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Abstract
The theory of regularity structures [Hai14] sets up an abstract framework of
modelled distributions generalising the usual Hölder functions and allowing one to
give a meaning to several ill-posed stochastic PDEs. A key result in that theory is
the so-called reconstruction theorem: it defines a continuous linear operator that
maps spaces of “modelled distributions” into the usual space of distributions. In
the present paper, we extend the scope of this theorem to analogues to the whole
class of Besov spaces Bγp,q with non-integer regularity indices. We then show that
these spaces behave very much like their classical counterparts by obtaining the
corresponding embedding theorems and Schauder-type estimates.
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1 Introduction

The theory of regularity structures [Hai14] provides an analytic framework which
turns out to be powerful in providing solution theories to classes of singular parabolic
stochastic PDEs. An important aspect of the theory is that, instead of describing
the solution as an element of one of the classical spaces of functions/distributions,
one provides a local description thereof as generalised Taylor polynomials attached
to every space-time point. In the special case of smooth functions, this simply
corresponds to Whitney’s [Whi34] interpretation of a Hölder function as the cor-
responding collection of usual Taylor polynomials associated to it. In the setting
of stochastic PDEs, it is helpful to enrich the collection of usual monomials with
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some appropriate functionals built from the driving noise. Then, the solution of
the stochastic PDE can (under some assumptions, of course) locally be expanded
on this enlarged basis of monomials. In the case of some ill-posed stochastic
PDEs, this procedure, or some closely related procedure as in [GIP15], is already
required to give a rigorous interpretation of what one even means for a (random)
function/distribution to be a solution to the equation.

The original framework of the theory [Hai14] used direct analogues to Hölder
spaces of functions, but it turns out that this can be generalised to the whole class
of Besov spaces and this is the main purpose of the present work. One motivation
for this generalisation arose in a recent work on the construction of the solution
of multiplicative stochastic heat equations starting from a Dirac mass at time 0,
see [HL15]. Therein, we adapted the theory of regularity structures to Bαp,∞-like
spaces in order to start the equation from this specific initial condition. Indeed,
while the Dirac mass in Rd has (optimal) regularity index −d in Hölder spaces
of distributions, it also belongs to B−d+d/p

p,∞ for all p ∈ [1,∞]: this improved
regularity makes the analysis of the PDE much simpler when working in Besov
spaces. Another motivation comes from Malliavin calculus where the natural space
is L2, so that one would rather consider the theory in Besov B2,2 spaces. On that
topic, let us point out the recent work [CFG15] of Cannizzaro, Friz and Gassiat on
the generalised parabolic Anderson model in dimension 2. We also mention the
very recent work of Prömel and Teichmann [PT16] where the analytical framework
of the theory of regularity structures is adapted to Bγp,p-type spaces. We now present
in more details the definitions and results obtained in the present article.

Although there is no canonical choice for the space of modelled distributions
Dγp,q that would mimic the Besov space Bγp,q, we opt for a definition as close as
possible–at least formally–to the definition of classical Besov spaces via differences,
see Definition 2.9. Then, the main results of this paper are twofold. On the one
hand, we construct a “consistent” continuous linear map from Dγp,q to Bᾱp,q for a
suitable value of ᾱ: this is what is called a reconstruction theorem, see Theorem 3.1.
On the other hand, we establish continuous embeddings between the spaces Dγp,q,
see Theorem 4.1: these embeddings are the analogues of the embedding theorems
that the classical Besov spaces enjoy.

The proof of the reconstruction theorem follows from similar arguments to
those developed in [Hai14]. Let us recall here that the reconstruction theorem was
inspired by the sewing lemma of Gubinelli [Gub04].

The embedding theorems are more delicate. Even for classical Besov spaces,
their proofs are rather sensitive to the definition one chooses. In particular, they
are immediate if one relies on a countable characterisation of Besov spaces (for
instance, via a wavelet analysis or via the Littlewood-Paley decomposition): in
that case the embedding theorems are consequences of continuous embeddings
of `p-type spaces. On the other hand, the proofs become involved if one starts
from the definition via differences, see for instance Adams [Ada75, Chap.V], Di
Nezza et al. [DNPV12, Thm 8.2] or Nirenberg [Nir59]. As we said above, our
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definition of modelled distributions is in the spirit of the definition of Besov spaces
via differences, thus one does not expect the proofs of the embeddings to be any
simpler than in the classical case. Furthermore, our setting is more complex since
we are dealing not only with classical monomials, but we also allow for very
rough functions/distributions to be represented by some of the basis vectors in our
regularity structure.

The main trick that spares us technical arguments in the proofs is the following
intermediate result, which may be of independent interest. If one performs suitable
averages of a modelled distribution over balls of radius 2−n centred at the points of
a discrete grid, for every n ≥ 0, then one obtains a countable norm which is closer
in spirit to the wavelet characterisation of Besov spaces, see Definition 2.10. At the
level of these spaces of local averages, the embedding theorems are simple to prove.
Then, the key result is the equivalence between the two spaces, which is obtained in
Theorem 2.14.

Let us finally mention that our original motivation was to show that the solution
to the parabolic Anderson model on the whole space R3 that we obtained in [HL15]
is actually Hölder continuous with index 1/2− as a function of the spatial variable.
As mentioned earlier, we built the solution of this SPDE using a (weighted) space
of modelled distributions which mimics the Besov spaces Bp,∞ with p small, but
which is slightly different from the space Dp,∞ that we use here. If we had worked
in (a weighted version of) the space Dp,∞, then the embedding theorems that we
obtain in the present paper would immediately yield that the solution lives in (a
weighted version of) the space Dγ∞,∞ for some γ > 0 and therefore, we would get
the desired Hölder regularity. We stress that all the construction presented in [HL15]
can be adapted mutatis mutandis to the spaces Dp,∞.

The paper is organised as follows. In Section 2, we introduce the definitions
necessary for our analysis and we define our spaces of modelled distributions. In
Section 3, we state and prove our reconstruction theorem. Section 4 is devoted to
the embedding theorems for modelled distributions. In the last section, we prove
Schauder-type estimates at the level of our spaces of modelled distributions.
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2 Preliminaries

2.1 Spaces of distributions and wavelet analysis

We are given a scaling s = (s1, . . . , sd) ∈ Nd. Without further mention, we will
always consider the s-scaled “norm” ‖x‖s = supi=1,...,d |xi|1/si for all x ∈ Rd, and
B(x, r) will denote the closed ball centred at x, and of radius r with respect to the
s-scaled norm. Additionally, for any k ∈ Nd we will use the notation Xk to denote
the monomial

∏d
i=1X

ki
i , and we will call |k|s =

∑d
i=1 siki its scaled degree.
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Let Cr(Rd) be the space of functions f : Rd → R that admit continuous
derivatives of order k, for all k ∈ Nd such that |k|s ≤ r. We let Br(Rd) be the
subset of C∞(Rd) whose elements are supported in the centred ball of s-scaled
radius 1 in Rd and are of Cr-norm bounded by 1. Then, we let Br

β(Rd) be the set of
functions in Br(Rd) that annihilate all polynomials of scaled degree at most β. We
also write Br

−1(Rd) = Br(Rd).
From now on, Lp will always refer to Lp(Rd, dx) and x will be the associated

integration variable, while Lqλ will be taken to be Lq((0, 1), λ−1dλ) and λ will be
the associated integration variable. As usual, the notation 〈f, g〉 will be used both
to denote the L2-inner product of f and g and the evaluation of the distribution f
against the test function g.

Definition 2.1 Let α ∈ R, p, q ∈ [1,∞] and r ∈ N such that r > |α|. For α < 0,
we let Bαp,q(Rd) be the space of distributions ξ on Rd such that∥∥∥∥∥∥∥ sup

η∈Br(Rd)

|〈ξ, ηλx〉|
λα

∥∥∥
Lp

∥∥∥∥
Lqλ

<∞ .

For α ≥ 0, this condition is replaced by∥∥∥ sup
η∈Br(Rd)

|〈ξ, ηx〉|
∥∥∥
Lp
<∞ ,

∥∥∥∥∥∥∥ sup
η∈Br

bαc(R
d)

|〈ξ, ηλx〉|
λα

∥∥∥
Lp

∥∥∥∥
Lqλ

<∞ . (2.1)

Here, we used the notations ηx and ηλx as in [Hai14] to denote the test function
η recentred around x and rescaled by λ.

Remark 2.2 For λ ∈ (0, 1], let n ≥ 0 be the largest integer such that 2−n ≥ λ. For
any η ∈ Br, the rescaled function ηλ can always be viewed as some function ψ2−n

times a constant C > 0, where ψ ∈ Br. The constant C is uniformly bounded
over all λ ∈ (0, 1] and all η ∈ Br. Consequently, if one replaces λ by 2−n and
Lq(λ−1 dλ) by `q(n ≥ 0) in Definition 2.1, the corresponding space of distributions
remains unchanged.

There exists a simple characterisation of these spaces of distributions in terms of
a wavelet analysis; we refer to the works of Meyer [Mey92] and Daubechies [Dau88]
for more details on wavelet analysis, here we simply recall some basic facts. For
every r > 0, there exists a compactly supported function ϕ ∈ Cr(R) such that:

1. We have 〈ϕ(·), ϕ(·+ k)〉 = δk,0 for every k ∈ Z,

2. There exist ak, k ∈ Z with only finitely many non-zero values such that
ϕ(x) =

∑
k∈Z akϕ(2x− k) for every x ∈ R,

3. For every polynomial P of degree at most r, we have∑
k∈Z

∫
y∈R

P (y)ϕ(y − k)dy ϕ(x− k) = P (x) .
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Given such a function ϕ, we set

ϕnx(y) =
d∏
i=1

2
nsi
2 ϕ(2nsi(yi − xi)) .

Then, we define an s-scaled grid of mesh 2−n

Λn :=
{

(2−ns1k1, . . . , 2
−nsdkd) : ki ∈ Z

}
,

and we let Vn be the subspace of L2(Rd) generated by {ϕnx : x ∈ Λn}. Using the
second defining property of the function ϕ, we deduce that Vn ⊂ Vn+1.

Finally, there exists a finite set Ψ of compactly supported functions in Cr, that
kill all polynomials of degree at most r, and such that for every n ≥ 0,

{ϕnx : x ∈ Λn} ∪ {ψmx : m ≥ n, ψ ∈ Ψ, x ∈ Λm} ,

forms an orthonormal basis of L2(Rd).
To simplify notation, we let `pn be the Banach space of all sequences u(x), x ∈

Λn such that

‖u‖`pn :=
( ∑
x∈Λn

2−n|s||u(x)|p
) 1
p
<∞ .

