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Abstract

We consider the stochastic Ginzburg-Landau equation in a bounded domain. We as-
sume the stochastic forcing acts only on high spatial frequencies. The low-lying fre-
quencies are then only connected to this forcing through the non-linear (cubic) term of
the Ginzburg-Landau equation. Under these assumptions, we show that the stochastic
PDE has a unigue invariant measure. The techniques of proof combine a controlla-
bility argument for the low-lying frequencies with an infinite dimensional version of
the Malliavin calculus to show positivity and regularity of the invariant measure. This
then implies the uniqueness of that measure.
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1 Introduction

In this paper, we study a stochastic variant of the Ginzburg-Landau equation on a finite
domain with periodic boundary conditions. The deterministic equation is

0=Au+u—u’, u(O):u(O)E’H, (1.2)

where # is the real Hilbert space Wger([—w, ]), i.e., the closure of the space of smooth
periodic functions u : [—m, 7] — R equipped with the norm

= [ (@) + o' (@)%) do
(The restriction to the interval [—, ] is irrelevant since other lengths of intervals can
be obtained by scaling space, time and amplitude « in (1.1).) While we work exclu-
sively with the real Ginzburg-Landau equation (1.1) our methods generalize immedi-
ately to the complex Ginzburg-Landau equation

o= (14ia)Au+u— (1+ib)|ul*u, abeR, (1.2)

which has a more interesting dynamics than (1.1). But the notational details are slightly
more involved because of the complex values of » and so we stick with (1.1).

While a lot is known about existence and regularity of solutions of (1.1) or (1.2),
only very little information has been obtained about the attractor of such systems, and
in particular, nothing seems to be known about invariant measures on the attractor.

On the other hand, when (1.1) is replaced by a stochastic differential equation, more
can be said about the invariant measure, see [DPZ96] and references therein. Since the
problem (1.1) involves only functions with periodic boundary conditions, it can be
rewritten in terms of the Fourier series for u:

1

u(z,t) = Zeikmuk(t) U = oo e~y () de .
kez TJ—n
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We call k£ the momenta, u,, the modes, and, since u(z, t) is real we must always have
ug(t) = u_(t), where z is the complex conjugate of z. With these notations (1.1)

takes the form
o 2
U, = (1 —k%)uy, — Z gy, U, Up,
ky+ko+ks =k

forall k € Z and the initial condition satisfies { (1 + |k|)u,(0)} € £2. In the sequel, we
will use the symbol H indifferently for the space Wger([—w, «]) and for its counterpart
in Fourier space. In the earlier literature on uniqueness of the invariant measure for
stochastic differential equations, see the recent review [MS98], the authors are mostly
interested in systems where each of the u,, is forced by some external noise term. The
main aim of our work is to study forcing by noise which acts only on the high-frequency
part of u, namely on the w,, with |k| > &, for some finite k&, € N. The low-frequency
amplitudes u,, with |k| < k, are then only indirectly forced through the noise, namely
through the nonlinear coupling of the modes. In this respect, our approach is reminis-
cent of the work done on thermally driven chains in [EPR99a, EPR99b, EHO0OQ], where
the chains were only stochastically driven at the ends.

In the context of our problem, the existence of an invariant measure is a classical
result for the noise we consider [DPZ96], and the main novelty of our paper is a proof of
uniqueness of that measure. To prove uniqueness we begin by proving controllability
of the equations, i.e., to show that the high-frequency noise together with non-linear
coupling effectively drives the low-frequency modes. Using this, we then use Malliavin
calculus in infinite dimensions, to show regularity of the transition probabilities. This
then implies uniqueness of the invariant measure.

We will study the system of equations

duy, = —k2uy dt + (uy — (43)}) dt + ——b du, (1) | 13
U, U (ur, — (u?)y) an (14 B2) wy, (t) (1.3)

with u € H. The above equations hold for & € Z, and it is always understood that

3 E :
(U )k == ukluk2uk3 ’ (14)
k1+ko+tkg=k
k1,ko,k3E€Z
with u_, = 1u,. To avoid inessential notational problems we will work with even
periodic functions, so that u;, = u_; € R. We will work with the basis

1
e, () ) cos(kx) . (1.5)
Note that this basis is orthonormal w.r.t. the scalar product in 4, but the «,, are actually
given by u, = (4m(1+ k2))"¥%(u, e, ). (We choose this to make the cubic term (1.4)
look simple.)
The noise is supposed to act only on the high frequencies, but there we need it to
be strong enough in the following way. Let a; = k% + 1. Then we require that there
exist constants ¢, , ¢, > 0 such that for & > &,

cla;aqugcza,:ﬂ, a>2, a-18<p<a. (1.6)
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These conditions imply

S0+ K2 < oo,
k=0

sup k%%, ' < oo
k>k,

We formulate the problem in a more general setting: Let F'(u) be a polynomial of
odd degree with negative leading coefficient. Let A be the operator of multiplication
by 1 + k2 and let Q be the operator of multiplication by gy Then (1.3) is of the form

dd' = —Ad dt + F(®") dt + QdW (t) , (1.7)

where dW (t) = > 77, e, dw, (t) is the cylindrical Wiener process on # with the w;,
mutually independent real Brownian motions.* We define ®*(¢) as the solution of (1.7)
with initial condition ®°(¢) = ¢. Clearly, the conditions on @ can be formulated as

|4°7%/5Q s < o0, (1.82)
g, 'k~>* is bounded for k > k, , (1.8b)

where || - || 45 is the Hilbert-Schmidt norm on . Note that for each &, (1.3) is obtained
by multiplying (1.7) by (47 (1 + k2))"Y2(- e,).

Important Remark. The crucial aspect of our conditions is the possibility of choosing
g, = 0forall £ < &, i.e., the noise drives only the high frequencies. But we also allow
any of the ¢, with £ < & to be different from 0, which corresponds to long wavelength
forcing. Furthermore, as we are allowing « to be arbitrarily large, this means that the
forcing at high frequencies has an amplitude which can decay like any power. The
point of this paper is to show that these conditions are sufficient to ensure the existence
of a unique invariant measure for (1.7).

Theorem 1.1 The process (1.7) has a unique invariant Borel measure on .

There are two main steps in the proof of Theorem 1.1. First, the nature of the
nonlinearity F' implies that the modes with & > k_ couple in such a way to those with
k < k, asto allow controllability. Intuitively, this means that any point in phase space
can be reached to arbitrary precision in any given time, by a suitable choice of the
high-frequency controls.

Second, verifying a Hormander-like condition, we show that a version of the Malli-
avin calculus can be implemented in our infinite-dimensional context. This will be the
hard part of our study, and the main result of that part is a proof that the strong Feller
property holds. This means that for any measurable function ¢ € B, (#), the function

(P'e)(€) = E((w0¢t)(£)) (1.9)

Lt is convenient to have, in the case of (1.3), A = 1— A and F(u) = 2u — u® ratherthan A = —1— A
and F(u) = —u®.
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is continuous.? We show this by proving that a cutoff version of (1.7) (modifying the
dynamics at large amplitudes by a parameter o) makes 73;@ a differentiable map.

The interest in such highly degenerate stochastic PDE’s is related to questions in
hydrodynamics where one would ask how “energy” is transferred from high to low
frequency modes, and vice versa when only some of the modes are driven. This could
then shed some light on the entropy-enstrophy problem in the (driven) Navier-Stokes
equation.

To end this introduction, we will try to compare the results of our paper to cur-
rent work of others. These groups consider the 2-D Navier Stokes equation without
deterministic external forces, also in bounded domains. In these equations, any initial
condition eventually converges to zero, as long as there is no stochastic forcing. First
there is earlier work by Flandoli-Maslowski [FM95] dealing with noise whose ampli-
tude is bounded below by |k|¢. In the work of Bricmont, Kupiainen and Lefevere
[BKLOOa, BKLOOb], the stochastic forcing acts on modes with low &, and they get
uniqueness of the invariant measure and analyticity, with probability 1. Furthermore,
they obtain exponential convergence to the stationary measure. In the work of Kuksin
and Shirikyan [KS00] the bounded noise is quite general, acts on low-lying Fourier
modes, and acts at definite times with ”noise-less” intervals in-between. Again, the in-
variant measure is unique. It is supported by C°° functions, is mixing and has a Gibbs
property. In the work of [EMSO00], a result similar to [BKLO0Ob] is shown.

The main difference between those results and the present paper is our control of
a situation which is already unstable at the deterministic level. Thus, in this sense, it
comes closer to a description of a deterministically turbulent fluid (e.g., obtained by
an external force). On the other hand, in our work, we need to actually force all high
spatial frequencies. Perhaps, this could be eliminated by a combination with ideas from
the papers above.

2 Some Preliminaries on the Dynamics

Here, we summarize some facts about deterministic and stochastic GL equations from
the literature which we need to get started.
We will consider the dynamics on the following space:

Definition 2.1 We define # as the subspace of even functions in Wger([—r, m]). The
norm on H will be denoted by || - ||, and the scalar product by (-, -).

We consider first the deterministic equation
w=Au+u—u®, u0)=u"eH, (2.1)

Due to its dissipative character the solutions are, for positive times, analytic in a strip
around the real axis. More precisely, denote by || - ||ﬂn the norm

1l = sup 1£()],

[Imz]<n

2Throughout the paper, E denotes expectation and P denotes probability for the random variables.
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and by 7, the corresponding Banach space of analytic functions. Then the following
result holds.

Lemma 2.2 For every initial value u{?) € H, there exist a time T and a constant C
such that for 0 < ¢ < T, the solution w(¢, u(®) of (2.1) belongs to </ and satisfies

Jutt, w ), < C.

Proof. The statement is proven in [Col94] for the case of the infinite line. Since the
periodic functions form an invariant subspace under the evolution, the result applies to
our case. O

We next collect some useful results for the stochastic equation (1.7):

Proposition 2.3 For every t > 0 and every p > 1 the solution of (1.7) with initial
condition ®°(¢) = ¢ € H exists in H up to time ¢. It defines by (1.9) a Markovian
transition semigroup on 4. One has the bound

E( sup [2°(©)) < C,p (1 +11)?-

s€[0,t]
Furthermore, the process (1.7) has an invariant measure.

These results are well-known and in Section 8.6 we sketch where to find them in the
literature.

3 Controllability

In this section we show the “approximate controllability” of (1.3). The control problem
under consideration is

u=Au+u—u+Qf(t), u(0) = uV e A, (3.1)

where f is the control. Using Fourier series’ and the hypotheses on @, we see that by
choosing f,, = 0 for |k| < k,, (3.1) can be brought to the form

Ik
—k2uy, 4+ uy — Z Uplh,, U, + ——e—=fr.(t) , k| >k, ,
mn 2 — *
Uy, = ) t+m+n=k Am(1+ £?)
—k uy, 4+ uy, — Z Uyl Uy, k| <k, ,
+m+n=k (3 2)

with {u,} € Handt — {f.(t)} € L>([0,7],#). We will refer in the sequel
to {uy}x)<k, @ the low-frequency modes and to {u;};>5. as the high-frequency
modes. We also introduce the projectors I, and II; which project onto the low (resp.
high) frequency modes. Let H; and # denote the ranges of II; and II;; respectively.
Clearly #,, is finite dimensional, whereas # is a separable Hilbert space.

The main result of this section is approximate controllability in the following sense:
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Theorem 3.1 For every time 7 > 0 the following is true: For every v, «® € % and
every e > 0, there exists a control f € L°°([0, 7], %) such that the solution u(t) of
(3.1) with u(0) = u® satisfies ||u(r) — u®| < e.

Proof. The construction of the control proceeds in 4 different phases, of which the
third is the actual controlling of the low-frequency part by the high-frequency controls.
In the construction, we will encounter a time 7(R,¢’) which depends on the norm
R of «® and some precision &’. Given this function, we split the given time 7 as

=% 7, withr, < 7(|u?|,e/2) and all 7; > 0. We will use the cumulated

1=1 "7,

i — J
timest; = >7_; ;.

Step 1. In this step we choose f = 0, and we define uM) = w(t,), where t — wu(t) is
the solution of (3.1) with initial condition «(0) = u¥). Since there is no control, we
really have (2.1) and hence, by Lemma 2.2, we see that u(!) € 7, for some 7 > 0.

Step 2. We will construct a smooth control f : [t,,t,] — H such that u® = u(t,)
satisfies:
Myu® = 0.

