposition 4.10 The domainD(L) ofL is dense inB, invariant underS, and the identities ∂tS(t)x =
LS(t)x = S(t)Lx hold for every x ∈ D(L) and every t ≥ 0. Furthermore, for every ` ∈ D(L∗) and
every x ∈ B, the map t 7→ 〈`, S(t)x〉 is differentiable and one has ∂t〈`, S(t)x〉 = 〈L∗`, S(t)x〉.

Proof. Fix some arbitrary x ∈ B and set xt =
∫ t

0 S(s)x ds. One then has

lim
h→0

h−1(S(h)xt − xt) = lim
h→0

h−1
(∫ t+h

h

S(s)x ds−
∫ t

0

S(s)x ds
)

= lim
h→0

h−1
(∫ t+h

t

S(s)x ds−
∫ h

0

S(s)x ds
)

= S(t)x− x ,

where the last equality follows from the strong continuity of S. This shows that xt ∈ D(L). Since
t−1xt → x as t→ 0 and since x was arbitrary, it follows that D(L) is dense in B. To show that it is
invariant under S, note that for x ∈ D(L) one has

lim
h→0

h−1(S(h)S(t)x− S(t)x) = S(t) lim
h→0

h−1(S(h)x− x) = S(t)Lx ,

so that S(t)x ∈ D(L) and LS(t)x = S(t)Lx. To show that it this is equal to ∂tS(t)x, it suffices to
check that the left derivative of this expression exists and is equal to the right derivative. This is left as
an exercise.

To show that the second claim holds, it is sufficient (using the strong continuity of S) to check that it
holds for x ∈ D(L). Since one then has S(t)x ∈ D(L) for every t, it follows from the definition (4.2)
of D(L) that t 7→ S(t)x is differentiable and that its derivative is equal to LS(t)x.

It follows as a corollary that no two semigroups can have the same generator (unless the semigroups
coincide of course), which justifies the notation S(t) = eLt that we are occasionally going to use in the
sequel.

Corollary 4.11 If a function x: [0, 1] → D(L) satisfies ∂txt = Lxt for every t ∈ [0, 1], then
xt = S(t)x0. In particular, no two distinct C0-semigroups can have the same generator.
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Proof. Let T > 0 be an arbitrary time. It follows from an argument almost identical to that given in
the proof of Proposition 4.10 that the map t 7→ S(t)xT−t is continuous on [0, T ] and differentiable
on (0, T ). Computing its derivative, we obtain ∂tS(t)xT−t = LS(t)xT−t − S(t)LxT−t = 0, so that,
evaluating the function at t = 0 and t = T , we obtain xT = S(T )x0. Since T was arbitrary, this
proves the claim.

Exercise 4.12 Show that the semigroup S(t) on L2(R) given by

(S(t)f)(ξ) = f(ξ + t) ,

is strongly continuous and that its generator is given by L = ∂ξ with D(L) = H1. Similarly, show that
the heat semigroup on L2(R) given by

(S(t)f)(ξ) =
1√
4πt

∫
exp
(
−|ξ − η|

2

4t

)
f(η) dη ,

is strongly continuous and that its generator is given by L = ∂2
ξ with D(L) = H2. Hint: Use

Exercise 4.4 to show strong continuity.

Remark 4.13 We did not make any assumption on the structure of the Banach space B. However, it
is a general rule of thumb (although this is not a theorem) that semigroups on non-separable Banach
spaces tend not to be strongly continuous. For example, it is an excellent exercise to convince oneself
that neither the heat semigroup nor the translation semigroup from the previous exercise are strongly
continuous on L∞(R) or even on Cb(R), the space of all bounded continuous functions on R.

Recall now that the resolvent set for an operator L consists of those λ ∈ C such that the operator
λ− L is one to one. For λ in the resolvent set, we denote by Rλ = (λ− L)−1 the resolvent of L. It
turns out that the resolvent of the generator of a C0-semigroup can easily be computed:

Proposition 4.14 Let S(t) be a C0-semigroup such that ‖S(t)‖ ≤Meat for some constants M and a.
If Reλ > a, then λ belongs to the resolvent set of L and one has the identity Rλx =

∫∞
0 e−λtS(t)x dt.

Proof. By the assumption on the bound on S, the expression Zλ =
∫∞

0 e−λtS(t)x dt is well-defined
for every λ with Reλ > a. In order to show that Zλ = Rλ, we first show that Zλx ∈ D(L) for every
x ∈ B and that (λ− L)Zλx = x. We have

LZλx = lim
h→0

h−1(S(h)Zλx− Zλx) = lim
h→0

h−1

∫ ∞
0

e−λt(S(t+ h)x− S(t)x) dt

= lim
h→0

(eλh − 1

h

∫ ∞
0

e−λtS(t)x dt− eλh

h

∫ h

0

e−λtS(t)x dt
)

= λZλx− x ,

which is the required identity. To conclude, it remains to show that λ − L is an injection on D(L).
If it was not, we could find x ∈ D(L) \ {0} such that Lx = λx. Setting xt = eλtx and applying
Corollary 4.11, this yields S(t)x = eλtx, thus contradicting the bound ‖S(t)‖ ≤Meat if Reλ > a.

We can deduce from this that:

Proposition 4.15 The generator L of a C0-semigroup is a closed operator.

Proof. We are going to use the characterisation of closed operators given in Exercise 4.7. Shifting L by
a constant if necessary (which does not affect it being closed or not), we can assume that a = 0. Take
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now a sequence xn ∈ D(L) such that {xn} and {Lxn} are both Cauchy in B and set x = limn→∞ xn
and y = limn→∞ Lxn. Setting zn = (1− L)xn, we have limn→∞ zn = x− y.

On the other hand, we know that 1 belongs to the resolvent set, so that

x = lim
n→∞

xn = lim
n→∞

R1zn = R1(x− y) .

By the definition of the resolvent, this implies that x ∈ D(L) and that x−Lx = x−y, so that Lx = y
as required.

We are now ready to give a full characterisation of the generators of C0-semigroups. This is the
content of the following theorem:

Theorem 4.16 (Hille-Yosida) A closed densely defined operator L on the Banach space B is the
generator of a C0-semigroup S(t) with ‖S(t)‖ ≤ Meat if and only if all λ with Reλ > a lie in its
resolvent set and the bound ‖Rn

λ‖ ≤M (Reλ− a)
−n holds there for every n ≥ 1.

Proof. The generator L of a C0-semigroup is closed by Proposition 4.15. The fact that its resolvent
satisfies the stated bound follows immediately from the fact that

Rn
λx =

∫ ∞
0

· · ·
∫ ∞

0

e−λ(t1+...+tn)S(t1 + . . .+ tn)x dt1 · · · dtn

by Proposition 4.14.
To show that the converse also holds, we are going to construct the semigroup S(t) by using the

so-called “Yosida approximations” Lλ = λLRλ for L. Note first that limλ→∞ LRλx = 0 for every
x ∈ B: it obviously holds for x ∈ D(L) since then ‖LRλx‖ = ‖RλLx‖ ≤ ‖Rλ‖‖Lx‖ ≤M (Reλ−
a)
−1‖Lx‖. Furthermore, ‖LRλx‖ = ‖λRλx− x‖ ≤ (Mλ(λ− a)−1 + 1)‖x‖ ≤ (M + 2)‖x‖ for

λ large enough, so that limλ→∞ LRλx = 0 for every x by a standard density argument.
Using this fact, we can show that the Yosida approximation of L does indeed approximate L in the

sense that limλ→∞ Lλx = Lx for every x ∈ D(L). Fixing an arbitrary x ∈ D(L), we have

lim
λ→∞
‖Lλx− Lx‖ = lim

λ→∞
‖(λRλ − 1)Lx‖ = lim

λ→∞
‖LRλLx‖ = 0 . (4.3)

Define now a family of bounded operators Sλ(t) by Sλ(t) = eLλt =
∑
n≥0

tnLnλ
n!

. This series converges
in the operator norm since Lλ is bounded and one can easily check that Sλ is indeed a C0-semigroup
(actually a group) with generator Lλ. Since Lλ = −λ+ λ2Rλ, one has for λ > a the bound

‖Sλ(t)‖ ≤ e−λt
∑
n≥0

tnλ2n‖Rn
λ‖

n!
≤M exp

(
−λt+

λ2

λ− a
t
)
≤M exp

( λat

λ− a

)
, (4.4)

so that lim supλ→∞ ‖Sλ(t)‖ ≤Meat. Let us show next that the limit limλ→∞ Sλ(t)x exists for every
t ≥ 0 and every x ∈ B. Fixing λ and µ large enough so that max{‖Sλ(t)‖, ‖Sµ(t)‖} ≤Me2at, and
fixing some arbitrary t > 0, we have for s ∈ [0, t]

‖∂sSλ(t− s)Sµ(s)x‖ = ‖Sλ(t− s)(Lµ − Lλ)Sµ(s)x‖ = ‖Sλ(t− s)Sµ(s)(Lµ − Lλ)x‖
≤M2e2at‖(Lµ − Lλ)x‖ .

Integrating this bound between 0 and t, we obtain

‖Sλ(t)x− Sµ(t)x‖ ≤M2te2at‖Lµx− Lλx‖ , (4.5)

which converges to 0 for every x ∈ D(L) as λ, µ → ∞ since one then has Lλx → Lx. We can
therefore define a family of linear operators S(t) by S(t)x = limλ→∞ Sλ(t)x.

It is clear from (4.4) that ‖S(t)‖ ≤ Meat and it follows from the semigroup property of Sλ that
S(s)S(t) = S(s + t). Furthermore, it follows from (4.5) and (4.3) that for every fixed x ∈ D(L),
the convergence Sλ(t)x→ S(t)x is uniform in bounded intervals of t, so that the map t 7→ S(t)x is
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continuous. Combining this with our a priori bounds on the operator norm of S(t), it follows from
Exercise 4.4 that S is indeed a C0-semigroup. It remains to show that the generator L̂ of S coincides
with L. Taking first the limit λ→∞ and then the limit t→ 0 in the identity

t−1(Sλ(t)x− x) = t−1

∫ t

0

Sλ(s)Lλx ds ,

we see that x ∈ D(L) implies x ∈ D(L̂) and L̂x = Lx, so that L̂ is an extension of L. However, for
λ > a, both λ− L and λ− L̂ are one-to-one between their domain and B, so that they must coincide.

One might think that the resolvent bound in the Hille-Yosida theorem is a consequence of the fact
that the spectrum of L is assumed to be contained in the half plane {λ : Reλ ≤ a}. This however isn’t
the case, as can be seen by the following example:

Example 4.17 We take B =
⊕

n≥1 C2 (equipped with the usual Euclidean norms) and we define
L =

⊕
n≥1 Ln, where Ln: C2 → C2 is given by the matrix

Ln =

(
in n
0 in

)
.

In particular, the resolvent R(n)
λ of Ln is given by

R
(n)
λ =

1

(λ− in)2

(
λ− in n

0 λ− in

)
,

so that one has the upper and lower bounds

n

|λ− in|2
≤ ‖R(n)

λ ‖ ≤
n

|λ− in|2
+

√
2

|λ− in|
.

Note now that the resolvent Rλ of L satisfies ‖Rλ‖ = supn≥1 ‖R
(n)
λ ‖. On one hand, this shows that

the spectrum of L is given by the set {in2 : n ≥ 1}, so that it does indeed lie in a half plane. On the
other hand, for every fixed value a > 0, we have ‖Ra+in‖ ≥ n

a2
, so that the resolvent bound of the

Hille-Yosida theorem is certainly not satisfied.

It is therefore not surprising that L does not generate a C0-semigroup on B. Even worse, trying to
define S(t) = ⊕n≥1Sn(t) with Sn(t) = eLnt results in ‖Sn(t)‖ ≥ nt, so that S(t) is an unbounded
operator for every t > 0!

4.1.1 Adjoint semigroups

It will be very useful in the sequel to have a good understanding of the behaviour of the adjoints of
strongly continuous semigroups. The reason why this is not a completely trivial topic is that, in general,
it is simply not true that the adjoint semigroup S∗(t):B∗ → B∗ of a strongly continuous semigroup is
again strongly continuous. This is probably best illustrated by an example.

Take B = C([0, 1],R) and let S(t) be the heat semigroup (with Neumann boundary conditions, say).
Then S∗(t) acts on finite signed measures by convolving them with the heat kernel. While it is true that
S∗(t)µ → µ weakly as t → 0, it is not true in general that this convergence is strong. For example,
S∗(t)δx does not converge to δx in the total variation norm (which is the dual to the supremum norm on
C([0, 1],R)). However, this difficulty can always be overcome by restricting S∗(t) to a slightly smaller
space than B∗. This is the content of the following result:

Proposition 4.18 If S(t) is a C0-semigroup on B, then S∗(t) is a C0-semigroup on the closure B† of
D(L∗) in B∗ and its generator L† is given by the restriction of L∗ to the set D(L†) = {x ∈ D(L∗) :
L∗x ∈ B†}.
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Proof. We first show that S∗(t) is strongly continuous on B† and we will then identify its generator.
Note first that it follows from Proposition 4.10 that S∗(t) maps D(L∗) into itself, so that it does indeed
define a family of bounded operators on B†. Since the norm of S∗(t) isO(1) as t→ 0 and sinceD(L∗)
is dense in B† by definition, it is sufficient to show that limt→0 S

∗(t)x = x for every x ∈ D(L∗). It
follows immediately from Proposition 4.10 that for x ∈ D(L∗) one has the identity

S∗(t)x− x =

∫ t

0

S∗(s)L∗x ds ,

from which we conclude that S∗(t)x→ x.
It follows from Proposition 4.14 that the resolvent R†λ for S∗(t) on B† is nothing but the restriction

of R∗λ to B†. This immediately implies that D(L†) is given by the stated expression.

Remark 4.19 As we saw in the example of the heat semigroup, B† is in general strictly smaller than
B∗. This fact was first pointed out by Phillips in [Phi55]. In our example, B∗ consists of all finite signed
Borel measures on [0, 1], whereas B† only consists of those measures that have a density with respect
to Lebesgue measure.

Even though B† is in general a proper closed subspace of B∗, it is large enough to be dense in B∗,
when equipped with the (much weaker) weak-* topology. This the content of our last result in the theory
of strongly continuous semigroups:

Proposition 4.20 For every ` ∈ B∗ there exists a sequence `n ∈ B† such that `n(x)→ `(x) for every
x ∈ B.

Proof. It suffices to choose `n = nR∗n`. Since we have `n ∈ D(L∗), it is clear that `n ∈ B†. On
the other hand, we know from the same argument as in the proof of the Hille-Yosida theorem that
limn→∞ ‖nR∗nx− x‖ = 0 for every x ∈ B, from which the claim follows at once.

4.2 Semigroups with selfadjoint generators

In this section, we consider the particular case of strongly continuous semigroups consisting of self-
adjoint operators on a Hilbert spaceH. The reason why this is an interesting case is that it immediately
implies very strong smoothing properties of the operators S(t) in the sense that for every t > 0, they
mapH into the domain of arbitrarily high powers of L. Furthermore, it is very easy to obtain explicit
bounds on the norm of S(t) as an operator fromH into one of these domains. We will then see later in
Section 4.3 on analytic semigroups that most of these properties still hold true for a much larger class
of semigroups.

Let L be a selfadjoint operator onH which is bounded from above. Without loss of generality, we
are going to assume that it is actually negative definite, so that 〈x, Lx〉 ≤ 0 for any x ∈ H. In this
case, we can use functional calculus (see for example [RS80], in particular chapter VIII in volume I)
to define selfadjoint operators f(L) for any measurable map f : R→ R. This is because the spectral
decomposition theorem can be formulated as:

Theorem 4.21 (Spectral decomposition) LetL be a selfadjoint operator on a separable Hilbert space
H. Then, there exists a measure space (M, µ), a unitary operator K:H → L2(M, µ), and a function
fL:M→ R such that via K, L is equivalent to the multiplication operator by fL on L2(M, µ). In
other words, one has L = K−1fLK and KD(L) = {g : fLg ∈ L2(M, µ)}.

In particular, this allows one to define f(L) = K−1(f ◦ fL)K, which has all the nice properties
that one would expect from functional calculus, like for example (fg)(L) = f(L)g(L), ‖f(L)‖ =
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‖f‖L∞(M,µ), etc. Defining S(t) = eLt, it is an exercise to check that S is indeed a C0-semigroup with
generator L (either use the Hille-Yosida theorem and make sure that the semigroup constructed there
coincides with S or check “by hand” that S(t) is indeed C0 with generator L).

The important property of semigroups generated by selfadjoint operators is that they do not only
leave D(L) invariant, but they have a regularising effect in that they map H into the domain of any
arbitrarily high power of L. More precisely, one has:

Proposition 4.22 Let L be self-adjoint and negative definite and let S(t) be the semigroup on H
generated by L. Then, S(t) maps H into the domain of (1 − L)α for any α, t > 0 and there exist
constants Cα such that ‖(1− L)αS(t)‖ ≤ Cα(1 + t−α).

Proof. By functional calculus, it suffices to show that supλ≥0(1 + λ)αe−λt ≤ Cα(1 + t−α). One has

sup
λ≥0

λαe−λt = t−α sup
λ≥0

(λt)αe−λt = t−α sup
λ≥0

λαe−λ = ααe−αt−α .

The claim now follows from the fact that there exists a constantC ′α such that (1−λ)α ≤ C ′α(1+(−λ)α)
for every λ ≤ 0.

4.3 Analytic semigroups

Obviously, the conclusion of Proposition 4.22 does not hold for arbitrary C0-semigroups since the group
of translations from Example 4.12 does not have any smoothing properties. It does however hold for a
very large class of semigroups, the so-called analytic semigroups. The study of these semigroups is
the object of the remainder of this section, and the equivalent of Proposition 4.22 is going to be one of
our two main results. The other result is a characterisation of generators for analytic semigroups that is
analogous to the Hille-Yosida theorem for C0-semigroups. The difference will be that the role of the
half-plane Reλ > a will be played by the complement of a sector of the complex plane with an opening
angle strictly smaller than π.

Recall that a semigroup S on a Banach space B is analytic if there exists θ ∈ (0, π
2
) such that the

map t 7→ S(t) (taking values in L(B)) admits an analytic extension to the sector Sθ = {λ ∈ C :
| arg λ| < θ}, satisfies the semigroup property there, and is such that t 7→ Sϕ(t) = S(eiϕt) is a
strongly continuous semigroup for every |ϕ| < θ. If θ is the largest angle such that the above property
holds, we call S analytic with angle θ. The strong continuity of t 7→ S(eiϕt) implies that there exist
constants M(ϕ) and a(ϕ) such that

‖Sϕ(t)‖ ≤M(ϕ)ea(ϕ)t .

Using the semigroup property, it is not difficult to show that M and a can be chosen bounded over
compact intervals:

Proposition 4.23 Let S be an analytic semigroup with angle θ. Then, for every θ′ < θ, there exist M
and a such that ‖Sϕ(t)‖ ≤Meat for every t > 0 and every |ϕ| ≤ θ′.

Proof. Fix θ′ ∈ (0, θ), so that in particular θ′ < π/2. Then there exists a constant C such that, for
every t > 0 and every ϕ with |ϕ| < θ′, there exist numbers t+, t− ∈ [0, Ct] such that teiϕ =
t+e

iθ′ + t−e
−iθ′ . It follows that one has the bound ‖Sϕ(t)‖ ≤M(θ′)M(−θ′)ea(θ′)Ct+a(−θ′)Ct, thus

proving the claim.

We next compute the generators of the semigroups Sϕ obtained by evaluating S along a “ray”
extending out of the origin into the complex plane:
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Proposition 4.24 Let S be an analytic semigroup with angle θ. Then, for |ϕ| < θ, the generator Lϕ of
Sϕ is given by Lϕ = eiϕL, where L is the generator of S.

Proof. Recall Proposition 4.14 showing that for Reλ large enough the resolvent Rλ for L is given by

Rλx =

∫ ∞
0

e−λtS(t)x dt .

Since the map t 7→ e−λtS(t)x is analytic in Sθ by assumption and since, provided again that Reλ is
large enough, it decays exponentially to 0 as |t| → ∞, we can deform the contour of integration to
obtain

Rλx = eiϕ
∫ ∞

0

e−λe
iϕtS(eiϕt)x dt .

Denoting by Rϕ
λ the resolvent for the generator Lϕ of Sϕ, we thus have the identity Rλ = eiϕRϕ

λeiϕ ,
which is equivalent to (λ− L)−1 = (λ− e−iϕLϕ)−1, thus showing that Lϕ = eiϕL as stated.

We now use this to show that if S is an analytic semigroup, then the resolvent set of its generatorL not
only contains the right half plane, but it contains a larger sector of the complex plane. Furthermore, this
characterises the generators of analytic semigroups, providing a statement similar to the Hille-Yosida
theorem:

Theorem 4.25 A closed densely defined operator L on a Banach space B is the generator of an
analytic semigroup if and only if there exists θ ∈ (0, π

2
) and a ≥ 0 such that the spectrum of L is

contained in the sector

Sθ,a = {λ ∈ C : arg(a− λ) ∈ [−π
2

+ θ, π
2
− θ]} ,

and there exists M > 0 such that the resolvent Rλ satisfies the bound ‖Rλ‖ ≤ Md(λ,Sθ,a)−1 for
every λ 6∈ Sθ,a.

Proof. The fact that generators of analytic semigroups are of the prescribed form is a consequence of
Proposition 4.24 and the Hille-Yosida theorem.

a

b

ϕ

θ

Sθ,a

γb,ϕ

Re

Im

To show the converse statement, let L be such an operator, let
ϕ ∈ (0, θ), let b > a, and let γϕ,b be the curve in the complex
plane obtained by going in a counterclockwise way around the
boundary of Sϕ,b (see the figure on the right). For t with | arg t| <
ϕ, define S(t) by

S(t) =
1

2πi

∫
γϕ,b

etzRz dz (4.6)

=
1

2πi

∫
γϕ,b

etz(z − L)−1 dz .

It follows from the resolvent bound that ‖Rz‖ is uniformly
bounded for z ∈ γϕ,b. Furthermore, since | arg t| < ϕ, it fol-
lows that etz decays exponentially as |z| → ∞ along γϕ,b, so that
this expression is well-defined, does not depend on the choice of b and ϕ, and (by choosing ϕ arbitrarily
close to θ) determines an analytic function t 7→ S(t) on the sector {t : | arg t| < θ}. As in the proof
of the Hille-Yosida theorem, the function (x, t) 7→ S(t)x is jointly continuous because the convergence
of the integral defining S is uniform over bounded subsets of {t : | arg t| < ϕ} for any |ϕ| < θ.

It therefore remains to show that S satisfies the semigroup property on the sector {t : | arg t| < θ}
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and that its generator is indeed given by L. Choosing s and t such that | arg s| < θ and | arg t| < θ
and using the resolvent identity Rz −Rz′ = (z′ − z)RzRz′ , we have

S(s)S(t) = − 1

4π2

∫
γϕ,b′

∫
γϕ,b

etz+sz
′
RzRz′ dz dz

′ = − 1

4π2

∫
γϕ,b′

∫
γϕ,b

etz+sz
′Rz −Rz′
z′ − z

dz dz′

= − 1

4π2

∫
γϕ,b

etzRz

∫
γϕ,b′

esz
′

z′ − z
dz′ dz − 1

4π2

∫
γϕ,b′

eszRz

∫
γϕ,b

etz
′

z′ − z
dz′ dz .

Here, the choice of b and b′ is arbitrary, as long as b 6= b′ so that the inner integrals are well-defined,
say b′ > b for definiteness. In this case, since the contour γϕ,b can be “closed up” to the left but not to

the right, the integral
∫
γϕ,b′

esz
′

z′−z dz
′ is equal to 2iπesz for every z ∈ γϕ,b, whereas the integral with b

and b′ inverted vanishes, so that

S(s)S(t) =
1

2iπ

∫
γϕ,b

e(t+s)zRz = S(s+ t) ,

as required. The continuity of the map t 7→ S(t)x is a straightforward consequence of the resolvent
bound, noting that it arises as a uniform limit of continuous functions. Therefore S is a strongly
continuous semigroup; let us call its generator L̂ and R̂λ the corresponding resolvent.

To show that L = L̂, it suffices to show that R̂λ = Rλ, so we make use again of Proposition 4.14.
Choosing Reλ > b so that Re(z − λ) < 0 for every z ∈ γϕ,b, we have

R̂λ =

∫ ∞
0

e−λtS(t) dt =
1

2πi

∫ ∞
0

∫
γϕ,b

et(z−λ)Rz dz dt

=
1

2πi

∫
γϕ,b

∫ ∞
0

et(z−λ) dtRz dz =
1

2πi

∫
γϕ,b

Rz
z − λ

dz = Rλ .

The last inequality was obtained by using the fact that ‖Rz‖ decays like 1/|z| for large enough z with
| arg z| ≤ π

2
+ ϕ, so that the contour can be “closed” to enclose the pole at z = λ.

As a consequence of this characterisation theorem, we can study perturbations of generators of
analytic semigroups. The idea is to give a constructive criterion which allows to make sure that an
operator of the type L = L0 +B is the generator of an analytic semigroup, provided that L0 is such a
generator and B satisfies a type of “relative total boundedness” condition. The precise statement of this
result is:

Theorem 4.26 Let L0 be the generator of an analytic semigroup and letB:D(B)→ B be an operator
such that

• The domain D(B) contains D(L0).
• For every ε > 0 there exists C > 0 such that ‖Bx‖ ≤ ε‖L0x‖+ C‖x‖ for every x ∈ D(L0).

Then the operator L = L0 + B (with domain D(L) = D(L0)) is also the generator of an analytic
semigroup.