We also let `q be the usual Banach space of all sequences u(n), n ∈ N whose
`q-norm is finite. We will sometimes use the notation

‖u‖`q(n≥n0) :=
( ∑
n≥n0

u(n)q
) 1
q ,

for any given n0 ≥ 1. With all these definitions at hand, we have the following
alternative characterisation of the Besov spaces Bαp,q.

Proposition 2.3 Let α ∈ R and p, q ∈ [1,∞]. Take r ∈ N such that r > |α|. Let
ξ be an element of Bαp,q, and set an,ψx := 〈ξ, ψnx〉, x ∈ Λn, n ≥ 0, ψ ∈ Ψ and
b0x := 〈ξ, ϕ0

x〉, x ∈ Λ0. Then, we have

sup
ψ∈Ψ

∥∥∥∥∥∥∥ an,ψx

2−n
|s|
2
−nα

∥∥∥
`pn

∥∥∥∥
`q
<∞ ,

∥∥∥b0x∥∥∥
`p0

<∞ . (2.2)

Conversely, given two sequences an,ψx , x ∈ Λn, n ≥ 0, ψ ∈ Ψ and b0x, x ∈ Λ0, such
that (2.2) is satisfied, there exists a distribution ξ ∈ Bαp,q whose evaluations against
the wavelet basis are given by the coefficients an,ψx and b0x.

As a consequence, (2.2) provides an equivalent norm to the Bαp,q norm introduced in
Definition 2.1. In the sequel, the notation ‖ · ‖Bαp,q will refer indifferently to either
of these two norms without further mention.
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Remark 2.4 These conditions can be restated at another scale. More precisely,
given n0 ≥ 0, the proposition still holds if (2.2) is replaced by∥∥∥〈ξ, ϕn0

x 〉

2−n0
|s|
2

∥∥∥
`pn0

<∞ , sup
ψ∈Ψ

∥∥∥∥∥∥∥ 〈ξ, ψnx〉
2−n

|s|
2
−nα

∥∥∥
`pn

∥∥∥∥
`q(n≥n0)

<∞ . (2.3)

Remark 2.5 As it is pointed out in the introduction, this characterisation yields
immediately the classical embedding theorems. In particular, we have the continuous
inclusion Bαp,q ⊂ Bαp,∞ that we will use at several occasions later on.

This type of characterisation is classical, see for example [Mey92, Sec. 6.10].
The only specificity of the present result comes from the scaling s that we are
working with.

Proof of Proposition 2.3. Let ξ ∈ Bαp,q. There exists a constant κ > 0, depending
only on the size of the support of ψ such that the following holds true. Uniformly
over all n ≥ 1, λ ∈ [κ2−n−1, κ2−n), x ∈ Λn and y ∈ B(x, λ), the function ψnx is
of the form ηλy up to a constant multiplicative factor of order 2−n|s|/2. Here, η ∈ Br

β

with β = −1 when α ≤ 0, and β = bαc when α ≥ 0. Therefore, the definition of
Bαp,q ensures that the first condition of (2.2) holds. The second condition of (2.2)
follows from similar arguments.

Conversely, we assume that (2.2) holds. We need to show that for all η ∈ Br∑
y∈Λ0

b0y〈ϕ0
y, η

λ
x〉+

∑
ψ∈Ψ

∑
n≥0

∑
y∈Λn

an,ψy 〈ψny , ηλx〉 , (2.4)

converges and satisfies the bound(s) of Definition 2.1. Once this is established, we
simply define 〈ξ, ηλx〉 as the value of this series. Then, it is elementary to check that
this can be extended into a genuine distribution that belongs to Bαp,q.

Let M be the maximum of the sizes of the support of ϕ and ψ ∈ Ψ. We start
with the first term of (2.4). Set β = bαc+ 1 if α ≥ 0, otherwise set β = 0. Using
the Taylor expansion of ϕ0

y at x, we deduce that |〈ϕ0
y, η

λ
x〉| . λβ uniformly over

all x, y ∈ Rd, all λ ∈ (0, 1] and all η ∈ Br
β−1. Furthermore, this inner product

vanishes as soon as ‖x− y‖s > λ+M , so that there are only finitely many y ∈ Λ0

with a non-zero contribution, uniformly over all λ ∈ (0, 1] and x ∈ Rd. For all
α ∈ R, we get∥∥∥ sup

η∈Br

∣∣∣ ∑
y∈Λ0

b0y〈ϕ0
y, ηx〉

∣∣∣∥∥∥
Lp
.
(∫

x∈Rd

∑
y∈Λ0:‖x−y‖s≤λ+M

|b0y|pdx
) 1
p

.
( ∑
y∈Λ0

|b0y|
p
) 1
p ,

which is finite by (2.2). Similarly, for α ≥ 0 we get∥∥∥∥∥∥∥ sup
η∈Br

β−1

|
∑

y∈Λ0
b0y〈ϕ0

y, η
λ
x〉|

λα

∥∥∥
Lp

∥∥∥∥
Lq
. ‖λβ−α‖Lq

( ∑
x∈Λ0

|b0x|
p
) 1
p ,
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which is finite by (2.2) and since β − α > 0.
We now turn to the second term of (2.4). Fix ψ ∈ Ψ. For any λ ∈ (0, 1], we let

n0 be the largest integer such that 2−n0 ≥ λ. We need to argue differently according
to the relative values of n and n0.

We start with the case n < n0, which does not cover the first bound of (2.1).
Take β as above. Using the Taylor expansion of ψ at x, we deduce that |〈ψny , ηλx〉| .
2n( |s|

2
+β)λβ uniformly over all x, y ∈ Rd, all λ ∈ (0, 1], all η ∈ Br

β−1 and all
n < n0. Furthermore, this inner product vanishes as soon as ‖x−y‖s > λ+M2−n

so that only finitely many y ∈ Λn yield a non-zero contribution, uniformly over
all the parameters. Using the triangle inequality at the second line and Jensen’s
inequality on the sum over y at the fourth line, we get∥∥∥∥∥∥∥ sup

η∈Br
β−1

|
∑

n<n0

∑
y∈Λn

an,ψy 〈ψny , ηλx〉|
λα

∥∥∥
Lp

∥∥∥∥
Lq

.

∥∥∥∥ ∑
n<n0

∥∥∥ ∑
y∈Λn

sup
η∈Br

β−1

|an,ψy 〈ψny , ηλx〉|
λα

∥∥∥
Lp

∥∥∥∥
Lq

.

∥∥∥∥ ∑
n<n0

(∫
x∈Rd

( ∑
y∈Λn:‖x−y‖s≤λ+M2−n

|an,ψy |
λα

2n( |s|
2

+β)λβ
)p
dx

) 1
p
∥∥∥∥
Lq

.

∥∥∥∥ ∑
n<n0

2n(β−α)λβ−α
( ∑
y∈Λn

2−n|s|
( |an,ψy |

2−n( |s|
2

+α)

)p) 1
p

∥∥∥∥
Lq
.

At this point, we observe that
∑

n<n0
2n(β−α)λβ−α is of order 1, uniformly over

all λ ∈ (0, 1]. Consequently, Jensen’s inequality and a simple integration over λ
ensure that the last expression is bounded by a term of order∥∥∥∥∥∥∥ |an,ψx |

2−n( |s|
2

+α)

∥∥∥
`pn

∥∥∥∥
`q

,

which is finite by (2.2).
We consider the case where n ≥ n0. Using the Taylor expansion of η at y,

we deduce that |〈ψny , ηλx〉| . 2−n( |s|
2

+r)λ−|s|−r uniformly over all x, y ∈ Rd, all
λ ∈ (0, 1], all η ∈ Br and all n ≥ n0. Furthermore, the inner product vanishes as
soon as ‖x− y‖s > λ+M2−n so that, for any given x ∈ Rd, there are of the order
of 2(n−n0)|s| terms with a non-zero contribution in the sum over y ∈ Λn, uniformly
over all the parameters. We first assume that α ≥ 0 and take λ = 1 (so n0 = 0), in
order to obtain the first bound of (2.1). Using the triangle inequality on the sum
over n at the first line, Jensen’s inequality on the sum over y at the second line, and
the Hölder inequality at the third line, we get∥∥∥ sup

η∈Br

∣∣∣∑
n≥0

∑
y∈Λn

an,ψy 〈ψny , ηx〉
∣∣∣∥∥∥
Lp
.
∑
n≥0

∥∥∥ ∑
y∈Λn

|x−y|s≤1+M2−n

|an,ψy |2−n( |s|
2

+r)
∥∥∥
Lp
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.
∑
n≥0

2−n(r+α)
( ∑
y∈Λn

2−n|s|
( |an,ψy |

2−n( |s|
2

+α)

)p) 1
p

.

∥∥∥∥∥∥∥ |an,ψx |

2−n( |s|
2

+α)

∥∥∥
`pn

∥∥∥∥
`q

(∑
n≥0

2
−n q

q−1
(r+α)

)1− 1
q ,

where q
q−1 is set to +∞ when q = 1, and to 1 when q = +∞. Since r + α > 0,

this is finite.
We now consider any α and do no longer impose λ = 1. Using the triangle

inequality at the second line, and Jensen’s inequality at the third line, we get∥∥∥∥∥∥∥ sup
η∈Br

|
∑

n≥n0

∑
y∈Λn

an,ψy 〈ψny , ηλx〉|
λα

∥∥∥
Lp

∥∥∥∥
Lq

.

∥∥∥∥ ∑
n≥n0

∥∥∥ ∑
y∈Λn:‖x−y‖s≤λ+M2−n

|an,ψy |
λα

2−n( |s|
2

+r)λ−|s|−r
∥∥∥
Lp

∥∥∥∥
Lq

.

∥∥∥∥ ∑
n≥n0

2−(n−n0)(r+α)
( ∑
y∈Λn

2−n|s|
( |an,ψy |

2−n( |s|
2

+α)

)p) 1
p

∥∥∥∥
Lq
.

Since
∑

n≥n0
2−(n−n0)(r+α) is of order 1, Jensen’s inequality ensures that the last

expression is bounded by a term of order(∑
n≥0

2−n(r+α)
∫
λ∈(2−n,1]

dλ

λr+α+1

∥∥∥ |an,ψx |

2−n( |s|
2

+α)

∥∥∥q
`pn

) 1
q

.

∥∥∥∥∥∥∥ |an,ψx |

2−n( |s|
2

+α)

∥∥∥
`pn

∥∥∥∥
`q

,

which is finite by (2.2). This concludes the proof. �

We conclude this subsection with an elementary property.

Lemma 2.6 Let ξ ∈ Bαp,q for some α > 0. Let % : Rd → R be a smooth, even func-
tion supported in B(0, 1) and integrating to 1. Then {x 7→ 〈ξ, %λx〉, x ∈ Rd}λ∈(0,1],
is a Cauchy family in Lp for λ ↓ 0 and its limit coincides with the distribution ξ.