In other words, in this step, we drive the high-frequency part to 0. To construct f, we
choose a C* function ¢ : [t;,t,] — R, interpolating between 1 and 0 with vanishing
derivatives at the ends. Define uy(t) = @(t)IIgu? for t € [t,,t,]. This will be
the evolution of the high-frequency part. We next define the low-frequency part u;, =
ug,(t) as the solution of the ordinary differential equation

dy, = Auy, + ug, — I, ((ug, + ug)?) |

with u (t,) = M u™. We then set u(t) = uy (t) ® ugy(t) and substitute into (3.1)
which we need to solve for the control Q f(¢) for ¢ € [t,, t,].

Since ug,(t) ® ug(t) as constructed above is in .7, and since Qf = u — Au —
u + u®, and A maps , 10 ,an/2 we conclude that Qf € 'Q{n/? By construction,
the components ¢, of ¢ decay polynomially with £ and do not vanish for & > k,.
Therefore, Q™" is a bounded operator from )9 N Hy 10 Hyg. Thus, we can solve for
f in this step.

Step 3. As mentioned before, this step really exploits the coupling between high and
low frequencies. Here, we start from «(?) at time ¢, and we want to reach IT, u® at
time ¢,. In fact, we will instead reach a point «® with ||[TI;u® — I, u®|| < £/2.

The idea is to choose for every low frequency |k| < k, a set of three® high frequen-
cies that will be used to control u,. To simplify matters we will assume (without loss
of generality) that k, > 2:

Definition 3.2 We define for every £ with 0 < k < k, the set .7, by

I, = {10%FF Lk 2. 108k 310k TR

3The number 3 is the highest power of the nonlinearity F in the GL equation.
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We also define .4° = {k : 0 <k < k,}and

s=20( U 4)-

0<k<k,

Lemma 3.3 The sets defined above have the following properties:

(A) Let .7, = {ky, ky, kg}. Then, of the six sums +k, £ k., £ k4 exactly one equals &
and one equals —k. All others have modulus larger than k..

(B) The sets .#; and £° are all mutually disjoint.

(C) Let S be a collection of three indices in ., S = {k,, k, k3}. If any of the sums
+k, & k, + k5 adds up to k with |k| < k, then either S = .#, or S C 4" or S
is of the form S = {k, k', k'}.

Remark 3.4 At the end of this section, we indicate how this construction generalizes
to the complex Ginzburg-Landau equation.

Proof. The claims (A) and (B) are obvious from the definition of .#,.. To prove (C) let
S = {ky, kg, ks}. 1f S C 4°, we are done. Otherwise, at least one of the k;, is an
element of an .#, for some £ = 0,...,k, — 1. Clearly, if the two others are in fLO,
none of the sums have modulus less than k,. If a second k; is in ., with £' # £ then
again none of the 6 sums can lead to a modulus less than k.. Finally if £, is in .7, then
either all 3 are in .#, and we are done, or k; = k; and thus S = {k, %", k'}. We have
covered all cases and the proof of the lemma is complete. O

We are going to construct a control which, in addition to driving the low frequency
part as indicated, also implies u,(t) = 0 for k ¢ .# for t € [t,, t5]. By the conditions
on .7, the low-frequency part of (3.2) is for 0 < k < k, equal to (having chosen the
controls equal to O for k£ < k,):

Uy, = <1 —k*—6 Z |un|2)uk = Z upu,, U, — 6 H u, . (3.3)

B AWAY +ltmEtn=k neE .z,
neAAL {£,m,n}C.50 *

When k = 0, the last term in (3.3) is replaced by —12 Hneﬂo u,,. This identity exploits
the relations u_,, = u,,. To simplify the combinatorial problem, we choose the controls
of the 3 amplitudes «,, with n € .#, in such a way that these «,, are all equal to a fixed
real function z(¢) which we will determine below. With this particular choice, (3.3)
reduces for0 < k < k, to

0= —, + (1 —F-18 Y \zn|2)uk — ((Mpw)?), —628. (34
0<n<k,

For k = 0 the last term is —12z3. We claim that for every path v € C®([t,, t3]; Hy,)
and every ¢ > 0, we can find a set of bounded functions ¢ +— z,(¢) such that the
solution of (3.4) shadows -y at a distance at most .
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To prove this statement, consider the map F : R* — R"- of the form (obtained
when substituting the path ~y into (3.4))

20 Fy(2) 2§8 Po(2)
21 Fy(z) 21 P (2)
F . . — . = . + . !
2k, —1 Fk*—l(z) ZI?;*—I Pk*—l(z)

where the P, , are polynomials of degree at most 2. We want to find a solutionto F' = 0.
The F,, form a Grobner basis for the ideal of the ring of polynomials they generate.
As an immediate consequence, the equation F(z) = 0 possesses exactly 3F+ complex
solutions, if they are counted with multiplicities [MS95]. Since the coefficients of the
P,,, are real this implies that there exists at least one real solution.

Having found a (possibly discontinuous) solution for the z;,, we find nearby smooth
functions z,, with the following properties:

— The equation (3.4) with Z,, replacing z, and initial condition w(t,) = u,(f) leads
to a solution u with ||u(ts) — I u®|| < e/2.
— One has Z(t5) = 0.
Having found the z, we construct the f, in such a way that for n € .#, one has
u,, (t) = Z,(t). Finally, for k ¢ .# we choose the controls in such a way that u; (¢) = 0
fort € [t,, t5]. We define u® as the solution obtained in this way for ¢ = ¢,

Step 4. Starting from u(®) we want to reach u(¥). Note that u®® is in .=, (for every
n > 0) since it has only a finite number of non-vanishing modes. By construction we
also have ||HLu(3) — HLu(f) || < e/2. We only need to adapt the high frequency part
without moving the low-frequency part too much.

Since 7, is dense in #, there is a u'®) € o7 with [[u®) —u®| < e/4. By the
reasoning of Step 2 there is for every 7' > 0 a control for which Tl u(t; + 7') =
IT;u® when starting from u(t5) = ). Given ¢ there is a 7, such that if 7' < 7,
then ||TI; u(t5 + 7') — Iy u(ty)|| < /4. This 7, depends only on ||u®|| and ¢, as can
be seen from the following argument: Since HHu(3) = 0, we can choose the controls in
such a way that || I u(t; + t)|| is an increasing function of ¢ and is therefore bounded
by ||HHu(f) ||. The equation for the low-frequency part is then a finite dimensional ODE
in which all high-frequency contributions can be bounded in terms of R = |[u®|.

Combining the estimates we see that

lu(ty) — w1 = [T (u(ty) = uO) + g (u(ty) — )]
< I (ulty) — u(ts)) || + I (u(ts) — u®)]
+ [y (@ D) < e.

The proof of Theorem 3.1 is complete. O
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3.1 The Combinatorics for the Complex Ginzburg-Landau Equation

We sketch here those aspects of the combinatorics which change for the complex
Ginzburg-Landau equation. In this case, both the real and the imaginary parts of u,,
and u_,, are independent. Thus, we would need a noise which acts on each of the real
and imaginary components of «,, and of »_,, independently i.e., four components per
n > 0 and two for n = 0. A possible definition of .#,, for |k| < k, is:

g [ {05 g 2 1082, g 1R for k > 0,
B {10k T2k k| oL 1okt g qok2IRIFLY for g < 0.

We also define .£° = {k : |k| < k,}and

=20 U 4)-

|k|<F.

The analog of Lemma 3.3 is

Lemma 3.5 The sets defined above have the following properties:
(A) Let .#, = {ky, ky, kg}. Then, the sum k; + ko, + k4 equals k.
(B) The sets .#; and #° are all mutually disjoint.

(C) Let S be a collection of three indices in ., S = {kq, ky, k5}. If the sum &k, +
k, + ks equals k with |k| < &, then either S = .#, or S C .4° or S is of the form
S = {k,k',—k'}.

Finally, the analog of (3.4) is for |k| < k,:
0=—iy, + (1 — (L+ia)k?)u, — (14 ib) ((Myu |y u?), +62;) .

Apart from these combinatorial changes the complex Ginzburg-Landau equation is
treated like the real one.

4 Strong Feller Property and Proof of Theorem 1.1

The aim of this section is to show the strong Feller property of the process defined by
(1.3) resp. (1.7).

Theorem 4.1 The Markov semigroup P* defined in (1.9) is strong Feller.

Proof of Theorem 1.1. This proof follows a well-known strategy, see e.g., [DPZ96].
First of all, there is at least one invariant measure for the process (1.7), since for a
problem in a finite domain, the semigroup ¢ — e~“* is compact, and therefore [DPZ96,
Theorem 6.3.5] applies.

By the controllability Theorem 3.1, we deduce, see [DPZ96, Theorem 7.4.1], that
the transition probability from any point in H to any open set in # cannot vanish, i.e.,
the Markov process is irreducible. Furthermore, by Theorem 4.1 the process is strong
Feller. By a classical result of Khas’minskiT, this implies that P? is regular. Therefore
we can use Doob’s theorem [DPZ96, pp.42-43] to conclude that the invariant measure
is unique. This completes the proof of Theorem 1.1. O
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Before we start with the proof of Theorem 4.1, we explain our strategy. Because
of the polynomial nature of the nonlinearity in (1.3), the natural bounds diverge with
some power of the norm of the initial data. On the other hand, the nonlinearity is
strongly dissipative at large amplitudes. Therefore we introduce a cutoff version of
the dynamics beyond some fixed amplitude and then take the limit in which this cutoff
goes to infinity. We seem to need such a technique to get the bounds (5.11) and (5.12).

The precise definition of the cutoff version F, of F is:

Fy(z) = (1—x(lzll/(30))) F (=) ,
where  is a smooth, non-negative function satisfying

(2) = 1 ifz>2,
XE)P=3 0 ifz<1.

Similarly, we define
Q,(@) = Q@+ x(|l=l|/o), (4.1)

where II;, is the projection onto the frequencies below k..

Remark 4.2 These cutoffs have the following effect as a function of ||z||:
— When [|z|| < othen Q,(z) = Q and F(z) = F ().
— When g < ||z]| < 2¢then @ ,(z) depends on z and F, () = F(x).

— When 2¢ < ||z]| < 60 then all Fourier components of @ ,(«) including the ones
below £, are non-zero and F,(x) is proportional to a F'(x) times a factor < 1.

— When 6¢ < [|z|| then all Fourier components of @ () including the ones below
k, are non-zero and F(x) = 0.

At high amplitudes, the nonlinearity is truncated to 0. Thus, the Hormander condition
cannot be satisfied there unless the diffusion process is non-degenerate. We achieve this
non-degeneracy by extending the stochastic forcing to all degrees of freedom when ||z ||
is large.

Instead of (1.7) we then consider the modified problem
APt = —AD" dt + (F, 0 %) dt + (Q, 0 ®}) dW (t) , (4.2)

with @2(5) = £ € ‘H. Note that the cutoffs are chosen in such a way that the dynamics

of ®! () coincides with that of ®*(¢) as long as || ®*(¢)|| < o. We will show that the
solution of (4.2) defines a Markov semigroup

Pye(€) = E(p o ®,)(€)

with the following smoothing property:

Theorem 4.3 There exist exponents ., v > 0, and for all ¢ > 0 there is a constant C,

such that for every ¢ € B, (), for every ¢t > 0 and for every £ € #, the function ngo
is differentiable and its derivative satisfies

IDP @)l < Cp(1+ ™)X+ [IE1) Il - (4.3)
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Using this theorem, the proof of Theorem 4.1 follows from a limiting argument.