Proof. In view of Theorem 4.25 it suffices to show that there exists a sector Sθ,a containing the spectrum
of L and such that the resolvent bound Rλ ≤Md(λ, Sθ,a)

−1 holds away from it.
Denote by R0

λ the resolvent for L0 and consider the resolvent equation for L:

(λ− L0 −B)x = y , x ∈ D(L0) .

Since (at least for λ outside of some sector) x belongs to the range of R0
λ, we can set x = R0

λz so that
this equation is equivalent to

z −BR0
λz = y .
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The claim therefore follows if we can show that there exists a sector Sθ,a and a constant c < 1 such
that ‖BR0

λ‖ ≤ c for λ 6∈ Sθ,a. This is because one then has the bound

‖Rλy‖ = ‖R0
λz‖ ≤

‖R0
λ‖

1− c
‖y‖ .

Using our assumption on B, we have the bound

‖BR0
λz‖ ≤ ε‖L0R

0
λz‖+ C‖R0

λz‖ . (4.7)

Furthermore, one has the identity L0R
0
λ = λR0

λ − 1 and, since L0 is the generator of an analytic
semigroup by assumption, the resolvent bound ‖R0

λ‖ ≤ Md(λ,Sα,b)−1 for some parameters α, b.
Inserting this into (4.7), we obtain the bound

‖BR0
λ‖ ≤

(ε|λ|+ C)M

d(λ,Sα,b)
+ ε .

Note now that by choosing θ ∈ (0, α), we can find some δ > 0 such that d(λ,Sα,b) > δ|λ| for all
λ 6∈ Sθ,a and all a > 1 ∨ (b+ 1). We fix such a θ and we make ε sufficiently small such that one has
both ε < 1/4 and εδ−1 < 1/4.

We can then make a large enough so that d(λ,Sα,b) ≥ 4CM for λ 6∈ Sθ,a, so that ‖BR0
λ‖ ≤ 3/4.

for these values of λ, as requested.

Remark 4.27 As one can see from the proof, one actually needs the bound ‖Bx‖ ≤ ε‖L0x‖+C‖x‖
only for some particular value of ε that depends on the characteristics of L0.

As a consequence, we have:

Proposition 4.28 Let f ∈ L∞(R). Then, the operator

(Lg)(x) = g′′(x) + f(x)g′(x) ,

on L2(R) with domain D(L) = H2 is the generator of an analytic semigroup.

Proof. It is well-known that the operator (L0g)(x) = g′′(x) with domain D(L) = H2 is self-adjoint
and negative definite, so that it is the generator of an analytic semigroup with angle θ = π/2.

Setting Bg = fg′, we have for g ∈ H2 the bound

‖Bg‖2 =

∫
R
f2(x)(g′(x))

2
dx ≤ ‖f‖2L∞〈g′, g′〉 = −‖f‖2L∞〈g, g′′〉 ≤ ‖f‖L∞‖g‖‖L0g‖ .

It now suffices to use the fact that 2|xy| ≤ εx2 + ε−1y2 to conclude that the assumptions of Theo-
rem 4.26 are satisfied.

Similarly, one can show:

Exercise 4.29 Show that the generator of an elliptic diffusion with smooth coefficients on a compact
Riemannian manifoldM generates an analytic semigroup onL2(M, %), where % is the volume measure
given by the Riemannian structure.

4.4 Interpolation spaces

The remainder of this section will be devoted to the study of the domains of fractional powers of the
generator L of an analytic semigroup S(t). For simplicity, we will assume throughout this section that
there exist M > 0 and w > 0 such that ‖S(t)‖ ≤Me−wt, thus making sure that the resolvent set of
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L contains all the right half of the complex plane. The general case can be recovered easily by “shifting
the generator to the left”. For α > 0, we define negative fractional powers of L by

(−L)−α
def
=

1

Γ(α)

∫ ∞
0

tα−1S(t) dt , (4.8)

which is a bounded operator by the decay assumption on ‖S(t)‖. Since Γ(1) = 1, note that if α = 1
one does indeed recover the resolvent of L evaluated at 0. Furthermore, it is straightforward to check
that one has the identity (−L)−α(−L)−β = (−L)−α−β , which together justify the definition (4.8).

Note that it follows from this identity that (−L)−α is injective for every α > 0. Indeed, given some
α > 0, one can find an integer n > 0 such that (−L)−n = (−L)−n+α(−L)−α. A failure for (−L)−α

to be injective would therefore result in a failure for (−L)−n and therefore (−L)−1 to be injective.
This is ruled out by the fact that 0 belongs to the resolvent set of L. We can therefore define (−L)α

as the unbounded operator with domain D((−L)α) = range(−L)−α given by the inverse of (−L)−α.
This definition is again consistent with the usual definition of (−L)α for integer values of α. This
allows us to set:

Definition 4.30 For α > 0 and given an analytic semigroup S on a Banach space B, we define the
interpolation space Bα as the domain of (−L)α endowed with the norm ‖x‖α = ‖(−L)αx‖. We
similarly define B−α as the completion of B for the norm ‖x‖−α = ‖(−L)−αx‖.

Remark 4.31 If the norm of S(t) grows instead of decaying with t, then we use λ− L instead of −L
for some λ sufficiently large. The choice of different values of λ leads to equivalent norms on Bα.

Exercise 4.32 Show that the inclusion Bα ⊂ Bβ for α ≥ β hold, whatever the signs of α and β.

Exercise 4.33 Show that for α ∈ (0, 1) and x ∈ D(L), one has the identity

(−L)αx =
sinαπ
π

∫ ∞
0

tα−1(t− L)−1(−L)x dt . (4.9)

Hint: Write the resolvent appearing in (4.9) in terms of the semigroup and apply the resulting expression
to (−L)−αx, as defined in (4.8). The aim of the game is then to perform a smart change of variables.

Exercise 4.34 Use (4.9) to show that, for every α ∈ (0, 1), there exists a constant C such that the
bound ‖(−L)αx‖ ≤ C‖Lx‖α‖x‖1−α holds for every x ∈ D(L).
Hint: Split the integral as

∫∞
0 =

∫K
0 +

∫∞
K and optimise over K. (The optimal value for K will turn

out to be proportional to ‖Lx‖/‖x‖.) In the first integral, the identity (t−L)−1(−L) = 1−t(t−L)−1

might come in handy.

Exercise 4.35 Let L be the generator of an analytic semigroup on B and denote by Bα the correspond-
ing interpolation spaces. Let B be a (possibly unbounded) operator on B. Using the results from the
previous exercise, show that if there exists α ∈ [0, 1) such that Bα ⊂ D(B) so that B is a bounded
operator from Bα to B, then one has the bound

‖Bx‖ ≤ C(ε‖Lx‖+ ε−α/(1−α)‖x‖) ,

for some constant C > 0 and for all ε ≤ 1. In particular, L+ B is also the generator of an analytic
semigroup on B.
Hint: The assumption on B implies that there exists a constant C such that ‖Bx‖ ≤ C‖x‖α.

Exercise 4.36 Let L and B be as in Exercise 4.35 and denote by SB the analytic semigroup with
generator L+B. Use the relation Rλ −R0

λ = R0
λBRλ to show that one has the identity

SB(t)x = S(t)x+

∫ t

0

S(t− s)BSB(s)x ds .
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Hint: Start from the right hand side of the equation and use an argument similar to that of the proof of
Theorem 4.25.

Exercise 4.37 Show that (−L)α commutes with S(t) for every t > 0 and every α ∈ R. Deduce that
S(t) leaves Bα invariant for every α > 0.

Exercise 4.38 It follows from Theorem 4.25 that the restriction L† of the adjoint L∗ of the generator
of an analytic semigroup on B to the “semigroup dual” space B† is again the generator of an analytic
semigroup on B†. Denote by B†α the corresponding interpolation spaces. Show that one has B†α =
D((−L†)α) ⊂ D(((−L)α)

∗
) = (B−α)

∗ for every α ≥ 0.

We now show that an analytic semigroup S(t) always maps B into Bα for t > 0, so that it has a
“smoothing effect”. Furthermore, the norm in the domains of integer powers of L can be bounded by:

Proposition 4.39 For every t > 0 and every integer k > 0, S(t) maps B into D(Lk) and there exists
a constant Ck such that

‖LkS(t)‖ ≤ Ck
tk

for every t ∈ (0, 1].

Proof. In order to show that S maps B into the domain of every power of L, we use (4.6), together with
the identity LRλ = λRλ − 1 which is an immediate consequence of the definition of the resolvent Rλ
of L. Since

∫
γϕ,b

etzdz = 0 for every t such that | arg t| < ϕ and since the domain of Lk is complete
under the graph norm, this shows that S(t)x ∈ D(Lk) and

LkS(t) =
1

2πi

∫
γϕ,b

zketzRz dz .

It follows that there exist positive constants ci such that

‖LkS(t)‖ ≤ 1

2π

∫
γϕ,b

|z|k|etz|‖Rz‖ d|z| ≤ c1

∫ ∞
0

(1 + x)ke−c2t(x−c3)(1 + x)−1dx .

Integrating by parts k − 1 times, we obtain

‖LkS(t)‖ ≤ c4

tk−1

∫ ∞
0

e−c2t(x−c4) dx =
c5e

c6t

tk
,

which implies the announced bound.

It turns out that a similar bound also holds for interpolation spaces with non-integer indices:

Proposition 4.40 For every t > 0 and every α > 0, S(t) maps B into Bα and there exists a constant
Cα such that

‖(−L)αS(t)‖ ≤ Cα
tα

(4.10)

for every t ∈ (0, 1].

Proof. The fact that S(t) maps B into Bα follows from Proposition 4.39 since there exists n such that
D(Ln) ⊂ Bα. We assume again that the norm of S(t) decays exponentially for large t. The claim for
integer values of α is known to hold by Proposition 4.39, so we fix some α > 0 which is not an integer.
Note first that (−L)α = (−L)α−[α]−1(−L)[α]+1, were we denote by [α] the integer part of α. We thus
obtain from (4.8) the identity

(−L)αS(t) =
(−1)[α]+1

Γ([α]− α+ 1)

∫ ∞
0

s[α]−αL[α]+1S(t+ s) ds .



52 Elements of Semigroup Theory

Using the previous bound for k = [α], we thus get for some C > 0 the bound

‖(−L)αS(t)‖ ≤ C
∫ ∞

0

s[α]−α e−w(t+s)

(t+ s)[α]+1
ds ≤ Ct−α

∫ ∞
0

s[α]−α

(1 + s)[α]+1
ds ,

where we used the substitution s 7→ ts. Since the last function is integrable for every α > 0, the claim
follows at once.

Exercise 4.41 Using the fact that S(t) commutes with any power of its generator, show that S(t)
maps Bα into Bβ for every α, β ∈ R and that, for β > α, there exists a constant Cα,β such that
‖S(t)x‖Bβ ≤ Cα,β‖x‖Bαtα−β for all t ∈ (0, 1].

Exercise 4.42 Using the bound from the previous exercise and the definition of the resolvent, show
that for every α ∈ R and every β ∈ [α, α + 1) there exists a constant C such that the bound
‖(t− L)−1x‖Bβ ≤ C(1 + t)β−α−1‖x‖Bα holds for all t ≥ 0.

Exercise 4.43 Consider an analytic semigroup S(t) on B and denote by Bα the corresponding inter-
polation spaces. Fix some γ ∈ R and denote by Ŝ(t) the semigroup S viewed as a semigroup on
Bγ . Denoting by B̂α the interpolation spaces corresponding to Ŝ(t), show that one has the identity
B̂α = Bγ+α for every α ∈ R.

Another question that can be answered in a satisfactory way with the help of interpolation spaces
is the speed of convergence of S(t)x to x as t → 0. We know that if x ∈ D(L), then t 7→ S(t)x
is differentiable at t = 0, so that ‖S(t)x − x‖ = t‖Lx‖ + o(t). Furthermore, one can in general
find elements x ∈ B so that the convergence S(t)x → x is arbitrarily slow. This suggests that if
x ∈ D((−L)α) for α ∈ (0, 1), one has ‖S(t)x− x‖ = O(tα). This is indeed the case:

Proposition 4.44 Let S be an analytic semigroup with generator L on a Banach space B. Then, for
every α ∈ (0, 1), there exists a constant Cα, so that the bound

‖S(t)x− x‖ ≤ Cαtα‖x‖Bα (4.11)

holds for every x ∈ Bα and every t ∈ (0, 1].

Proof. By density, it is sufficient to show that (4.11) holds for every x ∈ D(L). For such an x, one has
indeed the chain of inequalities

‖S(t)x− x‖ =
∥∥∥∫ t

0

S(s)Lxds
∥∥∥ =

∥∥∥∫ t

0

(−L)1−αS(s)(−L)αx ds
∥∥∥

≤ C‖x‖Bα
∫ t

0

‖(−L)1−αS(s)‖ ds ≤ C‖x‖Bα
∫ t

0

sα−1 ds = C‖x‖Bαtα .

Here, the constant C depends only on α and changes from one expression to the next.

We conclude this section with a discussion on the interpolation spaces arising from a perturbed
analytic semigroup. As a consequence of Exercises 4.34, 4.35, and 4.42, we have the following result:

Proposition 4.45 Let L0 be the generator of an analytic semigroup on B and denote by B0
γ the

corresponding interpolation spaces. Let B be a bounded operator from B0
α to B for some α ∈ [0, 1).

Let furthermore Bγ be the interpolation spaces associated to L = L0 +B. Then, one has Bγ = B0
γ for

every γ ∈ [0, 1].
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Proof. The statement is clear for γ = 0 and γ = 1. For intermediate values of γ, we will show that there
exists a constant C such that C−1‖(−L0)γx‖ ≤ ‖(−L)γx‖ ≤ C‖(−L0)γx‖ for every x ∈ D(L0).

Since the domain of L is equal to the domain of L0, we know that the operator BRt is bounded for
every t > 0, where Rt is the resolvent of L. Making use of the identity

Rt = R0
t +R0

tBRt , (4.12)

(where we similarly denoted by R0
t the resolvent of L0) it then follows from Exercise 4.42 and the

assumption on B that one has for every x ∈ B0
γ the bound

‖BRtx‖ ≤ ‖BR0
tx‖+ ‖BR0

tBRtx‖ ≤ C(‖R0
tx‖B0

α
+ ‖R0

tBRtx‖B0
α
)

≤ C(1 + t)α−γ−1‖x‖B0
γ

+ C(1 + t)α−1‖BRtx‖ .

It follows that, for t sufficiently large, one has the bound

‖BRtx‖ ≤ C(1 + t)α−γ−1‖x‖B0
γ
. (4.13)

(Note that this bound is also valid for γ = 0.) Since one furthermore has the resolvent identity
Rs = Rt + (t− s)RsRt, this bound can be extended to all t > 0 by possibly changing the value of
the constant C.

We now show that ‖(−L)γx‖ can be bounded by ‖(−L0)γx‖. We make use of Exercise 4.34 to get,
for x ∈ D(L0), the bound

‖x‖Bγ = C
∥∥∥∫ ∞

0

tγ−1LRtx dt
∥∥∥

≤ C
∥∥∥∫ ∞

0

tγ−1L0R
0
tx dt

∥∥∥+ C

∫ ∞
0

tγ−1‖(L0R
0
t + 1)BRtx‖ dt

≤ ‖x‖B0
γ

+ C

∫ ∞
0

tγ−1‖BRtx‖ dt

≤ ‖x‖B0
γ

+ C

∫ ∞
0

tγ−1(1 + t)α−γ−1 dt‖x‖B0
γ
.

Here, we used again the identity (4.12) to obtain the first inequality and we used (4.13) in the last step.
Since this integral converges, we have obtained the required bound.

In order to obtain the converse bound, we have similarly to before

‖x‖B0
γ
≤ ‖x‖Bγ + C

∫ ∞
0

tγ−1‖BRtx‖ dt .

Making use of the resolvent identity, this yields for arbitrary K > 0 the bound

‖x‖B0
γ
≤ ‖x‖Bγ + C

∫ ∞
0

tγ−1‖BRt+Kx‖ dt+ CK

∫ ∞
0

tγ−1‖BRt+KRtx‖ dt

≤ ‖x‖Bγ + C

∫ ∞
0

tγ−1(t+K)α−γ−1 dt‖x‖B0
γ

+ CK

∫ ∞
0

tγ−1(1 + t)−1 dt‖x‖

≤ ‖x‖Bγ + CKα−1‖x‖B0
γ

+ CK‖x‖ .

By making K sufficiently large, the prefactor of the second term can be made smaller than 1
2
, say, so

that the required bound follows by the usual trick of moving the term proportional to ‖x‖B0
γ

to the left
hand side of the inequality.

Exercise 4.46 Assume that B = H is a Hilbert space and that the antisymmetric part of L is “small” in
the sense thatD(L∗) = D(L) and, for every ε > 0 there exists a constant C such that ‖(L−L∗)x‖ ≤
ε‖Lx‖+ C‖x‖ for every x ∈ D(L). Show that in this case the spaceH−α can be identified with the
dual ofHα (under the pairing given by the scalar product ofH) for α ∈ [0, 1].
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It is interesting to note that the range [0, 1] appearing in the statement of Proposition 4.45 is not just
a restriction of the technique of proof employed here. There are indeed examples of perturbations of
generators of analytic semigroups of the type considered here which induce changes in the corresponding
interpolation spaces Bα for α 6∈ [0, 1].

Consider for example the case B = L2([0, 1]) and L0 = ∆, the Laplacian with periodic boundary
conditions. Denote by B0

α the corresponding interpolation spaces. Let now δ ∈ (0, 1) be some arbitrary
index and let g ∈ B be such that g 6∈ B0

δ . Such an element g exists since ∆ is an unbounded operator.
Define B as the operator with domain C1([0, 1]) ⊂ B given by

(Bf)(x) = f ′(1/2)g(x) . (4.14)

It turns out that B0
α ⊂ C1([0, 1]) for α > 3/4 (see for example Lemma 6.23 below), so that the

assumptions of Proposition 4.45 are indeed satisfied. Consider now the interpolation spaces of index
1 + δ. Since we know that Bδ = B0

δ , we have the characterisations

B1+δ = {f ∈ D(∆) : ∆f + f ′(1/2)g ∈ B0
δ} ,

B0
1+δ = {f ∈ D(∆) : ∆f ∈ B0

δ} .

Since on the other hand g 6∈ B0
δ by assumption, it follows that B1+δ ∩ B0

1+δ consists precisely of those
functions in D(∆) that have a vanishing derivative at 1/2. In particular, B1+δ 6= B0

1+δ.
One can also show that B−1/4 6= B0

−1/4 in the following way. Let {fn} ⊂ D(L) be an arbitrary
sequence of elements that form a Cauchy sequence in B3/4. Since we have already shown that B3/4 =
B0

3/4, this implies that {fn} is Cauchy in B0
3/4 as well. It then follows from the definition of the

interpolation spaces that the sequence {∆fn} is Cauchy in B0
−1/4 and that the sequence {(∆ +B)fn}

is Cauchy in B−1/4. Assume now by contradiction that B−1/4 = B0
−1/4.

This would entail that both {∆fn} and {∆fn +Bfn} are Cauchy in B−1/4, so that {f ′n(1/2)g} is
Cauchy in B−1/4. This in turn immediately implies that the sequence {f ′n(1/2)} must be Cauchy in R.
Define now fn by

fn(x) =
n∑
k=1

sin(4πkx)

k2 log k
.

It is then straightforward to check that, since
∑
k(k log2 k)−1 converges, this sequence is Cauchy in

B0
3/4. On the other hand, we have f ′n(1/2) =

∑n
k=1(k log k)−1 which diverges, thus leading to the

required contradiction.

Exercise 4.47 Show, again in the same setting as above, that if g ∈ B0
δ for some δ > 0, then one has

Bα = B0
α for every α ∈ [0, 1 + δ).

Remark 4.48 The operator B defined in (4.14) is not a closed operator on B. In fact, it is not even
closable! This is however of no consequence for Proposition 4.45 since the operator L = L0 +B is
closed and this is all that matters.
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Linear SPDEs / Stochastic Convolutions

We now apply the knowledge gathered in the previous sections to discuss the solution to linear stochastic
PDEs. Most of the material from this section can also be found in one way or the other in the monographs
[DPZ92b, DPZ96] by Da Prato and Zabczyk. Our aim is to define what we mean by the solution to a
linear stochastic PDE of the form

dx = Lxdt+QdW (t) , x(0) = x0 , (5.1)

where we want x to be a stochastic process taking values in a separable Banach space B, L is the
generator of a C0 semigroup on B, W is a cylindrical Wiener process on some Hilbert space K, and
Q:K → B is a bounded linear operator.

We do not in general expect x to take values inD(L) and we do not even in general expectQW (t) to
be a B-valued Wiener process, so that the usual way of defining solutions to (5.1) by simply integrating
both sides of the identity does not work. However, if we perform the usual trick borrowed from PDE
theory of applying some ` ∈ D(L∗) to both sides of (5.1), then there is much more hope that the usual
definition makes sense. This motivates the following definition:

Definition 5.1 A B-valued process x(t) is said to be a weak solution to (5.1) if, for every t > 0,∫ t
0 ‖x(s)‖ ds <∞ almost surely and the identity

〈`, x(t)〉 = 〈`, x0〉+

∫ t

0

〈L∗`, x(s)〉 ds+

∫ t

0

〈Q∗`, dW (s)〉 , (5.2)

holds almost surely for every ` ∈ D(L∗).

Remark 5.2 (Very important!) The term “weak” refers to the PDE notion of a weak solution and
not to the probabilistic notion of a weak solution to a stochastic differential equation as they appear
for example in [SV79, RW94]. From a probabilistic point of view, we are always going to be dealing
with strong solutions in these notes, in the sense that (5.1) can be solved pathwise for almost every
realisation of the cylindrical Wiener process W .

Just as in the case of stochastic ordinary differential equations, there are examples of (nonlinear)
stochastic PDEs that are sufficiently irregular so that they can only be solved in the probabilistic weak
sense. We will however not consider any such example in these notes, but we refer the interested reader
to the papers [WY71a, WY71b, MPS06, MP11] which explore the limits of the “pathwise” approach
both in the SDE and the SPDE case.

Remark 5.3 The stochastic integral in (5.2) can be interpreted in the sense of Section 3.7 since the
map Q∗`:K → R is Hilbert-Schmidt for every ` ∈ B∗.

Remark 5.4 Although separability of B was not required in the previous section on semigroup theory,
it is again needed in this section, since many of the results from the section on Gaussian measure theory
would not hold otherwise.

55
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On the other hand, suppose that f : R+ → D(L) is a continuous function and consider the function
x: R+ → D(L) given by x(t) = S(t)x0 +

∫ t
0 S(t − s)f(s) ds, where S is the C0-semigroup

generated by L. If x0 ∈ D(L) as well, then this function is differentiable and it is easy to check, using
Proposition 4.10, that it satisfies the differential equation ∂tx = Lx+ f . Formally replacing f(s) ds
by QdW (s), this suggests the following alternative definition of a solution to (5.1):

Definition 5.5 Suppose that there exists a B-valued process x(t) such that, for every t > 0, the identity

x(t) = S(t)x0 +

∫ t

0

S(t− s)QdW (s) , (5.3)

holds almost surely (in the sense that it holds when testing against any ` ∈ B∗). Then x is said to be the
mild solution to (5.1).

Remark 5.6 The right hand side of (5.3) is also sometimes called the stochastic convolution of the
Wiener process QW with the semigroup S.

Remark 5.7 By the results from Section 3.7, the right hand side of (5.3) makes sense in any Hilbert
spaceH containing B and such that

∫ t
0 tr ιS(t− s)QQ∗S(t− s)∗ι∗ ds <∞, where ι:B → H is the

inclusion map. The statement can then alternatively be interpreted as saying that the right hand side
belongs to B ⊂ H almost surely for every t. In the case where B is itself a Hilbert space, (5.3) makes
sense if and only if

∫ t
0 trS(t− s)QQ∗S(t− s)∗ ds <∞.

It turns out that these two notions of solutions are actually equivalent:

Proposition 5.8 If the mild solution is almost surely integrable, then it is also a weak solution. Con-
versely, every weak solution is a mild solution.

Proof. Note first that, by considering the process x(t)− S(t)x0 and using Proposition 4.10, we can
assume without loss of generality that x0 = 0.

We now assume that the process x(t) defined by (5.3) takes values in B almost surely and we show
that this implies that it satisfies (5.2). Fixing an arbitrary ` ∈ D(L†), applying L∗` to both sides of
(5.3), and integrating the result between 0 and t, we obtain:∫ t

0

〈L∗`, x(s)〉 ds =

∫ t

0

∫ s

0

〈L∗`, S(s− r)QdW (r)〉 ds =

∫ t

0

〈∫ t

r

S∗(s− r)L∗` ds,Q dW (r)
〉
.

Using Proposition 4.10 and the fact that, by Proposition 4.18, S∗ is a strongly continuous semigroup on
B†, the closure of D(L∗) in B∗, we obtain∫ t

0

〈L∗`, x(s)〉 ds =

∫ t

0

〈S∗(t− r)`,Q dW (r)〉 −
∫ t

0

〈`,Q dW (r)〉

=
〈
`,

∫ t

0

S(t− r)QdW (r)
〉
−
∫ t

0

〈`,Q dW (r)〉

= 〈`, x(t)〉 −
∫ t

0

〈`,Q dW (r)〉 ,

thus showing that (5.2) holds for every ` ∈ D(L†). To show that x is indeed a weak solution to (5.1),
we have to extend this to every ` ∈ D(L∗). This however follows immediately from the fact that B† is
weak-* dense in B∗, which was the content of Proposition 4.20.