Proof. Set ξ̃λ(x) := 〈ξ, %λx〉. For all λ > λ′ ∈ (0, 1], we can write

%λx − %λ
′
x = (%λx − %2−n0

x ) +

n1−1∑
n=n0

(%2−n
x − %2−(n+1)

x ) + (%2−n1

x − %λ′x ) , (2.5)

where n0, n1 are the largest integers such that 2−n0 ≥ λ and 2−n1 ≥ λ′. By the
classical embeddings, ξ belongs to Bεp,∞ for any ε ∈ (0, 1 ∧ α). Since every term
inside brackets is a smooth function integrating to 0, it is simple to check using (2.5)
that the family {ξ̃λ}λ∈(0,1] is Cauchy in Lp. Let ξ̃ be its limit: it naturally defines a
distribution on Rd. Let η be a compactly supported, smooth function on Rd. We set

ηλ(y) =

∫
%λ(y − x)η(x)dx .
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Observe that ηλ is supported in a compact set whose diameter is of order 1, uniformly
over all λ ∈ (0, 1]. We write

〈ξ̃ − ξ, ηλ〉 = 〈ξ̃ − ξ̃λ, ηλ〉+ 〈ξ̃λ − ξ, ηλ〉 , (2.6)

and we show that each term on the right vanishes as λ ↓ 0. Indeed, we have

|〈ξ̃ − ξ̃λ, ηλ〉| .
∫
y
|ηλ(y)||ξ̃(y)− ξ̃λ(y)|dy .

(∫
y
|ξ̃(y)− ξ̃λ(y)|pdy

) 1
p ,

so that it vanishes as λ ↓ 0. On the other hand, we can rewrite the second term on
the right hand side of (2.6) as follows:

〈ξ̃λ − ξ, ηλ〉 =

∫
z
η(x)

∫
y
%λx(y)〈ξ, %λy − %λx〉dy dy .

Since %λy − %λz integrates to 0 and since ξ belongs to Bεp,∞ for some ε > 0, we
conclude that this last term vanishes as λ ↓ 0. We have proven that 〈ξ̃ − ξ, ηλ〉 goes
to 0 as λ ↓ 0. Since ηλ converges to η in the topology of smooth functions, we
deduce that 〈ξ̃ − ξ, η〉 = 0 thus concluding the proof. �

2.2 Regularity structures

Recall that a regularity structure is a triple (A, T ,G) where:

1. A, the set of homogeneities, is a subset of R assumed to be locally finite and
bounded from below,

2. T , the model space, is a graded vector space of the form
⊕

ζ∈A Tζ , and each
Tζ is a Banach space,

3. G, the structure group, is a group of linear transformation on T such that for
every Γ ∈ G, every ζ ∈ A and every τ ∈ Tζ , we have Γτ − τ ∈ T<ζ where
T<ζ =

⊕
β<ζ Tβ .

An elementary example of regularity structures is the polynomial regularity structure
(Ā, T̄ , Ḡ) defined as follows. Take Ā = N, and for every ζ ∈ N, let Tζ be the set
of all polynomials in Xi, i = 1 . . . d with s-scaled degree equal to ζ. Recall that
the s-scaled degree of Xk =

∏d
i=1X

ki
i is given by |k|s =

∑
i siki, for any k ∈ Nd.

Furthermore, the structure group Ḡ is taken to be the group of translations on Rd

acting on polynomials in the usual way.
We will denote byQζ or (·)ζ the projection from T onto Tζ , and |τ |ζ will denote

the norm of the projection of τ onto Tζ for all τ ∈ T . Given a regularity structure
(A, T ,G), recall the notion of model that endows every element in the structure with
some analytical features. From now on, we let r ∈ N be such that r > |ζ| for all
ζ ∈ Aγ := A ∩ (−∞, γ) for some fixed γ > 0.
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Definition 2.7 A model is a pair (Π,Γ) that satisfies the following conditions. First
of all, Π = (Πx)x∈Rd is a collection, indexed by Rd, of linear transformation from
T<γ into the set of Schwartz distributions D′(Rd) such that

‖Π‖x = sup
η∈Br

sup
λ∈(0,1]

sup
ζ∈Aγ

sup
τ∈Tζ

|〈Πxτ, η
λ
x〉|

|τ |λζ
. 1 ,

uniformly over all x ∈ Rd. Second Γ = (Γx,y)x,y∈Rd where every Γx,y belongs to
the structure group G and we have

‖Γ‖x,y = sup
β≤ζ∈Aγ

sup
τ∈Tζ

|Γx,yτ |β
|τ |‖x− y‖ζ−βs

. 1 ,

uniformly over all x ∈ Rd and all y ∈ B(x, 1). We also set ‖Π‖ := supx ‖Π‖x and
‖Γ‖ := supx,y ‖Γ‖x,y.

Remark 2.8 Unlike in [Hai14], we assume here that the bounds on Π and Γ hold
uniformly over x ∈ Rd. This is required since Besov spaces measure not only the
local properties of a function but also its global integrability. It would of course be
straightforward to adapt the results of this article to build analogues of weighted or
local Besov spaces in which some non-uniformity in these bounds is allowed.

2.3 Modelled distributions
Given a regularity structure (A, T ,G), and a model (Π,Γ), we introduce some
spaces of modelled distributions that mimic the spaces Bαp,q in the framework of
regularity structures. Recall the notation Lp introduced earlier in the paper. We also
henceforth write Aγ = A ∩ (−∞, γ).

Definition 2.9 For γ ∈ R, let Dγp,q be the Banach space of all f : Rd → T<γ such
that, for all ζ ∈ Aγ , we have:

1. Local bound: ∥∥∥|f (x)|ζ
∥∥∥
Lp
<∞ ,

2. Translation bound:(∫
h∈B(0,1)

∥∥∥∥ |f (x+ h)− Γx+h,xf (x)|ζ
‖h‖γ−ζs

∥∥∥∥q
Lp

dh

‖h‖|s|s

) 1
q

<∞ .

We write |||f ||| for the corresponding norm.

This definition is close to the definition of classical Besov spaces via differences,
see for instance [Tri10, Sec. 2.5.12]. Note also that in the particular case q = p, this
definition coincides exactly with the definition of the spacesDγp (Rd) given in [PT16].
The main trick for proving the embedding theorems for the spaces Dγp,q is to work at
the level of averages over balls of radius 2−n. We define En := B(0, 2−n)∩Λn\{0},
that is

En = {h ∈ Rd : 2nsihi ∈ {−1, 0, 1}}\{0} .
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Definition 2.10 For γ ∈ R, let D̄γp,q be the Banach space of all sequences, indexed
by n ≥ 0, of maps f̄

n
: Λn → T<γ such that for all ζ ∈ Aγ , we have:

1. Local bound: ∥∥∥|f̄ 0
(x)|ζ

∥∥∥
`p0

<∞ ,

2. Translation bound:(∑
n≥0

∑
h∈En

∥∥∥∥ |f̄ n
(x+ h)− Γx+h,xf̄

n
(x)|ζ

2−n(γ−ζ)

∥∥∥∥q
`pn

) 1
q

<∞ ,

3. Consistency bound:(∑
n≥0

∥∥∥∥ |f̄ n
(x)− f̄ n+1

(x)|ζ
2−n(γ−ζ)

∥∥∥∥q
`pn

) 1
q

<∞ .

We make an abuse of notation by writing as above |||f̄ ||| for the corresponding norm.

Remark 2.11 Let ECn = B(0, C2−n) ∩ Λn\{0} for some constant C > 0. Com-
bining the translation and consistency bounds, we get(∑

n≥0

∑
h∈ECn+1

∥∥∥∥ |f̄ n
(x)− Γx,x+hf̄

n+1
(x+ h)|ζ

2−n(γ−ζ)

∥∥∥∥
`pn

) 1
q

. |||f̄ ||| .

Notation 2.12 We will write fζ(x) and f̄
n

ζ (x) as shortcuts forQζf (x) andQζ f̄
n

(x).

One should think of f̄
n

(x) as being a suitable average of some function f over
a ball of radius 2−n centred at x. This will be made more precise in Theorem 2.14
below. We first show that, although the local bound is imposed for averages over
balls of radius 1 only, the consistency and translation bounds allow one to propagate
this bound to averages over balls of arbitrarily small radius.

Lemma 2.13 Let f̄ ∈ D̄γp,q. Then for all ζ ∈ Aγ , we have

sup
n≥0

∥∥∥|f̄ n
(x)|ζ

∥∥∥
`pn
<∞ .

Proof. It is sufficient to prove the bound of the lemma with ζ taken to be the largest
element in Aγ . Indeed, if we let β be the second largest element in Aγ , then the
bound on f̄ζ easily implies that the restriction of f̄ to T<γ̃ belongs to Dγ̃p,q for all
γ̃ ∈ (β, ζ) (one can take γ̃ = ζ in the case where q = ∞). Consequently, the
bound holds true also for β, and by recursion, for all levels in Aγ . We are left
with the proof of the bound for ζ = maxAγ . The key argument is the following
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decomposition. For any y ∈ Λn+1, let xy := sup{x ∈ Λn : xi ≤ yi ∀i} (here, the
supremum refers to the lexicographic order) and write

f̄
n+1

ζ (y) = f̄
n

ζ (xy) + f̄
n+1

ζ (y)− f̄ n

ζ (xy) .

By the triangle inequality, we have the bound ‖f̄ n+1

ζ ‖`pn+1
≤ A1(n) +A2(n) where

A1(n) =
( ∑
y∈Λn+1

2−(n+1)|s||f̄ n

ζ (xy)|p
) 1
p ,

A2(n) =

( ∑
y∈Λn+1

2−(n+1)|s|
∣∣∣f̄ n+1

ζ (y)− f̄ n

ζ (xy)
∣∣∣p) 1

p

.

We bound separately these two terms. A simple combinatorial argument ensures
that

A1(n) =
( ∑
x∈Λn

2−n|s||f̄ n

ζ (x)|p
) 1
p

= ‖f̄ n

ζ ‖`pn .