Proof of Theorem 4.1. Choose z € H,t > 0, and ¢ > 0. We denote by B the ball
of radius 2||x|| centered around the origin in . Using Proposition 2.3 we can find a
sufficiently large constant o = o(z, t, ) such that for every y € B, the inequality

€
P °(y)|| > =

holds. Choose ¢ € B, (#) with ||¢||;, < 1. We have by the triangle inequality
|Pte(z) — Plo(y)| < |Plolz Pgw(x)\ +|Po(z) — Pro(y)]
+ \Pt — Plo(y)] -

Since the dynamics of the cutoff equation and the dynamics of the original equation
coincide on the ball of radius p, we can write, for every z € B,

Plo(z) = Pyop(2)| = E[(p 0 @) (2) — (9o @})(2)]
< 2l P( st [2°G)] > ¢) <5
This implies that
[Plo(z) — Plo(y)| < 5 + |Pyolx) — Pye(y)] -

By Theorem 4.3 we see that if y is sufficiently close to x then

Pye(z) — Pjoly)| <

l\DI(“)

Since ¢ is arbitrary we conclude that P%¢ is continuous when ||¢||;.. < 1. The gener-
alization to any value of ||¢||;,- follows by linearity in ¢. The proof of Theorem 4.1 is
complete. O

5 Regularity of the Cutoff Process

In this section, we start the proof of Theorem 4.3. If the cutoff problem were fi-
nite dimensional, a result like Theorem 4.3 could be derived easily using, e.g., the
works of Hormander [Hor67, Hor85], Malliavin [Mal78], Stroock [Str86], or Norris
[Nor86]. In the present infinite-dimensional context we need to modify the correspond-
ing techniques, but the general idea retained is Norris’. The main idea will be to treat
the (infinite number of) high-frequency modes by a method which is an extension of
[DPZ96, Cer99], while the low-frequency part is handled by a variant of the Malliavin
calculus adapted from [Nor86]. It is at the juncture of these two techniques that we
need a cutoff in the nonlinearity.
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5.1 Splitting and Interpolation Spaces

Throughout the remainder of this paper, we will again denote by 7, and #; the spaces
corresponding to the low (resp. high)-frequency parts. We slightly change the meaning
of “low-frequency” by including in the low-frequency part all those frequencies that
are driven by the noise which are in .# as defined in Definition 3.2. More precisely,
the low-frequency partisnow {k : |k| < L —1},where L=max{k : k€ 4} + 1.
Note that L is finite.

Since A = 1 — A is diagonal with respect to this splitting, we can define its low
(resp. high)-frequency parts A; and Ay as operators on #;, and Hg. From now on,
L will always denote the dimension of #;, which will therefore be identified with
RL .4 We also allow ourselves to switch freely between equivalent norms on RZ, when
deriving the various bounds.

In the sequel, we will always use the notations Dy, and Dy to denote the derivatives
with respect to 7, (resp. #y) of a differentiable function defined on #. The words
“derivative” and “differentiable” will always be understood in the strong sense, i.e., if
f: B, — B, with Z, and %, some Banach spaces, then Df : #, — L (B, B,),
I.e., it is bounded from %, to %,.

We introduce the interpolation spaces H” (for every v > 0) defined as being equal
to the domain of A” equipped with the graph norm

=]l = 1A7=(* = [|(L — A)7z||.
Clearly, the 7 are Hilbert spaces and we have the inclusions
HY CH® if >4,

Note that in usual conventions, " would be the Sobolev space of index 2y + 1. Our
motivation for using non-standard notation comes from the fact that our basic space is
that with one derivative, which we call A, and that -y measures additional smoothness
in terms of powers of the generator of the linear part.

5.2 Proof of Theorem 4.3

The proof of Theorem 4.3 is based on Proposition 5.1 and Proposition 5.2 which we
now state.

Proposition 5.1 Assume that the noise satisfies condition (1.6). Then (4.2) defines a
stochastic flow @Z on ‘H with the following properties which hold for any p > 1:

(A) If & € H with some « satisfying 0 < v < «, the solution of (4.2) stays in H7,
with a bound

£ sup_I94(€)18) < Or,p (1 + 1 )P (5.12)

for every T' > 0. If y > 1 the solution exists in the strong sense in .

“*The choice of L above is dictated by the desire to obtain a dimension equal to L and not L + 1.
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(B) The quantity <I>Z(§) is in H* with probability 1 for every time ¢ > 0 and every
¢ € H. Furthermore, for every T' > 0 there is a constant Cr., , for which

E( sup P @L()12) < Oy (1 + LN (5.1)
0<t<T

(C) The mapping £ — @’;(5) (for w and ¢ fixed) has a.s. bounded partial derivatives
with respect to . Furthermore, we have for every &, h € ‘H the bound

£ s [[(DSLO)A]) < Cay bl (5.10)

forevery T > 0.

(D) Forevery h € # and £ € H®, the quantity (D®! (€))h is in H* with probability
1 for every ¢ > 0. Furthermore, for a v depending only on « the bound

E( sup t7[[(DOLO)A]E) < Cry (1 + 1) 7IRIP . (5.10)
o<tLT

holds for every T' > 0.
(E) Forevery & € H7 with v < «, we have the small-time estimate

E( sup [[#(6) e 1) < Crp o+ Il )Pe" 8, (5.1¢)

which holds for every e € (0, 7] and every T' > 0.

This proposition will be proved in Section 8.4.

Proposition 5.2 There exist exponents u,,v, > 0 such that for every ¢ € Cf(’H),
every £ € H™ and every ¢ > 0,

IDPjp(©)ll < Cp(1+ ™) (1 + [IENIE) Il - (5.2)

Proof of Theorem 4.3. Note first that for all 7 > 0, one has [|P, ¢|lp~ < [[¢lle-
Furthermore, for 7 > 1,

IDP; o)l = ||D(P, (P ) (©)]] -
Therefore, if we can show (4.3) for ¢ < 1, then we find for any 7 > 1:
IDP; ()]l < 2C, (1 +IEIMIP; ol < 20,1+ [[EI1M) I ollpe0 -

In view of the above, it clearly suffices to show Theorem 4.3 for t € (0, 1].
We first prove the bound for the case ¢ € C7(#). Let h € H. Using the definition
(1.9) of P;go and the Markov property of the flow we write

IDP2(€)hl = || DE (P o @) (€)h] = |[E((DPLw o 1) (€) DL (e)n)|
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< \E[(DPLo o @) (©)]*/E[ DBL(6)R -

Bounding the first square root by Proposition 5.2 and then applying Proposition 5.1
(B-C), (with T" = 1) we get a bound

IDPY (&R < C,llpll - (1 +t‘“*)\/E(1 + ||<I>§(§)||Z*)2\/EHDCD‘;(f)hHZ
< Cpllpllpee (L + 7)== (1 + [IE])" (IR -

Choosing ¢ = u, + av, and v = v, we find (4.3) in the case when ¢ € C,f (H). The
method of extension to arbitrary ¢ € B, () can be found in [DPZ96, Lemma 7.1.5].
The proof of Theorem 4.3 is complete. O

5.3 Smoothing Properties of the Transition Semigroup

In this subsection we prove the smoothing bound Proposition 5.2. Thus, we will no
longer be interested in smoothing in position space as shown in Proposition 5.1 but in
smoothing properties of the transition semigroup associated to (4.2).

Important remark. In this section and up to Section 8.6 we always tacitly assume
that we are considering the cutoff equation (4.2) and we will omit the index p.

Thus, we will write Eq.(4.2) as
dd' = —AD dt + (F o @) dt + (Q o @) dW (1) . (5.3)

The solution of (5.3) generates a semigroup on the space 5, () of bounded Borel
functions over H = H, & Hy by

Plo =E(po @), v € By(H) .

Our goal will be to show that the mixing properties of the nonlinearity are strong
enough to make P*¢ differentiable, even if ¢ is only measurable.

We will need a separate treatment of the high and low frequencies, and so we
reformulate (5.3) as

d®} = —A @ dt + (Fy, 0 ®") dt + (Qp 0 ®") dWy (t), @} € H, , (5.43)

dd} = —Ap®h dt + (Fy o @) dt + Qg dWy(¢) ®l € Hy , (5.4b)
where H;, and Hy; are defined in Section 5.1 and the cutoff version of @ was defined
in (4.1). Note that QH(cbt(f)) is independent of £ and ¢ by construction, which is why
we can use Qy in (5.4b).

The proof of Proposition 5.2 is based on the following two results dealing with the
low-frequency part and the cross-terms between low and high frequencies, respectively.

Proposition 5.3 There exist exponents u, v > 0 such that for every ¢ € CE(H), every
& e H* and every T > 0, one has

|E((Drp o @) ©DLat)©) | < Crt™ (1 +liEl) lell
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forall t € (0,T].°

Lemma 5.4 Forevery T > 0 and every p > 1, there is a constant C' ,, > 0 such that
for every ¢t < T, one has the estimates (valid for h;, € Hy, and hy € Hy):

E sup [[(DL2i) ©he[|” < Cr, Pl I (5.54)
E sup [[(Dui) ©hul” < Cr, 74|17 . (5.5h)

These bounds are independent of £ € H.

Remark 5.5 In the absence of the cutoff ¢ one can prove inequalities like (5.5), but
with an additional factor of (1 + ||£]|?)? on the right. This is not good enough for our
strategy and is the reason for introducing a cutoff.

The proof of Proposition 5.3 will be given in Section 6 and the proof of Lemma 5.4
will be given in Section 8.5.

Proof of Proposition 5.2. As in the proof of Theorem 4.3, it suffices to consider times
t < T, where T is any (small) positive constant. The proof will be performed in
the spirit of [DPZ96] and [Cer99], using a modified version of the Bismut-Elworthy
formula. Take a function ¢ € CZ(H). We consider Q;, and Qy as acting on and into
‘Hy, and H; respectively. It is possible to write as a consequence of Itd’s formula:

(00 8)(€) = Pol€) + / “(DP'20) 0 9°)(€) (Q 0 @°) (€) dW (s)

0

— Plo(e) + / (DLPY20) 0 8°)(€) (@ 0 ) (€) AWy (s)
+ /0 (DaP™*0) 0 8°) (€) Qug AW (5) (5.6)

Choose some h € Hy. By Proposition 5.1 (D), (Dy®%;)(€)h is in H* for positive
times and is bounded by (5.1d). Using condition (1.8b) we see that Qﬁl maps to Hy
and so we can multiply both sides of (5.6) by

3t/4 1 .
|7 (@ (Dui) ©h, Wy (o))
t/4
where the scalar product is taken in Hy;. Taking expectations on both sides, the first
two terms on the right vanish because dW;, and dWy; are independent and of mean
zero. Thus, we get

E((vo2)© [ (s (Dudt)©Oh, (o))

t/

e // (DP**9) 0 8°)(€) (Dyi) () ds

®Recall that not only the flow, but for example also the constant C.;. depends on .

(5.7)
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We add to both sides of (5.7) the term

E /t ZM((DLPH@) 0 ®°) (&) (Dy®;) (é)hds,

and note that the r.h.s. can be rewritten as
3t/4

9 DyE((P* %) 0 ®°)(¢)hds = %DHE@ o ®*)(&)h,

since by the Markov property, E(P*"*¢ o ®°)(¢) = E(p o ®*)(€). Therefore, (5.7)
leads to

(DPe) (€)h = %E(((p o ®*)(¢) / Qi (D) ©)h, AWy (s)))

t/4
(5.8)
2 3t/4 t—s s s
+2E / (DLP'9) 0 ®°) (€) (Dyy®?) ()R ds .
t Jia
For the low-frequency part, we use the equality
(DLP'9)(€) = E((DLP"2p 0 @4/2) (&) (DL, 21/%) (¢)) 59

+ E((DuP2p 0 @/2)(¢) (D0} (6) ) -
We introduce the Banach spaces %, , ,, of measurable functions f : (0,7) x H* —

‘H, for which
—_ t#’* f t,f
1 £z, . = sup sup @Ol

3 (5.10)
o<t<T gene 1+ [[E]la

is finite. Recall that we consider here only times smaller than the (small) time T' €
(0, 1] which we will fix below. Choose p, as the maximum of the constants « and
the p appearing in Proposition 5.3. Similarly v, is the maximum of the v of Proposi-
tion 5.1 (D) and the one in Proposition 5.3.

We will constructa T > 0 such that f,, : (t,&) — (DP*y)(€) belongsto Zy,, .
and that || f, |-, .. < Cllell,~, thus proving Proposition 5.2. The fact that f €

PBr.,. . forevery T if o € Cg(H) is shown in [DPZ92, Theorem 9.17], so we only
have fo show the bound on its norm.

The following inequalities are obtained by applying to (5.8) in order the Cauchy-
Schwarz inequality and the definition (5.10), then (1.8b), (5.1d), and again Cauchy-
Schwarz. The last inequality is obtained by applying (5.1a) and (5.1c). This yields for
h € Hy:

t 2 3t/4 —1 s 2 1/2
(DuP*0) (€] < gl (E / Q5 (D ®3) (E)h|? ds
t/4

2 R LGy
# 1 € [ (D) @n] s
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< Ot lplleo (1 + 11ENE) IRl (5.11)

1/2
+ Ct™H | flls o, (E sup (1+ |2°(€) Z‘“)2)
36[4, 3

1/2
X (E sup H(DH@i)(f)h”2)

[$. %]

< Ot llpee (1 + €GNl + O+ 4 1,

7“‘* 71/*

Note that this is the place where the lower bound (1.8b) on the noise is really used.