To show the converse, let now x(t) be any weak solution to (5.1) (again with x0 = 0). Fix an arbitrary
` ∈ D(L†), some final time t > 0, and consider the function f(s) = S∗(t− s)`. Since ` ∈ D(L†), it
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follows from Proposition 4.10 that this function belongs to E def
= C([0, t],D(L†)) ∩ C1([0, t],B†). We

are going to show that one has for such functions the almost sure identity

〈f(t), x(t)〉 =

∫ t

0

〈ḟ(s) + L∗f(s), x(s)〉 ds+

∫ t

0

〈f(s), Q dW (s)〉 . (5.4)

Since in our case ḟ(s) + L∗f(s) = 0, this implies that the identity

〈`, x(t)〉 =

∫ t

0

〈`, S(t− s)QdW (s)〉 , (5.5)

holds almost surely for all ` ∈ D(L†). By the closed graph theorem, B† is large enough to separate
points in B.1 Since D(L†) is dense in B† and since B is separable, it follows that countably many
elements of D(L†) are already sufficient to separate points in B. This then immediately implies from
(5.5) that x is indeed a mild solution.

It remains to show that (5.4) holds for all f ∈ E . Since linear combinations of functions of the type
ϕ`(s) = `ϕ(s) for ϕ ∈ C1([0, t],R) and ` ∈ D(L†) are dense in E (see Exercise 5.10 below) and
since x is almost surely integrable, it suffices to show that (5.4) holds for f = ϕ`. Since 〈`,QW (s)〉 is
a one-dimensional Brownian motion, we can apply Itô’s formula to ϕ(s)〈`, x(s)〉, yielding

ϕ(t)〈`, x(t)〉 =

∫ t

0

ϕ(s)〈L∗`, x(s)〉+

∫ t

0

ϕ̇(s)〈`, x(s)〉+

∫ t

0

ϕ(s)〈`,Q dW (s)〉 ,

which coincides with (5.4) as required.

Remark 5.9 It is actually possible to show that if the right hand side of (5.3) makes sense for some t,
then it makes sense for all t and the resulting process belongs almost surely to Lp([0, T ],B) for every
p. Therefore, the concepts of mild and weak solution actually always coincide. This follows from the
fact that the covariance of x(t) increases with t (which is a concept that can easily be made sense of in
Banach spaces as well as Hilbert spaces), see for example [DJT95].

Exercise 5.10 Consider the setting of the proof of Proposition 5.8. Let f ∈ E = C([0, 1],D(L†)) ∩
C1([0, 1],B†) and, for n > 0, define fn on the interval s ∈ [k/n, (k + 1)/n] by cubic spline
interpolation:

fn(s) = f(k/n)(k + 1− ns)2(1 + 2ns− 2k) + f((k + 1)/n)(ns− k)2(3− 2ns+ 2k)

+ (ns− k)(k + 1− ns)2n(f((k + 1
2
)/n)− f((k − 1

2
)/n))

+ (ns− k)2(ns− k − 1)n(f((k + 3
2
)/n)− f((k + 1

2
)/n)) .

Show that fn is a finite linear combinations of functions of the form `ϕ(s) with ϕ ∈ C1([0, 1],R) and
that fn → f in C([0, 1],D(L†)) ∩ C1([0, 1],B†).

5.1 Time and space regularity

In this subsection, we are going to study the space and time regularity of solutions to linear stochastic
PDEs. For example, we are going to see how one can easily derive the fact that the solutions to the
stochastic heat equation are “almost” 1

4
-Hölder continuous in time and “almost” 1

2
-Hölder continuous

in space. Since we are often going to use the Hilbert-Schmidt norm of a linear operator, we introduce
the notation

‖A‖2HS = trAA∗ .

1 Assume that, for some x, y ∈ B, we have 〈`, x〉 = 〈`, y〉 for every ` ∈ D(L∗). We can also assume without loss of
generality that the range of L is B, so that x = Lx′ and y = Ly′, thus yielding 〈L∗`, x′〉 = 〈L∗`, y′〉. Since L is injective
and has dense domain, the closed graph theorem states that the range of L∗ is all of B∗, so that x′ = y′ and thus also x = y.
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For most of this section, we are going to make use of the theory of analytic semigroups. However, we
start with a very weak regularity result for the solutions to stochastic PDEs whose linear operator L
generates an arbitrary C0-semigroup:

Theorem 5.11 Let H and K be separable Hilbert spaces, let L be the generator of a C0-semigroup
on H, let Q:K → H be a bounded operator and let W be a cylindrical Wiener process on K.
Assume furthermore that ‖S(t)Q‖HS <∞ for every t > 0 and that there exists α ∈ (0, 1

2
) such that∫ 1

0 t
−2α‖S(t)Q‖2HS dt <∞. Then the solution x to (5.1) has almost surely continuous sample paths in

H.

Proof. Note first that ‖S(t + s)Q‖HS ≤ ‖S(s)‖‖S(t)Q‖HS, so that the assumptions of the theorem
imply that

∫ T
0 t−2α‖S(t)Q‖2HS dt <∞ for every T > 0. Let us fix an arbitrary terminal time T from

now on. Defining the process y by

y(t) =

∫ t

0

(t− s)−αS(t− s)QdW (s) ,

we obtain the existence of a constant C such that

E‖y(t)‖2 =

∫ t

0

(t− s)−2α‖S(t− s)Q‖2HS ds =

∫ t

0

s−2α‖S(s)Q‖2HS ds ≤ C ,

uniformly for t ∈ [0, T ]. It therefore follows from Fernique’s theorem that for every p > 0 there exist a
constant Cp such that

E
∫ T

0

‖y(t)‖p dt < Cp . (5.6)

Note now that there exists a constant cα (actually cα = (sin 2πα)/π) such that the identity∫ t

s

(t− r)α−1(r − s)−α dr =
1

cα
,

holds for every t > s. It follows that one has the identity

x(t) = S(t)x0 + cα

∫ t

0

∫ t

s

(t− r)α−1(r − s)−αS(t− s) dr QdW (s)

= S(t)x0 + cα

∫ t

0

∫ r

0

(t− r)α−1(r − s)−αS(t− s)QdW (s) dr

= S(t)x0 + cα

∫ t

0

S(t− r)
∫ r

0

(r − s)−αS(r − s)QdW (s) (t− r)α−1 dr

= S(t)x0 + cα

∫ t

0

S(t− r)y(r) (t− r)α−1 dr . (5.7)

The claim thus follows from (5.6) if we can show that for every α ∈ (0, 1
2
) there exists p > 0 such that

the map

y 7→ Fy , Fy(t) =

∫ t

0

(t− r)α−1S(t− r)y(r) dr

maps Lp([0, T ],H) into C([0, T ],H). Since the semigroup t 7→ S(t) is uniformly bounded (in the
usual operator norm) on any bounded time interval and since t 7→ (t − r)α−1 belongs to Lq for
q ∈ [1, 1/(1− α)), we deduce from Hölder’s inequality that there exists a constant CT such that one
does indeed have the bound supt∈[0,T ] ‖Fy(t)‖p ≤ CT

∫ T
0 ‖y(t)‖p dt, provided that p > 1

α
. Since

continuous functions are dense in Lp, the proof is complete if we can show that Fy is continuous for
every continuous function y with y(0) = 0.
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Fixing such a y, we first show that Fy is right-continuous and then that it is left continuous. Fixing
t > 0, we have for h > 0 the bound

‖Fy(t+ h)− Fy(t)‖ ≤
∫ t

0

‖((t+ h− r)α−1S(h)− (t− r)α−1)S(t− r)y(r)‖ dr

+

∫ t+h

t

(t+ h− r)α−1‖S(t+ h− r)y(r)‖ dr

The second term is bounded by O(hδ) for some δ > 0 by Hölder’s inequality. It follows from the
strong continuity of S that the integrand of the first term converges to 0 pointwise as h→ 0. Since on
the other hand the integrand is bounded by C(t − r)α−1‖y(r)‖ for some constant C, this term also
converges to 0 by the dominated convergence theorem. This shows that Fy is right continuous.

To show that Fy is also left continuous, we write

‖Fy(t)− Fy(t− h)‖ ≤
∫ t−h

0

‖((t− r)α−1S(h)− (t− h− r)α−1)S(t− h− r)y(r)‖ dr

+

∫ t

t−h
(t− r)α−1‖S(t− r)y(r)‖ dr .

We bound the second term by Hölder’s inequality as before. The first term can be rewritten as∫ t

0

‖((t+ h− r)α−1S(h)− (t− r)α−1)S(t− r)y(r − h)‖ dr ,

with the understanding that y(r) = 0 for r < 0. Since we assumed that y is continuous, we can again
use the dominated convergence theorem to show that this term tends to 0 as h→ 0.

Remark 5.12 The trick employed in (5.7) is sometimes called the “factorisation method” and was
introduced in the context of stochastic convolutions by Da Prato, Kwapień, and Zabczyk [DPKZ87,
DPZ92a].

This theorem is quite sharp in the sense that, without any further assumption on Q and L, it is not
possible in general to deduce that t 7→ x(t) has more regularity than just continuity, even if we start
with a very regular initial condition, say x0 = 0. We illustrate this fact with the following exercise:

Exercise 5.13 Consider the caseH = L2(R), K = R, L = ∂x and Q = g for some g ∈ L2(R) such
that g ≥ 0 and g(x) = |x|−β for some β ∈ (0, 1

2
) and all |x| < 1. This satisfies the conditions of

Theorem 5.11 for any α < 1.
Since L generates the translation group, the solution to

du(x, t) = ∂xu(x, t) dt+ g(x) dW (t) , u(x, 0) = 0 ,

is given by

u(x, t) =

∫ t

0

g(x+ t− s) dW (s) .

Convince yourself that for fixed t, the map x 7→ u(x, t) is in general γ-Hölder continuous for γ < 1
2
−β,

but no better. Deduce from this that the map t 7→ u(·, t) is in general also γ-Hölder continuous for
γ < 1

2
− β (if we consider it either as an H-valued map or as a Cb(R)-valued map), but cannot be

expected to have more regularity than that. Since β can be chosen arbitrarily close to 1
2
, it follows that

the exponent α appearing in Theorem 5.11 is in general independent of the Hölder regularity of the
solution.
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One of the main insights of regularity theory for parabolic PDEs (both deterministic and stochastic)
is that space regularity is intimately linked to time regularity in several ways. Very often, the knowledge
that a solution has a certain spatial regularity for fixed time implies that it also has a certain temporal
regularity at a given spatial location.

From a slightly different point of view, if we consider time-regularity of the solution to a PDE viewed
as an evolution equation in some infinite-dimensional space of functions, then the amount of regularity
that one obtains depends on the functional space under consideration. As a general rule, the smaller the
space (and therefore the more spatial regularity it imposes) the lower the time-regularity of the solution,
viewed as a function with values in that space.

We start by giving a general result that tells us precisely in which interpolation space one can expect
to find the solution to a linear SPDE associated with an analytic semigroup. This provides us with the
optimal spatial regularity for a given SPDE:

Theorem 5.14 Consider (5.1) on a Hilbert spaceH, assume that L generates an analytic semigroup,
and denote byHα the corresponding interpolation spaces. If there exists α ≥ 0 such that Q:K → Hα
is bounded and β ∈ (0, 1

2
+ α] such that ‖(−L)−β‖HS <∞ then the solution x takes values inHγ

for every γ < γ0 = 1
2

+ α− β.

Proof. As usual, we can assume without loss of generality that 0 belongs to the resolvent set of L. It
suffices to show that

I(T )
def
=

∫ T

0

‖(−L)γS(t)Q‖2HS dt <∞ , ∀T > 0 .

Since Q is assumed to be bounded from K toHα, there exists a constant C such that

I(T ) ≤ C
∫ T

0

‖(−L)γS(t)(−L)−α‖2HS dt = C

∫ T

0

‖(−L)γ−αS(t)‖2HS dt .

Since (−L)−β is Hilbert-Schmidt, we have the bound

‖(−L)γ−αS(t)‖HS ≤ ‖(−L)−β‖HS‖(−L)β+γ−αS(t)‖ ≤ C(1 ∨ tα−γ−β) .

For this expression to be square integrable near t = 0, we need α− γ − β > − 1
2
, which is precisely

the stated condition.

Exercise 5.15 Show that if we are in the setting of Theorem 5.14 and L is selfadjoint, then the solutions
to (5.1) actually belong toHγ for γ = γ0.

Exercise 5.16 Show that the solution to the stochastic heat equation on [0, 1] with periodic boundary
conditions (driven by space-time white noise) has solutions in the fractional Sobolev space Hs for
every s < 1/2. Recall that Hs is the Hilbert space with scalar product 〈f, g〉s =

∑
k f̂kĝk(1 + k2)s,

where f̂k denotes the kth Fourier coefficient of f .

Exercise 5.17 Consider the following modified stochastic heat equation on [0, 1]d with periodic bound-
ary conditions:

dx = ∆x dt+ (1−∆)−γ dW ,

where W is a cylindrical Wiener process on L2([0, 1]d). For any given s ≥ 0, how large does γ need
to be for x to take values in Hs ?

Using this knowledge about the spatial regularity of solutions, we can now turn to the time-regularity.
We have:
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Theorem 5.18 Consider the same setting as in Theorem 5.14 and fix γ < γ0. Then, at all times t > 0,
the process x is almost surely δ-Hölder continuous inHγ for every δ < 1

2
∧ (γ0 − γ).

Proof. It follows from Kolmogorov’s continuity criteria, Proposition 3.43, that it suffices to check that
the bound

E‖x(t)− x(s)‖2γ ≤ C|t− s|1∧2(γ̃−γ)

holds uniformly in s, t ∈ [t0, T ] for every t0, T > 0 and for every γ̃ < γ0. Here and below, C is an
unspecified constant that changes from expression to expression. Assume that t > s from now on. It
follows from the semigroup property and the independence of the increments of W that the identity

x(t) = S(t− s)x(s) +

∫ t

s

S(t− r)QdW (r) , (5.8)

holds almost surely, where the two terms in the sum are independent. This property is also called the
Markov property. Loosely speaking, it states that the future of x depends on its present, but not on
its past. This transpires in (5.8) through the fact that the right hand side depends on x(s) and on the
increments of W between times s and t, but it does not depend on x(r) for any r < s.

Furthermore, x(s) is independent of the increments of W over the interval [s, t], so that Proposi-
tion 4.44 allows us to get the bound

E‖x(t)− x(s)‖2γ = E‖S(t− s)x(s)− x(s)‖2γ +

∫ t−s

0

‖(−L)γS(r)Q‖2HS dr

≤ C|t− s|2(γ̃−γ)∧2E‖x(s)‖2γ̃ + C

∫ t−s

0

(1 ∨ rα−γ−β)
2
dr .

Here, we obtained the bound on the second term in exactly the same way as in the proof of Theorem 5.14.
The claim now follows from the fact that α− γ − β = (γ0 − γ)− 1

2
.

5.2 Long-time behaviour

This section is devoted to the behaviour of the solutions to (5.1) for large times. Let us again start with
an example that illustrates some of the possible behaviours.

Example 5.19 Let x 7→ V (x) be some smooth “potential” and letH = L2(R, exp(−V (x)) dx). Let
S denote the translation semigroup (to the right) on H and denote its generator by −∂x. Let us first
discuss which conditions on V ensure that S is a strongly continuous semigroup onH. It is clear that it
is a semigroup and that S(t)u→ u for u any smooth function with compact support. It therefore only
remains to show that ‖S(t)‖ is uniformly bounded for t ∈ [0, 1] say. We have

‖S(t)u‖2 =

∫
u2(x− t)e−V (x) dx =

∫
u2(x)e−V (x)eV (x)−V (x+t) dx . (5.9)

This shows that a necessary and sufficient condition for S to be a strongly continuous semigroup on
H is that, for every t > 0, there exists Ct such that supx∈R(V (x) − V (x + t)) ≤ Ct and such that
Ct remains bounded as t → 0. Examples of potentials leading to a C0-semigroup are x,

√
1 + x2,

log(1 + x2), etc or any increasing function. Note however that the potential V (x) = x2 does not lead
to a strongly continuous semigroup. One different way of interpreting this is to consider the unitary
transformation K:u 7→ exp( 1

2
V )u from the “flat” space L2 into H. Under this transformation, the

generator −∂x is turned into

−(K−1∂xKu)(x) = −∂xu(x)− 1
2
V ′(x)u(x) .

Considering the characterisation of generators of C0-semigroups given by the Hille-Yosida theorem,
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one would expect this to be the generator of a strongly continuous semigroup if V ′ is bounded from
below, which is indeed a sufficient condition.

Let now V be such that S is a C0-semigroup and consider the SPDE onH given by

du(x, t) = −∂xu(x, t) dt+ f(x) dW (t) , (5.10)

where W is a one-dimensional Wiener process and f is some function inH. The solution to (5.10) with
initial condition u0 = 0 is given as before by

u(x, t) =

∫ t

0

f(x+ s− t) dW (s) . (5.11)

If we fix the time t, we can make the change of variable s 7→ t−s, so that u(x, t) is equal in distribution
to
∫ t

0 f(x− s) dW (s).
We see that if f happens to be also square integrable (we will assume that this is the case in the

sequel and we will also assume that f is not identically zero), then (5.11) has a limit in distribution as
t→∞ given by

ũ(x) =

∫ ∞
0

f(x− s) dW (s) . (5.12)

It is however not clear a priori that ũ does belong toH. On one hand, we have the bound

E
∫

R
ũ(x)2e−V (x) dx =

∫
R

∫ ∞
0

f2(x− t) dt e−V (x) dx ≤
∫

R
f2(t) dt

∫
R
e−V (x) dx ,

thus showing that ũ definitely belongs toH if e−V has finite mass. On the other hand, there are examples
where ũ ∈ H even though e−V has infinite mass. For example, if f(x) = 0 for x ≤ 0, then it is
necessary and sufficient to have

∫∞
0 e−V (x) dx <∞. Denote by ν the law of ũ for further reference.

Furthermore, if e−V is integrable, there are many measures onH that are invariant under the action
of the semigroup S. For example, given a function h ∈ H which is periodic with period τ (that is
S(τ)h = h), we can check that the push-forward of the Lebesgue measure on [0, τ ] under the map
t 7→ S(t)h is invariant under the action of S. This is simply a consequence of the invariance of
Lebesgue measure under the shift map. Given any invariant probability measure µh of this type, let v be
anH-valued random variable with law µh that is independent of W . We can then consider the solution
to (5.10) with initial condition v. Since the law of S(t)v is equal to the law of v by construction, it
follows that the law of the solution converges to the distribution of the random variable ũ+ v, with the
understanding that ũ and v are independent.

This shows that in the case
∫
e−V (x) dx <∞, it is possible to construct solutions u to (5.10) such

that the law of u(· , t) converges to µh ? ν for any periodic function h.

Exercise 5.20 Construct an example of a potential V such that the semigroup S from the previous
example is not strongly continuous. You can do this by choosing V in such a way that limt→0 ‖S(t)‖ =
+∞, even though each of the operators S(t) for t > 0 is bounded! Hint: Choose V of the form
V (x) = x3 −

∑
n>0 nW (x−cn

n
), where W is an isolated “spike” and cn are suitably chosen constants.

Example 5.19 shows that in general, the long-time behaviour of solutions to (5.1) may depend on
the choice of initial condition, even if the solutions are stable in the sense that they remain bounded in
probability. It also shows that depending on the behaviour ofH, L and Q, the law of the solutions may
or may not converge to a limiting distribution in the space in which solutions are considered.

In order to formalise the concept of “long-time behaviour of solutions” for (5.1), it is convenient
to introduce the Markov semigroup associated to (5.1). Given a linear SPDE with solutions in B, we
can define a family Pt of bounded linear operators on Bb(B), the space of Borel measurable bounded
functions from B to R by

(Ptϕ)(x) = Eϕ
(
S(t)x+

∫ t

0

S(t− s)QdW (s)
)
. (5.13)
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The operators Pt are Markov operators in the sense that the map A 7→ Pt1A(x) is a probability
measure on B for every fixed x. In particular, one has Pt1 = 1 and Ptϕ ≥ 0 if ϕ ≥ 0, that is
the operators Pt preserve positivity. It follows furthermore from (5.8) and the independence of the
increments of W over disjoint time intervals that Pt satisfies the semigroup property Pt+s = Pt ◦ Ps
for any two times s, t ≥ 0.

Exercise 5.21 Show that Pt maps the space Cb(B) of continuous bounded functions from B to R into
itself. (Recall that we assumed B to be separable.)

If we denote by Pt(x, · ) the law of S(t)x +
∫ t

0 S(t − s)QdW (s), then Pt can alternatively be
represented as

(Ptϕ)(x) =

∫
B
ϕ(y)Pt(x, dy) .

It follows that its dual P∗t acts on measures with finite total variation by

(P∗t µ)(A) =

∫
B
Pt(x,A)µ(dx) .

Since it preserves the mass of positive measures, P∗t is a continuous map from the space P(B) of
Borel probability measures on B (endowed with the total variation topology) into itself. It follows from
(5.13) and the definition of the dual that P∗t µ is nothing but the law at time t of the solution to (5.1)
with its initial condition u0 distributed according to µ, independently of the increments of W over [0, t].
With these notations in place, we define:

Definition 5.22 A Borel probability measure µ on B is an invariant measure for (5.1) if P∗t µ = µ for
every t > 0, where Pt is the Markov semigroup associated to solutions of (5.1) via (5.13).

In the case B = H where we consider (5.1) on a Hilbert spaceH, the situations in which such an
invariant measure exists are characterised in the following theorem:

Theorem 5.23 Consider (5.1) with solutions in a Hilbert spaceH and define the self-adjoint operator
Qt:H → H by

Qt =

∫ t

0

S(s)QQ∗S∗(s) ds .

Then there exists an invariant measure µ for (5.1) if and only if one of the following two equivalent
conditions are satisfied:

1. There exists a positive definite trace class operator Q∞:H → H such that the identity
2Re〈Q∞L∗x, x〉+ ‖Q∗x‖2 = 0 holds for every x ∈ D(L∗).

2. One has supt>0 trQt <∞.

Furthermore, any invariant measure is of the form ν ? µ∞, where ν is a measure onH that is invariant
under the action of the semigroup S and µ∞ is the centred Gaussian measure with covariance Q∞.

Proof. The proof goes as follows. We first show that µ being invariant implies that 2. holds. Then we
show that 2. implies 1., and we conclude the first part by showing that 1. implies the existence of an
invariant measure.

Let us start by showing that if µ is an invariant measure for (5.1), then 2. is satisfied. By choosing
ϕ(x) = ei〈h,x〉 for arbitrary h ∈ H, it follows from (5.13) that the Fourier transform of P∗t µ satisfies
the equation

P̂∗t µ(x) = µ̂(S∗(t)x)e−
1
2 〈x,Qtx〉 . (5.14)
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Taking logarithms and using the fact that |µ̂(x)| ≤ 1 for every x ∈ H and every probability measure µ,
It follows that if µ is invariant, then

〈x,Qtx〉 ≤ −2 log |µ̂(x)| , ∀x ∈ H , ∀t > 0 . (5.15)

Choose now a sufficiently large value of R > 0 so that µ(‖x‖ > R) < 1/8 (say) and define a
symmetric positive definite operator AR:H → H by

〈h,ARh〉 =

∫
‖x‖≤R

|〈x, h〉|2 µ(dx) .

Since, for any orthonormal basis, one has ‖x‖2 =
∑
n |〈x, en〉|2, it follows that AR is trace class and

that trAR ≤ R2. Furthermore, one has the bound

|1− µ̂(h)| ≤
∫
H
|1− ei〈h,x〉|µ(dx) ≤

√
〈h,ARh〉+

1

4
.

Combining this with (5.15), it follows that 〈x,Qtx〉 is bounded by 2 log 4 for every x ∈ H such that
〈x,ARx〉 ≤ 1/4 so that, by homogeneity,

〈x,Qtx〉 ≤ (8 log 4)〈x,ARx〉 .

It follows that trQt ≤ (8 log 4)R2, so that 2. is satisfied. To show that 2. implies 1., note that
sup trQt <∞ implies that

Q∞ =

∫ ∞
0

S(t)QQ∗S∗(t) dt ,

is a well-defined positive definite trace class operator (since t 7→ Q
1/2
t forms a Cauchy sequence in the

space of Hilbert-Schmidt operators). Furthermore, one has the identity

〈x,Q∞x〉 = 〈S∗(t)x,Q∞S∗(t)x〉+

∫ t

0

‖Q∗S∗(s)x‖2 ds .

for x ∈ D(L∗), both terms on the right hand side of this expression are differentiable. Taking the
derivative at t = 0, we get

0 = 2Re〈Q∞L∗x, x〉+ ‖Q∗x‖2 ,

which is precisely the identity in 1.
Let now Q∞ be a given operator as in 1., we want to show that the centred Gaussian measure µ∞

with covariance Q∞ is indeed invariant for Pt. For x ∈ D(L∗), it follows from Proposition 4.10
that the map Fx: t 7→ 〈Q∞S∗(t)x, S∗(t)x〉 is differentiable with derivative given by ∂tFx(t) =
2Re〈Q∞L∗S∗(t)x, S∗(t)x〉. It follows that

Fx(t)− Fx(0) = 2

∫ t

0

Re〈Q∞L∗S∗(s)x, S∗(s)x〉 ds = −
∫ t

0

‖Q∗S∗(s)x‖2 ds ,

so that one has the identity

Q∞ = S(t)Q∞S
∗(t) +

∫ t

0

S(s)QQ∗S∗(s) ds = S(t)Q∞S
∗(t) +Qt .