We turn to A2. There exists C > 0 (independent of f ) such that

A2(n) .
( ∑
x∈Λn

2−n|s|
∑

h∈ECn+1

∣∣∣f̄ n+1

ζ (x+ h)− f̄ n

ζ (x)
∣∣∣p) 1

p

.
∑

h∈ECn+1

( ∑
x∈Λn

2−n|s|
∣∣∣f̄ n+1

ζ (x+ h)− f̄ n

ζ (x)
∣∣∣p) 1

p

,

uniformly over all n ≥ 0. Since ζ = maxAγ , we have the identityQζΓx,yτ = Qζτ
for all τ ∈ T<γ . By Hölder’s inequality, this yields

∑
n≥0

A2(n) .
(∑
n≥0

∑
h∈ECn+1

∥∥∥∥ |f̄ n
(x)− Γx,x+hf̄

n+1
(x+ h)|ζ

2−n(γ−ζ)

∥∥∥∥q
`pn

) 1
q

×
(∑
n≥0

2−n(γ−ζ)q̄
) 1
q̄ ,

where q̄ ∈ [1,∞] is the conjugate of q. Combining these bounds, we deduce that
there exists K > 0 such that

‖f̄ n0

ζ ‖`pn0
≤ ‖f̄ 0

ζ ‖`p0 +K

(∑
n≥0

∑
h∈ECn+1

∥∥∥∥ |f̄ n
(x)− Γx,x+hf̄

n+1
(x+ h)|ζ

2−n(γ−ζ)

∥∥∥∥q
`pn

) 1
q

,

(2.7)
uniformly over all n0 ≥ 0. By Remark 2.11, this concludes the proof. �

The following result shows that the spaces D and D̄ are essentially equivalent.
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Theorem 2.14 Let f ∈ Dγp,q, and set for all n ≥ 0 and all x ∈ Λn

f̄
n

(x) =

∫
B(x,2−n)

2n|s|Γx,yf (y)dy . (2.8)

Then f̄ belongs to D̄γp,q.
Conversely, let f̄ ∈ D̄γp,q and for all n ≥ 0 and all x ∈ Rd, define fn(x) =

Γx,xn f̄
n

(xn) where xn is the nearest point to x in Λn. Then, the sequence (fn)n≥0

converges in Lp to some limit f ∈ Dγp,q.
In the case where f̄ is built from some f ∈ Dγp,q as in the first part of the

statement, then the element built in the second part of the statement coincides with
f .

Let us observe that that our map f 7→ f̄ is far from being canonical: that is,
one could opt for slightly different ways of performing the average, leading to an
alternative definition of this map, but without altering the statement of the theorem.

Proof. The first part of the statement is elementary to prove, so we leave the details
to the interested reader. Let us turn to the converse statement. Take f̄ ∈ D̄γp,q, define
fn as in the statement, and fix some ζ ∈ Aγ . Recall that by the definition of a
model one has |Γx,x+hτ |ζ . |τ |‖h‖β−ζs for all τ ∈ Tβ and all ζ ≤ β. We deduce
the bound∥∥∥|fn(x)− fn+1(x)|ζ

∥∥∥
Lp

≤
∥∥∥|Γx,xn(f̄

n
(xn)− Γxn,xn+1 f̄

n+1
(xn+1))|ζ

∥∥∥
Lp

≤
∑
β≥ζ

2−n(β−ζ)
∥∥∥|f̄ n

(xn)− Γxn,xn+1 f̄
n+1

(xn+1)|β
∥∥∥
Lp

≤
∑
β≥ζ

∑
h∈ECn+1

2−n(β−ζ)
∥∥∥|f̄ n

(xn)− Γxn,xn+hf̄
n+1

(xn + h)|β
∥∥∥
Lp

.
∑
β≥ζ

∑
h∈ECn+1

2−n(β−ζ)
∥∥∥|f̄ n

(x)− Γx,x+hf̄
n+1

(x+ h)|β
∥∥∥
`pn

,

(2.9)

uniformly over all n ≥ 0. Let q̄ be the conjugate of q. By Hölder’s inequality and
(2.9), we get∑

n≥n0

∥∥∥|fn(x)− fn+1(x)|ζ
∥∥∥
Lp

≤
( ∑
n≥n0

∥∥∥ |fn(x)− fn+1(x)|ζ
2−n(γ−ζ)

∥∥∥q
Lp

) 1
q( ∑

n≥n0

2−n(γ−ζ)q̄
) 1
q̄

. |||f̄ |||2−n0(γ−ζ) ,

uniformly over all n0 ≥ 0. This shows thatQζfn is a Cauchy sequence in Lp. Since
this is true for every ζ , it follows that fn is Cauchy in Lp and we write f for its limit.
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We need to show that this defines an element of Dγp,q. The local bound is already
proved by construction, so we focus on the translation bound. For any h ∈ B(0, 1),
let n0 be the largest integer such that 2−n0 ≥ ‖h‖s. We write

f (x+ h)− Γx+h,xf (x) = (f (x+ h)− fn0(x+ h)) (2.10)

+ (fn0(x+ h)− Γx+h,xfn0(x)) + Γx+h,x(fn0(x)− f (x)) ,

and we bound these three terms separately. First of all, we observe that

fn0(x+h)−Γx+h,xfn0(x) = Γx+h,(x+h)n0
(f̄

n0 ((x+h)n0)−Γ(x+h)n0 ,xn0
f̄
n0 (xn0)) .

Therefore, if we define the annulus A(0, n0) := B(0, 2−n0)\B(0, 2−n0−1), we
easily deduce that( ∑

n0≥0

∫
h∈A(0,n0)

∥∥∥∥ |fn0(x+ h)− Γx+h,xfn0(x)|ζ
‖h‖γ−ζs

∥∥∥∥q
Lp

dh

‖h‖|s|s

) 1
q

.
∑
β≥ζ

( ∑
n0≥0

∑
h∈ECn0

∥∥∥∥ |f̄ n0 (x+ h)− Γx+h,xf̄
n0 (x)|β

2−n0(γ−β)

∥∥∥∥q
`pn0

) 1
q

.

We turn to the third term on the right hand side of (2.10). We have( ∑
n0≥0

∫
h∈A(0,n0)

∥∥∥∥ |Γx+h,x(fn0(x)− f (x))|ζ
‖h‖γ−ζs

∥∥∥∥q
Lp

dh

‖h‖|s|s

) 1
q

.
∑
β≥ζ

( ∑
n0≥0

∫
h∈A(0,n0)

∥∥∥∥ |fn0(x)− f (x))|β
2−n0(γ−β)

∥∥∥∥q
Lp

dh

‖h‖|s|s

) 1
q

.
∑
β≥ζ

( ∑
n0≥0

∥∥∥∥ ∑
n≥n0

|fn+1(x)− fn(x)|β
2−n0(γ−β)

∥∥∥∥q
Lp

) 1
q

.
∑
β≥ζ

( ∑
n0≥0

( ∑
n≥n0

∥∥∥∥ |fn+1(x)− fn(x)|β
2−n0(γ−β)

∥∥∥∥
Lp

)q) 1
q

.

At this point, we use (2.9) to get the further bound∥∥∥∥ |fn+1(x)− fn(x)|β
2−n0(γ−β)

∥∥∥∥
Lp

.
∑
δ≥β

2−(n−n0)(γ−β)
∑

h∈ECn+1

∥∥∥∥ |f̄ n
(x)− Γx,x+hf̄

n
(x+ h)|δ

2−n(γ−δ)

∥∥∥∥
`pn

.

Applying Jensen’s inequality on the sum over n ≥ n0, we deduce that this in turn is
bounded by∑
δ≥β≥ζ

( ∑
n0≥0

∑
n≥n0

2−(n−n0)(γ−β)
∑

h∈ECn+1

∥∥∥∥ |f̄ n
(x)− Γx,x+hf̄

n
(x+ h)|δ

2−n(γ−δ)

∥∥∥∥q
`pn

) 1
q
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.
∑
δ≥ζ

(∑
n≥0

∑
h∈ECn+1

∥∥∥∥ |f̄ n
(x)− Γx,x+hf̄

n
(x+ h)|δ

2−n(γ−δ)

∥∥∥∥q
`pn

) 1
q

,

which is of order |||f̄ ||| as required. The bound on the first term on the right hand side
of (2.10) relies on virtually the same argument, so we do not provide the details.
This ensures that f ∈ Dγp,q and that |||f ||| . |||f̄ |||.

Let us finally assume that f̄ is obtained from some f ∈ Dγp,q according to the
procedure described in the first part of the statement. We aim at showing that the
element built with the procedure in the second part of the statement coincides with
f . To that end, it suffices to show that f (x)− fn(x) converges to 0 as n→∞. We
have

|f (x)− fn(x)|ζ .
∫
y∈B(xn,2−n)

2n|s||f (x)− Γx,yf (y)|ζdy

.
∫
y∈B(x,2−n+1)

2n|s||f (x)− Γx,yf (y)|ζdy

.
∑
β≥ζ

∫
h∈B(0,2−n+1)

2n|s|‖h‖β−ζs |f (x+ h)− Γx+h,xf (x)|βdh ,

uniformly over all x ∈ Rd. Let q̄ be the conjugate of q. We get

‖|f (x)− fn(x)|ζ‖Lp

.
∑
β≥ζ

∥∥∥∫
h∈B(0,2−n+1)

2n|s|‖h‖γ−ζs

|f (x+ h)− Γx+h,xf (x)|β
‖h‖γ−βs

dh
∥∥∥
Lp

.
∑
β≥ζ

∫
h∈B(0,2−n+1)

∥∥∥‖h‖γ−ζs

|f (x+ h)− Γx+h,xf (x)|β
‖h‖γ−βs

∥∥∥
Lp

dh

‖h‖|s|s

.
∑
β≥ζ

(∫
h∈B(0,2−n+1)

∥∥∥ |f (x+ h)− Γx+h,xf (x)|β
‖h‖γ−βs

∥∥∥q
Lp

dh

‖h‖|s|s

) 1
q

×
(∫

h∈B(0,2−n+1)
‖h‖q̄(γ−ζ)

s

dh

‖h‖|s|s

) 1
q̄

. 2−n(γ−ζ)|||f ||| ,

which vanishes as n→∞, thus concluding the proof. �

Let us point out again that, as already observed in the proof of Lemma 2.13,
these spaces are essentially nested, that is, the projection of f , respectively of f̄ ,
to T<γ′ lies in Dγ

′
p,q, respectively in D̄γ

′
p,q whenever γ′ < γ. In the case where

q <∞ however, we also need to assume that γ′ /∈ Aγ . This further restriction is a
consequence of our model being bounded in a Hölder-type norm. Therefore, we
make the following assumption.

Assumption 2.15 The parameter γ does not coincide with an element in A.
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3 The reconstruction theorem

Before we turn to the statement of the reconstruction theorem in this context, we
introduce a distance between two modelled distributions f and f̄ built from two
possibly different models (Π,Γ) and (Π̄, Γ̄). Following [Hai14, Rem. 3.6], we set

|||f, f̄ ||| =
∥∥∥|f (x)− f̄ (x)|ζ

∥∥∥
Lp

+

(∫
B(0,1)

∥∥∥∥ |f (x+ h)− f̄ (x+ h)− Γx+h,xf (x) + Γ̄x+h,xf̄ (x)|ζ
‖h‖γ−ζs

∥∥∥∥q
Lp

dh

‖h‖|s|s

) 1
q

.