For the low-frequency part Eq.(5.9) we use first Proposition 5.3, ||Pt/2(P||Lw <
|||y, » and the definition (5.10), then Cauchy-Schwarz, and finally (5.5a) and (5.1b).
This leads for h € H;, to:

|(DLP ) (£)h| < Ct—H

Pl (1+11ENE) 1]

+ Ot M~ |”f¢ t,p.*,l/*E((l_*_ ||cI)t/2( 1311k ) (D cpt/z g)h”)

< Ot lpllpe ( o) (612)
F O f o VE(U+ [82(0)112) 2\ E] (D042 ()R]

< Ct i €0||L°°( Z*) t_u*ﬂmfw |t,u*7v*( Z*)

Combining the above expressions we get for every T' € (0, 1] a bound of the type

v, SCillelle~ +

Our final choice of T is now T*/* = min{1,1/(2C,)}, and we find

1follzp, v, < Cllellue - (5.13)
Since f,(t,£) = (DP*¢) (&), inspection of (5.10) shows that (5.13) is equivalent to
(5.2). The proof of Proposition 5.2 is complete. O

6 Malliavin Calculus

To prove Proposition 5.3 we will apply a modification of Norris’ version of the Malli-
avin calculus. This modification takes into account some new features which are nec-
essary due to our splitting of the problem in high and low frequencies (which in turn
was done to deal with the infinite dimensional nature of the problem).

Consider first the deterministic PDE for a flow:

dT*(¢)
dt

This is really an abstract reformulation for the flow defined by the GL equation, and &
belongs to a space #, which for our problem is a suitable Sobolev space. The linear

= —ATH(E) + (F o W) (). (6.1)
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operator A is chosen as 1 — A, while the non-linear term F' corresponds to 2u — u>

in the GL equation. Below, we will work with approximations to the GL equation,
and all we need to know is that A : H — H is the generator of a strongly continuous
semigroup, and F" will be seen to be bounded with bounded derivatives.

For each fixed & € H we consider the following stochastic variant of (6.1):

AUt (€) = —AV (€) dt + (F o U*) (&) dt + (Q o U) (&) dW (2) . (6.2)

with initial condition W°(¢) = ¢. Furthermore, W is the cylindrical Wiener process
on a separable Hilbert space W and @ is a strongly differentiable map from H to
Z*(W,H), the space of bounded linear Hilbert-Schmidt operators from W to .

We next introduce the notion of directional derivative (in the direction of the noise)
and the reader familiar with this concept can pass directly to (6.3). To understand this
concept consider first the case of a function ¢ — v € W. Then the variation D,, T of
¥ in the direction v, is obtained by replacing dW (t) by dW (t) +ev! dt and it satisfies
the equation

49, V" = (—AZ, V' + (DF 0 V"), ') dt + ((DQ 0 V)2, U*) dW (t)
+(Q o Uh)uk dt .

Intuitively, the first line comes from varying ¥'* with respect to the noise and the second
comes from varying the noise itself.

We will need a finite number L of directional derivatives, and so we introduce some
more general notation. We combine L vectors v, as used above into a matrix called v
which is an element of Q x [0,00) — WL, We identify WE with . Z(RL, W). Note
that we now allow v to depend on €2, and to make things work, we require v to be a
predictable stochastic process, i.e., v* only depends on the noise before time t. The
stochastic process Gf, e HL (corresponding to @v\lft) is then defined as the solution
of the equation

AGLh = (—AGY + (DF 0 W) G!, + (Q o W')ot ) ht

+ ((DQo w') GLh) aw(t), (6.3)
G2 =0,

which has to hold for all . € R”.
Having given the detailed definition of G, we will denote it henceforth by the more
suggestive

G,(&) = 2,7(¢) ,

to make clear that it is a directional derivative. We use the notation &, to distinguish
this derivative from the derivative D with respect to the initial condition &.
For (6.2) and (6.3) to make sense, two assumptions on F', Q and v are needed:

AL F:H — Hand Q : H — ZL*(W,H) are of at most linear growth and have
bounded first and second derivatives.
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A2 The stochastic process ¢ — v* is predictable, has a continuous version, and satis-
fies
E( sup ||u8||p) <0,
s€[0,t]

for every ¢ > 0 and every p > 1. (The norm being the norm of W)

It is easy to see that these conditions imply the hypotheses of Theorem 8.9 for the
problems (6.2) and (6.3). Therefore Gz is a well-defined strongly Markovian stochastic
process.

With these notations one has the well-known Bismut integration by parts formula
[Nor86].

Proposition 6.1 Let ¥* and 2, ¥* be defined as above and assume Al and A2 are
satisfied. Let B C 7 be an open subset of A such that U'* € B almost surely and let
¢ : B — R be a differentiable function such that

El|o(T")]|* + E[| Dp(T9)||* < oo .

Then we have for every i € R” the following identity in R:
t
E(Dp(V")2,¥'h) =E (cp(‘llt) / (v°h, dW(s)>) , (6.4)
0

where (-, -} is the scalar product of W.

Remark 6.2 The Eq.(6.4) is useful because it relates the expectation of D¢ to that
of ¢. In order to fully exploit (6.4) we will need to get rid of the factor &, ¥*. This
will be possible by a clever choice of v. This procedure is explained for example in
[Nor86] but we will need a new variant of his results because of the high-frequency
part. In the sequel, we will proceed in two steps. We need only bounds on D ¢, since
the smoothness of the high-frequency part follows by other means. Thus, it suffices to
construct 2, ¥* in such a way that IT; 2, U* is invertible, where II;, is the orthogonal
projection onto ;. The construction of T1; 2, ¥* follows closely the presentation
of [Nor86]. However, we also want HH@U\V = 0 and this elimination of the high-
frequency part seems to be new.

Proof. The finite dimensional case is stated (with slightly different assumptions on F)
in [Nor86]. The extension to the infinite-dimensional setting can be done without major
difficulty. By A1-A2 and Theorem 8.9, we ensure that all the expressions appearing
in the proof and the statement are well-defined. By A2, we can use 1t6’s formula to
ensure the validity of the assumptions for the infinite-dimensional version of Girsanov’s
theorem [DPZ96]. O

6.1 The Construction of v

In order to use Proposition 6.1 we will construct v = (v, vy) in such a way that the
high-frequency part of 2,0 = (2,®%, 2,®%) vanishes. This construction is new
and will be explained in detail in this subsection.
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Notation. The equations which follow are quite involved. To keep the notation at a
reasonable level without sacrificing precision we will adopt the following conventions:

(DFL)" = (DLFy) 0 @,

(DLQL)" = (DLQy) 0 @,
and similarly for other derivatives of the Q and the F'. Furthermore, the reader should
note that Dy, @y, is a linear map from #;, to the linear maps H; — H;, and therefore,

below, (D; Qy,)h with h € H; is a linear map #;, — H;,. The dimension of #; is
L < oo.

Inspired by [Nor86], we define the L x L matrix-valued stochastic processes U7, and
VIf by the following SDE’s, which must hold for every h € H; :
dU{h = —A Ui hdt + (D Fy)'ULhdt + (D, Qy,) UL h) dW(t) ,
UL =1¢.%L My, Hy), (6.5a)

dVith = VEAphdt — VE(DLFL) hdt — VE((DLQr)h) dW ()
L-1
+ Z Vi ((DLQL)t((DLQL)th)ei)ei dt ,
1=0
VP =1¢€ LM, Hy) - (6.5b)

The last term in the definition of Vi will be written as

L—-1
> VE((DL@L)) et

1=0

where Q¢ is the 5™ column of the matrix Q.

For small times, the process U7 is an approximation to the partial Jacobian D; ®? ,
and V7 is an approximation to its inverse.

We first make sure that the objects in (6.5) are well-defined. The following lemma
summarizes the properties of Uy, and V;, which we need later.

Lemma 6.3 The processes U and V{ satisfy the following bounds. For every p > 1
and all T > 0 there is a constant Cr, ,, , independent of the initial data (for ®*) such
that

E sup (ULNIP+ IVEIP) < Crpy s (6.62)
te[0,T)
E( sup [[V{ —I||”) < Cr, 677 (6.6b)
te[0,e]

for all e < T. Furthermore, V; is the inverse of Uy, in the sense that V¥ = (Uf)™*
almost surely



MALLIAVIN CALCULUS 22

Proof. The bound (6.6a) is a straightforward application of Theorem 8.9 whose condi-
tions are easily checked. (Note that we are here in a finite-dimensional, linear setting.)
To prove (6.6b), note that I is the initial condition for V. One writes (6.5b) in its
integral form and then the result follows by applying (6.6a). The last statement can be
shown easily by applying Itd’s formula to the product Vi*Uf. (In fact, the definition of
V1, was precisely made with this in mind.) O

We continue with the construction of ». Since A and @ are diagonal with respect
to the splitting H = H;, @ Hyy, We can write (6.3) as

49,0t = (—AL 2,8t + (D,F,)' 2,8 (6.7a)
+ (DuFy) 2, + Qfol ) dt
+ ((DLQL)t @v@£> dWy,(¢)

+ ((DHQL)t @U®§{> dWy(t)

49,0 = (—AH 9,04 + (D Fy)t 2,0 (6.7b)
+ (DuFy)" 2,5 + QHUf{) dt

with zero initial condition. Since we want to consider derivatives with respect to the
low-frequency part, we would like to define (implicitly) v%; as

U%{ = _Qﬁl(DLFH)t @v(bi .

In this way, the solution of (6.7b) would be 2, ®% = 0. We next would define the
“directions” vy, and vy by

v, = (VL QL)"

_Q}_Il(DLFH)t qu)t ' (6.8)

t
Vg

where 9, ®% is the solution to (6.7a) with 2, ®%; replaced by 0 and vy, replaced by
(V Q1,)*. Here, X* denotes the transpose of the real matrix X.

The implict problem (6.8) can be somewhat simplified by the following device:
Since we are constructing a solution of (6.7) whose high-frequency part is going to
vanish, we consider instead the simpler equation for y* € Z(H;, H,):

dy' = (~Auy' + (DR + Q4 (@L)) de + (DyQu)'s!) dW (1) . (69

with 4 = 0, and where we use again the notation F* = F o ®*, and similar notation
for Q.

The verification that (6.9) is well-defined and can be bounded is again a conse-
quence of Theorem 8.9 and is left to the reader. Given the solution of (6.9) we proceed
to make our definitive choice of v}, and vi;:
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Definition 6.4 Given an initial condition ¢ € H® (for ®') and a cutoff p < co we
define v* = v{ @ vf; by

o= (VEQL)” = (V(Quo®")*,
Uf{ = _QEI(DLFH)tyt = —Qﬁl((DLFH) o ‘I)t) yt,

where & solves (5.3), V{ is the solution of (6.5b), and y* solves (6.9).

(6.10)

Lemma 6.5 The process v* satisfies forall p > 1 andallt > 0 :

E( sup [[v7117) < Cppp (14 lEDlL)"
s€[0,t]

i.e., it satisfies assumption A2 of Proposition 6.1.

Proof. By Proposition 5.1 (B), ®* is in # for all ¢ > 0. In Lemma 8.1 P8, it will
be checked that Dy Fy; maps H into .2 (Hy,, H™ N Hy) and that this map has linear
growth. By the lower bound (1.6) on the amplitudes g,,, we see that Qﬁl is bounded
from H* N Hy to Hy and thus the assertion follows. O

We now verify that 2, ®%; = 0. Indeed, consider the equations (6.7). This is a system
for two unknowns, Y* = 2, &% and X* = 9,®%. For our choice of v{ and v; this
system takes the form

dYyt = (—AL Yt + (D F, ) Y? (6.11a)
+ (DyFL) X'+ QL(EQL)") dt
+ (L@ Y*) awy (1)

+ ((DHQL)t Xt) dWy,(t)

X' = (—Ag X' + (DL Fy)"Y* (6.11b)
+ (D Fy)t Xt — (DLFH)tyt> dt |
By inspection, we see that X* = 0 and
dY*t = (ALY H(DpFy YY) di+((DpQy)t YY) dWy () +QE (ViEQE )* dt (6.12)

solve the problem, i.e., Y = 4, by the construction of 4*. Applying the 1td formula
to the product V;*Y"* and using Egs.(6.5b) and (6.12), we see immediately that we have
defined Y* = 2,®% in such a way that

d(Vi2,21) = VLQL(QL)" (VD)™ dt ,

because all other terms cancel. Thus we finally have shown
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Theorem 6.6 Given an initial condition ¢ € H* (for ®*) and a cutoff p < oo, the
following is true: If v* is given by Definition 6.4 then

t
7,9, = U1 [ V2 ((@u20) 09 ()" ds = UL
2,04 =0.