Inserting this into (5.14), the claim follows. Here, we used the fact that D(L∗) is dense inH, which is
always the case on a Hilbert space, see [Yos95, p. 196].

Since it is obvious from (5.14) that every measure of the type ν ? µ∞ with ν invariant for S is also
invariant for Pt, it remains to show that the converse also holds. Let µ be invariant for Pt and define µt
as the push-forward of µ under the map S(t). Since µ̂t(x) = µ̂(S∗(t)x), it follows from (5.14) and the
invariance of µ that there exists a function ψ:H → R such that µ̂t(x)→ ψ(x) uniformly on bounded
sets, ψ ◦S(t)∗ = ψ, and such that µ̂(x) = ψ(x) exp(− 1

2
〈x,Q∞x〉). It therefore only remains to show

that there exists a probability measure ν onH such that ψ = ν̂.
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In order to show this, it suffices to show that the family of measures {µt} is tight, that is for every
ε > 0 there exists a compact set K such that µt(K) ≥ 1− ε for every t. Prohorov’s theorem [Bil68,
p. 37] then ensures the existence of a sequence tn increasing to∞ and a measure ν such that µtn → ν
weakly. In particular, µ̂tn(x)→ ν̂(x) for every x ∈ H, thus concluding the proof.

To show tightness, denote by νt the centred Gaussian measure onH with covariance Qt and note
that one can find a sequence of bounded linear operators An:H → H with the following properties:

a. One has ‖An+1x‖ ≥ ‖Anx‖ for every x ∈ H and every n ≥ 0.

b. The set BR = {x : supn ‖Anx‖ ≤ R} is compact for every R > 0.

c. One has supn trAnQ∞A∗n <∞.

(By diagonalising Q∞, the construction of such a family of operators is similar to the construction,
given a positive sequence {λn} with

∑
n λn <∞, of a positive sequence an with limn→∞ an = +∞

and
∑
n anλn <∞.) Let now ε > 0 be arbitrary. It follows from Prohorov’s theorem that there exists

a compact set K̂ ⊂ H such that µ(H \ K̂) ≤ ε
2
. Furthermore, it follows from property c. above and

the fact that Q∞ ≥ Qt that there exists R > 0 such that νt(H \BR) ≤ ε
2
. Define a set K ⊂ H by

K = {z − y : z ∈ K̂ , y ∈ BR} .

It is straightforward to check, using the Heine-Borel theorem, that K is precompact.
If we now take X and Y to be independent H-valued random variables with laws µt and νt

respectively, then it follows from the definition of a mild solution and the invariance of µ thatZ = X+Y
has law µ. Since one has the obvious implication {Z ∈ K̂}&{Y ∈ BR} ⇒ {X ∈ K}, it follows that

µt(H \K) = P(X 6∈ K) ≤ P(Z 6∈ K̂) + P(Y 6∈ BR) ≤ ε ,

thus showing that the sequence {µt} is tight as requested.

It is clear from Theorem 5.23 that if (5.1) does have a solution in some Hilbert space H and if
‖S(t)‖ → 0 as t→∞ in that same Hilbert space, then it also possesses a unique invariant measure on
H. It turns out that as far as the “uniqueness” part of this statement is concerned, it is sufficient to have
limt→∞ ‖S(t)x‖ = 0 for every x ∈ H:

Proposition 5.24 If limt→∞ ‖S(t)x‖ = 0 for every x ∈ H, then (5.1) can have at most one invariant
measure. Furthermore, if an invariant measure µ∞ exists in this situation, then one has P∗t ν → µ∞
weakly for every probability measure ν onH.

Proof. In view of Theorem 5.23, the first claim follows if we show that δ0 is the only measure that is
invariant under the action of the semigroup S. Let ν be an arbitrary probability measure onH such that
S(t)]ν = ν for every t > 0 and let ϕ:H → R be a bounded continuous function. One then has indeed∫

H
ϕ(x)ν(dx) = lim

t→∞

∫
H
ϕ(S(t)x)ν(dx) = ϕ(0) , (5.16)

where we first used the invariance of ν and then the dominated convergence theorem.
To show that P∗t ν → µ∞ whenever an invariant measure exists we use the fact that in this case,

by Theorem 5.23, one has Qt ↑ Q∞ in the trace class topology. Denoting by µt the centred Gaussian
measure with covariance Qt, the fact that L2 convergence implies weak convergence then implies
that there exists a measure µ̂∞ such that µt → µ̂∞ weakly. Furthermore, the same reasoning as
in (5.16) shows that S(t)]ν → δ0 weakly as t → ∞. The claim then follows from the fact that
P∗t ν = (S(t)]ν) ? µt and from the fact that convolving two probability measures is a continuous
operation in the topology of weak convergence.

Note that the condition limt→∞ ‖S(t)x‖ = 0 for every x is not sufficient in general to guarantee the
existence of an invariant measure for (5.1). This can be seen again with the aid of Example 5.19. Take
an increasing function V with limx→∞ V (x) = ∞, but such that

∫∞
0 e−V (x) dx = ∞. Then, since
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exp(V (x)−V (x+ t)) ≤ 1 and limt→∞ exp(V (x)−V (x+ t)) = 0 for every x ∈ R, it follows from
(5.9) and the dominated convergence theorem that limt→∞ ‖S(t)u‖ = 0 for every u ∈ H. However,
the fact that

∫∞
0 e−V (x) dx =∞ prevents the random process ũ defined in (5.12) from belonging toH,

so that (5.10) has no invariant measure in this particular situation.

Exercise 5.25 Show that if (5.1) has an invariant measure µ∞ but there exists x ∈ H such that
lim supt→∞ ‖S(t)x‖ > 0, then one cannot have P∗t δx → µ∞ weakly. In this sense, the statement of
Proposition 5.24 is sharp.

5.3 Convergence in stronger topologies

Proposition 5.24 shows that if (5.1) has an invariant measure µ∞, one can in many cases expect to
have P∗t ν → µ∞ weakly for every initial measure ν. It is however not clear a priori whether such a
convergence also holds in some stronger topologies on the space of probability measures. If we consider
the finite-dimensional case (that is H = Rn for some n > 0), the situation is clear: the condition
limt→∞ ‖S(t)x‖ = 0 for every x ∈ H then implies that limt→∞ ‖S(t)‖ = 0, so that L has to be a
matrix whose eigenvalues all have strictly negative real parts. One then has:

Proposition 5.26 In the finite-dimensional case, assume that all eigenvalues of L have strictly negative
real parts and that Q∞ has full rank. Then, there exists T > 0 such that P∗t δx has a smooth density
pt,x with respect to Lebesgue measure for every t > T . Furthermore, µ∞ has a smooth density p∞
with respect to Lebesgue measure and there exists c > 0 such that, for every λ > 0, one has

lim
t→∞

ect sup
y∈Rn

eλ|y||p∞(y)− pt,x(y)| = 0 .

In other words, pt,x converges to p∞ exponentially fast in any weighted norm with exponentially
increasing weight.

The proof of Proposition 5.26 is left as an exercise. It follows in a straightforward way from the
explicit expression for the density of a Gaussian measure.

In the infinite-dimensional case, the situation is much less straightforward. The reason is that there
exists no natural reference measure (the equivalent of the Lebesgue measure) with respect to which one
could form densities.

In particular, even though one always has ‖µt−µ∞‖TV → 0 in the finite-dimensional case (provided
that µ∞ exists and that all eigenvalues of L have strictly negative real part), one cannot expect this to
be true in general. Consider for example the SPDE

dx = −x dt+QdW (t) , x(t) ∈ H ,

where W is a cylindrical process onH and Q:H → H is a Hilbert-Schmidt operator. One then has

Qt =
1− e−2t

2
QQ∗ , Q∞ =

1

2
QQ∗ .

Combining this with Proposition 3.65 (dilates of an infinite-dimensional Gaussian measure are mutually
singular) shows that if QQ∗ has infinitely many non-zero eigenvalues, then µt and µ∞ are mutually
singular in this case.

One question that one may ask oneself is under which conditions the convergence Pνt → µ∞
takes place in the total variation norm. There is a straightforward interpretation to the total variation
convergence Pνt → µ∞: for large times, a sample drawn from the invariant distribution is with high
probability indistinguishable from a sample drawn from the Markov process at time t. Compare this
with the notion of weak convergence which relies on the topology of the underlying space and only
asserts that the two samples are close with high probability in the sense determined by the topology in
question. For example, ‖δx − δy‖ is always equal to 2 if x 6= y, whereas δx → δy weakly if x→ y.
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Exercise 5.27 Show that the two definitions of the total variation distance given above are indeed
equivalent by constructing a coupling that realises the infimum in (3.3). It is useful for this to consider
the measure µ∧ ν which, in µ and ν have densitiesDµ andDν with respect to some common reference
measure π, is given by (Dµ(x) ∧ Dν(x))π(dx).

An alternative characterisation of the total variation norm is as the dual norm to the supremum norm
on the space Bb(B) of bounded Borel measurable functions on B:

‖µ− ν‖TV = sup
{∫

ϕ(x)µ(dx)−
∫
ϕ(x)ν(dx) : sup

x∈B
|ϕ(x)| ≤ 1

}
.

It turns out that, instead of showing directly that P∗t ν → µ∞ in the total variation norm, it is somewhat
easier to show that one has P∗t ν → µ∞ in a type of “weighted total variation norm”, which is slightly
stronger than the usual total variation norm. Given a weight function V :B → R+, we define a weighted
supremum norm on measurable functions by

‖ϕ‖V = sup
x∈B

|ϕ(x)|
1 + V (x)

,

as well as the dual norm on measures by

‖µ− ν‖TV,V = sup
{∫

ϕ(x)µ(dx)−
∫
ϕ(x)ν(dx) : ‖ϕ‖V ≤ 1

}
. (5.17)

Since we assumed that V > 0, it is obvious that one has the relation ‖µ−ν‖TV ≤ ‖µ−ν‖TV,V , so that
convergence in the weighted norm immediately implies convergence in the usual total variation norm.
By considering the Jordan decomposition of µ− ν = %+ − %−, it is clear that the supremum in (5.17)
is attained at functions ϕ such that ϕ(x) = 1 + V (x) for %+-almost every x and ϕ(x) = −1− V (x)
for %−-almost every x. In other words, an alternative expression for the weighted total variation norm is
given by

‖µ− ν‖TV,V =

∫
X

(1 + V (x)) |µ− ν|(dx) , (5.18)

just like the total variation norm is given by ‖µ− ν‖TV = |µ− ν|(X ).
The reason why it turns out to be easier to work in a weighted norm is the following: For a suitable

choice of V , we are going to see that in a large class of examples, one can construct a weight function
V and find constants c < 1 and T > 0 such that

‖P∗Tµ− P∗Tν‖TV,V ≤ c‖µ− ν‖TV,V , (5.19)

for any two probability measures µ and ν. This implies that the map PT is a contraction on the space of
probability measures, which must therefore have exactly one fixed point, yielding both the existence of
an invariant measure µ∞ and the exponential convergence of P∗t ν to µ∞ for every initial probability
measure ν which integrates V .

This argument is based on the following abstract result that can be applied to arbitrary Markov
semigroups on Polish (that is separable, complete, metric) spaces:

Theorem 5.28 (Harris) Let Pt be a Markov semigroup on a Polish space X such that there exists a
time T0 > 0 and a function V :X → R+ such that:

• The exist constants γ < 1 and K > 0 such that PT0
V (x) ≤ γV (x) +K for every x ∈ X .

• There exist R > 2K/(1− γ) and δ > 0 such that ‖P∗T0
δx − P∗T0

δy‖TV ≤ 2(1− δ) for every
pair x, y such that V (x) + V (y) ≤ R.

Then, there exists T > 0 such that (5.19) holds for some c < 1.

In a nutshell, the argument for the proof of Theorem 5.28 is the following. There are two mechanisms
that allow to decrease the weighted total variation distance between two probability measures:
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1. The mass of the two measures moves into regions where the weight V (x) becomes smaller.

2. The two measures “spread out” in such a way that there is an increase in the overlap between
them.

The two conditions of Theorem 5.28 are tailored such as to combine these two effects in order to obtain
an exponential convergence of P∗t µ to the unique invariant measure for Pt as t→∞.

Remark 5.29 The condition that there exists δ > 0 such that ‖P∗T0
δx−P∗T0

δy‖TV ≤ 2(1− δ) for any
x, y ∈ A is sometimes referred to in the literature as the set A being a small set.

Remark 5.30 Traditional proofs of Theorem 5.28 as given for example in [MT93] tend to make use
of coupling arguments and estimates of return times of the Markov process described by Pt to level
sets of V . The basic idea is to make use of (3.3) to get a bound on the total variation between P∗Tµ and
P∗Tν by constructing an explicit coupling between two instances xt and yt of a Markov process with
transition semigroup {Pt}. Because of the second assumption in Theorem 5.28, one can construct this
coupling in such a way that every time the process (xt, yt) returns to some sufficiently large level set
of V , there is a probability δ that xt′ = yt′ for t′ ≥ t+ T0. The first assumption then guarantees that
these return times have exponential tails and a renewal-type argument allows to conclude.

Such proofs are quite involved at a technical level and are by consequence not so easy to follow,
especially if one wishes to get a spectral gap bound like (5.19) and not “just” an exponential decay
bound like

‖P∗T δx − P∗T δy‖TV ≤ Ce−γT ,

with a constant C depending on x and y. Furthermore, they require more background in advanced
probability theory (in particular renewal theory) than what is assumed for the scope of these notes.

The elementary proof given here is taken from [HM08b] and is based on the arguments first exposed
in [HM08a]. It has the disadvantage of being less intuitively appealing than proofs based on coupling
arguments, but this is more than offset by the advantage of fitting into less than two pages without
having to appeal to advanced mathematical concepts. It also has the advantage of being generalisable to
situations where level sets of the Lyapunov function are not small sets, see [HMS09].

Before we turn to the proof of Theorem 5.28, we define for every β > 0 the distance function

dβ(x, y) =

{
0 if x = y

2 + βV (x) + βV (y) if x 6= y.

One can check that the positivity of V implies that this is indeed a distance function, albeit a rather
strange one. We define the corresponding “Lipschitz” seminorm on functions ϕ:X → R by

‖ϕ‖Lipβ
= sup

x 6=y

|ϕ(x)− ϕ(y)|
dβ(x, y)

.

We are going to make use of the following lemma:

Lemma 5.31 With the above notations, one has ‖ϕ‖Lipβ
= infc∈R ‖ϕ+ c‖βV .

Proof. It is obvious that ‖ϕ‖Lipβ
≤ ‖ϕ+ c‖βV for every c ∈ R. On the other hand, if x0 is any fixed

point in X , one has

|ϕ(x)| ≤ |ϕ(x0)|+ ‖ϕ‖Lipβ
(2 + βV (x) + βV (x0)) , (5.20)

for all x ∈ X . Set now

c = − sup
x∈X

(ϕ(x)− ‖ϕ‖Lipβ
(1 + βV (x))) .
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It follows from (5.20) that c is finite. Furthermore, one has

ϕ(y) + c ≤ ϕ(y)− (ϕ(y)− ‖ϕ‖Lipβ
(1 + βV (y))) = ‖ϕ‖Lipβ

(1 + βV (y)) ,

and

ϕ(y) + c = inf
x∈X

(ϕ(y)− ϕ(x) + ‖ϕ‖Lipβ
(1 + βV (x)))

≥ inf
x∈X
‖ϕ‖Lipβ

(1 + βV (x)− dβ(x, y)) = −‖ϕ‖Lipβ
(1 + βV (y)) ,

which implies that ‖ϕ+ c‖βV ≤ ‖ϕ‖Lipβ
.

With this result in hand, we are ready to tackle the proof of Harris’s theorem:

Proof of Theorem 5.28. During this proof, we use the notation P def
= PT0

for simplicity. We are going to
show that there exists a choice of β ∈ (0, 1) such that there is α < 1 satisfying the bound

|Pϕ(x)− Pϕ(y)| ≤ αdβ(x, y)‖ϕ‖Lipβ
, (5.21)

uniformly over all measurable functions ϕ:X → R and all pairs x, y ∈ X . Note that this is equivalent
to the bound ‖Pϕ‖Lipβ

≤ α‖ϕ‖Lipβ
. Combining this with Lemma 5.31 and (5.18), we obtain that, for

T = nT0, one has the bound

‖P∗Tµ− P∗Tν‖TV,V = inf
‖ϕ‖V ≤1

∫
X

(PTϕ)(x) (µ− ν)(dx)

= inf
‖ϕ‖V ≤1

inf
c∈R

∫
X

((PTϕ)(x) + c) (µ− ν)(dx)

≤ inf
‖ϕ‖V ≤1

inf
c∈R
‖PTϕ+ c‖V

∫
X

(1 + V (x)) |µ− ν|(dx)

≤ inf
‖ϕ‖V ≤1

inf
c∈R
‖PTϕ+ c‖βV ‖µ− ν‖TV,V

= inf
‖ϕ‖V ≤1

‖PTϕ‖Lipβ
‖µ− ν‖TV,V

≤ αn inf
‖ϕ‖V ≤1

‖ϕ‖Lipβ
‖µ− ν‖TV,V ≤

αn

β
‖µ− ν‖TV,V .

Since α < 1, the result (5.19) then follows at once by choosing n sufficiently large.
Let us turn now to (5.21). If x = y, there is nothing to prove, so we assume that x 6= y. Fix an arbitrary

non-constant function ϕ and assume without loss of generality that ‖ϕ‖Lipβ
= 1. It follows from

Lemma 5.31 that, by adding a constant to it if necessary, we can assume that |ϕ(x)+c| ≤ (1+βV (x)).
This immediately implies the bound

|Pϕ(x)− Pϕ(y)| ≤ (2 + βPV (x) + βPV (y))

≤ 2 + 2βK + βγV (x) + βγV (y) . (5.22)

Suppose now that x and y are such that V (x) + V (y) ≥ R and note that (5.23) then immediately
implies that, for every ε > 0, we have

|Pϕ(x)− Pϕ(y)| ≤ 2(1− ε) + β(V (x) + V (y))
(
γ +

2βK + 2ε

βR

)
. (5.23)

At this stage, we see that if ε = 0, then due to the assumptionR < 2K/(1−γ) the constant multiplying
β(V (x) + V (y)) is strictly less than 1. This shows that, for every β > 0, there exists α > 0 such that
(5.21) holds for V (x) + V (y) ≥ R. Actually, the optimal choice is given by

α = 1− βR(1− γ)− 2K

2 + βR
,

which is positive by the assumption on R.
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Take now a pair x, y such that V (x) + V (y) ≤ R. Note that we can write ϕ = ϕ1 + ϕ2 with
|ϕ1(x)| ≤ 1 and |ϕ2(x)| ≤ βV (x). (Set ϕ1(x) = (ϕ(x)∧1)∨(−1).) It follows from the assumptions
on V that there exists some δ > 0 such that

|Pϕ(x)− Pϕ(y)| ≤ |Pϕ1(x)− Pϕ1(y)|+ |Pϕ2(x)− Pϕ2(y)|
≤ ‖P∗δx − P∗δy‖TV + β(PV )(x) + β(PV )(y)

≤ 2(1− δ) + β(2K + γV (x) + γV (y))

≤ ((1− δ + βK) ∨ γ)dβ(x, y) .

If we now choose β = δ
2K

, say, (5.21) holds with α = (1 − 1
2
δ) ∨ γ < 1. Combining this estimate

with the one obtained previously shows that one can indeed find α and β such that (5.21) holds for all x
and y in X , thus concluding the proof of Theorem 5.28.

Remark 5.32 The typical situation in practice is that γ and K are of order 1, but δ is very small. In
this case, the proof shows that the spectral gap 1− α for the operator P is of O(δ). Furthermore, one
also needs to take β = O(δ), so that one typically obtains bounds of the type

‖P∗t µ− P∗t ν‖TV,V ≤
Ce−cδt

δ
‖µ− ν‖TV,V ,

for δ � 1.

One could argue that while it guarantees its uniqueness, this theorem does not guarantee the existence
of an invariant measure since the fact that P∗Tµ = µ for some fixed T does not imply that P∗t µ = µ for
every t. However, one has:

Lemma 5.33 If there exists a probability measure such that P∗Tµ = µ for some fixed time T > 0, then
there also exists a probability measure µ∞ such that P∗t µ∞ = µ∞ for all t > 0.

Proof. Define the measure µ∞ by

µ∞(A) =
1

T

∫ T

0

P∗t µ(A) dt .

It is then a straightforward exercise to check that it does have the requested property.

We are now able to use this theorem to obtain the following result on the convergence of the solutions
to (5.1) to an invariant measure in the total variation topology:

Theorem 5.34 Assume that (5.1) has a solution in some Hilbert spaceH and that there exists a time T
such that ‖S(T )‖ < 1 and such that S(T ) mapsH into the image of Q1/2

T . Then (5.1) admits a unique
invariant measure µ∞ and there exists γ > 0 such that

‖P∗t ν − µ∞‖TV ≤ C(ν)e−γt ,

for every probability measure ν onH with finite second moment.

Proof. Let V (x) = ‖x‖ and denote by µt the centred Gaussian measure with covariance Qt. We then
have

PtV (x) ≤ ‖S(t)x‖+

∫
H
‖x‖µt(dx) ,

which shows that the first assumption of Theorem 5.28 is satisfied. A simple variation of Exercise 3.59
(use the decomposition H = H̃ ⊕ kerK) shows that the Cameron-Martin space of µT is given by
ImQ

1/2
T endowed with the norm

‖h‖T = inf{‖x‖ : h = Q
1/2
T x} .
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Since we assumed that S(T ) mapsH into the image of Q1/2
T , it follows from the closed graph theorem

that there exists a constant C such that ‖S(T )x‖T ≤ C‖x‖ for every x ∈ H. It follows from the
Cameron-Martin formula that the total variation distance between P∗T δx and P∗T δy is equal to the total
variation distance betweenN (0, 1) andN (‖S(T )x− S(T )y‖T , 1), so that the second assumption of
Theorem 5.28 is also satisfied.

Both the existence of µ∞ and the exponential convergence of P∗t ν towards it is then a consequence
of Banach’s fixed point theorem in the dual to the space of measurable functions with ‖ϕ‖V <∞.

Remark 5.35 The proof of Theorem 5.34 shows that if its assumptions are satisfied, then the map
x 7→ P∗t δx is continuous in the total variation distance for t ≥ T .

Remark 5.36 Since ImS(t) decreases with t and ImQ
1/2
t increases with t, it follows that if ImS(t) ⊂

ImQ
1/2
t for some t, then this also holds for any subsequent time. This is consistent with the fact that

Markov operators are contraction operators in the supremum norm, so that if x 7→ P∗t δx is continuous
in the total variation distance for some t, the same must be true for all subsequent times.

While Theorem 5.34 is very general, it is sometimes not straightforward at all to verify its assumptions
for arbitrary linear SPDEs. In particular, it might be complicated a priori to determine the image of
Q

1/2
t . The task of identifying this subspace can be made easier by the following result:

Proposition 5.37 The image of Q1/2
t is equal to the image of the map At given by

At:L
2([0, t],K)→ H , At:h 7→

∫ t

0

S(s)Qh(s) ds .

Proof. Since Qt = AtA
∗
t , we can use polar decomposition [RS80, Thm VI.10] to find an isometry Jt

of (kerAt)⊥ ⊂ H (which extends to H by setting Jtx = 0 for x ∈ kerAt) such that Q1/2
t = AtJt.

Alternatively, it follows from Proposition 3.71 that the Cameron-Martin space of the measure P∗t δ0 is
given by the image of At. Since on the other hand this Cameron-Martin space is equal to the image of
Q

1/2
t by Exercise 3.59, the claim follows.

One case where it is straightforward to check whether S(t) mapsH into the image of Q1/2
t is the

following:

Example 5.38 Consider the case whereK = H,L is selfadjoint, and there exists a function f : R→ R+

such that Q = f(L). (This identity should be interpreted in the sense of the functional calculus already
mentioned in Theorem 4.21.)

If we assume furthermore that f(λ) > 0 for every λ ∈ R, then the existence of an invariant measure
is equivalent to the existence of a constant c > 0 such that 〈x, Lx〉 ≤ −c‖x‖2 for every x ∈ H. Using
functional calculus, we see that the operator QT is then given by

QT =
f2(L)

2L
(1− e−2LT ) ,

and, for every T > 0, the Cameron-Martin norm for µT is equivalent to the norm

‖x‖f =
∥∥∥ √L
f(L)

x
∥∥∥ .

In order to obtain convergence P∗t ν → µ∞ in the total variation topology, it is therefore sufficient that
there exist constants c, C > 0 such that f(λ) ≥ Ce−cλ for λ ≥ 0.

This shows that one cannot expect convergence in the total variation topology to take place under
similarly weak conditions as in Proposition 5.24. In particular, convergence in the total variation topology
requires some non-degeneracy of the driving noise which was not the case for weak convergence.



72 Linear SPDEs / Stochastic Convolutions

Exercise 5.39 Consider again the case K = H and L selfadjoint with 〈x, Lx〉 ≤ −c‖x‖2 for some
c > 0. Assume furthermore that Q is selfadjoint and that Q and L commute, so that there exists a space
L2(M, µ) isometric toH and such that both Q and L can be realised as multiplication operators (say
f and g respectively) on that space. Show that:

• In order for there to exist solutions in H, the set AQ
def
= {λ ∈ M : f(λ) 6= 0} must be

“essentially countable” in the sense that it can be written as the union of a countable set and a set
of µ-measure 0.

• If there exists T > 0 such that ImS(T ) ⊂ ImQ
1/2
T , then µ is purely atomic and there exists

some possibly different time t > 0 such that S(t) is trace class.