From now on, we also assume that the polynomial regularity structure (Ā, T̄ , Ḡ)
is included in the regularity structure under consideration, and that it provides the
only elements with integer homogeneity. This is not an essential assumption for
Theorem 3.1, but it simplifies its statement.

Theorem 3.1 Let (A, T ,G) be a regularity structure and (Π,Γ) be a model. Let
γ ∈ R+\N, and set α = min(A\N)∧γ. If q =∞, let ᾱ = α, otherwise take ᾱ < α.
Then, for γ > 0, there exists a unique continuous linear mapR : Dγp,q → Bᾱp,q such
that ∥∥∥∥∥∥∥ sup

η∈Br

|〈Rf −Πxf (x), ηλx〉|
λγ

∥∥∥
Lp

∥∥∥∥
Lqλ

. |||f |||‖Π‖(1 + ‖Γ‖) , (3.1)

uniformly over all f ∈ Dγp,q and all models (Π,Γ).
Furthermore, given a second model (Π̄, Γ̄) and denoting by R̄ the associated

reconstruction operator, we have∥∥∥∥∥∥∥ sup
η∈Br

|〈Rf − R̄f̄ −Πxf (x) + Π̄xf̄ (x), ηλx〉|
λγ

∥∥∥
Lp

∥∥∥∥
Lqλ

(3.2)

. |||f ; f̄ |||‖Π‖(1 + ‖Γ‖) + |||f̄ |||
(
‖Π− Π̄‖(1 + ‖Γ‖) + ‖Π̄‖‖Γ− Γ̄‖

)
.

Let us comment on the definition of α. If the regularity structure has some level
of negative homogeneity, then α is taken to be the lowest homogeneity. On the
other hand, if the regularity structure consists of usual monomials and of levels with
positive, non-integer homogeneity, then α is the lowest non-integer homogeneity.
Finally, if the regularity structure consists only of usual monomials, then α is equal
to γ: however, the case where γ ∈ N has to be treated differently and is not covered
by this result (except in a trivial way by using the aforementioned fact that elements
of Dγp,q also belong to Dγ

′
p,q for γ′ < γ).

Remark 3.2 Recall that the definition of a model (Π,Γ) used in this article is (a
global version of) the one introduced in [Hai14] which is modelled on the usual
Hölder norms. This is the main reason for the fact that we need to take ᾱ < α in
Theorem 3.1 when q <∞. Indeed, assuming that α = minA < 0 and writing Ξ
for an element in Tα, one easily sees that the modelled distribution f = Ξ does
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belong to Dγp,q (at least locally in space) for all q ∈ [1,∞]. However, one has
Rf = ΠxΞ ∈ Cα, which does not necessarily belong to Bαp,q whenever q <∞.

Remark 3.3 When the regularity structure consists only of usual monomials, our
reconstruction theorem as stated asserts that the distribution has regularity γ− if
q <∞. The results in the following subsection ensure that the regularity is actually
γ also in this case.

3.1 A few consequences of the reconstruction theorem
Recall the notation T̄ for the polynomial regularity structure. The following re-
sult states that the two spaces Bγp,q and Dγp,q(T̄ ) are the same, which justifies our
definitions.

Proposition 3.4 Take γ ∈ R+\N and consider the polynomial regularity structure
T̄ . Then, the reconstruction operatorR is a homeomorphism between Dγp,q(T̄ ) and
Bγp,q.

This result is the consequence of the following two lemmas. The first one shows
thatR is injective.

Lemma 3.5 Let f ∈ Dγp,q(T̄ ). Then, for every k ∈ Nd such that |k|s < γ, the map
x 7→ k!fk(x) coincides (as a distribution) with the k-th derivative ofRf , and one
hasRf = f0 ∈ Bγp,q.

Proof. Let k ∈ Nd be such that |k| < γ. A careful inspection of the proof of
the uniqueness part of the reconstruction theorem yields that there is at most one
distribution ξ(k) on Rd such that∥∥∥∥∥∥∥ sup

η∈Br+|k|

|〈ξ(k) − ∂kΠxf (x), ηλx〉|
λγ−|k|

∥∥∥
Lp

∥∥∥∥
Lqλ

<∞ . (3.3)

Since ∂k(ηλ) = λ−|k|(∂kη)λ and since ∂kη ∈ Br whenever η ∈ Br+|k|, the
reconstruction theorem ensures that ∂kRf satisfies such a bound.

Let us now set ξ(k)(x) = k!fk(x). Since x 7→ ξ(k)(x) belongs to Lp(Rd), it
defines a distribution on Rd. Furthermore, we have the identity

(ξ(k) − ∂kΠxf (x))(y) = k!Qk(f (y)− Γy,xf (x)) .

Since f ∈ Dγp,q(T̄ ), we deduce that (3.3) holds for our choice of ξ(k) and conse-
quently, ξ(k) coincides with ∂kRf .

To show thatRf ∈ Bγp,q, we first note that the first bound of (2.1) with ξ = f0

follows immediately from the fact that f0 ∈ Lp by the definition of Bγp,q. The
second bound with ξ = Rf on the other hand follows immediately from (3.1) since
〈Πxf (x), ηλx〉 = 0 for η ∈ Br

bγc(R
d). �

The second lemma constructs the continuous inverse ofR.



18 THE RECONSTRUCTION THEOREM

Lemma 3.6 There exists a continuous injection ι from Bγp,q into Dγp,q(T̄ ) such that
Rιξ = ξ for all ξ ∈ Bγp,q.

Proof. Let % : Rd → R+ be a smooth, even function, supported in the unit ball
of Rd, that integrates to 1. For simplicity, we write %nx(y) instead of %2−n

x (y). Let
ξ ∈ Bγp,q. For every n ≥ 0, every x ∈ Λn and every k ∈ Nd such that |k| < γ, we
set

f̄
n

k (x) = 〈∂kξ, P bγck,x (%n, ·)〉 ,

where

P qk,x(η, y) =
∑

`∈Nd:|k+`|≤q

(−1)`∂`y
(
η(y − x)

(x− y)`

k!`!

)
.

for any q ∈ N, any k ∈ Nd such that |k| ≤ q and any smooth function η. This
definition of f̄ may not seem obvious at first sight, but it can actually be guessed
easily from (2.8) upon replacing 2n|s|1B(x,2−n) by %nx , combined with the action of
Γx,y on the polynomial regularity structure.

We aim at showing that f̄ ∈ D̄γp,q. The local bound is easy to check since∥∥∥|f̄ 0
(x)|ζ

∥∥∥
`p0

. ‖ξ‖Bγp,q .

Regarding the translation and consistency bounds, we introduce for all h ∈ En, all
x ∈ Λn and all n ≥ 0 the functions

Ψq
k : y 7→ P qk,x+h(%n, y)−

∑
`∈Nd:|k+`|≤q

(−h)`
(k + `)!
k!`!

∂`yP
q
k+`,x(%n, y) ,

and
Φq
k : y 7→ P qk,x(%n, y)− P qk,x(%n+1, y) .

These functions have been defined so that the following two identities hold

Qk(f̄
n

(x)− f̄ n+1
(x)) = 〈∂kξ,Φbγck 〉 ,

Qk
(
f̄
n

(x+ h)− Γx+h,xf̄
n

(x)
)

= 〈∂kξ,Ψbγck 〉 .

Both Φq
k and Ψq

k are smooth functions, compactly supported in a ball centred at x
and of radius of order 2−n. Assume that they both annihilate all polynomials of
scaled degree lower than q − |k|s and recall that ∂kξ belongs to Bγ−|k|p,q . We then
easily obtain the translation and consistency bounds by applying Definition 2.1.

It therefore remains to prove that Φq
k and Ψq

k do indeed annihilate polynomials
of degree q − |k|s. First of all, a simple integration by parts ensures that∫

y
P
bγc
k,x (%n, y)dy =

1

k!

∫
y
%nx(y)dy =

1

k!

∫
y
%(y)dy ,
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so that Φq
k and Ψq

k annihilate constants. Second, we prove by recursion on q that the
following property holds true. For every k ∈ Nd, the function y 7→ P qk,x(%n, y) kills
all monomials (y−x)m with m ∈ Nd, m 6= 0 and |m+k|s ≤ q. Once this property
is established, one easily deduces that Φq

k annihilates all polynomials with a scaled
degree which is non-zero and lower than q − |k|s. A similar recursion yields the
desired property for Ψq

k, which is left to the reader.
First, we check that the property is true at rank q = |k|s + 1. Take m ∈ Nd such

that |m|s = 1. We have

k!

∫
y
(y − x)mP qk,x(%n, y)dy

=

∫
y
(y − x)m%nx(y)dy +

∑
`∈Nd:|`|=1

∫
y
(y − x)m(−1)`∂`y

(
(x− y)`%nx(y)

)
dy

=

∫
y
(y − x)m%nx(y)dy +

∑
`∈Nd:|`|=1

∫
y
∂`y((y − x)m)(x− y)`%nx(y)dy .

Since |`|s = |m|s = 1, the only non-zero contribution in the second term on the
right hand side comes from ` = m. Hence, the sum of the two terms vanishes and
the property is true at rank q = |k|s + 1. Assume now that it holds at rank q − 1,
for some q ≥ |k|s + 2. Observe that

P qk,x(%n, y) = P q−1
k,x (%n, y) +

∑
`∈Nd:|k+`|=q

(−1)`∂`y
(
%nx(y)

(x− y)`

k!`!

)
.

By the recursion hypothesis, we know that the first term on the right kills (y − x)m

for all m ∈ Nd such that |k|s < |m+ k|s < q. A simple integration by parts then
shows that the second term satisfies the same property. Furthermore, for all m ∈ Nd

such that |m+ k|s = q, an integration by parts yields∫
y
(y − x)mP qk,x(%n, y)dy =

∑
`∈Nd:|k+`|≤q

∫
y
(y − x)m(−1)`∂`y

(
%nx(y)

(x− y)`

`!k!

)
dy

=
∑

`∈Nd:`≤m

∫
y
(y − x)m%nx(y)(−1)`

m!

`!(m− `)!k!
dy

=
1

k!