(6.13)

Definition 6.7 We will call the matrix C}. the partial Malliavin matrix of our system.

7 ThePartial Malliavin Matrix

In this section, we estimate the partial Malliavin matrix C}, from below. We fix some
time ¢ > 0 and denote by S” the unit sphere in RZ. Our bound is

Theorem 7.1 There are constants u, v > 0 such that for every T > 0 and every p > 1
there is a C'r., , such that for all initial conditions & € H* for the flow ®* and all
t < T, one has

E((det CF) ™) < Crp t77 (1 + [IEll)"

Corollary 7.2 There are constants u,~ > 0 such that for every T > 0 and every
p > 1thereisa Cr, , such that for all initial conditions ¢ € H“ for the flow ®* and
all ¢ < T, one has, Wlth v given by Definition 6.4:

E[|(2,21) || < Crp ot P (L +1€ll,)"7

This corollary follows from (2,®%)~! = (C£)~'V{ and Eq.(6.6a).
As a first step, we formulate a bound from which Theorem 7.1 follows easily.

Theorem 7.3 There are a . > 0 and a v > 0 such that for every p > 1,everyt < T
and every ¢ € H?, one has

t
P( & / HQi(Vf)*thds“) < Oy €t P (14 [I€]1)"7
0

heSL

with Cr,, , independent of £.

Proof of Theorem 7.1. Note that fg Q% (VE#)*h||? ds is, by Eq.(6.13), nothing but the
quantity (h, Ct h). Then, Theorem 7.1 follows at once. 0

The proof of Theorem 7.3 is largely inspired from [Nor86, Sect. 4], but we need
some new features to deal with the infinite dimensional high-frequency part. This will
take up the next three subsections.

Our proof needs a modification of the Lie brackets considered when we study the
Hormander condition. We explain first these identities in a finite dimensional setting.
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7.1 Finite Dimensional Case

Throughout this subsection we assume that both #;, and #; are finite dimensional and
we denote by N the dimension of #H. The function Q maps Hto Z(H,H), and we
denote by Q, : H — H its i*" column (i = 0,. - 1) Finally, F is the drift (in

this section, we absorb the linear part of the SDE |nto F=—-A+Fto simplify the
expressions). The equation for ®* is

(Pt(g) =¢4 /Ot(ﬁo CI)S)(g) ds + [)t Z_: (QZ o (I)S)(g) dwi(s) .

1=0

Let K : H — H;, be a smooth function whose derivatives are all bounded and
define K* = K o ®*, F* = F o ®*, and Q! = Q, o ®*. We then have by 1td’s formula

2

N-1

dK' = (DK)'F'dt+ ) " (DK)'Qldw,(t) + 1 (D2K) Q4 QYdt. (7.1)
=0 1=0
We next rewrite the equation (6.5) for V¥ as:
L-1
dVi = —VH(DLF) dt — > VHDLQ,)* dw( ZVL (D1@,)")?d
1=0 1=0

By Itd’s formula, we have therefore the following equation for the product V* K*:

L—-1
d(VEK") = =V{{(D Fy) Kb dt — ViE Y (DyQy) K du,(t)
1=0
L—-1 R
+VED ((DL@y)")2 K" dt + Vi (DK)'F* dt
=0
N—-1
+ VI (DK) Q! dw,(t) (7.2)
=0
N-1
+3V¢ ) (D’K)'(Q}Q)) dt
=0

- EZ(DLQ (DK)*Q} dt .

By construction, Dy @, = 0 for 7 > L and therefore we can extend all the sums above
toN — 1.

The following definition is useful to simplify (7.2). Let A: H - Hand B : H —
‘H;, be two functions with continuous bounded derivatives. We define the projected Lie
bracket [A, B}, : H — Hp, by

[, Bly,(#) = T[4, B](x) = (DB(2)) A(x) — (DA (2)) B(x)

®There is a slight ambiguity of notation here, since @, really means QQ ; Which is not the same as QQ.
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A straightforward calculation then leads to
N-1
d(VLKt) = VL(F K]L + % Z Q; [Qz’K]L )
=0

N-1

+ VT [Q;, K1 dwg(t) (7.3)
zN 1

+ 1t Z( (DLQ,))’K* — (DK)Y(DQ,)' Q!

1=

+(DDLQ)" Q5 K" ) dt

Note next that for ; < L, both K and ), map to #, and therefore DD, Q,(Q;; K) =
D?Q,(Q,; K) when i < L and it is 0 otherwise. Similarly, (DK)(DQ),)Q, equals
(DK)(DQ;)Q; when i < L and vanishes otherwise. Thus, the last sum in (7.3) only
extendsto L — 1. N

In order to simplify (7.3) further, we define the vector field F' : H — H by

LS,

1=0
Then we get

N-— 1 N-1
z=0 =0

This is very similar to [Nor86, p. 128], who uses conventional Lie brackets instead of
['7 ']L :
7.2 Infinite Dimensional Case

In this case, some additional care is needed when we transcribe (7.1). The problem is
that the stochastic flow ®* solves (5.4) in the mild sense but not in the strong sense.
Nevertheless, this technical difficulty will be circumvented by choosing the initial con-
dition in H*. We have indeed by Proposition 5.1 (A) that if the initial condition is in
H™ with v € [1, «], then the solution of (5.4) is in the same space. Thus, Proposi-
tion 5.1 allows us to use 1td’s formula also in the infinite dimensional case.

For any two Banach (or Hilbert) spaces #,, %,, we denote by P(%4,,%,) the
set of all C*° functions #, — Z,, which are polynomially bounded together with
all their derivatives. Let K € P(H,H,) and X € P(H,#). We define as above
(X, K], € P(H,H;) by

X, K] () = (DK () X () = (DL X1,(2)) K ()
Furthermore, we define [A, K|;, € P(D(A),H;,) by the corresponding formula, i.e.,

[4, K] (z) = (DK (2)) Az — ALK (z),
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where A = 1 — A. Notice that if K is a constant vector field, i.e., DK = 0, then
[A, K];, extends uniquely to an element of P(#, ;).
We choose again the basis {e, }:°, of Fourier modes in # (see Eq.(1.5)) and define
dw,(t) = {e;, dW (t)). We also define the stochastic process K*(¢) = (K o®*)(¢) and
_ L
F=F- % (DLQz’)Qi '

%

|
-

I
=

where Q,(z) = Q(x)e;. Then one has

Proposition 7.4 Let ¢ € H' and K € P(H,H, ). Then the equality
VOKE) = K(©) + / Ve f;[czi, KI3(€) duy(s)
+ [©O(-a KR @+ FKR(©) ds
+1 [ 'vete i_oj Q0100 K1]3.(€)ds,

holds almost surely. Furthermore, the same equality holds if ¢ € #? and K €
P(H', Hy).

Note that by [A, K12 (¢) we mean (DK(@S(g))) (AD*()) — ALK (2°(€)).
Proof. This follows as in the finite dimensional case by I1t6’s formula. O

7.3 The Restricted Hormander Condition

The condition for having appropriate mixing properties is the following Hormander-
like condition.

Definition 7.5 Let X = {K ™} be a collection of functions in P(#, H ). We say
that /C satisfies the restricted Hormander condition if there exist constants §, R > 0
such that for every h € #H; and every y € H one has

sup inf  (h,K(z))*>> §||n|?*. (7.4)
K€K |lz—y||<R

We now construct the set & for our problem. We define the operator [X°,- ], :
P(H’yaHL) - P(H’H_laHL) by

X0, K, = A K]y + [F. Kl + 1300 @0 KTy, — 2 S (01002, K],

=0 =0

This is a well-defined operation since @ is Hilbert-Schmidt and DQ is finite rank and
we can write

Z[Qz" Q Klp], = Z(D2K) (Q;Q,) +

with r a finite sum of bounded terms.
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Definition 7.6 We define
- Ky ={Q,;, withi=0,...,L —1},
- K, ={[X°Q,],, withi =Fk,,...,L — 1},
- K, =A{Q;, K], withK ¢ K, _;andi=k,,...,L —1},when? > 1.

Finally,
K=K,U---UK;."

Remark 7.7 Since for ¢ > k, the @), are constant vector fields, the quantity [X.O, K]
is in P(#H,H;) and not only in P(H', ;). Furthermore, if K € K then D'K is
bounded for all 5 > 0.

We have

Theorem 7.8 The set IC constructed above satisfies the restricted Hormander con-
dition for the cutoff GL equation if g is chosen sufficiently large. Furthermore, the
inequality (7.4) holds for R = p/2. Finally, § > 6, > 0 for all sufficiently large p.

Proof. The basic idea of the proof is as follows: The leading term of F' is the cubic
term «™ with m = 3. Clearly, if i,, ,, 5 are any 3 modes, we find

[eila [@i2> [u— u?, ei3]L]L]L = Z Ci Il e (7.5)
k=-ti, +iy+iy

where the e, are the basis vectors of H defined in (1.5), and the C;, are non-zero com-
binatorial constants. By Lemma 3.3 the following is true: For every choice of a fixed
k the three numbers ., i, and i of ., satisfy
- Forj =1,2,3one hasi; € {k,,..., L —1}.
— If |k| < k, exactly one of the six sums +i, +1., + i, liesinthe set {0, ..., k, —1}
and exactly one liesin {—(k, — 1),...,0}.
In particular, the expression (7.5) does not depend on w. If instead of u* we take a
lower power, the triple commutator will vanish.
The basic idea has to be slightly modified because of the cutoff p. First of all, the
constant R in the definition of the Hormander condition is set to R = g/2. Consider

first the case where ||z|| > 50/2. In that case we see from (4.1) that the @ , ,, viewed
as vector fields, are of the form

0,4’

- (g; + Ve,;, ifi<k,,
Qpi(w) = { ge;,, ifi>k,.

Since these vectors span a basis of 7, the inequality (7.4) follows in this case (already
by choosing only K € K,)).
Consider next the more delicate case when ||z|| < 50/2.

"The number 3 is the power 3 in u.
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Lemma 7.9 For all ||z|| < 3pone has for {i,,1,,i5} = .#, the identity

[eila[@iQa[X veilolu]y (2) = Z Cpllp ey, +r,(2) (7.6)
k=i, +i,+i,
where r , satisfies a bound
Irp(@)l < Co™t,
with the constant C' independent of z and of k < k.

Proof. In [X°,-]; there are 4 terms. The first, A, leads successively to [4, e, JL =

(1 +z3)e<3 which is constant, and hence the Lie bracket with e, vanishes. The second
term contains the non-linear interaction F,,. Since ||z|| < 3¢ one has F (@) = F(z).
Thus, (7.5) yields the leading term of (7. 6) The two remaining terms WI|| contribute
to r,(z). We just discuss the first one. We have, using (4.1),

{z, z3>
]l

This gives clearly a bound of order o~ for this Lie bracket, and the further ones are
handled in the same way. O

[Qqi€:,]L(®) = —DQyi(x)e;, = ——x'(llll/0)——+

We continue the proof of Theorem 7.8. When k < k., we consider the elements of
IC5. They are of the form

[Qe,il’ (@i, X, Qg,iS]L]L]L(ﬂf) =4;,9,4%, ( Z Cp Il e, + rg(a:)> .

k=dti, tiytig

Thus, for p = oo these vectors together with the @, withi € {k,,..., L —1} span
(independently of y with ||ly|| < 3p) and therefore (7.5) holds in this case, if ||z|| <
50/2 and R = p/2. The assertion for finite, but large enough p follows immediately by
a perturbation argument. This completes the case of ||z|| < 5¢/2 and hence the proof
of Theorem 7.8. O

Proof of Theorem 7.3. The proof is very similar to the one in [Nor86], but we have to
keep track of the z, t-dependence of the estimates. First of all, choose z € H? and
t € (0,t,].

From now on, we will use the notation O(v) as a shortcut for C(1 + ||z||5 ), where
the constant C may depend on ¢, and p, but is independent of = and ¢. Denote by R
the constant found in Theorem 7.8 and define the subset B, of #? by

B,={ye# : |y—z| <R and [y], < |z, +1fory=12}.