Exercise 5.38 suggests that there are many cases where, if S(t) mapsH to ImQ
1/2
t for some t > 0,

then it does so for all t > 0. It also shows that, in the case where L and Q are selfadjoint and commute,
Q must have an orthnormal basis of eigenvectors with all eigenvalues non-zero. Both statements are
certainly not true in general. We see from the following example that there can be infinite-dimensional
situations where S(t) mapsH to ImQ

1/2
t even though Q is of rank one!

Example 5.40 Consider the spaceH = R⊕ L2([0, 1],R) and denote elements ofH by (a, u) with
a ∈ R. Consider the semigroup S onH given by

S(t)(a, u) = (a, ũ) , ũ(x) =

{
a for x ≤ t

u(x− t) for x > t.

It is easy to check that S is indeed a strongly continuous semigroup onH and we denote its generator
by (0, ∂x). We drive this equation by adding noise only on the first component ofH. In other words,
we set K = R and Q1 = (1, 0) so that, formally, we are considering the equation

da = dW (t) , du = ∂xu dt .

Even though, at a formal level, the equations for a and u look decoupled, they are actually coupled
via the domain of the generator of S. In order to check whether S(t) mapsH intoHt

def
= ImQ

1/2
t , we

make use of Proposition 5.37. This shows thatHt consists of elements of the form∫ t

0

h(s)χs ds ,

where h ∈ L2([0, t]) and χs is the image of (1, 0) under S(s), which is given by (1,1[0,s∧1]). On the
other hand, the image of S(t) consists of all elements (a, u) such that u(x) = a for x ≤ t. Since one
has χs(x) = 0 for x > s, it is obvious that ImS(t) 6⊂ Ht for t < 1.

On the other hand, for t > 1, given any a > 0, we can find a function h ∈ L2([0, t]) such that
h(x) = 0 for x ≤ 1 and

∫ t
0 h(x) dx = a. Since, for s ≥ 1, one has χs(x) = 1 for every x ∈ [0, 1], it

follows that one does have ImS(t) ⊂ Ht for t > 1.
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Semilinear SPDEs

Now that we have a good working knowledge of the behaviour of solutions to linear stochastic PDEs,
we are prepared to turn to nonlinear SPDEs. In these notes, we will restrict ourselves to the study of
semilinear SPDEs with additive noise.

In this context, a semilinear SPDE is one such that the nonlinearity can be treated as a perturbation
of the linear part of the equation. The word additive for the noise refers to the fact that, as in (5.1), we
will only consider noises described by a fixed operator Q:K → B, rather than by an operator-valued
function of the solution. We will therefore consider equations of the type

dx = Lxdt+ F (x) dt+QdW (t) , x(0) = x0 ∈ B , (6.1)

where L is the generator of a strongly continuous semigroup S on a separable Banach space B, W is a
cylindrical Wiener process on some separable Hilbert spaceK, andQ:K → B is bounded. Furthermore,
F is a measurable function from some linear subspace D(F ) ⊂ B into B. We will say that a process
t 7→ x(t) ∈ D(F ) is a mild solution to (6.1) if the identity

x(t) = S(t)x0 +

∫ t

0

S(t− s)F (x(s)) ds+

∫ t

0

S(t− s)QdW (s) , (6.2)

holds almost surely for every t > 0.

6.1 Local solutions

Throughout this section, we will make the standing assumption that the linear version of (6.1) (that is
the corresponding equation with F = 0) does have a continuous solution with values in B. In order to
simplify notations, we borrow the notation from [DPZ92b] and write

WL(t)
def
=

∫ t

0

S(t− s)QdW (s) .

In the nonlinear case, there are situations where solutions explode after a finite, but possibly random,
time interval. (This statement is of course not specific to SPDEs, just think of the ordinary differential
equation ẋ = x2 on R.) In order to be able to account for such a situation, we introduce the notion of a
local solution. Recall first that, given a cylindrical Wiener process W defined on some probability space
(Ω,P), we can associate to it the natural filtration {Ft}t≥0 generated by the increments of W . In other
words, for every t > 0, Ft is the smallest σ-algebra such that the random variables W (s)−W (r) for
s, r ≤ t are all Ft-measurable.

In this context, a stopping time is a positive random variable τ such that the event {τ ≤ T} is
FT -measurable for every T ≥ 0. With this definition at hand, we have:

Definition 6.1 A local mild solution to (6.1) is a D(F )-valued stochastic process x together with a
stopping time τ such that τ > 0 almost surely and such that the identity

x(t) = S(t)x0 +

∫ t

0

S(t− s)F (x(s)) ds+WL(t) , (6.3)

holds almost surely for every stopping time t such that t < τ almost surely.

73
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Remark 6.2 In some situations, it might be of advantage to allow F to be a map from D(F ) to B′ for
some superspace B′ such that B ⊂ B′ densely and such that S(t) extends to a continuous linear map
from B′ to B. The prime example of such a space B′ is an interpolation space with negative index in the
case where the semigroup S is analytic. The definition of a mild solution carries over to this situation
without any change.

A local mild solution (x, τ) is called maximal if, for every mild solution (x̃, τ̃), one has τ̃ ≤ τ
almost surely.

Exercise 6.3 Show that local mild solutions to (6.1) coincide with local mild solutions to (6.1) with L
replaced by L̃ = L− c and F replaced by F̃ = F + c for any constant c ∈ R.

Our first result on the existence and uniqueness of mild solutions to nonlinear SPDEs makes the
rather restrictive assumption that the nonlinearity F is defined on the whole space B and that it is locally
Lipschitz there:

Theorem 6.4 Consider (6.1) on a Banach space B and assume that WL is a continuous B-valued
process. Assume furthermore that F :B → B is such that its restriction to every bounded set is Lipschitz
continuous. Then, there exists a unique maximal mild solution (x, τ) to (6.1). Furthermore, this solution
has continuous sample paths and one has limt↑τ ‖x(t)‖ =∞ almost surely on the set {τ <∞}.

If F is globally Lipschitz continuous, then τ =∞ almost surely.

Proof. Given any realisation WL ∈ C(R+,B) of the stochastic convolution, we are going to show
that there exists a time τ > 0 depending only on WL up to time τ and a unique continuous function
x: [0, τ) → B such that (6.3) holds for every t < τ . Furthermore, the construction will be such that
either τ =∞, or one has limt↑τ ‖x(t)‖ =∞, thus showing that (x, τ) is maximal.

The proof relies on the Banach fixed point theorem. Given a terminal time T > 0 and a continuous
function g: R+ → B, we define the map Mg,T : C([0, T ],B)→ C([0, T ],B) by

(Mg,Tu)(t) =

∫ t

0

S(t− s)F (u(s)) ds+ g(t) . (6.4)

The proof then works in almost exactly the same way as the usual proof of uniqueness of a maximal
solution for ordinary differential equations with Lipschitz coefficients. Note that we can assume without
loss of generality that the semigroup S is bounded, since we can always subtract a constant to L and
add it back to F . Using the fact that ‖S(t)‖ ≤ M for some constant M , one has for any T > 0 the
bound

sup
t∈[0,T ]

‖Mg,Tu(t)−Mg,Tv(t)‖ ≤MT sup
t∈[0,T ]

‖F (u(t))− F (v(t))‖ . (6.5)

Furthermore, one has

sup
t∈[0,T ]

‖Mg,Tu(t)− g(t)‖ ≤MT sup
t∈[0,T ]

‖F (u(t))‖ . (6.6)

Fix now an arbitrary constant R > 0. Since F is locally Lipschitz, it follows from (6.5) and (6.6) that
there exists a maximal T > 0 such that Mg,T maps the ball of radius R around g in C([0, T ],B) into
itself and is a contraction with contraction constant 1

2
there. This shows that Mg,T has a unique fixed

point for T small enough and the choice of T was obviously performed by using knowledge of g only
up to time T . Setting g(t) = S(t)x0 +WL(t), the pair (x, T ), where T is as just constructed and x is
the unique fixed point of Mg,T thus yields a local mild solution to (6.1).

In order to construct the maximal solution, we iterate this construction in the same way as in the
finite-dimensional case. Uniqueness and continuity in time also follows as in the finite-dimensional
case. In the case where F is globally Lipschitz continuous, denote its Lipschitz constant by K . We then
see from (6.5) that Mg,T is a contraction on the whole space for T < 1/(KM), so that the choice of
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T can be made independently of the initial condition, thus showing that the solution exists for all times.

While this setting is very straightforward and did not make use of any PDE theory, it nevertheless
allows to construct solutions for an important class of examples, since every composition operator of
the form (N(u))(ξ) = (f ◦ u)(ξ) is locally Lipschitz on C(K,Rd) (for K a compact subset of Rn,
say), provided that f : Rd → Rd is locally Lipschitz continuous.

A much larger class of examples can be found if we restrict the regularity properties of F , but assume
that L generates an analytic semigroup:

Theorem 6.5 Let L generate an analytic semigroup on B (denote by Bα, α ∈ R the corresponding
interpolation spaces) and assume that Q is such that the stochastic convolution WL has almost surely
continuous sample paths in Bα for some α ≥ 0. Assume furthermore that there exists γ ≥ 0 and
δ ∈ [0, 1) such that, for every β ∈ [0, γ], the map F extends to a locally Lipschitz continuous map
from Bβ to Bβ−δ that, together with its local Lipschitz constant, grows at most polynomially.

Then, (6.1) has a unique maximal mild solution (x, τ) with x taking values in Bβ for every β <
β?

def
= α ∧ (γ + 1− δ).

Proof. In order to show that (6.1) has a unique mild solution, we proceed in a way similar to the proof of
Theorem 6.4 and we make use of Exercise 4.41 to bound ‖S(t−s)F (u(s))‖ in terms of ‖F (u(s))‖−δ.
This yields instead of (6.5) the bound

sup
t∈[0,T ]

‖Mg,Tu(t)−Mg,Tv(t)‖ ≤MT 1−δ sup
t∈[0,T ]

‖F (u(t))− F (v(t))‖ , (6.7)

and similarly for (6.6), thus showing that (6.1) has a unique B-valued maximal mild solution (x, τ).
In order to show that x(t) actually belongs to Bβ for t < τ and β ≤ α ∧ γ, we make use of a
“bootstrapping” argument, which is essentially an induction on β.

For notational convenience, we introduce the family of processes W a
L (t) =

∫ t
at S(t− r)QdW (r),

where a ∈ [0, 1) is a parameter. Note that one has the identity

W a
L (t) = WL(t)− S((1− a)t)WL(at)

so that if WL is continuous with values in Bα, then the same is true for W a
L .

We are actually going to show the following stronger statement. Fix an arbitrary time T > 0. Then,
for every β ∈ [0, β?) there exist exponents pβ ≥ 1, qβ ≥ 0, and constants a ∈ (0, 1), C > 0 such that
the bound

‖xt‖β ≤ Ct−qβ
(
1 + sup

s∈[at,t]

‖xs‖+ sup
0≤s≤t

‖W a
L (s)‖β

)pβ
, (6.8)

holds almost surely for all t ∈ (0, T ].
The bound (6.8) is obviously true for β = 0 with pβ = 1 and qβ = 0. Assume now that, for some

β = β0 ∈ [0, γ], the bound (6.8) holds. We will then argue that, for any ε ∈ (0, 1− δ), the statement
(6.8) also holds for β = β0 + ε (and therefore also for all intermediate values), provided that we
adjust the constants appearing in the expression. Since it is possible to go from β = 0 to any value of
β < γ + 1− δ in a finite number of such steps, the claim then follows at once.

From the definition of a mild solution, we have the identity

xt = S((1− a)t)xat +

∫ t

at

S(t− s)F (x(s)) ds+W a
L (t) .

Since β ≤ γ, it follows from our polynomial growth assumption on F that there exists n > 0 such that,
for t ∈ (0, T ],

‖xt‖β+ε ≤ Ct−ε‖xat‖β + ‖W a
L (t)‖β+ε + C

∫ t

at

(t− s)−(ε+δ)(1 + ‖xs‖β)n ds
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≤ C(t−ε + t1−ε−δ) sup
at≤s≤t

(1 + ‖xs‖nβ) + ‖W a
L (t)‖β+ε

≤ Ct−ε sup
at≤s≤t

(1 + ‖xs‖nβ) + ‖W a
L (t)‖β+ε .

Here, the constant C depends on everything but t and x0. Using the induction hypothesis, this yields
the bound

‖xt‖β+ε ≤ Ct−ε−nqβ(1 + sup
s∈[a2t,t]

‖xs‖+ sup
0≤s≤t

‖W a
L (s)‖β)

npβ + ‖W a
L (t)‖β+ε ,

thus showing that (6.8) does indeed hold for β = β0 + ε, provided that we replace a by a2 and set
pβ+ε = npβ and qβ+ε = ε+ nqβ . This concludes the proof of Theorem 6.5.

6.2 Multiplicative noise

In tis section, we will see how some of the results in this chapter can be extended to situations when the
intensity of the noise depends on the current state of the solution. In other words, we consider equations
of the type

dx = Lxdt+ F (x) dt+Q(x) dW , (6.9)

In this section, we will always consider solutions taking values in a Hilbert space H and we denote
byHα the corresponding scale of interpolation spaces with respect to L, which we assume to be the
generator of an analytic semigroup onH.

As before, we assume that F is a locally Lipschitz continuous map from H to H−δ for some
δ ∈ [0, 1). We also assume that W is a cylindrical Wiener process on some Hilbert space K and that Q
is a locally Lipschitz continuous map fromH to L2(K,Hα) (the space of Hilbert-Schmidt operators
from K toH−α) for some α ∈ [0, 1

2
). It will be clear from the sequel why the index− 1

2
is a reasonable

cut-off point here.
Similarly to above, we have

Definition 6.6 A local mild solution to (6.9) is a continuousH-valued stochastic process x, together
with a stopping time τ such that τ > 0 almost surely and such that, for every t > 0, the identity

x(t) = S(t)x0 +

∫ t∧τ

0

S(t− s)F (x(s)) ds+

∫ t∧τ

0

S(t− s)Q(x(s)) dW (s) , (6.10)

holds almost surely on the event {t < τ}. We furthermore impose that there exists R > 0 such that
sups≤τ ‖x(s)‖ < R almost surely.

Remark 6.7 For this definition to make sense, we have to make sure that both terms on the right hand
side of (6.10) make sense separately, the first as a Bochner integral and the second as a stochastic
integral against W as in Corollary 3.93.

This follows from the boundedness condition on x, since the local Lipschitz continuity of F and Q
then ensures that, for every finite time horizon, there exists a constant C (depending on R) such that
‖S(t− s)F (x(s))‖ ≤ C(t− s)−δ and ‖S(t− s)Q(x(s))‖L2(K,H) ≤ C(t− s)−α. Since the first is
integrable and the second is square integrable, the claim follows. In the multiplicative noise case, the
situation becomes significantly more involved if we try to define Banach-space valued solutions since
the definition of the stochastic integral is then much more subtle.

Remark 6.8 The reason why we cannot use the exact same definition as in the additive noise case is
that for t an arbitrary stopping time, there is no reason why s 7→ S(t− s)Q(x(s)) would be adapted,
so that it is no longer clear what the meaning of the last term appearing in the right hand side actually is.
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Remark 6.9 If (x, τ) is a local mild solution and y is a stochastic process such that, for every t,
y(t) = x(t) almost surely on the event {t < τ}, then (y, τ) is again a local mild solution, so that it is
natural to consider these as equivalent.

Furthermore, if τ̄ is a stopping time such that τ̄ ≤ τ almost surely and x̄ is a process such that
x̄(t) = x(t) almost surely on {t < τ̄} (whenever this is the case, we say that (x, τ) extends (x̄, τ̄)),
then (x̄, τ̄) is also a local mild solution. This is not a completely obvious fact, but follows from the
local property of the Itô integral: if two integrands agree almost surely on some event A then their Itô
integrals also agree almost surely on A.

This remark suggests the following definition.

Definition 6.10 We say that (x̄, τ̄) is a maximal mild solution if, on the set {τ̄ < ∞}, one has
limt→τ̄ ‖x̄(t)‖ =∞ almost surely and there exists a sequence (xn, τn) of local mild solutions with τn
increasing, τ̄ = supn τn almost surely, and such that (x̄, τ̄) extends each of the (xn, τn).

Remark 6.11 The pair (x̄, τ̄) itself is in general not a local mild solution in the sense of Definition 6.6
since x̄ is not bounded up to τ̄ . Even if we relax that condition, it may simply happen that the stochastic
integral in (6.10) makes no sense because of the divergence of the integrand near t = τ , which is a
problem that did not arise in the previous subsection.

Similarly, we can define a concept of a local weak solution by adapting Definition 5.1:

Definition 6.12 A local weak solution to (6.9) is an H-valued stochastic process x together with a
stopping time τ such that τ > 0 almost surely and such that the identity

〈`, x(t)− x0〉 =

∫ t

0

〈L∗`, x(s)〉 ds+

∫ t∧τ

0

〈`, F (x(s))〉 ds+

∫ t∧τ

0

〈`,Q(x(s)) dW (s)〉 , (6.11)

holds almost surely for every time t and for every ` ∈ D(L∗). As before, we furthermore impose that
there exists R > 0 such that sups≤τ ‖x(s)‖ < R almost surely.

Remark 6.13 Since ` ∈ D(L∗) by assumption, ` belongs to the dual of H−1. As a consequence, it
also belongs to the dual ofH−δ for δ ≤ 1, so that the right hand side of (6.11) makes sense thanks to
our boundedness assumption, just as in Remark 6.7.

As in the case of linear equations, we start by showing that these two notions of a solution actually
do coincide:

Proposition 6.14 Let L, F and Q be as above. Then weak solutions are mild solutions and vice-versa.

Proof. The proof that mild solutions are weak solutions is virtually identical to the proof of Proposi-
tion 5.8.

Only “problem”: have to use stochastic Fubini.... Finish this up

The main result of this section is the following well-posedness result:

Theorem 6.15 Let L, F and Q be as above. Then (6.9) admits a unique maximal solution.

Proof. The proof is quite similar to the proof of Theorems 6.4 and 6.5, the main difference being that
we cannot subtract the “stochastic convolution” since Q is now allowed to depend on the solution itself.
As a consequence, we cannot construct solutions in a pathwise manner as before, but instead we have
to perform a fixed point argument in a space of stochastic processes. The problem with this is that a
stochastic process can typically take arbitrarily large values, which will be a problem if F and / or Q
grow too fast at infinity. There are two ways to circumvent this: considering stochastic processes that
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are stopped when they reach values that are too large or approximating F and Q by globally Lipschitz
functions. We choose the latter approach

However, for every

6.3 Interpolation inequalities and Sobolev embeddings

The kind of bootstrapping arguments used in the proof of Theorem 6.5 above are extremely useful to
obtain regularity properties of the solutions to semilinear parabolic stochastic PDEs. However, they
rely on obtaining bounds on the regularity of F from one interpolation space into another. In many
important situations, the interpolation spaces turn out to be given by fractional Sobolev spaces. For the
purpose of these notes, we are going to restrict ourselves to the analytically easier situation where the
space variable of the stochastic PDE under consideration takes values in the d-dimensional torus Td. In
other words, we restrict ourselves to situations where the operator describing the linearised evolution is
endowed with periodic boundary conditions.

This will make the proof of the embedding theorems presented in these notes technically more
straightforward. For the corresponding embeddings with more general boundary conditions or even on
more general manifolds or unbounded domains, we refer for example to the comprehensive series of
monographs [Tri83, Tri92, Tri06].

Recall that, given a distribution u ∈ L2(Td), we can decompose it as a Fourier series:

u(x) =
∑
k∈Zd

uke
i〈k,x〉 ,

where the identity holds for (Lebesgue) almost every x ∈ Td. Furthermore, the L2 norm of u is given
by Parseval’s identity ‖u‖2 =

∑
|uk|2. We have

Definition 6.16 The fractional Sobolev space Hs(Td) for s ≥ 0 is given by the subspace of functions
u ∈ L2(Td) such that

‖u‖2Hs
def
=
∑
k∈Zd

(1 + |k|2)s|uk|2 <∞ . (6.12)

Note that this is a separable Hilbert space and that H0 = L2. For s < 0, we define Hs as the closure
of L2 under the norm (6.12).

Remark 6.17 By the spectral decomposition theorem, Hs for s > 0 is the domain of (1−∆)s/2 and
we have ‖u‖Hs = ‖(1−∆)s/2u‖L2 .

A very important situation is the case where L is a differential operator with constant coefficients
(formally L = P (∂x) for some polynomial P : Rd → R) andH is either an L2 space or some Sobolev
space. In this case, one has

Lemma 6.18 Assume that P : Rd → R is a polynomial of degree 2m such that there exist positive
constants c, C such that the bound

(−1)m+1c|k|2m ≤ P (k) ≤ (−1)m+1C|k|2m ,

holds for all k outside of some compact set. Then, the operator P (∂x) generates an analytic semigroup
onH = Hs for every s ∈ R and the corresponding interpolation spaces are given byHα = Hs+2mα.

Proof. By inspection, noting that P (∂x) is conjugate to the multiplication operator by P (ik) via the
Fourier decomposition.
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Note first that for any two positive real numbers a and b and any pair of positive conjugate exponents
p and q, one has Young’s inequality

ab ≤ ap

p
+
bq

q
,

1

p
+

1

q
= 1 . (6.13)

As a corollary of this elementary bound, we obtain Hölder’s inequality, which can be viewed as a
generalisation of the Cauchy-Schwartz inequality:

Proposition 6.19 (Hölder’s inequality) Let (M, µ) be a measure space and let p and q be a pair of
positive conjugate exponents. Then, for any pair of measurable functions u, v:M→ R, one has∫

M
|u(x)v(x)|µ(dx) ≤ ‖u‖p ‖v‖q ,

for any pair (p, q) of conjugate exponents.

Proof. It follows from (6.13) that, for every ε > 0, one has the bound∫
M
|u(x)v(x)|µ(dx) ≤

εp‖u‖pp
p

+
‖v‖qq
qεq

,

Setting ε = ‖v‖
1
p
q ‖u‖

1
p−1
p concludes the proof.

One interesting consequence of Hölder’s inequality is the following interpolation inequality for
powers of selfadjoint operators:

Proposition 6.20 Let A be a positive definite selfadjoint operator on a separable Hilbert spaceH and
let α ∈ [0, 1]. Then, the bound ‖Aαu‖ ≤ ‖Au‖α‖u‖1−α holds for every u ∈ D(Aα) ⊂ H.

Proof. The extreme cases α ∈ {0, 1} are obvious, so we assume α ∈ (0, 1). By the spectral theorem,
we can assume thatH = L2(M, µ) and that A is the multiplication operator by some positive function
f . Applying Hölder’s inequality with p = 1/α and q = 1/(1− α), one then has

‖Aαu‖2 =

∫
f2α(x)u2(x)µ(dx) =

∫
|fu|2α(x) |u|2−2α(x)µ(dx)

≤
(∫

f2(x)u2(x)µ(dx)
)α (∫

u2(x)µ(dx)
)1−α

,

which is exactly the bound we wanted to show.

An immediate corollary is:

Corollary 6.21 For any t > s and any r ∈ [s, t], the bound

‖u‖t−sHr ≤ ‖u‖r−sHt ‖u‖t−rHs (6.14)

is valid for every u ∈ Ht.

Proof. Apply Proposition 6.20 withH = Hs, A = (1−∆)
t−s
2 , and α = (r − s)/(t− s).

Exercise 6.22 As a consequence of Hölder’s inequality, show that for any collection of n measurable
functions and any exponents pi > 1 such that

∑n
i=1 p

−1
i = 1, one has the bound∫

M
|u1(x) · · ·un(x)|µ(dx) ≤ ‖u1‖p1 · · · ‖un‖pn .
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Following our earlier discussion regarding fractional Sobolev spaces, it would be convenient to be
able to bound the Lp norm of a function in terms of one of the fractional Sobolev norms. It turns out
that bounding the L∞ norm is rather straightforward:

Lemma 6.23 For every s > d
2
, the space Hs(Td) is contained in the space of continuous functions

and there exists a constant C such that ‖u‖L∞ ≤ C‖u‖Hs .

Proof. It follows from Cauchy-Schwarz that∑
k∈Zd
|uk| ≤

(∑
k∈Zd

(1 + |k|2)s|uk|2
)1/2(∑

k∈Zd
(1 + |k|2)−s

)1/2

.

Since the sum in the second factor converges if and only if s > d
2

, the claim follows.

Exercise 6.24 In dimension d = 2, find an example of an unbounded function u such that ‖u‖H1 <∞.

Exercise 6.25 Show that for s > d
2

, Hs is contained in the space Cα(Td) for every α < s− d
2

.

As a consequence of Lemma 6.23, we are able to obtain a more general Sobolev embedding for all
Lp spaces:

Theorem 6.26 (Sobolev embeddings) Let p ∈ [2,∞]. Then, for every s > d
2
− d

p
, the space Hs(Td)

is contained in the space Lp(Td) and there exists a constant C such that ‖u‖Lp ≤ C‖u‖Hs .

Proof. The case p = 2 is obvious and the case p =∞ has already been shown, so it remains to show the
claim for p ∈ (2,∞). The idea is to divide Fourier space into “blocks” corresponding to different length
scales and to estimate separately the Lp norm of every block. More precisely, we define a sequence of
functions u(n) by

u−1(x) = u0 , u(n)(x) =
∑

2n≤|k|<2n+1

uke
i〈k,x〉 ,

so that one has u =
∑
n≥−1 u

(n). For n ≥ 0, one has

‖u(n)‖pLp ≤ ‖u(n)‖2L2‖u(n)‖p−2
L∞ . (6.15)

Choose now s′ = d
2

+ ε and note that the construction of u(n), together with Lemma 6.23, guarantees
that one has the bounds

‖u(n)‖L2 ≤ 2−ns‖u(n)‖Hs , ‖u(n)‖L∞ ≤ C‖u(n)‖Hs′ ≤ C2n(s′−s)‖u(n)‖Hs .