∫
y
(y − x)m%nx(y)dy

d∏
i=1

∑
`i∈N:`i≤mi

(−1)`i
(
mi

`i

)
,

which vanishes by the binomial formula, thus completing the proof of the recursion.
We have shown that f̄ ∈ D̄γp,q(T̄ ). Applying the second part of Theorem 2.14,

we obtain an element f ∈ Dγp,q(T̄ ) and we naturally set ιξ := f . A careful look
at the proof of the theorem yields that f0(x) is the limit in Lp(dx) of the sequence
Q0Γx,xn f̄

n
(xn), where xn is the nearest point of x on the grid Λn. Lemma 3.5
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ensures thatRf (x) = f0(x) in Lp(dx). Furthermore, by Lemma 2.6 we know that
ξ(x) is the limit in Lp(dx) of the sequence 〈ξ, %nx〉. Consequently, to prove the
identityRιξ = ξ, it suffices to show that 〈ξ, %nx〉 − Q0Γx,xn f̄

n
(xn) converges to 0

in Lp as n→∞. We observe that

〈ξ, %nx〉 − Q0Γx,xn f̄
n

(xn) = 〈ξ, ϕnx〉 ,

where
ϕnx(y) = %nx(y)−

∑
`∈Nd:|`|<γ

(xn − x)`∂`yP
bγc
`,xn

(%n, y) ,

which is a smooth function, supported in a ball of order 2−n around x, with a
scaling behaviour of order 2−n and that kills the constants. Since ξ ∈ Bεp,∞ for
some ε ∈ (0, 1), the definition of that space ensures that the Lp norm of 〈ξ, ϕnx〉
vanishes as n→∞, thus concluding the proof. �

3.2 Proof of the reconstruction theorem

We start with a convergence criterion in Bαp,q with α < 0, which is an adaptation of
[Hai14, Thm 3.23]. Recall the wavelet analysis introduced in Section 2.1. Let

ξn =
∑
x∈Λn

Anxϕ
n
x ∈ Vn ,

and set δAnx = 〈ξn+1 − ξn, ϕnx〉.

Proposition 3.7 Let α < 0 and γ > 0. Assume that

sup
n≥0

∥∥∥ Anx

2−nα−n
|s|
2

∥∥∥
`pn
. 1 ,

∥∥∥∥∥∥∥ δAnx

2−nγ−n
|s|
2

∥∥∥
`pn

∥∥∥∥
`q
. 1 . (3.4)

Then, as n → ∞, ξn → ξ in Bᾱp,q for all ᾱ < α. Furthermore, when q = ∞ the
limit ξ belongs to Bαp,q.

Proof. For every n ≥ 0, we write ξn+1 − ξn = gn + δξn where gn ∈ Vn and
δξn ∈ V ⊥n , where V ⊥n is defined as the orthogonal complement of Vn in Vn+1. We
treat separately the contributions of these two terms. We start with gn. For all n ≥ 0,
we have

‖gn‖Bᾱp,q =
∥∥∥〈gn, ϕ0

x〉
∥∥∥
`p0

+
∑
ψ∈Ψ

∥∥∥∥∥∥∥ 〈gn, ψmx 〉
2−m(ᾱ+

|s|
2

)

∥∥∥
`pm

∥∥∥∥
`q(m≥0)

. (3.5)

Notice that, whenever m ≥ n, the corresponding terms in the right hand side vanish.
On the other hand, for every m < n, we observe that |〈ϕny , ψmx 〉| . 2−(n−m)|s|/2

uniformly over all x, y. Actually this inner product vanishes as soon as ‖y − x‖s >
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C2−m for some constant C > 0 that depends on the size of the supports of ϕ,ψ.
Using Jensen’s inequality at the second line, we thus get∥∥∥ 〈gn, ψmx 〉

2−m(ᾱ+
|s|
2

)

∥∥∥
`pm
.
∥∥∥ ∑

y∈Λn
‖y−x‖s≤C2−m

|δAny |
2−m(ᾱ+|s|) 2−n

|s|
2

∥∥∥
`pm

. 2−nγ+mᾱ
( ∑
x∈Λm

∑
y∈Λn

‖y−x‖s≤C2−m

2−n|s|
∣∣∣ δAny

2−n(γ+
|s|
2

)

∣∣∣p) 1
p

. 2−nγ+mᾱ
( ∑
y∈Λn

2−n|s|
∣∣∣ δAny

2−n(γ+
|s|
2

)

∣∣∣p) 1
p ,

uniformly over all m < n. Recall that ᾱ < 0. We obtain∥∥∥∥∥∥∥ 〈gn, ψmx 〉
2−m(ᾱ+

|s|
2

)

∥∥∥
`pm

∥∥∥∥
`q(m≥0)

. 2−nγ
∥∥∥ δAnx

2−nγ−n
|s|
2

∥∥∥
`pn

,

uniformly over all n ≥ 0. Similar calculations yield the same bound for the first
term on the right hand side of (3.5). Consequently, using Hölder’s inequality with q
and its conjugate exponent q̄, we have∥∥∥ ∑

n0≤n≤n1

gn

∥∥∥
Bᾱp,q
≤

∑
n0≤n≤n1

‖gn‖Bᾱp,q

.

∥∥∥∥∥∥∥ δAnx

2−nγ−n
|s|
2

∥∥∥
`pn

∥∥∥∥
`q(n0≤n≤n1)

∥∥∥2−nγ
∥∥∥
`q̄(n0≤n≤n1)

. 2−n0γ ,

so that
∑

n≥0 gn converges in Bᾱp,q. Notice that one only needs ᾱ < 0 for the
arguments to apply.

We turn to δfn. By Proposition 2.3 and since δfn ∈ V ⊥n , we have∥∥∥ ∑
n0≤n≤n1

δfn

∥∥∥
Bᾱp,q

=
( ∑
n0≤n≤n1

‖δfn‖qBᾱp,q
) 1
q
.

Using Jensen’s inequality at the second line, we get

‖δfn‖Bᾱp,q .
∑
ψ∈Ψ

∥∥∥ 〈δfn, ψnx〉
2−n(ᾱ+

|s|
2

)

∥∥∥
`pn

.
∥∥∥ ∑

y∈Λn+1

‖y−x‖s≤C2−n

|An+1
y |

2−n(ᾱ+
|s|
2

)

∥∥∥
`pn

.
( ∑
x∈Λn

∑
y∈Λn+1

‖y−x‖s≤C2−n

2−n|s|
( |An+1

y |

2−n(ᾱ+
|s|
2

)

)p) 1
p
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. 2−n(α−ᾱ)
( ∑
y∈Λn+1

2−(n+1)|s|
( |An+1

y |

2−(n+1)(α+
|s|
2

)

)p) 1
p ,

uniformly over all n ≥ 0. Therefore, as soon as ᾱ < α we get

( ∑
n0≤n≤n1

‖δfn‖qBᾱp,q
) 1
q
.

( ∑
n0≤n≤n1+1

2−n(α−ᾱ)q
∥∥∥ Anx

2−n(α+
|s|
2

)

∥∥∥q
`pn

) 1
q

. 2−n0(α−ᾱ) sup
n0≤n≤n1+1

∥∥∥ Anx

2−n(α+
|s|
2

)

∥∥∥
`pn

,

so that
∑

n≥0 δfn converges in Bᾱp,q. In the particular case q =∞, we have∥∥∥ ∑
n≤n1

δfn

∥∥∥
Bαp,q
. sup

n≤n1

∥∥∥δfn∥∥∥
Bαp,q
. sup

n≥0

∥∥∥ Anx

2−n(α+
|s|
2

)

∥∥∥
`pn

,

so that the limit belongs to Bαp,∞. �

Proof of Theorem 3.1. From now on, the symbol ζ is implicitly taken in the set of
homogeneities A, and we omit to write the corresponding sum over all ζ ∈ A in
order to alleviate the notations. Let f ∈ Dγp,q and take f̄ as defined in (2.8). For all
n ≥ 0 and x ∈ Λn, we set

Anx := 〈Πxf̄
n

(x), ϕnx〉 ,

and we define Rnf =
∑

x∈Λn
Anxϕ

n
x . We are going to show that Rnf converges

to an element Rf in Bᾱp,q for all ᾱ < α ∧ 0. When α is negative, this is the
regularity that we are aiming for while in the other case this is worse than what the
statement of the theorem asserts. However, the reconstruction bound (3.1), that will
be established later on in the proof, allows one to recover the asserted regularity.
Indeed, recall that when α > 0 the regularity structure only contains non-negative
homogeneities. Then, we write

〈Rf, ηλx〉 = 〈Rf −Πxf (x), ηλx〉+ 〈Πxf (x), ηλx〉 . (3.6)

It is easy to check that the first bound of (2.1) is satisfied. Regarding the second
bound, it is satisfied by the first term on the right hand side of (3.6) thanks to the
reconstruction bound (3.1). To show that the second term also satisfies the required
bound, we distinguish two cases. Either we work with the polynomial regularity
structure and then 〈Πxf (x), ηλx〉 = 0 as soon as η kills polynomials. Or the lowest
level with non-integer homogeneity is α and in that case∥∥∥∥∥∥∥〈Πxf (x), ηλx〉

λᾱ

∥∥∥
Lp

∥∥∥∥
Lqλ

.
∥∥∥|f (x)|α

∥∥∥
Lp

,

for all ᾱ < α, as required.
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We now show thatRnf converges to an elementRf in Bᾱp,q for all ᾱ < α ∧ 0.
To that end, let us check that the conditions of Proposition 3.7 are satisfied with our
present choice of Anx’s and with α replaced by α′ := α ∧ (−ε) for some arbitrary
ε > 0. The first condition of (3.4) is a direct consequence of the local bound on f̄ .
To obtain the second bound, we write

δAnx =
∑

y∈Λn+1

〈Πy(f̄
n+1

(y)− Γy,xf̄
n

(x)), ϕn+1
y 〉〈ϕn+1

y , ϕnx〉 , (3.7)

so that∥∥∥∥∥∥∥ δAnx

2−nγ−n
|s|
2

∥∥∥
`pn

∥∥∥∥
`q
.

∥∥∥∥∥∥∥ ∑
y∈Λn+1

‖y−x‖s≤C2−n

|f̄ n+1
(y)− Γy,xf̄

n
(x)|ζ

2−n(γ−ζ)

∥∥∥
`pn

∥∥∥∥
`q

,

which is bounded by a term of order |||f̄ ||| thanks to Remark 2.11. Therefore,
as claimed, Rnf converges to some element Rf which belongs to Bᾱp,q for any
ᾱ < α′ = α ∧ (−ε), and therefore, for any ᾱ < α ∧ 0.

Let us now show the bound (3.1). Given λ ∈ (0, 1], let n0 be the largest integer
such that 2−n0 ≥ λ. Recall that Pn is the projection onto Vn and P⊥n the projection
onto V ⊥n (the orthogonal complement of Vn in Vn+1). Observe that for any function
g : (0, 1] → R we have the identity ‖g‖Lqλ = ‖‖g‖Lqn0

‖`q(n0≥0) where Lqn0 is the

Lq space with respect to the measure 12−n0−1<λ≤2−n0
dλ

λ log 2 . For every n0 ≥ 0, we
will use the following decomposition

Rf −Πxf (x) = (Rn0f − Pn0Πxf (x)) +
∑
n≥n0

(Rn+1f −Rnf − P⊥n Πxf (x)) .