We also denote by B([I) a ball of (small) radius O(1/L) centered at the identity in the
space of all L x L matrices. (Recall that L is the dimension of H;, and that K € K
maps to #; .) We then have a bound of the type

sup  sup ZH[QZ,K]L y)|? < 0(0) . (7.7)

yeB, Kek
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This is a consequence of the fact that QQ™ is trace class and thus the sum converges
and its principal term is equal to

Tr(Q*(y) (DK)*(y) (DK)(y) Q(y))
= Tr((DK) (y)Q(y) @*(y) (DK)*(y))

L-1
= > 1Q* () (DK)* (e, l* < C, -
i=0
The last inequality follows from Remark 7.7. The other terms form a finite sum con-
taining derivatives of the @), and are bounded in a similar way.
We have furthermore bounds of the type

sup sup [[X° K] (v)|* < O(v),
yeB, Kek

0 [y0 2
yeB, Kek [X X K]L ” <O, (7.8)

Qi [ X% K], )| < Of
sup ;zec?;“z LWl <0w),

where v = 1.
Let S; be the unit sphere in H, . By the assumptions on K and the choice of B(I)
we see that:

(A) Forevery hy € S;, there exista K € K and a neighborhood A of h in S, such

that

)
f f inf (VK 2>
ylenB Velg(f) h|2N<V W) )" = 2

with § the constant appearing in (7.4).
Next, we define a stopping time 7 by 7 = min{¢, =, 7, } with
=inf{s>0: ®(z) ¢B,},
=inf{s >0 : V’(z) ¢ BU)},
t < T as chosen in the statement of Theorem 7.3 .

It follows easily from Proposition 5.1 (E) that the probability of 7, being small (mean-
ing that in the sequel we will always assume ¢ < 1) can be bounded by

P(r; <€) < Cp(1+||2],) " Pe?
with C,, independent of . Similarly, using Lemma 6.3, we see that
P(ry <e) < Cpe’ .

Observing that P(t < €) < t~P&P and combining this with the two estimates, we get
for every p > 1:
P(r <e) < O(16p)tPeP .

From this and (A) we deduce
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(B) forevery h, € S, there exista K € K and a neighborhood NV of h in §;, such
that fore < 1,

sup P(/T<VLS(3:)KS(QJ), h)? ds < E) < P(r < 2¢/0) < O(16p)t~PeP |
heN 0

with § the constant appearing in (7.4).
Following [Nor86], we will show below that (B) implies:

(C) forevery hy € S, thereexistani € {k,,..., L — 1}, a neighborhood NV of h in
S;, and constants v, p > 0 such that for e < 1 and p > 1 one has

sup P( /0 "V (0)Q (@), h)? ds < a) < O(vp)t—H7er

heN

Remark 7.10 Note that for small ||z||, Q,(z) = Q; ,(x) may be 0 when ¢ < k,, but
the point is that then we can find another ¢ for which the inequality holds.

By a straightforward argument, given in detail in [Nor86, p. 127], one concludes that
(C) implies Theorem 7.3.

It thus only remains to show that (B) implies (C). We follow closely Norris and
choose a K € K such that (B) holds. If K happens to be in IC,, then it is equal to a @,
and thus we already have (C). Otherwise, assume K € KC; with j > 1. Then we use a
Martingale inequality.

Lemma 7.11 Let #H be a separable Hilbert space and W (¢) be the cylindrical Wiener
process on H. Let 5% be a real-valued predictable process and ~*, ¢* be predictable
‘H-valued processes. Define

t t
t— g0 sd s dW (s)),
a a+/0ﬂs+/0<v ())
t t
bt = p° Sd S AW (s)) .
+/Oa s+/O<C (s))

Suppose 7 < ¢, is a bounded stopping time such that for some constant C,, < oo we
have

sup {18°1, o[, IS™ Il lvlI} < Co -

0<s<T
Then, for every p > 1, there exists a constant C,, , - such that

P(/O (5°)ds < £ and /O (a2 + 1¢°117) ds > €) < G, (14 CPe?

for everye < 1.
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Proof. The proof is given in [Nor86], but without the explicit dependence on C,,. If we
follow his proof carefully we get an estimate of the type

P(/T(b5)2 ds < £ and /T(\asﬁ FICI?) ds > (14 C)e) < Gy (14 CR)er .
0 0

Replacing € by £ and making the assumption e < 1/(1 + C3), we recover our state-
ment. The statement is trivial fore > 1/(1 + CS’), since any probability is always
smaller than 1. O

We apply this inequality as follows: Define, for K, € K,
a'(z) = (VL ([X°, Kolp) (2), )

b (z) = (V' K{(z),h)
ﬂt(x) = <VL([X0 [XO O]L]i)(x)ﬂ h> '
(") (=) = (Vi ([Qur [X°, Kol ] 1) (%), 1)
(") (=) = <VL([QZ,KO]L)( )sh) -

In this expression, ¢*(z) € H, (¢)*(z) = (¢*(x),e;) and similarly for the 4%, It is
clear by Proposition 7.4, Eq.(7.7), and Eq.(7.8) that the assumptions of Lemma 7.11
are satisfied with Cy, = O(v) for some v > 0.

We continue the proof that (B) implies (C) in the case when K € K, with j = 1.
Then, by the construction of ; with j > 1, there is a K, € K,_; such that we have
either K = [Q,, K, for some i € {k,,...,L — 1}, or K = [X° K,];. In fact,
for 7 = 1 only the second case occurs and K, = @, for some %, but we are already
preparing an inductive step. Applying Lemma 7.11, we have for every ¢ < 1:

P</0T<VLSKS($), h>2 ds <e and /OT(<VI?[X0’KO]i($); h>2
+ Z<VLS[Qz’a Ko]i(m), h>2) ds > 51/20) < O(Gyp)gp/20 ‘

Since the second integral above is always larger than fo <VLK B h>2 dt, the prob-

ability for it to be smaller than ¢'/2° is, by (B), bounded by (9(16p)t PeP/20 This
implies (replacing v by max{6v, 16}) that

(/ (VEK§(z), k) ds < 6) < O(vp)t—PeP/?0

Since for j = 1 we have K, = Q, withi € {k,,..., L — 1}, we have shown (C) in
this case. The above reasoning is repeated for 7 = 2 and 5 = 3, by iterating the above
argument. For example, if K = [Q; ,[X°,Q, I ]y, Wwith iy, iy € {k,,...,L — 1},
we apply Lemma 7.11 twice, showing the first time that ([X°, Q; ]r,, h)? is unlikely to

be small and then again to show that (Qi:), h)? is also unlikely to be small (with other
powers of €), which is what we wanted. Finally, since every K used in (B) is in K, at
most 3 such invocations of Lemma 7.11 will be sufficient to conclude that (C) holds.
The proof of Theorem 7.3 is complete. O
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7.4 Estimates on the Low-Frequency Derivatives (Proof of Proposition 5.3)

Having proven the crucial bound Theorem 7.1 on the reduced Malliavin matrix, we can
now proceed to prove Proposition 5.3, i.e., the smoothing properties of the dynamics
in the low-frequency part. For convenience, we restate it here.

Proposition 7.12 There exist exponents s, v > 0 such that for every ¢ € CZ(H), every
& e H* and every T > 0, one has

[E((Dug o @) ©DL2)©)| < Crer (1 + 161 el . (79)
forallt € (0,T].

Proof. The proof will use the integration by parts formula (6.4) together with The-
orem 7.1. Fix { € H* and ¢ > 0. In this proof, we omit the argument £ to gain
legibility, but it will be understood that the formulas do generally only hold if evalu-
ated at some ¢ € H®. We extend our phase space to include D; ®*, Vi and 2, ®%. We
define a new stochastic process ¥* by

ot = (@t 9,0, D0, V) e H=HoOR' o H @ RET

Applying the definitions of these processes, we see that ¥* is defined by the au-
tonomous SDE given by

d®t = —AdD' dt + F(®*) dt + Q(®") dW (t) ,
dD; ®" = —AD; ®' dt + DF(®")D; ®" dt + DQ(®") D ®* dW (t) ,
dvi = VEAL dt — Vit D FL(®Y) dt — Vi DyQy(®Y) dWy (t)
L-1

+ Vi ) (DLQL(e)?dt
1=0

49,91, = —AL 9, %1, dt + Dy Fy (91) 2,1, dt + Qp,(9*)* (Vi) " dt
+ Dy Qy.(®%) 2,0t dW,.(t) .

This expression will be written in the short form
AUt = — AV dt + F(U?) dt + Q) dW (¢) ,

with Ut € # and dW (¢) the cylindrical Wiener process on . It can easily be verified
that this equation satisfies assumption Al of Proposition 6.1. We consider again the
stochastic process v* € #H defined in (6.10). It is clear from Lemma 6.5 that +* satisfies
A2. With this particular choice of v, the first component of 2, ¥ (the one in H) is
equal to 2,9% @ 0.

We choose a function ¢ € CZ(#) and fix two indices i, k € {0, ..., L —1}. Define
Pik H—R by

L-1

@i’k(‘lﬁ) = Z W(ét)((@véi)_l)i,j (DL‘I)i)j,k 1

=0
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where the inverse has to be understood as the inverse of a square matrix. By Theo-
rem 7.1, ¢, ., satisfies the assumptions of Proposition 6.1. A simple computation gives

for every h € RL the identity:

D¢i7k(l11t)@1)\1}th = DLQO(q)t) (@yq>ih) ((@vq)i)_l)i,j (Dchi)j’k

+9(®")((2,21)" (2, 210)(2,91) "), ;(DL®L) ;4
+ (@) ((2,D.20)h), ;((2,21)7Y) 4 (7.10)

where summation over j is implicit. We now apply the integration by parts formula in
the form of Proposition 6.1. This gives the identity

t
(D5, (¥)7,9') = E (5.0 [ (o0, dW()))
0
Substituting (7.10), we find

E(DLe(@)(2,900) (2,801, ,(DL2}),, ) =

—E(p(@")((2,8,) 7 (Z20L)(2,84) "), , (DL ®}) )
—E(p(@")((2,DL20)h), ;((2,90)7), )
+E(p(@)((2,90)7),,(Du20),, /0 (wth,dW(s))

The summation over the index j is implicit in every term. We now choose h = e, and
sum over the index 7. The left-hand side is then equal to

E ((DLW(@t))DLq’iek> ,

which is precisely the expression we want to bound. The right-hand side can be
bounded in terms of ||¢||;. and of E((2,®:)*) (at worst). The other factors are
all given by components of 2, U* and can therefore be bounded by means of Theo-
rem 8.9. Therefore, (7.9) follows. The proof of Proposition 7.12 is complete. O

8 Existence Theorems

In this section, we prove existence theorems for several PDE’s and SDE’s, in particular
we prove Proposition 5.1 and Lemma 5.4. Much of the material here relies on well-
known techniques, but we include the details for completeness.

We consider again the problem

ddt = —Ad' dt + F(®) dt + Q(®%) dW (1) , (8.1)

with ®% = ¢ given. The initial condition ¢ will be taken in one of the Hilbert spaces
H". We will show that, after some time, the solution lies in some smaller Hilbert space.
Note that we are working here with the cutoff equations, but we omit the index o.
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We will of course require that all stochastic processes are predictable. This means
that if we write LP (€2, %), with & some Banach space of functions of the interval
[0, T'], we really mean that the only functions we consider are those that are measurable
with respect to the predictable o-field when considered as functions over Q x [0, T7.

We first state precisely what is known about the ingredients of (8.1).

Lemma 8.1 The following properties hold for A, F and Q).

P1 The space H is a real separable Hilbert space and A : D(A) — H is a self-
adjoint strictly positive operator.

P2 The map F' : H — H has bounded derivatives of all orders.

P3 For every v > 0, F maps ‘H” into itself. Furthermore, there exists a constant
n > 0 independent of v and constants C'r, ., such that F satisfies the bounds

IF@)ll, < Cpy(1+l2ll,) . (8.2a)
IF(2) = FW)ll, < Cpylle —yll, 1+ lzll, + llwll,)" . (8.2b)

forall z and y in H7.

P4 There exists an « > 0 such that for every z,z,,2, € Hthemap Q : H —
Z(H,H) satisfies

45y < € 4@ - Q) s < Clls

where || - || 45 denotes the Hilbert-Schmidt norm in .
P5 The derivative of () satisfies

|A%(DQ(#)) g < CIIAII (83)

forevery z,h € H.
P6 The derivative of I satisfies

IDF@)yl., < @+ lzll)lyl,
forevery z,y € H".