Inserting this into (6.15), we obtain

‖u(n)‖Lp ≤ C‖u(n)‖Hs2n((s′−s) p−2
p −

2s
p ) = C‖u(n)‖Hs2n(ε

p−2
p + d

2−
d
p−s) ≤ C‖u‖Hs2n(ε+

d
2−

d
p−s) .

It follows that ‖u‖Lp ≤ |u0|+
∑
n≥0 ‖u(n)‖Lp ≤ C‖u‖Hs , provided that the exponent appearing in

this expression is negative which, since ε can be chosen arbitrarily small, is precisely the case whenever
s > d

2
− d

p
.

Remark 6.27 For p 6=∞, one actually has Hs(Td) ⊂ Lp(Td) with s = d
2
− d

p
, but this borderline

case is more difficult to obtain.

Combining the Sobolev embedding theorem and Hölder’s inequality, it is eventually possible to
estimate in a similar way the fractional Sobolev norm of a product of two functions:
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Theorem 6.28 Let r, s and t be positive exponents such that s ∧ r ≥ t and s+ r > t+ d
2
. Then, if

u ∈ Hr and v ∈ Hs, the product w = uv belongs to Ht.

Proof. Define u(n) and v(m) as in the proof of the Sobolev embedding theorem and set w(m,n) =

u(m)v(n). Note that one has w(m,n)
k = 0 if |k| > 23+(m∨n). It then follows from Hölder’s inequality

that if p, q ≥ 2 are such that p−1 + q−1 = 1
2
, one has the bound

‖w(m,n)‖Ht ≤ C2t(m∨n)‖w(m,n)‖L2 ≤ C2t(m∨n)‖u(m)‖Lp‖v(n)‖Lq .

Assume now that m > n. The conditions on r, s and t are precisely such that there exists a pair (p, q)
as above with

r > t+
d

2
− d

p
, s >

d

2
− d

q
.

In particular, we can find some ε > 0 such that

‖u(m)‖Lp ≤ C‖u(m)‖Hr−t−ε ≤ C2−m(t+ε)‖u‖Hr , ‖v(n)‖Lp ≤ C‖v(n)‖Hs−ε ≤ C2−nε‖v‖Hs .

Inserting this into the previous expression, we find that

‖w(m,n)‖Ht ≤ C2−mε−nε‖u‖Hr‖u‖Hs .

Since our assumptions are symmetric in u and v, we obtain a similar bound for the case m ≤ n, so that

‖w‖Ht ≤
∑
m,n>0

‖w(m,n)‖Ht ≤ C‖u‖Hr‖u‖Hs
∑
m,n>0

2−mε−nε ≤ C‖u‖Hr‖u‖Hs ,

as requested.

Exercise 6.29 Show that the conclusion of Theorem 6.28 still holds if s = t = r is a positive integer,
provided that s > d

2
.

Exercise 6.30 Similarly to Exercise 6.22, show that one can iterate this bound so that if si > s ≥ 0
are exponents such that

∑
i si > s+ (n−1)d

2
, then one has the bound

‖u1 · · ·un‖s ≤ C‖u1‖s1 · · · ‖un‖sn .

Hint: The case s ≥ d
2

is simple, so it suffices to consider the case s < d
2

.

The functional inequalities from the previous section allow to check that the assumptions of Theo-
rems 6.4 and 6.5 are verified by a number of interesting equations.

6.4 Reaction-diffusion equations

This is a class of (stochastic) partial differential equations that model the evolution of reactants in a gel,
described by a spatial domain D. They are of the type

du = ∆u dt+ f ◦ u dt+QdW (t) , (6.16)

where u(x, t) ∈ Rd, x ∈ D ⊂ Rn, describes the density of the various components of the reaction
at time t and location x. The nonlinearity f : Rd → Rd describes the reaction itself and the term ∆u
describes the diffusion of the reactants in the gel. The noise term QdW should be interpreted as a
crude attempt to describe the fluctuations in the quantities of reactant due both to the discrete nature of
the underlying particle system and the interaction with the environment1.
1 A more realistic description of these fluctuations would result in a covariance Q that depends on the solution u. Since we

have not developed the tools necessary to treat this type of equations, we restrict ourselves to the simple case of a constant
covariance operator Q.
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Equations of the type (6.16) also appear in the theory of amplitude equations, where they appear as a
kind of “normal form” near a change of linear instability. In this particular case, one often has d = 2
and f(u) = κu − u|u|2 for some κ ∈ R, see [BHP05]. A natural choice for the Banach space B in
which to consider solutions to (6.16) is the space of bounded continuous functions B = C(D,Rd) since
the composition operator u 7→ f ◦ u (also sometimes called Nemitskii operator) then maps B into itself
and inherits the regularity properties of f . If the domain D is sufficiently regular then the semigroup
generated by the Laplacian ∆ is the Markov semigroup for a Brownian motion in D. The precise
description of the domain of ∆ is related to the behaviour of the corresponding Brownian motion when
it hits the boundary of D. In order to avoid technicalities, let us assume from now on that D consists of
the torus Tn, so that there is no boundary to consider.

Exercise 6.31 Show that in this case, ∆ generates an analytic semigroup on B = C(Tn,Rd) and that
for α ∈ N, the interpolation space Bα is given by Bα = C2α(Tn,Rd).

If Q is such that the stochastic convolution has continuous sample paths in B almost surely and f is
locally Lipschitz continuous, we can directly apply Theorem 6.4 to obtain the existence of a unique
local solution to (6.16) in C(Tn,Rd). We would like to obtain conditions on f that ensure that this
local solution is also a global solution, that is the blow-up time τ is equal to infinity almost surely.

If f happens to be a globally Lipschitz continuous function, then the existence and uniqueness of
global solutions follows from Theorem 6.4. Obtaining global solutions when f is not globally Lipschitz
continuous is slightly more tricky. The idea is to obtain some a priori estimate on some functional of
the solution which dominates the supremum norm and ensures that it cannot blow up in finite time.

Let us first consider the deterministic part of the equation alone. The structure we are going to
exploit is the fact that the Laplacian generates a Markovian semigroup. Actually, we can even consider
sub-Markovian semigroups, namely semigroups Pt of positive measures over some fixed Polish space
X such that Pt(x,X ) ≤ 1 for every x. This then allows to cover for example the case of the Laplacian
with Dirichlet boundary conditions. The following general fact will turn out to be useful:

Lemma 6.32 Let Pt be a sub-Markovian Feller2 semigroup over a Polish space X . Extend it to
Cb(X ,Rd) by applying it to each component independently. Let V : Rd → R+ be convex (that is
V (αx+ (1− α)y) ≤ αV (x) + (1− α)V (y) for all x, y ∈ Rd and α ∈ [0, 1]) with V (0) = 0 and
define Ṽ : Cb(X ,Rd)→ R+ by Ṽ (u) = supx∈X V (u(x)). Then Ṽ (Ptu) ≤ Ṽ (u) for every t ≥ 0 and
every u ∈ Cb(X ,Rd).

Remark 6.33 One should keep in mind the following example: take X = Tn, the n-dimensional torus
and take Pt = S(t) to be the heat semigroup, which is indeed a Feller semigroup on Cb(Tn,R). This
can be extended to Rn-valued functions by evolving each component independently under the heat
equation. In particular, this result then shows that Ṽ (S(t)u) ≤ Ṽ (u) for every convex V and every
u ∈ C(Tn,Rd). Another example to keep in mind is that of X = D ⊂ Rn with Pt(x, ·) given by the
law of Brownian motion starting at x and killed when it reaches ∂D. In this case, Pt is not Markovian,
but it is still sub-Markovian.

Proof. Note first that if V is convex, then it is continuous and, for every probability measure µ on Rd,
one has the inequality

V
(∫

Rd
xµ(dx)

)
≤
∫

Rd
V (x)µ(dx) . (6.17)

One can indeed check by induction that (6.17) holds if µ is a “simple” measure consisting of a convex
combination of finitely many Dirac measures. The general case then follows from the continuity of

2 A Markov semigroup is Feller if it maps continuous functions into continuous functions.
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V and the fact that every probability measure on Rd can be approximated (in the topology of weak
convergence) by a sequence of simple measures.

Denote now by Pt(x, · ) the transition probabilities for Pt, so that Ptu is given by the formula
(Ptu)(x) =

∫
X u(y)Pt(x, dy). In order to sidestep the problem that Pt(x, ·) is not a probability

measure, we extend it to a probability measure P̂(x, ·) on X̂ = X ∪ {?}, where ? denotes a “cemetery
state”. This extension is performed by setting

P̂(x, ·) = P(x, ·) + (1− P(x,X ))δ?(·) .

With this notation at hand, we also extend any function u ∈ C(X ,Rd) into a function û ∈ C(X̂ ,Rd)
by setting û(?) = 0. One then has

Ṽ (Ptu) = sup
x∈X

V
(∫
X
u(y)Pt(x, dy)

)
= sup

x∈X
V
(∫
X̂
û(y) P̂t(x, dy)

)
= sup

x∈X
V
(∫

Rd
v (û]P̂t(x, · ))(dv)

)
≤ sup

x∈X

∫
Rd
V (v) (û]P̂t(x, · ))(dv)

= sup
x∈X

∫
X
V (û(y)) P̂t(x, dy) = sup

x∈X

∫
X
V (u(y))Pt(x, dy)

≤ sup
y∈X

V (u(y)) = Ṽ (u) , (6.18)

where we made use of the fact that V (0) = 0 to obtain the identities on the first and third lines. We
also made use of (6.17) on the second line. This is precisely the required inequality.

This is the main ingredient allowing us to obtain a priori estimates for the solution to (6.16):

Proposition 6.34 Consider the setting for equation (6.16) described above. Assume that Q is such that
W∆ has continuous sample paths in B = C(Tn,Rd) and that there exists a convex twice differentiable
function V : Rd → R+ such that lim|x|→∞ V (x) = ∞ and such that, for every R > 0, there exists
a constant C such that 〈∇V (x), f(x + y)〉 ≤ CV (x) for every x ∈ Rd and every y with |y| ≤ R.
Then (6.16) has a global solution in B.

Proof. We denote by u(t) the local mild solution to (6.16). Our aim is to obtain a priori bounds on
Ṽ (u(t)) that are sufficiently good to show that one cannot have limt→τ ‖u(t)‖ = ∞ for any finite
(stopping) time τ .

Setting v(t) = u(t)−W∆(t), the definition of a mild solution shows that v satisfies the equation

v(t) = e∆tv(0) +

∫ t

0

e∆(t−s)(f ◦ (v(s) +W∆(s))) ds
def
= e∆tv(0) +

∫ t

0

e∆(t−s)F (s) ds .

Since t 7→ v(t) is continuous by Theorem 6.4 and the same holds for W∆ by assumption, the function
t 7→ F (t) is continuous in B. Therefore, one has

lim
h→0

1

h

(∫ h

0

e∆(h−s)F (s) ds− he∆hF (0)
)

= 0 .

Combining this with (6.18), we therefore obtain for Ṽ (v) the bound

lim sup
h→0

h−1(Ṽ (v(t+ h))− Ṽ (v(t))) ≤ lim sup
h→0

h−1(Ṽ (v(t) + hF (t))− Ṽ (v(t))) .

Since V furthermore belongs to C2 by assumption, we also have the estimate

Ṽ (v(t) + hF (t)) = sup
x∈Tn

(V (v(x, t)) + h〈∇V (v(x, t)), F (x, t)〉) +O(h2) .
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Using the definition of F and the assumptions on V , it follows that for every R > 0 there exists a
constant C such that, provided that ‖W∆(t)‖ ≤ R, one has

lim sup
h→0

h−1(Ṽ (v(t+ h))− Ṽ (v(t))) ≤ CṼ (v(t)) .

A standard comparison argument for ODEs then shows that Ṽ (v(t)) cannot blow up as long as ‖W∆(t)‖
does not blow up, thus concluding the proof.

Example 6.35 A prime example of equation that falls into the category of reaction-diffusion equations
considered here is the stochastic Allen-Cahn equation given by

du = ∆u dt+
1

ε
(u− u3) dt+QdW , (6.19)

viewed for example as an equation on the space B = C([−L,L]n,R), endowed with periodic boundary
conditions. Here, a typical example for Q would be a Fourier symbol of the type

Q̂u(k) = qkû(k) ,

where û denotes the Fourier series of u. In this case, one can check that V (u) = u2 is
This is a model for phase separation: for small values of ε > 0, solutions to (6.19) tend to stay close

to the two stable fixed points for the ordinary differential equation u̇ = u − u3, namely u = 1 and
u = −1. The regions where u ≈ ±1 are separated by boundaries that model the interface between two
phases of a ??, see for example [].

Exercise 6.36 In the case d = 1, show that the assumptions of Proposition 6.34 are satisfied for
V (u) = u2 if f is any polynomial of odd degree with negative leading coefficient.

Exercise 6.37 Show that in the case d = 3, (6.16) has a unique global solution when we take for f the
right-hand side of the Lorentz attractor:

f(u) =

 σ(u2 − u1)
u1(%− u3)− u2

u1u2 − βu3

 ,

where %, σ and β are three arbitrary positive constants.

Exercise 6.38 Show that a proposition similar to Proposition ?? holds if we replace ∆

6.5 The stochastic Navier-Stokes equations

The Navier-Stokes equations govern the motion of an idealised incompressible fluid and are one of
the most studied models in the theory of partial differential equations, as well as in theoretical and
mathematical physics. We are going to use the symbol u(x, t) to denote the instantaneous velocity of
the fluid at position x ∈ Rd and time t, so that u(x, t) ∈ Rd. With these notations, the deterministic
Navier-Stokes equations are given by

∂tu = ν∆u− (u · ∇)u−∇p , divu = 0 , (6.20)

where the (scalar) pressure p is determined implicitly by the incompressibility condition divu = 0 and
ν > 0 denotes the kinematic viscosity of the fluid. In principle, these equations make sense for any
value of the dimension d. However, even the deterministic equations (6.20) are known to have global
smooth solutions for arbitrary smooth initial data only in dimension d = 2. We are therefore going
to restrict ourselves to the two-dimensional case in the sequel. As we saw already in the introduction,
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solutions to (6.20) tend to 0 as time goes to∞, so that an external forcing is required in order to obtain
an interesting stationary regime.

One natural way of adding an external forcing is given by a stochastic force that is white in time and
admits a translation invariant correlation function in space. In this way, it is possible to maintain the
translation invariance of the equations (in a statistical sense), even though the forcing is not constant
in space. We are furthermore going to restrict ourselves to solutions that are periodic in space in
order to avoid the difficulties arising from partial differential equations in unbounded domains. The
incompressible stochastic Navier-Stokes equations on the torus R2 are given by

du = ν∆u dt− (u · ∇)u dt−∇p dt+QdW (t) , divu = 0 , (6.21)

where p and ν > 0 are as above. In order to put these equations into the more familiar form (6.1),
we denote by Π the orthogonal projection onto the space of divergence-free vector fields. In Fourier
components, Π is given by

(Πu)k = uk −
k〈k, uk〉
|k|2

. (6.22)

(Note here that the Fourier coefficients of a vector field are themselves vectors.) With this notation, one
has

du = ν∆u dt+ Π(u · ∇)u dt+QdW (t)
def
= ∆u dt+ F (u) dt+QdW (t) .

It is clear from (6.22) that Π is a contraction in any fractional Sobolev space. For t ≥ 0, it therefore
follows from Theorem 6.28 that

‖F (u)‖Ht ≤ ‖u‖Hs‖∇u‖Hs−1 ≤ C‖u‖2Hs , (6.23)

provided that s ≥ t+ 1 and s > t
2

+ 1
2

+ d
4
. In particular, this bound holds for s = t+ 1, provided

that t > 0.
Furthermore, in this setting, sinceL is just the Laplacian, if we chooseH = Hs, then the interpolation

spacesHα are given byHα = Hs+2α. This allows us to apply Theorem 6.5 to show that the stochastic
Navier-Stokes equations admit local solutions for any initial condition in Hs, provided that s > 1, and
that the stochastic convolution takes values in that space. Furthermore, these solutions will immediately
lie in any higher order Sobolev space, all the way up to the space in which the stochastic convolution
lies.

This line of reasoning does however not yield any a priori bounds on the solution, so that it may
blow up in finite time. The Navier-Stokes nonlinearity satisfies 〈u, F (u)〉 = 0 (the scalar product is the
L2 scalar product), so one may expect bounds in L2, but we do not know at this stage whether initial
conditions in L2 do indeed lead to local solutions. We would therefore like to obtain bounds on F (u)
in negative Sobolev spaces. In order to do this, we exploit the fact that H−s can naturally be identified
with the dual of Hs, so that

‖F (u)‖H−s = sup
{∫

F (u)(x) v(x) dx , v ∈ C∞ , ‖v‖Hs ≤ 1
}
.

Making use of the fact that we are working with divergence-free vector fields, one has (using Einstein’s
convention of summation over repeated indices):∫

F (u) v dx = −
∫
vjui∂iuj dx ≤ ‖v‖Lp‖∇u‖L2‖u‖Lq ,

provided that p, q > 2 and 1
p

+ 1
q

= 1
2

. We now make use of the fact that ‖u‖Lq ≤ Cq‖∇u‖2 for every
q ∈ [2,∞) (but q =∞ is excluded) to conclude that for every s > 0 there exists a constant C such
that

‖F (u)‖−s ≤ C‖∇u‖2L2 . (6.24)

In order to get a priori bounds for the solution to the 2D stochastic Navier-Stokes equations, one
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can then make use of the following trick: introduce the vorticity w = ∇ ∧ u = ∂1u2 − ∂2u1. Then,
provided that

∫
u dx = 0 (which, provided that the range of Q consists of vector fields with mean 0,

is a condition that is preserved under the solutions to (6.21)), the vorticity is sufficient to describe u
completely by making use of the incompressibility assumption divu = 0. Actually, the map w 7→ u
can be described explicitly by

uk = (Kw)k =
k⊥wk
|k|2

, (k1, k2)⊥ = (−k2, k1) .

This shows in particular that K is actually a bounded operator from Hs into Hs+1 for every s. It
follows that one can rewrite (6.21) as

dw = ν∆w dt+ (Kw · ∇)w dt+ Q̃ dW (t)
def
= ∆w dt+ F̃ (w) dt+ Q̃ dW (t) . (6.25)

Since F̃ (w) = ∇∧ F (Kw), it follows from (6.24) that one has the bounds

‖F̃ (w)‖−1−s ≤ C‖w‖2L2 ,

so that F̃ is a locally Lipschitz continuous map from L2 into Hs for every s < −1. This shows that
(6.25) has unique local solutions for every initial condition in L2 and that these solutions immediately
become as regular as the corresponding stochastic convolution.

Denote now by W̃L the stochastic convolution

W̃L(t) =

∫ t

0

e∆(t−s)Q̃ dW (s) ,

and define the process v(t) = w(t)−WL(t). With this notation, v is the unique solution to the random
PDE

∂tv = ν∆v + F̃ (v + W̃L) .

It follows from (6.23) that ‖F̃ (w)‖H−s ≤ C‖w‖2Hs , provided that s > 1/3. For the sake of simplicity,
assume from now on that W̃L takes values in H1/2 almost surely. Using the fact that 〈v, F̃ (v)〉 = 0,
we then obtain for the L2-norm of v the following a priori bound:

∂t‖v‖2 = −2ν‖∇v‖2 − 2〈W̃L, F̃ (v + W̃L)〉
≤ −2ν‖∇v‖2 + 2‖W̃L‖H1/2‖v + W̃L‖2H1/2

≤ −2ν‖∇v‖2 + 4‖W̃L‖H1/2(‖v‖2H1/2 + ‖W̃L‖2H1/2)

≤ −2ν‖∇v‖2 + 4‖W̃L‖H1/2(‖v‖‖∇v‖+ ‖W̃L‖2H1/2)

≤ 8

ν
‖W̃L‖2H1/2‖v‖2 + 2‖W̃L‖3H1/2 , (6.26)

so that global existence of solutions then follows from Gronwall’s inequality.
This calculation is only formal, since it is not known in general whether the L2-norm of v is

differentiable as a function of time. The bound that one obtains from (6.26) can however be made
rigorous in a very similar way as for the example of the stochastic reaction-diffusion equation, so that
we will not reproduce this argument here.
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Variation of solutions

Our aim in this chapter is to show that the solutions to semilinear stochastic PDEs as studied in the
previous section are differentiable both with respect to their initial condition and with respect to the
driving noise. Knowing that this is indeed the case is of interest in a number of situations. For example, Add some

examples: Funaki /
Brassesco & Co;
ergodicity

7.1 Differentiation with respect to the initial condition

In this section, we study how the solutions to (6.1) depend on their initial conditions. Since the map
Mg,T that was used in (6.4) to construct the solutions to (6.1) is Fréchet differentiable (it is actually
differentiable arbitrarily often, provided that F is) and since it is a contraction for sufficiently small
values of t, we will be able to apply the classical implicit functions theorem (see for example [RR04]
for a Banach space version) to deduce that for every realisation of the driving noise, the map us 7→ ut
is Fréchet differentiable, provided that t > s is sufficiently close to s. Here, the precise meaning
of “sufficiently close” depends in general both on the value of us and on the size of the stochastic
convolution WL for times greater than s.

Iterating this argument and using the fact that the composition of Fréchet differentiable functions
is again Fréchet differentiable, we conclude that, for any s ≤ t < τ , the map us 7→ ut given by the
solutions to (6.1) is Fréchet differentiable in B. Inspecting the expression for the derivative given by the
implicit functions theorem, we conclude that the derivative Js,tϕ in the direction ϕ ∈ B satisfies the
following random linear equation in its mild formulation:

∂tJs,tϕ = −LJs,tϕ+DF (ut)Js,tϕ , Js,sϕ = ϕ . (7.1)

Note that, by the properties of monomials, it follows from Assumption AN that set up
assumption...

‖DN(u)v‖γ ≤ C(1 + ‖u‖γ+a)
n−1‖v‖γ+a ,

for every γ ∈ [−a, γ?). A fixed point argument similar to the one in Theorem 6.4 shows that the
solution to (7.1) is unique, but note that it does not allow us to obtain bounds on its moments. We only
have that for any T smaller than the explosion time to the solutions of (6.1), there exists a (random)
constant C such that

sup
0≤s<t<T

sup
‖ϕ‖≤1

‖Js,tϕ‖ ≤ C . (7.2)

The constant C depends exponentially on the size of the solution u in the interval [0, T ]. However, if
we obtain better control on Js,t by some means, we can then use the following bootstrapping argument:

Proposition 7.1 For every γ < γ? + 1, there exist exponents p̃γ , q̃γ ≥ 0, and constants C > 0 and
γ0 < |γ| such that we have the bound

‖Jt,t+sϕ‖γ ≤ Cs−p̃γ sup
r∈[ s2 ,s]

(1 + ‖ut+r‖γ0)
q̃γ‖Jt,t+rϕ‖ , (7.3)

for every ϕ ∈ H and every t, s > 0. If γ < 1− a, then one can choose γ0 = p̃γ = 0 and q̃γ = n− 1.
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Since an almost identical argument will be used in the proof of Proposition 7.3 below, we refer the
reader there for details. We chose to present that proof instead of this one because the presence of an
adjoint causes slight additional complications.

For s ≤ t, let us define operators Ks,t via the solution to the (random) PDE

∂sKs,tϕ = LKs,tϕ−DN∗(us)Ks,tϕ , Kt,tϕ = ϕ , ϕ ∈ H . (7.4)

Note that this equation runs backwards in time and is random through the solution ut of (6.1). Here,
DN∗(u) denotes the adjoint inH of the operator DN(u) defined earlier. Fixing the terminal time t
and setting ϕs = Kt−s,tϕ, we obtain a more usual representation for ϕs:

∂sϕs = −Lϕs +DN∗(ut−s)ϕs . (7.5)

The remainder of this subsection will be devoted to obtaining regularity bounds on the solutions to (7.4)
and to the proof that Ks,t is actually the adjoint of Js,t. We start by showing that, for γ sufficiently
close to (but less than) γ? + 1, (7.4) has a unique solution for every path u ∈ C(R,Hγ) and ϕ ∈ H.

Proposition 7.2 There exists γ < γ? + 1 such that, for every ϕ ∈ H, equation (7.4) has a unique
continuousH-valued solution for every s < t and every u ∈ C(R,Hγ). Furthermore, Ks,t depends
only on ur for r ∈ [s, t] and the map ϕ 7→ Ks,tϕ is linear and bounded.

Proof. As in Proposition ??, we define a map ΦT,u:H× C([0, T ],H)→ C([0, T ],H) by

(ΦT,u(ϕ0, ϕ))t = e−Ltϕ0 +

∫ t

0

e−L(t−s)(DN∗(us))ϕs ds .

It follows from Assumption ADN with β = −a that there exists γ < γ? + 1 such that DN∗(u):H →
H−a is a bounded linear operator for every u ∈ Hγ . Proceeding as in the proof of Proposition ??, we
see that Φ is a contraction for sufficiently small T .

Similarly to before, we can use a bootstrapping argument to show that Ks,tϕ actually has more
regularity than stated in Proposition 7.2.

Proposition 7.3 For every β < β? + 1, there exists γ < γ? + 1, exponents p̄β, q̄β > 0, and a constant
C such that

‖Kt−s,tϕ‖β ≤ Cs−p̄β sup
r∈[ s2 ,s]

(1 + ‖ut−r‖γ)
q̄β‖Kt−r,tϕ‖ , (7.6)

for every ϕ ∈ H, every t, s > 0, and every u ∈ C(R,Hγ).