(3.8)
We treat separately the contributions of the two terms on the right hand side. We
start with the contribution on Vn0 :

Rn0f − Pn0Πxf (x)

=
∑
y∈Λn0

(An0
y − 〈Πxf (x), ϕn0

y 〉)ϕn0
y

=
∑
y∈Λn0

∫
z∈B(y,2−n0 )

2n0|s|〈Πz(f (z)− Γz,xf (x), ϕn0
y 〉dz ϕn0

y .

There exists C > 0 such that, uniformly over all n0 ≥ 0, we have∥∥∥∥∥∥∥ sup
η∈Br

|〈Rn0f − Pn0Πxf (x), ηλx〉|
λγ

∥∥∥
Lp(dx)

∥∥∥∥
Lqn0

.

∥∥∥∥∥∥∥ ∑
y∈Λn0

‖y−x‖s≤Cλ

∫
z∈B(x,C2−n0 )

2n0|s| |f (z)− Γz,xf (x)|ζ
‖z − x‖γ−ζs

dz
∥∥∥
Lp(dx)

∥∥∥∥
Lqn0
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.
∥∥∥∫

h∈B(0,C2−n0 )
2n0|s| |f (x+ h)− Γx+h,xf (x)|ζ

‖h‖γ−ζs

dh
∥∥∥
Lp(dx)

.
∫
h∈B(0,C2−n0 )

2n0|s|
∥∥∥ |f (x+ h)− Γx+h,xf (x)|ζ

‖h‖γ−ζs

∥∥∥
Lp(dx)

dh .

Using Jensen’s inequality, we deduce that the `q(n0 ≥ 0)-norm of the last expression
is bounded by a term of order |||f ||| as required.

We now treat the second term of (3.8). To that end, we writeRn+1f −Rnf =
gn + δfn where gn ∈ Vn and δfn ∈ V ⊥n . Then, we have

〈δfn − P⊥n Πxf (x), ηλx〉
=

∑
y∈Λn+1

∑
z∈Λn

(An+1
y − 〈Πxf (x), ϕn+1

y 〉)〈ϕn+1
y , ψnz 〉〈ψnz , ηλx〉 .

We have |〈ϕn+1
y , ψnz 〉| . 1 and |〈ψnz , ηλx〉| . 2−n( |s|

2
+r)λ−(|s|+r) uniformly over

all the parameters. To get the second bound, we used the fact that ψ annihilates
polynomials of any order up to r. Actually, the first, resp. second, inner product
vanishes as soon as ‖y − z‖s ≤ C2−n, resp. ‖z − x‖s ≤ Cλ, for some constant
C > 0 depending on the sizes of the supports of ϕ,ψ. Given the expression of
An+1
y , some simple calculations yield the existence of C ′ > 0 such that∥∥∥∥∥∥∥ sup
η∈Br

|〈δfn − P⊥n Πxf (x), ηλx〉|
λγ

∥∥∥
Lp(dx)

∥∥∥∥
Lqn0

.

∥∥∥∥∥∥∥ ∑
z∈Λn

‖z−x‖s≤Cλ

∑
y∈Λn+1

‖y−z‖s≤C2−n

|An+1
y − 〈Πxf (x), ϕn+1

y 〉|
λγ+r+|s| 2−n( |s|

2
+r)
∥∥∥
Lp(dx)

∥∥∥∥
Lqn0

.

∥∥∥∥∥∥∥ ∑
y∈Λn+1

‖y−x‖s≤2Cλ

∫
u∈B(y,2−(n+1))

2(n+1)|s||f (u)− Γu,xf (x)|ζ
2−n(|s|+ζ+r)

2−n0(γ+r+|s|)

∥∥∥
Lp(dx)

∥∥∥∥
Lqn0

.
∥∥∥∫

h∈B(0,C′2−n0 )
2n0|s| |f (x+ h)− Γx+h,xf (x)|ζ

‖h‖γ−ζs

dh
∥∥∥
Lp(dx)

2−(n−n0)(ζ+r) ,

uniformly over all n0. Since r > |α|, the sum over all n ≥ n0 of the last expression
converges. Then, taking the `q(n0)-norm, one gets∥∥∥∥∥∥∥ ∑

n≥n0

〈δfn − P⊥n Πxf (x), ηλx〉
λγ

∥∥∥
Lp(dx)

∥∥∥∥
Lqλ

.

∥∥∥∥∫
h∈B(0,C′2−n0 )

2n0|s|
∥∥∥ |f (x+ h)− Γx+h,xf (x)|ζ

|h|γ−ζ
∥∥∥
Lp(dx)

dh

∥∥∥∥
`q(n0)

.

(∫
h∈B(0,1)

∥∥∥ |f (x+ h)− Γx+h,xf (x)|ζ
|h|γ−ζ

∥∥∥q
Lp(dx)

dh

|h||s|

) 1
q

,
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as required.
Finally we treat the contribution of gn. First, using (3.7) we have

|〈gn, ηλx〉| .
∑
y∈Λn

‖y−x‖s≤Cλ

∑
z∈Λn+1

‖z−y‖s≤C2−n

2−(n−n0)|s|−nζ |f̄ n+1
(z)− Γz,yf̄

n
(y)|ζ ,

uniformly over all n ≥ n0 ≥ 0, and all x ∈ Rd. Therefore, the triangle inequality
at the second line and Jensen’s inequality at the third line yield∥∥∥∥∥∥∥ ∑
n≥n0

sup
η∈Br

|〈gn, ηλx〉|
λγ

∥∥∥
Lp

∥∥∥∥
Lqn0

.
∑
n≥n0

2n0γ
∥∥∥ ∑

y∈Λn
‖y−x‖s≤C2−n0

∑
z∈Λn+1

‖z−y‖s≤C2−n

2−(n−n0)|s|−nζ |f̄ n+1
(z)− Γz,yf̄

n
(y)|ζ

∥∥∥
Lp

.
∑
n≥n0

2−(n−n0)γ
∑

h∈ECn+1

( ∑
y∈Λn

2−n|s|
( |f̄ n+1

(y + h)− Γy+h,yf̄
n

(y)|ζ
2−n(γ−ζ)

)p) 1
p ,

uniformly over all n0. Therefore, using Jensen’s inequality, we get∥∥∥∥∥∥∥∥∥∥∥ ∑
n≥n0

〈gn, ηλx〉
λγ

∥∥∥
Lp

∥∥∥∥
Lqn0

∥∥∥∥
`q(n0≥0)

.

( ∑
n0≥0

∑
n≥n0

2−(n−n0)γ
∑
h∈ECn

∥∥∥ |f̄ n+1
(x+ h)− Γx+h,xf̄

n
(x)|ζ

2−n(γ−ζ)

∥∥∥q
`pn

) 1
q

.

(∑
n≥0

∑
h∈ECn

∥∥∥ |f̄ n+1
(x+ h)− Γx+h,xf̄

n
(x)|ζ

2−n(γ−ζ)

∥∥∥q
`pn

) 1
q

,

which is bounded by the norm of f . This concludes the proof of the reconstruction
bound.

In the case where we deal with two models, the bounds above can be easily
adapted in order to establish (3.2). For instance, using obvious notations for elements
built from the second model (Π̄, Γ̄), we have

An+1
y − 〈Πxf (x), ϕn+1

y 〉 − Ān+1
y − 〈Π̄xf̄ (x), ϕn+1

y 〉

=

∫
z∈B(y,2−(n+1))

2(n+1)|s|〈ΠyΓy,z(f (z)− Γz,xf (x))

− Π̄yΓ̄y,z(f̄ (z)− Γ̄z,xf̄ (x)), ϕn+1
y 〉dz .

Then, we write

ΠyΓy,z(f (z)− Γz,xf (x))− Π̄yΓ̄y,z(f̄ (z)− Γ̄z,xf̄ (x)) (3.9)

= ΠyΓy,z(f (z)− Γz,xf (x)− f̄ (z) + Γ̄z,xf̄ (x))
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+ (Πy − Π̄y)Γy,z(f̄ (z)− Γ̄z,xf̄ (x)) + Π̄y(Γy,z − Γ̄y,z)(f̄ (z)− Γ̄z,xf̄ (x)) ,

and the bound follows from the same arguments as in the case with a single model.
Finally, let us prove the uniqueness of Rf . Let ξ1, ξ2 be two distributions

satisfying the bound (3.1), and let % ∈ Br be an even function that integrates to 1.
For any compactly supported, smooth function ψ : Rd → R and for any δ ∈ (0, 1],
set

ψδ(y) = 〈%δy, ψ〉 =

∫
%δ(x− y)ψ(x)dx .

Let n ≥ 0 be the largest integer such that 2−n ≥ δ. Then, we get

|〈ξ1 − ξ2, ψδ〉|
δγ

. ‖ψ‖∞
(∫

x

( |〈ξ1 − ξ2, %
δ
x〉|

δγ

)p
dx
) 1
p

. ‖ψ‖∞
∫ 2−n

λ=2−(n+1)

(∫
x

sup
η∈Br

( |〈ξ1 − ξ2, η
λ
x〉|

λγ

)p
dx
) 1
p dλ

λ ln 2

. ‖ψ‖∞
(∫ 2−n

λ=2−(n+1)

(∫
x

sup
η∈Br

( |〈ξ1 − ξ2, η
λ
x〉|

λγ

)p
dx
) q
p dλ

λ ln 2

) 1
q

,

which goes to 0 as n→∞, or equivalently as δ → 0, thanks to (3.1). Consequently,
〈ξ1 − ξ2, ψδ〉 vanishes when δ → 0. On the other hand, 〈ξ1 − ξ2, ψδ〉 converges to
〈ξ1− ξ2, ψ〉 as δ → 0. We deduce that 〈ξ1− ξ2, ψ〉 = 0 for all compactly supported,
smooth functions ψ, and therefore, ξ1 = ξ2. �

4 Embedding theorems

The spaces Dγp,q enjoy embedding properties which are similar to the well-known
embeddings of Besov spaces, see for instance the book of Triebel [Tri10, Sec. 2.3.2
and 2.7.1]. Recall that we work under Assumption 2.15, so that all the γ, γ′ below
are implicitly assumed not to lie in A.

We say that we are in the periodic case when the model for our regularity struc-
ture is periodic on some torus of Rd in the sense of [Hai14, Def. 3.33]. Implicitly,
we then restrict the spaces Dγ to elements f which satisfy the same periodicity.