Proof. The points P1, P2 are obvious. The point P4 follows from the definition (1.6)
of (@ and the construction of @, in (4.1). To prove P3, recall that the map F' = F, of
the GL equation is of the type

F(u) = x([lull/(30)) P(u) ,
with P some polynomial and x € C;°(R). The key point is to notice that the estimate
lwoll, < C, (lullllv]l, + lull,llv])

holds for every v > 0, where uv denotes the multiplication of two functions. In partic-
ular, we have
lu"[l, < Cllull, lul*~,
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which, together with the fact that x has compact support, shows (8.2a). This also
shows that the derivatives of F' in %" are polynomially bounded and so (8.2b) holds.
P6 follows by the same argument.

The point P5 immediately follows from the fact that the image of the operator
(DQ(z))h is contained in H, for every z, h € H. O

Remark 8.2 The condition P1 implies that e~“* is an analytic semigroup of contrac-

tion operators on H. We will use repeatedly the bound
He_AtxH7 < C itz -

We begin the study of (8.1) by considering the equation for the mild solution

Ut gw) = e Mt [ NI (05,6, w) ds
\ 0 (8.4)
-l-/ e_A(t_S)Q(\I/(S,f,w)) dW (s,w) .
0

The study of this equation is in several steps. We will consider first the noise term, then
the equation for a fixed instance of w, and finally prove existence and bounds.
We need some more notation:

Definition 8.3 Let H“ be as above the domain of A% with the graph norm. We fix, once
and for all, a maximal time T". We denote by H 7. the space C([0, T'], H*) equipped with
the norm

1Yll2eg = sup ly@lls -
telo,

We write H 5. instead of H.. .

8.1 The Noise Term

Lety € LP(Q, H). (One should think of y as being y(t) = ®*.) The noise term in
(8.4) will be studied as a function on L? (2, #.). It is given by the function Z defined
as

(Zw) @) =t~ [ e AIQ(w) () aW (s,0). (85)

We will show that Z(y) is in L? (2, H7.) when y is in LP(Q, H). The natural norm
here is the L? norm defined by

1/p
1Z2() 30 p = (Ew sup ||(Z(y))t(u))||ﬁ> -

t€[0,T]

Proposition 8.4 Let #, A and @ be as above and assume P1 and P4 are satisfied.
Then, for every p > 1 and every T' < T}, one has

1Z @) ls4g, p < Cr, T (8.6)
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Proof. Choose an element y € LP(€2,H). In the sequel, we will consider y as a
function over [0, T'] x © and we will not write explicitly the dependence on (2.

In order to get bounds on Z, we use the factorization formula and the Young in-
equality. Choose v € (1/p,1/8). The factorization formula [DPZ92] then gives the
equality

(Zw) () =C / (t — )7 tem A=) / (s — ) Ve A Qy(r)) dW (r) ds .

Since A commutes with e~“*, the Holder inequality leads to
IZw) M1, (87)

—CH/ 571 Alt- s)/o (s = 1) 7 A%ACIQ(y(r)) aW (r) ds||”
< Ct”/o H/o (s — r)—WAae—A(S—T)Q(y(T)) dW(r)Hp ds

with v = (py — 1)/(p — 1). For the next bound we need the following result:

Lemma 8.5 [DPZ92, Thm. 7.2]. Let r — U" be an arbitrary predictable .#%(H)-
valued process. Then, for every p > 2, there exists a constant C such that

H/ vraw (r)|*) < ce( / 1072 d )p/z.

This lemma, the Young inequality applied to (8.7), and P4 above imply
12018, = E( sup || [ 47 2-2Q(u(0) aw (o))

0<t<T
< CT"E TH/ (s — T)_'YAae_A(S_T)Q(y(r)) dW (r) P
o ''Jo

< CT”E/OT(/S(S — 7')_2’YHAO‘€_A(S_T)Q( )” )p/2

0

T s
<ore [ (] <8—r>‘2"HA3/Se‘A<S‘”H2HA“—3/8Q(y<r>)|\asdr)p/2 ds

0

< CTVE/T(/ (s —r)~27~ 3/4HAa 3/8Q ” )
0o Mo
SCTV(/T —2y-3/4 4 P/ / HAa 3/80)(y( Hp ds
0
< CT1+I/ (/T 8—2’7—3/4 dé’)p/2 , (88)
0

Thus, we have shown (8.6) for p > 16. Since we are working in a probability space the
case of p > 1 follows. This completes the proof of Proposition 8.4. O
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8.2 A Deterministic Problem

The next step in our study of (8.4) is the analysis of the problem for a fixed instance of
the noise w. Then (8.4) is of the form

h(t, €, 2) = e A€ + / LA (s, €, 2)) ds + 2(t)
0

where we assume that z € H7.. One should think of this as an instance of Z(®), but at
this point of our proof, the necessary bounds are not yet available.

We find it more convenient to study instead of i the quantity g defined by ¢(¢, &, 2)
= h(t,&, z) — z(t). Then g satisfies

ﬂu&@=ﬂf“£+/%€A““UWM&£JM+d$)%- ©.9
0

We consider the solution (assuming it exists) as a map from the initial condition ¢ and
the deterministic noise term z. More precisely, we define

G 2), = g(t,&,2) .
This is a map defined on # x H. Clearly, (8.9) reads:

G, 2), = e M+ / t e AR (G(E, 2), + 2(5)) ds . (8.10)
0

To formulate the bounds on G, we need some more spaces that take into account
the regularizing effect of the semigroup ¢ — e 4.

Definition 8.6 For v > 0 the spaces G7. are defined as the closures of C([0,T],H")
under the norm

lyllgs = sup ¢"[ly@)l, + sup [ly@) -
T te(o,1] te[o,T]

Note that
||y||g% <C ,T”y”?{; .

With these definitions, one has:

Proposition 8.7 Assume the conditions P1-P4 are satisfied. Assume ¢ € H and z €
H7.. Then, there existsamap G : H x HF — H. solving (8.10). One has the following
bounds:

(A) If & € HY with v < o one has for every T > 0 the bound
IG (& 2l < Cr(1+ €]y + 12l - (8.11)
(B) If& € H one has for every T' > 0 the bound

1G (& 2)llge < Cp(1+ [I€]] + [[2ll3g ) - (8.12)
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Before we start with the proof proper we note the following regularizing bound:
Define

N (@) = /Ot e A=) f(5) ds . (8.13)

Then one has:

Lemma 8.8 Forevery e € [0,1) and every v > ¢ there is a constant C, , such that
IV fllgy < ConTlfllgye

forall f € G} °.

Proof. We start with
W@l /nm”“W»wa/MPwﬂmv»w
t/2 B t .
< [Te-Ir@lds s [ ¢= 6],
0 t/2
t/2 . t e ery
< [T 9 Mgy s+ [ 595 gy s
0 t/2
< O fllgye + CE =t gy~

Therefore, ¢7[| (M f) ()], < CT||fllg;--. Similarly, we have

Il < [Tle sl ds < Ceflgy-

Combining the two inequalities, the result follows. O

Proof of Proposition 8.7. We first choose an initial condition £ € H” and a function
z € M. The local existence of the solutions in 7" is a well-known result. Thus there

exists, for a possibly small time T > 0, a function u € C([0, T], H") satisfying
t
u(t) = e= A% + / e_A(t_S)F(u(S) + 2(s)) ds .
0
In order to get an a priori bound on [|u(t)||., we use assumption P3 and find
t
lu@)ll, < Nl + Cp,y/o (1 +[lu(s) + 2(s)ll,) ds
t
<G+l + lolhg) + Cry [ Nuto)lyds

By Gronwall’s lemma we get for ¢t < T,

lu@)ll, < Cp (L +[I€ll, +ll2ll2;) - (8.14)
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Note that (8.14) tells us that if the initial condition & is in H” and if z is in .,
then w(t) is, for small enough ¢, again in #” with the above bound. Therefore, we can
iterate the above reasoning and show the global existence of the solutions up to time T,
with bounds. Thus, G is well-defined and satisfies the bound (8.11).

We turn to the proof of the estimate (8.12). Define for z € #H.. the map M, by

(M, (2)) () = e At + /t e_A(t_S)F(x(s) + z(s)) ds . (8.15)

0

Taking £ € H we see from (8.14) with v = 0 that there exists a fixed point u of M,
which satisfies

lulla, = ts[l(J)PT]IIU(t)H < Cr(L+ [l + Nzl ) -
€l0,

Assume next that z € H7 and hence a fortiori z € G7.. Then, by P3 one has
I1F(z+2)llgy < C(1+lIzllgy +llzlgy) -

Since w is a fixed point and (8.15) contains a term of the form of (8.13) we can apply
Lemma 8.8 and obtain for every v < a and e € [0, 1):

lullgyre = IM.@lgyee < Cllell + CTIF(u+ 2)llgy
< Cllell + Cr (1 + llullgy + l12lgy) - (8.16)

Thus, as long as ||z||g% is finite, we can apply repeatedly (8.16) until reaching v = «,
and this proves (8.12). The proof of Proposition 8.7 is complete. O

8.3 Stochastic Differential Equations in Hilbert Spaces

Before we can start with the final steps of the proof of Proposition 5.1 we state in
the next subsection a general existence theorem for stochastic differential equations in
Hilbert spaces. The symbol 7 denotes a separable Hilbert space. We are interested in
solutions to the SDE

dX' = (~AX' + N(t,w, X*) + M") dt + B(t,w, X*) dW (t) , (8.17)

where W (t) is the cylindrical Wiener process on a separable Hilbert space #,. We
assume B(t,w, X*) : H, — H is Hilbert-Schmidt. We will denote by € the underlying
probability space and by {.%, },~, the associated filtration.

The exact conditions spell out as follows:

C1 The operator A : D(A) — H is the generator of a strongly continuous semigroup
inH.

C2 There exists a constant C' > 0 such that for arbitrary z,y € H,t > 0andw € 2
the estimates

||N(t7w7 .’17) - N(tvwa y)” + ”B(tawa .’13) - B(ta w, y)”HS < C“.’E - y” ’
IN(t,w,2)||* + | B(t, w, z)|l3s < C*(1 + ||z]1?) |

hold.
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C3 For arbitrary z,h € H and h, € H,, the stochastic processes (N (-, -, z), h) and
(B(:, -, z)hg, h) are predictable.

C4 The H-valued stochastic process M* is predictable, has continuous sample paths,
and satisfies
sup E ||MY|P < o0,
te[0,T]

forevery T > 0 and every p > 1.

C5 For arbitrary t > 0 and w € , the maps z — N (t,w,z) and z — B(t,w, )
are twice continuously differentiable with their derivatives bounded by a constant
independent of ¢, z and w.

We have the following existence theorem.

Theorem 8.9 Assume that ¢ € H and that C1 — C4 are satisfied.

— Forany T > 0, there exists a mild solution X} of (8.17) with X = £. This
solution is unique among the H-valued processes satisfying

p (/OT||XgH2dt<oo> _

Furthermore, X has a continuous version and is strongly Markov.
— Foreveryp > 1and T > 0, there exists a constant C,, - such that

( o || £r) < 1+ [|€]P) - (8.18)

— If, in addition, C5 is satisfied, the mapping &£ — Xg(w) has a.s. bounded partial
derivatives with respect to the initial condition £&. These derivatives satisfy the
SDE’s obtained by formally differentiating (8.17) with respect to X.

Proof. The proof of this theorem for the case M* = 0 can be found in [DPZ96]. The
same proof carries through for the case of non-vanishing M satisfying C4. O

8.4 Bounds on the Cutoff Dynamics (Proof of Proposition 5.1)

With the tools from stochastic analysis in place, we can now prove Proposition 5.1. We
start with the

Proof of (A). In this case we identify the equation (8.17) with (4.2) and apply Theo-
rem 8.9. The condition C1 of Theorem 8.9 is obviously true, and the condition C3 is
redundant in this case. The condition C2 is satisfied because F' and @ of (8.17) satisfy
P2-P4. Therefore, (8.18) holds and hence we have shown (5.1a) for the case of v = 0.
In particular, (b’; exists and satisfies

B¢w) = Mg+ [ AR (@6 w) ds
, 0 (8.19)
+ /O e AUTIQ (D3 (€, w)) dW (s) .