Proof. Fix β < β? + a and δ ∈ (0, 1 − a) and assume that the bound (7.6) holds for ‖Ks,tϕ‖β .
Since we run s “backwards in time” from s = t, we consider again t as fixed and use the notation
ϕs = Kt−s,tϕ. We then have, for arbitrary α ∈ (0, 1),

‖ϕs‖β+δ ≤ Cs−δ‖ϕαs‖β + C

∫ s

αs

(s− r)−(δ+a)‖DN∗(ut−r)ϕr‖β−a dr ,

provided that γ is sufficiently close to γ? + 1 such that DN∗:Hγ → L(Hβ,Hβ−a) by Assump-
tion ADN. Furthermore, the operator norm of DN∗(v) is bounded by C(1 + ‖v‖γ)n−1, yielding

‖ϕs‖β+δ ≤ Cs−δ‖ϕαs‖β + Cs−(δ+a) sup
r∈[αs,s]

(1 + ‖ur‖γ)n−1‖ϕr‖β

≤ Cs−(δ+a) sup
r∈[αs,s]

(1 + ‖ur‖γ)n−1‖ϕr‖β .

Iterating these bounds as in Proposition ?? concludes the proof.

The following lemma appears also in [MP06, BM07]. It plays a central role in establishing the
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representation of the Malliavin matrix given in (??) on which this article as well as [MP06, BM07] rely
heavily.

Proposition 7.4 For every 0 ≤ s < t, Ks,t is the adjoint of Js,t inH, that is Ks,t = J∗s,t.

Proof. Fixing 0 ≤ s < t and ϕ,ψ ∈ H∞, we claim that the expression

〈Js,rϕ,Kr,tψ〉 , (7.7)

is independent of r ∈ [s, t]. Evaluating (7.7) at both r = s and r = t then concludes the proof.
We now prove that (7.7) is independent of r as claimed. It follows from (7.4) and Proposition ?? that,

with probability one, the map r 7→ Kr,tϕ is continuous with values inHβ+1 and differentiable with
values inHβ , provided that β < β?. Similarly, the map r 7→ Js,rψ is continuous with values inHγ+1

and differentiable with values in Hγ , provided that γ < γ?. Since γ? + β? > −1 by assumption, it
thus follows that (7.7) is differentiable in r for r ∈ (s, t) with

∂r〈Js,rϕ,Kr,tψ〉 = 〈(L+DN(ur))Js,rϕ,Kr,tψ〉
− 〈Js,rϕ, (L+DN∗(ur))Kr,tψ〉 = 0 .

Since furthermore both r 7→ Kr,tϕ and r 7→ Js,rψ are continuous in r on the closed interval, the proof
is complete. See for example [DL92, p. 477] for more details.

7.2 Higher order derivatives

Let us derive now a formula for the higher-order variations of the solution with respect to its initial
condition.

For integer n ≥ 2, let ϕ = (ϕ1, · · · , ϕn) ∈ H⊗n and s = (s1, · · · , sn) ∈ [0,∞)n and define
∨s = s1 ∨ · · · ∨ sn. We will now define the n-th variation of the equation J (n)

s,t ϕ which intuitively is
the cumulative effect on ut of varying the value of usk in the direction ϕk.

If I = {n1 < . . . < n|I|} is an ordered subset of {1, . . . , n} (here |I| means the number of
elements in I), we introduce the notation sI = (sn1

, . . . , sn|I|) and ϕI = (ϕn1
, . . . , ϕn|I|). Now the

n-th variation of the equation J (n)
s,t ϕ solves

∂tJ
(n)
s,t ϕ = −LJ (n)

s,t ϕ+DN(u(t))J
(n)
s,t ϕ+ G(n)

s,t (u(t), ϕ), t > ∨s, (7.8)

J
(n)
s,t ϕ = 0, t ≤ ∨s,

where

G(n)
s,t (u, ϕ) =

m∧n∑
ν=2

∑
I1,...,Iν

D(ν)N(u)
(
J

(|I1|)
sI1 ,t

ϕI1 , . . . , J
(|Iν |)
sIν ,t

ϕIν

)
, (7.9)

and the second sum runs over all partitions of {1, . . . , n} into disjoint, ordered non-empty sets
I1, . . . , Iν .

The variations of constants formula then implies that

J
(n)
s,t ϕ =

∫ t

0

Jr,tG(n)
s,r (ur, ϕ)dr , (7.10)

see also [BM07]. We obtain the following bound on the higher-order variations:

Proposition 7.5 If β? > a − 1 then there exists γ < γ? + 1 such that, for every n > 0, there exist
exponents Nn and Mn such that

‖J (n)
s,t ϕ‖ ≤ C sup

r∈[0,t]

(1 + ‖ur‖γ)Nn sup
0≤u<v≤t

(1 + ‖Ju,v‖)Mn ,

uniformly over all n-uples ϕ with ‖ϕk‖ ≤ 1 for every k.
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Proof. We proceed by induction. As a shorthand, we set

E(M,N) = sup
r∈[0,t]

(1 + ‖ur‖γ)N sup
0≤u<v≤t

(1 + ‖Ju,v‖)M .

The result is trivially true for n = 1 with M1 = 1 and N1 = 0. For n > 1, we combine (7.10) and
(7.9), and we use Assumption ??, part 2., to obtain

‖J (n)
s,t ϕ‖ ≤ C

∫ t

0

‖Jr,t‖−a→0

(
1 + ‖ur‖n +

∑
I

‖J |I|sI ,rϕI‖
n
)
dr

≤ CE(nMn−1, n(Nn−1 + 1))

∫ t

0

‖Kr,t‖0→a dr .

To go from the first to the second line, we used the induction hypothesis, the fact that Kr,t = J∗r,t, and
the duality betweenHa andH−a.

It remains to apply Proposition 7.3 with β = a to obtain the required bound.

7.3 Differentiation with respect to the noise

Show that solutions are differentiable as functions of the initial condition and of the noise. Derive
formulae for the derivatives (to any order).

7.4 Integration by parts formula

One very useful tool in the study of the long-time behaviour of solutions to stochastic PDEs is an
“integration by parts formula” on Wiener space.
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Approximations to SPDEs

This chapter is devoted to the theory of approximation of stochastic PDEs. The typical situation that we
have in mind is a numerical approximation, but one could also think of a sequence of stochastic PDEs
depending on a parameter, for which one wants to show that the solutions converge to the solutions to
some limiting equation. In the context of numerical approximation, there are two conceptually distinct
components to the approximation procedure: spatial approximation and temporal approximation. Spatial
approximation consists in approximating the “real” Banach space of functions B in which the solutions
take values by some (typically finite-dimensional, but not necessarily) space Bn in which we have an
approximating SPDE which is close in some sense to the original equation. Temporal approximation on
the other hand consists in constructing a step by step approximation to the solution of the equation.

Let us illustrate the difference between these two concepts by the simplest example we know: the
stochastic heat equation. Recall that this is the equation

du = ∂2
xu dt+ dW (t) , (8.1)

where we take u ∈ H = L2([0, π]), W a cylindrical Wiener process onH, and we endow the linear
operator ∂2

x with Dirichlet boundary conditions. This operator can of course be diagonalised explicitly.
Its eigenfunctions are given by en(x) =

√
2/π sin(nx) (the normalisation constant is chosen in such a

way that ‖en‖ = 1) and the corresponding eigenvalues are λn = n2.
One of the simplest possible spatial approximation for (8.1) can be obtained by writing

u(x, t) ≈ UN(x, t)
def
=

N∑
n=1

un(t)en(x) ,

and by taking for un the solutions to

dun = −n2un dt+ 〈en, dW (t)〉 . (8.2)

Since the en’s form an orthonormal basis of H, the processes 〈enW (t)〉 are in turn nothing but a
sequence of independent standard Wiener processes. In this particular case, denoting by ΠN the
orthogonal projection inH onto the first N eigenvectors en, it is very easy to see that if we set un(0) =
〈en, u(0)〉, then we have UN(t) = ΠNu(t) for every t ≥ 0. Since we know from Exercise 5.16 that
u(t) belongs to the interpolation spaceHα for every α < 1/4, this allows us to obtain an error estimate
on ‖UN(t)− u(t)‖ by using the fact that

‖UN(t)− u(t)‖ = ‖(ΠN − 1)u(t)‖ ≤ λ−αN ‖u(t)‖α .

Since λN ≈ N2 and we can take α arbitrarily close to 1/4, it follows that we have the approximate
bound ‖UN(t)− u(t)‖ ≈ O(N−1/2) for large values of N .

Temporal approximations for stochastic PDEs are slightly more tricky to study because the individual
terms of the equation do not necessarily make sense in the space in which solutions take values, so that
the usual explicit Euler scheme does not work. A temporal approximation to (8.1) could be obtained for
example by fixing a small parameter h > 0, setting tn = nh and defining a sequence un recursively by

un+1 = un + h∂2
xun+1 +

√
h∆Wn , (8.3)
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where the ∆Wn’s are i.i.d. copies of a Gaussian random variable with Cameron-Martin spaceH. Note
that even though the increments ∆Wn of the cylindrical Wiener process W are not H-valued, the
sequence of approximations un is. This can be seen by rewriting (8.3) as

un+1 = (1− h∂2
x)
−1

(un +
√
h∆Wn) ,

and noting that the operator (1− h∂2
x)
−1 is a Hilbert-Schmidt operator onH.

8.1 Spatial approximation

This section is devoted to the spatial approximation of stochastic PDEs. A very simple example of
spatial approximation was given by (8.3), for which we were furthermore able to estimate a rate of
convergence. This simple example however relied on very explicit calculations (we used the fact that
the linear operator ∂2

x can be diagonalised explicitly and that the noise acts independently on each
eigenspace), so we would like to obtain a more abstract result that can be applied to a larger class of
examples.

The typical example of spatial approximation that one should keep in mind is given by the finite
difference approximation to a one-dimensional reaction-diffusion equation. Consider the stochastic
PDE given by

du = ∂2
xu dt+ f(u) dt+ dW (t) , (8.4)

where ∂2
x denotes the second derivative operator onH = L2([0, 1],R) with periodic boundary condi-

tions, f : R→ R is a globally Lipschitz continuous nonlinearity, and W is a cylindrical Wiener process
onH. It is then straightforward to check that the assumptions of Theorem 6.5 are satisfied. Actually,
there are several possible choices of B that work. As we have seen in Section 6.4, we could choose B
to be the space of continuous functions, but in the case when f is globally Lipschitz continuous, the
choice B = H would also do. In both cases, one can take α = δ = 0.

Let us now try to construct a finite-dimensional approximation to (8.4). For any given n > 0, we
subdivide the interval [0, 1] into n subintervals of equal size and we denote by uin(t) an approximation
to u(i/n, t) for i = {0, . . . , n} with the convention that u0

n = unn. Our aim is to derive a system of
n coupled ordinary stochastic differential equations for the uin such that their solution yields a good
approximation to the solution to (8.4) evaluated at the gridpoints.

If v: [0, 1]→ R is a smooth function, then a simple second-order Taylor expansion around x = i/n
shows that

∂2
xv(i/n) = n2(v((i+ 1)/n) + v((i− 1)/n)− 2v(i/n)) +O(n−2) . (8.5)

As a consequence, it would seem that a reasonable approximation to ∂2
x is given by this second-order

difference operator so that, when deriving an equation for uin, we would like to replace the term ∂2
xu in

the right hand side of (8.4) by n2(ui+1
n + ui−1

n − 2uin).

Remark 8.1 Note that (8.5) is only valid for smooth functions v. (Actually, v needs to be C4 for this
bound to hold and it certainly needs to be C2 for this approximation to converge at all.) This could
potentially be a problem since the solutions to many interesting stochastic PDEs are not spatially smooth.
It turns out that this problem is not severe, as long as the finite difference approximation appears in the
linear part of the equation. If it appears in the nonlinear part, the lack of regularity may cause serious
problems, as we will se in Section ?? below.

It is less immediate to see how the noise term dW should be approximated. Since we have seen in
Section 3.7 that a cylindrical Wiener process on L2 corresponds to space-time white noise, it seems
intuitively clear that we should consider a sequence {wi}ni=1 of independent Wiener processes and use
wi to drive the equation for uin. The only question that remains is that of the correct amplitude that we
should choose for wi. This question can be answered by the following heuristic argument. Denote by
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ιn: Rn → H the map that returns the piecewise linear function that agrees on the gridpoints with the
given values. Formally, we have

(ιnu)(x) = (1− δ)ui + δui+1 , x =
i+ δ

n
, δ ∈ [0, 1] .

Again, we make the convention u0 = un. We also note that while the choice of i and δ is ambiguous
if x is an integer multiple of 1/n, the resulting value for (ιnu)(x) is not. Let now ξn be a normal
Gaussian random variable on Rn, namely the ξin are all independent and normally distributed with
variance 1. In this case, the covariance for ιnξn is given by

E(ιnξn)(i/n)(ιnξn)(j/n) = δij , (8.6)

1

2
n

j−1
n

j
n

j+1
n

Furthermore, for any given x, the function defined by y 7→
E(ιnξn)(x)(ιnξn)(y) is affine on every interval of the form
[j/n, (j + 1)/n]. This, together with (8.6) is in principle sufficient
to completely determine the covariance of ιnξn. Note now that, for
x = j/n, the function y 7→ Cn(x, y)

def
= E(ιnξn)(x)(ιnξn)(y) has

the shape depicted in the figure shown to the right. We thus see
that, for every x of the form j/n with j ∈ {0, . . . , n}, we have the
identity ∫ 1

0

Cn(x, y) dy =
1

n
. (8.7)

On the other hand, we would like to obtain an approximation to
spatial white noise, which has a Dirac delta-function as its covari-
ance. As a consequence of (8.7), the function nCn(x, y) is a good
approximation to δ(x − y). In view of this argument, it seems natural to approximate dW on the
gridpoints by

√
ndwin, where the win are i.i.d. standard Wiener processes.

Collecting all of these arguments, we finally obtain the following approximation to (8.4):

duin = n2(ui+1
n + ui−1

n − 2uin) dt+ f(uin) dt+
√
ndwin . (8.8)

At this stage, guessing the speed and type of convergence of (8.8) towards (8.4) is not straightforward
anymore. The aim of this section is to give an abstract approximation result that includes this case and
allows to obtain explicit bounds on the convergence rate. We will then show how this abstract result can
be applied to approximations like (8.8), as well as several other examples. We will also see when these
arguments break down, mainly due to the lack of spatial regularity, as already anticipated in Remark 8.1.

8.1.1 An abstract result

Throughout this section, we put ourselves in the following context. We consider a semilinear stochastic
PDE of the form

du = Ludt+ F (u) dt+QdW (t) , (8.9)

where W is a cylindrical Wiener process on some separable Hilbert space K, and the operators
L:D(L) → B, F :D(F ) → B, Q:K → B are as in Theorem 6.5, so that we have a good local
existence theory for its solutions.

The solutions to this equation will then be approximated by a sequence of equations taking values
in a sequence of (possibly finite-dimensional, but no necessarily so) Banach spaces B(n) which are
identified with subspaces of B via an injection map ιn:B(n) → B and a projection map πn:B → B(n)

such that πn ◦ ιn is the identity on B(n). The main application of the abstract theorem given in this
section will be the numerical approximation of stochastic PDEs. However, it is more general than that,
and also covers various homogenisation results where a “smooth” linear operator is approximated by
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operators with highly oscillating coefficients. A number of such applications will be given in the next
subsections.

Example 8.2 A standard example of a pair of operators ιn and πn satisfying our assumptions is given
by the projection of a square integrable function on [0, 2π] onto its first n Fourier coefficients. In this
case, one would take for example B = L2([0, 2π]) and B(n) = R⊕Cn (since the ‘0’ Fourier coefficient
is always real for a real-valued function, but the other Fourier coefficients can be complex). In this case,
the operator ιn simply outputs the trigonometric polynomial with the given Fourier coefficients.

Another typical example would be given by B = C([0, 1]), B(n) = Rn+1, and πn the operator that
evaluates its arguments at the points k/n for k ∈ {0, . . . , n}. In this case, a natural “reconstruction”
operator ιn would be given by simply performing a linear interpolation between the gridpoints.

However, the setup considered here is much more flexible and allows for a wide range of situations.
For example, if B = C1([0, 1]), one could keep not only the values of the function at gridpoints, but also
the values of its derivative. In this case, a natural reconstruction operator would be given by interpolating
with cubic splines.

Our sequence of approximating SPDEs is of the form

dun = Lnun dt+ Fn(un) dt+Qn dWn(t) , (8.10)

where we assume that Ln:D(Ln) → B(n), Fn:D(Fn) → B(n) and Qn:K(n) → B(n) again satisfy
the assumptions of Theorem 6.5 for every fixed value of n, but with constants that are independent of n.
If B(n) happens to be finite-dimensional, as is usually the case in practice, then these assumptions are
all trivially satisfied, provided that Fn is locally Lipschitz continuous, but the independence of n is less
trivial.

More precisely, denoting by Sn the analytic semigroup generated by Ln and by B(n)
α the correspond-

ing interpolation spaces, we are going to make throughout this section the following assumptions on
the approximations Ln and Fn. First of all, we assume that the stochastic convolution given by the
solutions to the approximating equation converges to the one given by the original equation and that we
have some control on the convergence rate:

Assumption 8.3 Denote by Z the solution to the linearised equation and by Zn its approximation:

Z(t) =

∫ t

0

S(t− s)QdW (s) , Zn(t) =

∫ t

0

Sn(t− s)Qn dWn(s) .

Then, we assume that Z has a continuous B-valued version and that there exists a joint realisation of
the cylindrical Wiener processes W and Wn and an exponent γ0 such that the bound

E sup
t∈[0,T ]

‖ιnZn(t)− Z(t)‖ ≤ C(T )n−γ0 , (8.11)

holds for every T > 0 for some constant C(T ).

The reason why we do not restate this assumption as a consequence of number of conditions on
Qn and Ln is that there are many instances where it is relatively easy to check (8.11) directly. This is
because both processes are Gaussian and there are explicit formulae available for their covariances in a
number of interesting situations.

Our next assumption basically states that the semigroup generated by Ln approximates the one
generated by L, when applied to elements in B−δ:

Assumption 8.4 There exist exponents γ2 and γ3 such that

‖ιnSn(t)πnx− S(t)x‖ ≤ Ct−α(1 ∧ t−γ2n−γ3)‖x‖−α , (8.12)

holds for every α ∈ [0, δ] and every x ∈ B−α.



8.1 Spatial approximation 95

Note that the factor t−δ is natural since this is the bound that one has on S(t)x. The reason why we
allow the error term to become large for small times is somewhat related: in the case of a numerical
approximation, the reason why one expects Sn to be a good approximation of S is that S has some
smoothing properties, so that the small-scale behaviour of the initial condition x gets “washed out”,
thus allowing it to be approximated by a finite-dimensional object. This argument however breaks down
for very small times, so that we have to allow for the approximation to become bad as t→ 0.

Finally, we have of course to assume that the approximating nonlinearity Fn is a reasonable approxi-
mation to the “true” nonlinearity F :

Assumption 8.5 There exists an exponent γ4 such that, for every R > 0, there exists a constant C
such that

‖ιnFn(πnx)− F (x)‖−δ ≤ Cn−γ4 ,

holds for every x ∈ B with ‖x‖ ≤ R.

With these assumptions at hand, the main abstract theorem of this section is the following:

Theorem 8.6 Let U0 ∈ B, R ≥ ‖U0‖ + 1 and T > 0. Let TR be the stopping time given by
TR = T ∧ inf{t > 0 : ‖u(t)‖ ≥ R}, where u denotes the solution to (8.9) with initial condition U0.
Assume furthermore that, for every n > 0, there exists a continuous B-valued solution un to (8.10) with
initial condition πnU0.

Then, for every ε > 0 and every R ≥ ‖U0‖+ 1, there exists a constant C > 0 and a value n0 > 0
such that

P
(

sup
s≤TR

sα‖ιnun(s)− u(s)‖ > Cn−γ
)
≤ ε , (8.13)

for all n ≥ n0. In this expression, the exponent γ is given by γ = γ0 ∧ γ3 ∧ γ4 ∧ (1− δ)γ2
γ3

, and α is
given by α = (1− δ) ∧ γ2.

Remark 8.7 One feature of this statement is that it requires no a priori bounds on the solutions of
either (8.9) or (8.10). The main reason is that we only consider solutions up to the stopping time TR,
which takes care of possible blow-ups in the solution u to (8.9). However, even if u does not blow up,
the weak assumptions that we have on Fn do not necessarily prevent a finite-time blow-up of un. This
however, is taken care of a posteriori by the fact that un converges to u, so that it will be less than
R + 1 (say) with very high probability. This is also why we need to include n0 in the statement: for
small values of n, it may well happen that un blows up before time TR with a fixed probability, so that
(8.13) cannot in general be expected to hold for all n.

Proof. Note first that the although the statement of Theorem 8.6 is probabilistic, its proof is completely
deterministic. The only point where probabilities enter the game is in the bounds on the stochastic
convolution. Indeed, it follows form (8.11) and Chebychev’s inequality that

P
(

sup
t∈[0,T ]

‖ιnZn(t)− Z(t)‖ ≥ L
)
≤ L−1C(T )n−γ0 .

In particular, there exists a constant C depending on ε and T such that the bound

P
(

sup
t∈[0,T ]

‖ιnZn(t)− Z(t)‖ ≤ Cn−γ0 & sup
t∈[0,T ]

‖Z(t)‖ ≤ R
)
≥ 1− ε , (8.14)

holds for every n > 0. The theorem will thus be proven if we can find a constant C depending on the
initial condition such that the “deterministic” bound

sup
s≤TR

sα‖ιnun(s)− u(s)‖ ≤ Cn−γ , (8.15)
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holds for all realisations of the stochastic convolutions such that the bounds in the left hand side of
(8.14) hold. As a shorthand, it will be convenient to write v(t) = u(t) − Z(t) and similarly for vn.
With this notation, and recalling the assumed bound on Z − ιnZn, we see that (8.15) is implied by the
same bound with u (resp. un) replaced by v (resp. vn).

In order to prove the result, we will first show that a bound of the type (8.15) holds for a sufficiently
short time t and we will then patch such bounds together in order to get the desired bound up to time TR.
We therefore try first to obtain a bound of the type (8.15), but with slightly different initial conditions
for u and un. Fix initial conditions U0 ∈ B and πnU0 ∈ B(n) and denote by u and un the solutions to
(8.9) with initial condition U0 and (8.10) with initial condition πnU0 respectively.

These notations will be convenient due to the fact that we will Using the mild formulation of the
solution and the triangle inequality, we then obtain for every t ≥ r the bound

‖v(t)− ιnvn(t)‖ ≤ ‖S(t)v(r)− S(t)ιnvn(r)‖+ ‖S(t)ιnvn(r)− ιnSn(t)vn(r)‖

+
∥∥∥∫ t

r

(
S(t− s)ιn − ιnSn(t− s)

)
Fn(un(s)) ds

∥∥∥
+
∥∥∥∫ t

r

S(t− s)
(
ιnFn(un(s))− F (ιnun(s))

)
ds
∥∥∥

+
∥∥∥∫ t

r

S(t− s)
(
F (ιnun(s))− F (u(s))

)
ds
∥∥∥ .

Assume for the moment that t is furthermore sufficiently small so that t ≤ T̄R, where

T̄R = TR ∧ inf{t ≥ 0 : ‖ιnvn(t)‖ ≥ KR} ,

for a constant K that is yet to be determined.
Using our assumptions on each term then yields the (pathwise) bound

‖v(t)− ιnvn(t)‖ ≤ C‖v(r)− ιnvn(r)‖+ C(1 ∧ t−γ2n−γ3)‖ιnvn(r)‖+ Cn−γ0

+ CR

∫ t

0

(t− s)−δ(1 ∧ (t− s)−γ2n−γ3)) ds (8.16)

+ CRn
−γ4 + CR

∫ t

0

(t− s)−δ‖u(s)− ιnun(s)‖ ds ,

where the symbol CR denotes as before a generic constant depending on R. Note that in the particular
case r = 0 when vn(r) = πnv(r), the first term vanishes and the term ‖ιnvn(r)‖ should be replaced
by ‖U0‖ in the second term. Note furthermore that, by (8.11), the term ‖u(s)− ιnun(s)‖ on the last
line can be replaced by ‖v(s) − ιnvn(s)‖ without any change, except possibly for the values of the
constants CR.

Before we proceed, we also remark that the term on the second line is bounded by Cn−γ23 with

γ23 = γ3

(1− δ
γ2

∧ 1
)

,

which can be seen by splitting the integral into two contributions, according to which term dominates in
the bound (8.12).

With α = (1− δ) ∧ γ2 as in the statement of the theorem, we now set

‖u‖α;r,t
def
= sup

s∈[r,t]

(s− r)α‖u(s)‖ .

With this notation at hand, we can take the supremum over t on both sides of (8.16), so that

‖v − ιnvn‖α;r,t ≤ C‖v(r)− ιnvn(r)‖+ CRn
−γ + CRt

1−δ‖v − ιnvn‖α;r,t .

Here, we used the fact that sups≤t t
α(1 ∧ t−γ2n−γ3) ≤ n−γ23 , which can easily be seen by an explicit
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calculation. Similarly, if we do not multiply by the weight function tα, we obtain

‖v − ιnvn‖0;t ≤ C(‖v(r)‖+ ‖ιnvn(r)‖) + CRn
−γ + CRt

1−δ‖v − ιnvn‖0;t . (8.17)

Note that, unlike the previous bound, this bound does not become small if v(r)− ιnvn(r) is small. This
is due to the fact that the bound (8.12) is badly behaved near t = 0. However, the bound (8.19) will turn
out to be useful in the sequel since it provides a uniform bound on the approximate solution near t = 0.