EXISTENCE THEOREMS 42

We can extend (5.1a) to arbitrary v < « as follows. We set as in (8.5),

t
(Z(®,)),(w) = / A= Q (32 (¢, w)) AW (5) (8.20)
0
By Proposition 8.4, we find that for all p > 1 one has
1/p
(Ew sup ||(Z2 (%))t(w)Hf;) <Cry (8.21)
te[0,T]

for all £. From this, we conclude that, almost surely,

sup [[(Z(®,))(w)llq < oo (8.22)
te[0,T]

Subtracting (8.20) from (8.19) we get

Bt (E,w) — (2(D,)),(w) = e~ At + / LA P (05 (¢, w)) ds
0 (8.23)

= e—At§+/t e—A“—S)F(@g(g,w) — (2(2,)),w) + (Z(CI)Q))S(w)> ds .
0
Comparing (8.23) with (8.10) we see that, a.s.,

h(6w) — (2(3,)),(w) = G (€ Z(2,(€. ) @)

We now use z as a shorthand:
2(t) = (2(2,(6,)) @)

Assume now £ € H”. Note that by (8.22), z(t) is in H*. If v < «, we can apply
Proposition 8.7 and from (8.11) we conclude that almost surely,

sup [|G(&, 2)ll, < Cp(L+ €L, + sup [=],) -
te[o,T) t€[0,T]

Finally, since v < «, we find

E( sup ||q>’;(§)||f;) < CE( sup IIG(&z)tII’;) +CE( sup ||z(t)||’;)

+€[0,T] t€[0,T] t€[0,T]
< Cp, (14 ||s||7>p+0E( sup ||z<t>||z)
te[0,T]
< Cp,(L+[E]L)7 (8.24)

where we applied (8.21) to get the last inequality. Thus, we have shown (5.1a) for all
~v < «. The fact that the solution is strong if v > 1 is an immediate consequence of
[Lun95, Lemma 4.1.6] and [DPZ92, Thm. 5.29].
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Proof of (B). This bound can be shown in a similar way, using the bound (8.12) of
Proposition 8.7: Take £ € H. By the above, we know that there exists a solution to
(8.19) satisfying the bound (5.1b) with v = 0. We define z(¢) and G(, z), as above.
But now we apply the bound (8.12) of Proposition 8.7 and we conclude that almost
surely,
sup 7(|G(€, 2)ll,, < Cr(1+ (i€l + sup |z, -
t€[0,T] t€[0,T]

Following a procedure similar to (8.24), we conclude that (5.1b) holds.

Proof of (C). The existence of the partial derivatives follows from Theorem 8.9. To
show the bound, choose ¢ € H and h € H with ||h]| = 1, and define the process
Ut = (D®L(&))h. Itis by Theorem 8.9 a mild solution to the equation

4wt = — AV dt + ((DF 0 @L)(§)¥") dt + ((DQo @) (€)¥*) dW(t) . (8.25)

By P3 and P5, this equation satisfies conditions C1-C3 of Theorem 8.9, so we can
apply it to get the desired bound (5.1c). (The constant term drops since the problem is
linear in h.)

Proof of (D). Choose h € # and £ € H* and define as above U* = (D®!(¢))n,
which is the mild solution to (8.25) with initial condition h. We write this as

Ut =4+ / F A=) ((DF o ®?) (5)\1;5) ds
0

t
+ /0 e~ A=) ((DQ 0 @3) (637 dW (5)
=S +S5+ 55,

The term S satisfies
sup (IS¢, < Crlih]l - (8.26)
te(0,T]
The term S% is very similar to what is found in (8.5), with Q(y(s)) replaced by (DQ o
®;)¥”. Repeating the steps of (8.8) for a sufficiently large p, we obtain now with

v =1, some p > 0and writing X* = (DQ o @) (£)T*:

t
E sup [|S|P :E( sup H/ A%e=Al=s) xo dW(s)Hp>
te[0,T] o<t<T!l.Jo

pds

< CTNE/TH/S(S B T)—fyAae—A(s—T)Xr dW(T)
0 0

< CT“E/T (/S(s - r)_Q'yHAae_A(s—r)XrHanT>P/2 s
0 0

< CTME/T(/S(S — ’)")_27HAO‘XTHanr)p/2 ds
0 0

<crw (/OTs—ZW ds)p/2E/OTHA°‘XSHﬁSds
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T
< C’T”‘“’“E/ |A*(DQ o ®5)(€)¥°||Pds .
0
We now use P5, i.e., (8.3) and then (5.1c) and get

T
E sup |ISi|IE < CT”+p/4E/ |T%||Pds < CTHP/4HL|p|P . (8.27)
te[0,T] 0

To treat the term S%, we fix a realization w € Q of the noise and use Lemma 8.8.
This gives for e € [0, 1) the bound

sup t7||S5ll, < CT sup ¢77¢||(DF o ®}) (&)W’ __.
t€(0,T] t€(0,T] e

By P6, this leads to the bound, a.s.,

sup 7S¢, < CT(I+t€S(lépT]||¢Z(§)H7_E) sup 77|,

t€(0,T] te(0,T]
Taking expectations we have
E sup ¢"7||SL|P < CEE| (1+ sup [|®t(¢ P osup 0o gt ||p .
o sl < ope | (1+ s 950, )7 s«

By the Schwarz inequality and (5.1a) we get

E sup ¢"7|IS3]|P < Cp, (1 + 1€ _,) (E sup t(779)% || wt||2P )1/2. (8.28)
t€(0,T] ’ te(0,7] e

Since U = (D®! (¢))h = S; + S5 + S5, combining (8.26)(8.28) leads to

E sup t77[|(D@}(¢))hlE
te(0,7T]

_ 1/2
scT,p||h||p+0T,p(1+||£||£_€)(Et€s(%pﬂt“ 92| (Dot () h|2 )

Thus, we have gained ¢ in regularity. Choosing e = % and iterating sufficiently many
times we obtain (5.1d) for sufficiently large p. The general case then follows from the
Holder inequality.

Proof of (E). We estimate this expression by

J#s(6) - el < [ IF@y©)], a5+ | ["eAeo@ie) aws

Y

The first term can be bounded by combining (5.1b) and P3. The second term is bounded
by Proposition 8.4.

The proof Proposition 5.1 is complete.
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8.5 Bounds on the Off-Diagonal Terms
Here, we prove Lemma 5.4. This is very similar to the proof of (D) of Proposition 5.1.

Proof. We fix T" > 0 and p > 1. We start with (5.5b). Recall that here we do not write
the cutoff o. We choose k € Hy; and € € H. The equation for U° = (Dy @ (£))his:

v = [ (0, 007) O (Do ©)n) as

+ / e_A(s_s)<(DQL 0 ®* ) (£)(Dy®* (g))h) dw (s')
0
=Ri+R;.
Since DF = DF, is bounded we get

I < @ [ 0av @) < €3 s | (Dxs )]

Using (5.1c), this leads to

E sup ||R}|[P < CPHPE sup ||(Dy®°(€))h||P < Cr P [Ih]P .
s€[0,t] s€[0,t]

The term R is bounded exactly as in (8.27). Combining the bounds, (5.5b) follows.
Since @y is constant, see (4.1), we get for U° = (D ®5;(£))hand h € H:

T = /O T e A=) ((DFH 0 ®2)(€) (DL@S'(g))h) ds' .

This is bounded like R and leads to (5.5a). This completes the proof of Lemma 5.4.
O

8.6 Proof of Proposition 2.3

Here we point out where to find the general results on (1.7) which we stated in Propo-
sition 2.3. Note that these are bounds on the flow without cutoff .

Proof of Proposition 2.3. There are many ways to prove this. To make things sim-
ple, without getting the best estimate possible, we note that a bound in L°° can be
found in [Cer99, Prop. 3.2]. To get from L°° to #, we note that £ € H and we use
(1.7) in its integral form. The term e~“*¢ is bounded in %, while the non-linear term
[te= A=) F(®*(£)) ds can be bounded by using a version of Lemma 8.8. Finally,
the noise term is bounded by Proposition 8.4.

Furthermore, because of the compactness of the semigroup generated by A, it is
possible to show [DPZ96, Thm. 6.3.5] that an invariant measure exists. O

Acknowledgements

We thank L. Rey-Bellet and G. Ben-Arous for helpful discussions. We also thank the
referee for insightful remarks which clarified some ambiguities of an earlier version.
This research was partially supported by the Fonds National Suisse.



REFERENCES 46

References

[BKLOOa] J. Bricmont, A. Kupiainen, and R. Lefevere, Probabilistic Estimates for the

Two Dimensional Stochastic Navier-Stokes Equations, Preprint, 2000.

[BKLOOb] J. Bricmont, A. Kupiainen, and R. Lefevere, Ergodicity of the 2d Navier-

[Cer99]

[Col94]

[DPZ92]

[DPZ96]

[EHO0]

[EMS00]

[EPR993]

[EPR99b]

[FMO95]

[HOr67]

[Hor85]

[KS00]

[Lun95]

Stokes equation with random forcing, Preprint, 2000.

S. Cerrai, Smoothing Properties of Transition Semigroups Relative to SDEs
with Values in Banach Spaces, Probab. Theory Relat. Fields 113 (1999),
85-114.

P. Collet, Non Linear Parabolic Evolutions in Unbounded Domains, NATO
Adv. Sci. Inst. Ser. C Math. Phys. Sci 437 (1994), 97-104.

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions,
University Press, Cambridge, 1992.

G. Da Prato and J. Zabczyk, Ergodicity for Infinite Dimensional Systems,
London Mathematical Society Lecture Note Series, vol. 229, University
Press, Cambridge, 1996.

J.-P. Eckmann and M. Hairer, Non-Equilibrium Statistical Mechanics of
Strongly Anharmonic Chains of Oscillators, Comm. Math. Phys. 212
(2000), 105-164.

W. E, J. C. Mattingly, Y. G. Sinai, Gibbsian Dynamics and Ergodicity for
the Stochastically Forced Navier-Stokes Equation, Preprint, 2000.

J.-P. Eckmann, C.-A. Pillet, and L. Rey-Bellet, Non-Equilibrium Statistical
Mechanics of Anharmonic Chains Coupled to Two Heat Baths at Different
Temperatures, Comm. Math. Phys. 201 (1999), 657-697.

J.-P. Eckmann, C.-A. Pillet, and L. Rey-Bellet, Entropy Production in Non-
Linear, Thermally Driven Hamiltonian Systems, J. Stat. Phys. 95 (1999),
305-331.

F. Flandoli and B. Maslowski, Ergodicity of the 2-D Navier-Stokes Equation
Under Random Perturbations, Comm. Math. Phys. 172 (1995), 119-141.

L. Hormander, Hypoelliptic Second Order Differential Equations, Acta
Math. 119 (1967), 147-171.

L. Hormander, The Analysis of Linear Partial Differential Operators I-1V,
Springer, New York, 1985.

S. B. Kuksin and A. Shirikyan, Stochastic Dissipative PDE’s and Gibbs
Measures, Preprint, 2000.

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic
Problems, Birkhduser, Basel, 1995.



REFERENCES 47

[Mal78] P. Malliavin Stochastic Calculus of Variations and Hypoelliptic Operators
Proc. Intern. Symp. SDE, Kyoto (1978).

[MS98] B. Maslowski and J. Seidler Invariant Measures for Nonlinear SPDE’s:
Uniqueness and Stability, Archivum Math. (Brno) 34 (1998), 153-172.

[MS95] H. M. Moller and H. J. Stetter, Multivariate Polynomial Equations with
Multiple Zeros Solved by Matrix Eigenproblems, Numerische Mathematik
70 (1995), 311-329.

[Nor86] J. Norris, Simplified Malliavin Calculus, Lecture Notes in Mathematics
1204 (1986), 101-130.

[Str86]  D. Stroock, Some Applications of Stochastic Calculus to Partial Differential
Equations, Lecture Notes in Mathematics 976 (1986), 267-382.



	Introduction
	Some Preliminaries on the Dynamics
	Controllability
	The Combinatorics for the Complex Ginzburg-Landau Equation

	Strong Feller Property and Proof of Theorem 1.1
	Regularity of the Cutoff Process
	Splitting and Interpolation Spaces
	Proof of Theorem 4.3
	Smoothing Properties of the Transition Semigroup

	Malliavin Calculus
	The Construction of v

	The Partial Malliavin Matrix
	Finite Dimensional Case
	Infinite Dimensional Case
	The Restricted Hörmander Condition
	Estimates on the Low-Frequency Derivatives (Proof of Proposition 5.3)

	Existence Theorems
	The Noise Term
	A Deterministic Problem
	Stochastic Differential Equations in Hilbert Spaces
	Bounds on the Cutoff Dynamics (Proof of Proposition 5.1)
	Bounds on the Off-Diagonal Terms
	Proof of Proposition 2.3