We now choose t sufficiently small so that CRt1−δ ≤ 1
2
, which then finally yields the bounds

‖u− ιnun‖α;t ≤ CRn−γ , (8.18)

if Ũ0 = πnU0 (recall the remark after (8.16)) and

‖u− ιnun‖α;t ≤ C̄‖U0 − ιnŨ0‖+ CRn
−γ ,

otherwise, for some constant C̄. We furthermore have the uniform bound

‖u− ιnun‖0;t ≤ C̄(‖U0‖+ ‖ιnŨ0‖) + CRn
−γ , (8.19)

where we can use the same constant C̄ as in the previous bound. Denote by τ the length of the time
interval such that these bounds hold. Note that we still haven’t fixed K and that the constants CR
appearing in these bounds do depend on the precise value of K . The constant C̄ however only depends
on (8.12) and is independent of R and K.

We now make the choice K = 4C̄ + 1, which then fixes the values of the constants CR appearing in
the previous bounds. With this choice of K, we see that whenever we start with initial conditions U0

and Ũ0 such that ‖U0‖ ≤ R and ‖ιnŨ0‖ ≤ R, we have T̄R ≥ τ ∧ TR for a sufficiently large value of
n. Indeed, assume by contradiction that this is not the case. We can then apply the bound (8.19) with
t = T̄R, thus yielding the bound

‖ιnun(TR)‖ ≤ R+ 2RC̄ + CRn
−γ ,

which is indeed a contradiction to the fact that, if T̄R < TR, ‖ιnun(TR)‖ ≥ KR by definition.
We now have all the ingredients ready for the final run. The argument goes as follows: by the previous

argument, the bound (8.18) holds for t ≤ τ ∧ TR. In particular, for any κ > 0, we can choose n large
enough so that

sup
s∈[τ/2,τ ]

‖u(s)− ιnun(s)‖1s≤TR ≤ κ . (8.20)

Similarly, provided that ‖ιnŨ0‖ ≤ R, we have

sup
s∈[τ/2,τ ]

‖u(s)− ιnun(s)‖1s≤TR ≤ κ+ C̄‖U0 − ιnŨ0‖ . (8.21)

Let now N be the smallest integer such that Nτ/2 ≥ T and choose n large enough so that the bounds
(8.20) and (8.21) hold for a sufficiently small value of κ so that κ(1 + C̄)N ≤ 1. With this choice, we
can now iterate our bounds in the following way.

It is sometimes useful to obtain convergence results in expectation, rather than in probability. At the
level of generality of Theorem 8.6, it is completely unrealistic to expect any convergence in expectation.
Indeed, it may happen that the approximate equation explodes before time TR with finite probability,
which would immediately make any moment infinite.

However, it is not too difficult to show that this scenario is the only obstruction. Indeed, if, besides
the assumptions of Theorem 8.6, we assume that both the limiting equation and the approximations
satisfy a uniform bound on moments of all orders, then we can strengthen our conclusion significantly.

Theorem 8.8 ....

Proof. ....
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8.1.2 Finite elements approximation

8.1.3 Finite differences approximation

8.2 Temporal approximation

Explain why Euler-Maruyama is useless, just like any explicit method.

8.2.1 The θ-method

We consider approximations of the type

un+1 = un +A(θun + (1− θ)un+1)h+ F (un)h+QδWn .

Advantages: easy to implement. In the case θ = 1
2

and F = 0, the invariant measure of the approximate
dynamic is equal to that of the original dynamic for every h.

8.2.2 Exponential integrators

We consider approximations of the type

un+1 = un + eAhun + F (un)h+QδWn .

Advantages: In the case F = 0, the law is equal to the law of the exact solution, subsampled at multiples
of h.

Disadvantages: it requires the computation of eAh which can be expensive in both time and storage.

8.3 What can go wrong?

As we have seen many times throughout these notes, the main difference between solutions to de-
terministic PDEs and solutions to SPDEs is that the latter can show very low spatial and temporal
regularity. This can have far-reaching consequences for numerical approximations. As a general rule,
when implementing a numerical approximation for the nonlinear term of a stochastic PDE, one should
always ask oneself if this term remains meaningful when applied to a function that has the kind of
regularity that one expects from the solutions to the SPDE in question. Very often, this would result in
elements taking value in Sobolev spaces with negative index. In this case, one should check whether
〈`, Fn(πx)〉 → 〈`, F (x)〉 for sufficiently “regular” functionals `.

This section is devoted to a case study that illustrates that relatively straightforward looking numerical
approximations to SPDEs with rough solutions can go dramatically wrong if these guidelines are not
respected. We consider the stochastic Burgers’ equation

du = ν∂2
xu dt+ u ∂xu dt+ dW (t) , (8.22)

where W is a cylindrical process on H = L2([0, 2π]) and ∂2
x denotes the generator of the heat

semigroup onL2([0, 2π]) with periodic boundary conditions. If we view (8.22) as a process in C(S1,R),
the space of continuous functions on the unit circle, then it is relatively straightforward to see that (8.22)
has a unique global solution. The existence of a unique local solution follows indeed from Theorem 6.5
with α = β = γ = 0 and δ = 1/2. The fact that this solution is global then follows by an argument
similar to those performed previously for the stochastic reaction-diffusion and Navier-Stokes equations.
One good candidate for a Lyapunov function in the case of the stochastic Burgers’ equation considered
here is the supremum norm of the solution, since the deterministic equation yields a contraction for this
norm.

Consider now the nonlinearity F (u) = u ∂xu to this equation onH = L2([0, 2π]). If we identify
the endpoints of the interval [0, 2π], working in effect with periodic boundary conditions, then this
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nonlinearity makes sense even for functions u that are not differentiable but only belong to L2, since
one can set

〈ϕ, F (u)〉 def
= −1

2
〈ϕ′, u2〉 .

This expression makes sense for every function ϕ ∈ C1([0, π]). In particular, this yields the a priori
bound

|〈ϕ, F (u)〉| ≤ 1

2
‖u‖2‖ϕ′‖L∞ . (8.23)

On the other hand, it would appear at first sight quite natural to approximate F by setting

Fε(u)(x) = u(x)
u(x+ ε)− u(x)

ε
. (8.24)

While this approximation is good if u is sufficiently regular, it can be very bad when u gets rougher. In
particular, it is very far from satisfying a bound of the type (8.23). Assuming that π/ε is an integer, this
can easily be seen with the example ϕ = 1 and u = sin(πx/ε). In this case, we have 〈ϕ, F (u)〉 = 0,
but 〈ϕ, Fε(u)〉 = −1. This example is of course slightly artificial since we expect our solutions to be
more regular than that. More precisely, one would expect solutions to (8.22) to have the same regularity
as solutions to the stochastic heat equation, which are Hölder continuous for every exponent smaller
than 1

2
. We are going to see in a moment that even for u’s with this level of regularity, one expects

(8.24) to be a very bad approximation for F .
A much more suitable approximation is given by

F̃ε(u)(x) =
u2(x+ ε)− u2(x)

2ε
,

which relies on the fact that F can be written as F (u) = 1
2
∂x(u

2). In this case, a simple change of
variables yields the identity

〈ϕ, F̃ε(u)〉 =

∫ 2π

0

ϕ(x− ε)− ϕ(x)

2ε
u2(x) dx ,

so that the bound (8.23) still holds with F replaced by F̃ε. Let us now compare F̃ε to Fε. It is easy to
check that one has the identity

F̃ε(u)(x)− Fε(u)(x) =
(u(x+ ε)− u(x))

2

2ε
.

It follows that F̃ε and Fε are close to each other for small values of ε only if u is Hölder continuous
with exponent greater than 1

2
. On the other hand, one expects solutions to (8.22) to be Hölder continuous

only for exponents less than 1
2

so that (8.24) may well yield an approximation to the wrong equation in
the limit ε→ 0 (if indeed it converges at all).

The rest of this section is devoted to an argument showing that if we consider the stochastic Burgers’
equation, which has a nonlinearity u∂xu, then a numerical scheme based on the second approximation
is expected to give a good approximation to the solution, while a numerical scheme based on the first
approximation will converge, but to the wrong solution!

Divide the interval [0, 2π] into 2N identical subintervals of size ∆x = π
N

and consider the following
finite difference scheme:

dv(x) =
ν

∆x2
(v(x+ ∆x) + v(x−∆x)− 2v(x)) dt+

v(x)

∆x
(v(x+ ∆x)− v(x)) dt+

dWx(t)√
∆x

def
= ν(∆Nv)(x) dt+ (FN(v))(x) dt+

dWx(t)√
∆x

. (8.25)

where the Wx’s are independent standard Wiener processes and x takes values in [0, 2π] ∩ N∆x with
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periodic boundary conditions (that is we impose v(x + 2π) = v(x)). It follows from ???? that the
solutions to the linearised equation do converge to the solutions to the stochastic heat equation, and so
it seems reasonable to expect that the above scheme approximates (8.22). However, one has

Proposition 8.9 As N →∞, the solution v to (8.25) converges in law to the solution u to

du = ν∂2
xu dt+ u ∂xu dt−

dt

4ν
+ dW (t) .

In particular, it does not converge to the solution to (8.22).

Proof (idea). A complete proof is beyond the scope of these notes, since it is rather long and technical.
We therefore only reproduce its main steps here. The idea is to decompose the solution into a regular
part and a rapidly oscillating part by projecting onto spectral subspaces of the linear operator ∆N .
Since the nonlinearity is a lower order perturbation (in the sense that it contains only one spatial
derivative, while the linear part contains two derivatives), one then expects the rapidly oscillating part
to be well-described by the solution to the linearised equation.

The approximation is then well-behaved on the regular part. However, it turns out that through the
nonlinearity, the rapidly oscillating part feeds a constant term back into the regular part of the equation.
Let us show how this mechanism works in slightly more detail. It is straightforward to check that the
eigenvectors for the discretised Laplacian ∆N are given by einx with n = −N + 1, . . . , N , with
eigenvalues

λn =
2

∆x2
(cosn∆x− 1) = −

( 2

∆x
sin(

n∆x

2
)
)2

def
= −η2

n .

(Note that for fixed n and small ∆x, one has indeed λn ≈ −n2 as one would expect.) It then follows
that the solution to the disctretised linearised equation is given by

ṽ(x, t) =
∑
n 6=0

einxξn(t)

2
√
νπiηn

,

where the ξn’s are an i.i.d. sequence of Ornstein-Uhlenbeck processes with variance 1 and time-constants
η2
n. Since the nonlinearity is of lower order compared to the linear part of the equation, one expects the

high-frequency components of v to be well approximated by the solution ṽ to the linearised equation.
We therefore introduce a cutoff scale Nα and we write v ≈ v̄(α) + ṽ(α), where ṽ(α) is defined by

ṽ(α)(x, t) =
∑

|n|∈[Nα,N ]

einxξn(t)

2
√
νπiηn

,

and v̄(α) is a linear combination of einx with |n| < Nα. If α is large enough, then it should be possible
to obtain a good approximation to the solution of (8.25) in this way. We then argue that if α is small
enough, then the choice of space discretisation is not very important for v̄(α), since it is always a very
smooth function. Furthermore, products of the form v̄(α)ṽ(α) have only high-frequency components.
Denoting by W (α)

L the projection of the solution to the linearised equation onto the subspace spanned
by einx with |n| < Nα, this suggests that the smooth component v̄(α) is an approximate solution to

v̄(α)(t) ≈ SN(t)v0 +W
(α)
L (t) +

∫ t

0

S(t− s)v̄(α)(t)∂xv̄
(α)(t) ds+

∫ t

0

SN(t− s)Fε(ṽ(α)(t)) ds .

(8.26)
It remains to argue that the factor FN(ṽ(α)(t)) appearing in the last term can be approximately

replaced by a constant. The discrete derivative ṽ of ṽ is given by

ṽ(α)(x+ ∆x)− ṽ(α)(x)

∆x
=

∑
|n|∈[Nα,N ]

einxξn(t)

2
√
νπiηn

ein∆x − 1

∆x
.
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The expectation of FN(ṽ(α)(t)) is therefore given by

EFN(ṽ(α)(t)) =
N∑

n=Nα

1

2πνη2
n

cosn∆x− 1

∆x
= −

N∑
n=Nα

∆x

4πν
≈ − 1

4ν
,

independently of x. Compare this with the fact that the “true” derivative ∂xṽ(α) of ṽ(α) is given by

∂xṽ
(α)(x) =

∑
n6=0

neinxξn(t)

2
√
νπηn

,

so that it is possible to check that E(ṽ(α)(x)∂xṽ
(α)(x)) = 0, as one would expect for a total derivative.

The argument is completed by arguing that:

• The Fourier coefficients of FN(ṽ(α)(t)) are approximately of magnitude 1√
N

, because they arise
as a sum of independent terms of mean 0.

• The Fourier modes with high wavenumber are suppressed by the action of the linear semigroup
SN .

This shows that the term FN(ṽ(α)(t)) in (8.26) can be replaced by its expectation − 1
4ν

, so that one
expects the numerical approximation to converge, as ∆x→ 0, to the solution to

du = ν∂2
xu dt+ u∂xu dt−

1

4ν
dt+ dW (t) .

The reader interested in a rigorous proof of this fact, as well as in related questions, is referred to the
articles [Hai12, HV11, Hai11].

Exercise 8.10 Consider the finite difference scheme

dv(x) =
ν

∆x2
(v(x+∆x)+v(x−∆x)−2v(x)) dt+

g(v(x))

∆x
(v(x+∆x)−v(x)) dt+

dWx(t)√
∆x

,

for a “nice” function g. (Say smooth with bounded derivatives of all orders.) Modify the argument given
above to argue that in the limit N →∞, its solutions should converge to the solutions to the SPDE

du = ν∂2
xu dt+ g(u) ∂xu dt−

g′(u)

4ν
dt+ dW (t) .

Hint: Convince yourself first that one can decompose the solution as u = ū+ ũ with ū a component
that is large, but smooth and ũ an oscillatory part which is small in the supremum norm, but large in
the H1 norm. For large N , one then has g(u) ≈ g(ū) + g′(ū)ũ. This second term will then produce a
correction term that doesn’t vanish in the limit in a similar way as before.
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Ergodic Theory for Semilinear SPDEs

The aim of this section is to extend some of the results from Section 5.2 to the setting of semilinear
SPDEs.

9.1 Structure of the set of invariant measures

Ergodic decomposition theorem as a consequence of Birkhoff’s ergodic theorem.

9.2 Strong convergence results

Aim is to show how Theorem 5.28 can be applied to semilinear SPDEs.

9.2.1 Harris chains

Explain the theory of Harris chains. Introduce the strong Feller property. Show that SF implies continuity
in total variation of TP’s.

9.2.2 The Bismut-Elworthy-Li formula

Give proof of BEL formula and show how to use it to verify SF property. Do reaction-diffusion in detail,
as in Sandra’s paper. As an application, give a short proof of regularity of densities of finite-dimensional
projections.

9.3 Weak convergence results

Introduce the asymptotic strong Feller property. Show that ASF + Topological irreducibility implies
uniqueness of IM. Show how to check ASF in a couple of examples where noise acts on “dominating
modes”.

9.4 Spectral gap results

Explain what a spectral gap is. Maybe mention spectral mapping theorem to relate it to generator.

9.4.1 Spectral gaps in total variation distance

Basically show ho to apply Theorem 5.28 to nonlinear equations.

102
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9.4.2 Spectral gaps in Wasserstein distance

Explain what spectral gap is. We consider norms of the type

‖ϕ‖V,W = sup
u∈B

( |ϕ(u)|
V (u)

+
‖Dϕ(u)‖
W (u)

)
(9.1)

The conditions presented in this section are taken from [HM09], but they are strongly inspired by
those in [HM08a, HMS09]. One of our aims is to be applicable to equations with conservative quadratic
nonlinearities, as arising in many applications. The main ingredient is a gradient bound of the following
type, which was shown in Section 9.3 to hold for a large class of stochastic PDEs:

Assumption 9.1 There exist continuous functions U1, U2:B → R+ such that, for every ε > 0 there is
a constant Cε > 0 such that the bound

‖DPϕ(x)‖2 ≤ εU2
1 (x)(P‖Dϕ‖2)(x) + CεU

2
2 (x)(Pϕ2)(x) , (9.2)

holds for every x ∈ B and every ϕ ∈ C1
b (B).

Remark 9.2 In the case of the stochastic Navier-Stokes equations, this bound can be shown to hold
with U(x) = V (x) = exp(η‖x‖2) for arbitrarily small η > 0, with x the vorticity of the vector field
and ‖x‖ its L2-norm.

The aim of this section is to show that if a Markov operator P satisfies Assumption 9.1 and has
sufficiently good contraction properties, then it is possible to deduce a spectral gap in the norm (9.1) (for
a suitable choice of V and W ), provided that the transition probabilities satisfy a kind of topological
irreducibility condition. This statement can be formulated precisely in the following way:

Theorem 9.3 Let P be a Markov operator over a separable Banach space B mapping C∞0 (B)
into C1

V,W and satisfying Assumption 9.1. Suppose furthermore that there exist continuous functions
V,W :B → R+ satisfying

U2
1PW 2 + U2

2PV 2 ≤ CW 2 , PV ≤ 1

2
V +K , (9.3)

for some constants C and K.
Finally, assume that there exists a point x? ∈ B such that, for every ε > 0 and every C > 0 there

exists α > 0 such that

inf
x :V (x)≤C

P(x,Bε(x?)) ≥ α . (9.4)

Then, Pt has exactly one invariant probability measure µ?. Furthermore, there exist constants C
and γ > 0 such that the bound

‖Pnϕ‖1;V,W ≤ Ce−γn‖Pnϕ‖1;V,W , (9.5)

holds for every ϕ ∈ C1
V,W . Finally, there exist constants δ > 0 and β > 0 and % < 1 such that the

bound

‖Pϕ‖1;1+βV,δ−1W ≤ %‖Pϕ‖1;1+βV,δ−1W , (9.6)

holds for every ϕ ∈ C1
V,W .

Remark 9.4 If the second inequality in (9.3) holds with 1
2

replaced by any other constant smaller than
1, then one can always reduce it to this case by considering an iterate of P instead of P itself.

Also, it will follow from the proof that we do not need (9.4) to hold for every C > 0, but only for
some C > 2K.
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Proof. An important role will be played by the distance function dV,W given by

dV,W (x, y) = %W (x, y) ∧ (V (x) + V (y)) . (9.7)

Here, for any positive continuous function W bounded away from 0, we defined the metric

%W (x, y) = inf
γ(0)=x;γ(1)=y

∫ 1

0

W (x) ‖γ̇(s)‖ ds ,

where the infimum runs over all smooth curves γ: [0, 1]→ B with the prescribed boundary conditions.
(Note that if W ≡ 1, then one simply has %W (x, y) = ‖x− y‖.)

We now make use the following trick, which is reminiscent of the trick already used in the proof of
Theorem 5.28. For δ > 0 and β > 0, we introduce the distance

d̂β,δ(x, y) = δ−1%W (x, y) ∧ (2 + βV (x) + βV (y)) .

This distance is of course equivalent to the distance dV,W introduced in (9.7), but it turns out that
allowing the freedom of choosing both δ and β sufficiently small will considerably simplify the proofs.
With this definition, a C1 function ϕ is Lipschitz continuous with Lipschitz constant 1 with respect to
d̂β,δ if and only if one has

‖Dϕ(x)‖ ≤ δ−1W (x) , |ϕ(x)| ≤ 1 + βV (x) . (9.8)

(For the second inequality, one might have to add a suitable constant to ϕ.) Denoting by L the set of all
such functions, we show that it is possible to choose δ and β in such a way that the bound

d̂β,δ(P(x, · ),P(y, · )) ≤ αdβ,δ(x, y) , (9.9)

holds for some α < 1 uniformly over all pairs x, y ∈ B. Similarly to the proof of Theorem 5.28, we
will now show (9.9) separately in three different cases and we use separately the three ingredients of the
theorem in each of these cases.

The case %W (x, y) ≤ δ(2 + βV (x) + βV (y)). In this case, we make use of the gradient
bound (9.2), together with the “super-Lyapunov” structure (9.3) to deduce that if ϕ satisfies (9.8), then
for every ε > 0 there exists Cε such that the bound

‖DPϕ(x)‖ ≤ εδ−1W (x) + CεW (x) ,

holds uniformly for all such ϕ and for all β ≤ 1, say. It follows that by first choosing ε = 1
4

and then
choosing δ small enough so that Cε ≤ 1/(4δ), one has

‖DPϕ(x)‖ ≤ 1

2δ
W (x) ,

which immediately implies that

d̂β,δ(P(x, · ),P(y, · )) ≤ sup
ϕ∈L
|Pϕ(x)− Pϕ(y)|

≤ sup
ϕ∈L

inf
γ

∫ 1

0

‖DPϕ(γ(s))‖ |γ̇(s)| ds

≤ 1

2δ
sup
ϕ

inf
γ

∫ 1

0

W (γ(s)) |γ̇(s)| ds

≤ 1

2δ
%W (x, y) ≤ 1

2
d̂β,δ(x, y) ,

as requested.
The case %W (x, y) > δ(2 + βV (x) + βV (y)) and V (x) + V (y) ≥ 4(K + 2). In this

case, we simply make use of the fact that V is assumed to be a Lyapunov function. We have indeed

d̂β,δ(P(x, · ),P(y, · )) ≤ sup
ϕ∈L
|Pϕ(x)− Pϕ(y)| ≤ sup

ϕ∈L
(|Pϕ(x)|+ |Pϕ(y)|)
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≤ 2 + βPV (x) + βPV (y) ≤ 2 +
β

2
(V (x) + V (y)) + βK

≤ (2− 2β) +
3β

4
(V (x) + V (y)) ≤ (1− (β ∧ 1

4
))d̂β,δ(x, y) ,

which again yields a contraction, but with a strength that depends this time on the parameter β. Finally,
we have

The case %W (x, y) > δ(2 + βV (x) + βV (y)) and V (x) + V (y) < 4(K + 2). In this
case, we make use of our final assumption, namely (9.4). At this stage we assume that δ > 0 is fixed,
sufficiently small so that our first step goes through. We can then find some sufficiently small ε > 0
so that d̂β,δ(x?, y) ≤ 1

2
for all y ∈ Bε(x?), uniformly over β ≤ 1. In this case, we can decompose

the Markov operator P into a combination P = αP1 + (1 − α)P2 of Markov operators such that
P1(x,Bε(x?)) = 1 for every x such that V (x) ≤ 4(K + 2). We conclude that

d̂β,δ(P(x, · ),P(y, · )) ≤ αd̂β,δ(P1(x, · ),P1(y, · )) + (1− α)d̂β,δ(P2(x, · ),P2(y, · ))
≤ α+ (1− α)(2 + βP2V (x) + βP2V (x))

≤ α+ 2(1− α) + βPV (x) + βPV (x)

≤ 2− α+
β

2
(V (x) + V (y) + 2K) ≤ 2− α+ β(3K + 4) .

We can now choose β sufficiently small so that this constant is strictly smaller than 2. Since on the
other hand one has d̂β,δ(x, y) ≥ 2, the claim now follows.

9.4.3 Application to numerical methods

If numerical method approximates dynamic in the same norm as SG, then one obtains stability of the
IM under discretisation.

9.4.4 Application to Poisson equations

Can solve Poisson equation in space in which one has a SG result.



Index of Notations

Symbol Meaning

B Arbitrary separable Banach space
B∗ Dual space of B
B† Semigroup dual to B with respect to a given semigroup S
Bα Interpolation space of index α for an analytic semigroup on B
Bb Space of bounded Borel measurable functions
C Space of all continuous functions
Cα Space of Hölder continuous functions with Hölder exponent α
Cb Space of bounded continuous functions
Cµ Covariance operator of µ as a bilinear map B∗ × B∗ → R
Ĉµ Covariance operator of µ as a linear map B∗ → B
δx Dirac measure at x

d(µ, ν) Wasserstein-1 distance between µ and ν with respect to the metric d
Dµ Density of the measure µ with respect to a given reference measure
D(A) Domain of the linear operator A
f ]µ Push-forward of the measure µ under the map f
H Arbitrary separable Hilbert space
Hs Fractional Sobolev space of index s
Hµ Cameron-Martin space of the Gaussian measure µ
Hα Interpolation space of index α for an analytic semigroup onH
Js,t Jacobian of the solution to an SPDE between times s and t

L2(H,K) Space of Hilbert-Schmidt operators fromH to K
L Generator of a strongly continuous or analytic semigroup S
L∗ Adjoint of L
L† Generator of the adjoint semigroup S∗

Lp Space of functions with integrable pth power
µ̂ Fourier transform of the measure µ

M (X ) Space of finite signed measures on X
N (0, 1) Normal distribution on R with mean 0 and variance 1
P(X ) Space of probability measures on X
Pt Markov semigroup acting on observables
Qt Covariance of the solution to a linear SPDE at time t
S(t) Semigroup generated by L
Td d-dimensional torus.
X Arbitrary Polish space.
‖ · ‖α Norm of the interpolation space of index α
‖ · ‖HS Hilbert-Schmidt norm of a linear operator
‖ · ‖TV Total variation norm of a signed measure
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[Fer70] X. FERNIQUE. Intégrabilité des vecteurs gaussiens. C. R. Acad. Sci. Paris Sér. A-B 270, (1970), A1698–
A1699.
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