Theorem 4.1 Let (A, T ,G) be a regularity structure and (Π,Γ) be a model. Let
p, p′, q, q′ ∈ [1,∞] and γ, γ′ > 0 be a collection of parameters. The space Dγp,q is
continuously embedded into Dγ

′

p′,q′ in any of the following settings:

1. q′ > q, p′ = p and γ′ = γ,

2. q′ ≤ q, p′ = p and γ′ < γ,

3. q′ = q, p′ < p and γ′ = γ in the periodic case,

4. q′ = q, p′ > p and γ′ < γ − |s|(1
p −

1
p′ ).
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Remark 4.2 Actually, our proof will show a slightly stronger statement in the
fourth case: if [γ − |s|(1

p −
1
p′ ), γ)∩A = ∅ then one can take γ′ = γ − |s|(1

p −
1
p′ ).

Before we proceed to the proof of the theorem, we state an elementary lemma.

Lemma 4.3 Let 1 ≤ p ≤ p̃ ≤ ∞ and 0 < δ ≤ δ̃ be such that

δ̃ ≤ δ − |s|
(1

p
− 1

p̃

)
.

For all n ≥ 0 and all u : Λn → R, we have the bound∥∥∥ u(x)

2−nδ̃

∥∥∥
`p̃n
≤
∥∥∥ u(x)

2−nδ

∥∥∥
`pn
.

Proof. Assume that the right hand side is finite, otherwise there is nothing to prove.
Then, we have

sup
x∈Λn

∣∣∣ u(x)
2−nδ

∣∣∣ ≤ 2
n
|s|
p

∥∥∥ u(x)
2−nδ

∥∥∥
`pn
.

Therefore, we have∥∥∥ u(x)

2−nδ̃

∥∥∥p̃
`p̃n
≤
∥∥∥ u(x)

2−nδ

∥∥∥p
`pn

sup
x∈Λn

∣∣∣ u(x)
2−nδ

∣∣∣p̃−p 1

2−np̃(δ̃−δ)

≤
∥∥∥ u(x)

2−nδ

∥∥∥p̃
`pn

2
n( p̃
p
−1)|s|+np̃(δ̃−δ)

.

By assumption, ( p̃p − 1)|s|+ p̃(δ̃ − δ) ≤ 0 and the asserted bound follows. �

Proof of Theorem 4.1. The cases 1, 2 and 4 will be established at the level of the
spaces D̄: this is sufficient since Theorem 2.14 then implies the same for the spaces
D.

First case. At the level of the spaces D̄, this embedding is a direct consequence of
the continuous embedding of `q

′
(N) into `q(N) whenever q′ > q.

Second case. It suffices to show that the translation and consistency bounds hold
upon replacing q by q′, γ by γ′ and f̄ by its restriction to T<γ′ . The proof is exactly
the same for the translation and the consistency bounds, so we only present the
details for the former. First observe that for all ε > 0 and all 1 ≤ q′ ≤ q ≤ ∞, by
Hölder’s inequality we have(∑

n≥0

∑
h∈En

( |un(h)|
2nε

)q′) 1
q′ ≤

(∑
n≥0

∑
h∈En

|un(h)|q
) 1
q
(∑
n≥0

∑
h∈En

2
−nε qq

′
q−q′

) q−q′
qq′

.

Then, we fix ζ ∈ Aγ′ . For any n ≥ 0 and any h ∈ En, we set

un(h) =

∥∥∥∥ |f̄ n
(x+ h)− Γx+h,xf̄

n
(x)|ζ

2−n(γ−ζ)

∥∥∥∥
`pn

.
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Applying the above inequality with ε = γ − γ′, one immediately gets(∑
n≥0

∑
h∈En

∥∥∥∥ |f̄ n
(x+ h)− Γx+h,xf̄

n
(x)|ζ

2−n(γ′−ζ)

∥∥∥∥q′
`pn

) 1
q′

. |||f ||| . (4.1)

This yields the desired embedding in the case where γ′ ∈ (maxAγ , γ). If γ′ <
maxAγ , the restriction of f̄

n
to T<γ′ differs from f̄

n
by
∑

γ′<β<γ f̄
n

β . Then,
uniformly over all n ≥ 0, we have(∑

n≥0

∑
h∈En

∥∥∥∥ |Γx+h,x
∑

γ′<β<γ f̄
n

β (x)|ζ
2−n(γ′−ζ)

∥∥∥∥q′
`pn

) 1
q′

.
∑

γ′<β<γ

(∑
n≥0

∥∥∥|f̄ n
(x)|β2−n(β−γ′)

∥∥∥q′
`pn

) 1
q′

. sup
β∈Aγ

sup
n≥0

∥∥∥|f̄ n
(x)|β

∥∥∥
`pn

,

which implies, together with (4.1), the desired embedding at the level of D̄.

Third case. This follows from the continuous embedding of Lp into Lp
′

whenever
the underlying space is bounded.

Fourth case. Here again, we prove the embedding at the level of the spaces D̄. Let
ζ1 > ζ2 > . . . be the elements of Aγ in the decreasing order. For all ε ≥ 0 and all
ζ < γ, we let p(ε)

ζ ∈ [p,∞] be such that

ζ + ε = γ − |s|
(1

p
− 1

p(ε)
ζ

)
,

if this admits a solution, otherwise we set p(ε)
ζ = ∞. In the particular case ε = 0,

we set pζ = p(0)
ζ .

The core of the proof relies on the following two properties:

1) For all γ′ ∈ (ζ1, γ), let p′′ ∈ [p,∞] be such that γ′ = γ− |s|
(

1
p −

1
p′′

)
if this

admits a solution, otherwise let p′′ =∞. Then, f̄ ∈ D̄γ
′

p′′,q.

2) For all γ′ ∈ (ζ2, ζ1), we have f̄ ∈ D̄γ
′
pζ1 ,q

.

Once these properties are established, an elementary recursion on ζi concludes the
proof of the embedding. We are left with proving these two properties.

Property 1) is a direct consequence of Lemma 4.3 and of the continuous inclusion
`p0 ⊂ `

p′′

0 . To prove Property 2), we actually show:

2’) For all ε > 0 and all γ′′ ∈ (ζ2, ζ1), we have f̄ ∈ D̄γ
′′

p(ε)
ζ1
,q

.
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Indeed, if 2’) is satisfied then Lemma 4.3 and the continuous inclusion `
p(ε)
ζ1

0 ⊂ `pζ10

ensure that f̄ ∈ D̄γ
′′(ε)
pζ1 ,q

where γ′′(ε) = γ′′ − |s|
(

1

p(ε)
ζ1

− 1
pζ1

)
. Since γ′′(ε) ↑ γ′′ as

ε ↓ 0, we deduce that Property 2) holds.
Let us show 2’). Fix γ′′ ∈ (ζ2, ζ1). Let f̄<ζ1 be the restriction of f̄ to T<ζ1 . For

all ζ < ζ1, we have

|f̄ n

<ζ1(x+ h)− Γx+h,xf̄
n

<ζ1(x)|ζ ≤ |f̄
n

(x+ h)− Γx+h,xf̄
n

(x)|ζ
+ |Γx+h,xf̄

n

ζ1(x)|ζ .

Since γ′′ < ζ1 + ε, Lemma 4.3 yields the bound(∑
n≥0

∑
h∈En

∥∥∥∥ |f̄ n
(x+ h)− Γx+h,xf̄

n
(x)|ζ

2−n(γ′′−ζ)

∥∥∥∥q
`
p

(ε)
ζ1
n

) 1
q

. |||f̄ ||| .

On the other hand, we have(∑
n≥0

∑
h∈En

∥∥∥∥ |Γx+h,xf̄
n

ζ1
(x)|ζ

2−n(γ′′−ζ)

∥∥∥∥q
`
p

(ε)
ζ1
n

) 1
q

. sup
n≥0
‖f̄ n

ζ1‖
`
p

(ε)
ζ1
n

(∑
n≥0

2−n(ζ1−γ′′)q
) 1
q

. sup
n≥0
‖f̄ n

ζ1‖
`
p

(ε)
ζ1
n

,

so we only need to bound this last term. A careful inspection of the proof of
Lemma 2.13 shows that there exists C > 0 such that

‖f̄ n+1

ζ1 ‖
`
p

(ε)
ζ1
n+1

≤ ‖f̄ n

ζ1‖
`
p

(ε)
ζ1
n

+C2−nε
∑

h∈En+1

∥∥∥ |f̄ n
(x)− Γx,x+hf̄

n+1
(x+ h)|ζ1

2−nε

∥∥∥
`
p

(ε)
ζ1
n

,

uniformly over all n ≥ 0. Since ζ1 + ε ≤ γ − |s|(1
p −

1

p(ε)
ζ1

), Lemma 4.3 yields the

bound∥∥∥ |f̄ n
(x)− f̄ n+1

(x+ h)|ζ1
2−nε

∥∥∥
`
p

(ε)
ζ1
n

≤
∥∥∥ |f̄ n

(x)− Γx,x+hf̄
n+1

(x+ h)|ζ1
2−n(γ−ζ1)

∥∥∥
`pn

,

so that, using Remark 2.11, we deduce that

‖f̄ n+1

ζ1 ‖
`
p

(ε)
ζ1
n+1

≤ ‖f̄ n

ζ ‖
`
p

(ε)
ζ1
n

+ C2−nε|||f̄ ||| ,

for all n ≥ 0. Consequently,

sup
n≥0
‖f̄ n

ζ1‖
`
p

(ε)
ζ1
n

. |||f̄ ||| ,

thus concluding the proof of 2’). �
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5 Convolution with singular kernels

From now on, we assume that d ≥ 2 and we view the first direction x1 as time and
the d − 1 remaining ones as space. We consider a kernel P : Rd → R which is
smooth except at the origin and which improves regularity by order β > 0. More
precisely, we assume that there exist some smooth functions P− and Pn, n ≥ 0 on
Rd such that:

1. For every x ∈ Rd\{0}, we have P (x) = P−(x) +
∑

n≥0 Pn(x),

2. P0 is supported in B(0, 1) and for every n ≥ 0, we have the identity

Pn(x) = 2n(|s|−β)P0(2nsx) , x ∈ Rd ,

where 2nsx = (2ns1x1, . . . , 2
nsdxd).

3. The function P0 annihilates all polynomials of scaled degree r.

The second property ensures that for all k ∈ Nd, there exists C > 0 such that

|∂kPn(x)| ≤ C2n(|s|−β+|k|) , (5.1)

uniformly over all n ≥ 0 and all x ∈ Rd.
A typical example of such a kernel is given by the heat kernel which, under the

parabolic scaling s = (2, 1, . . . , 1), satisfies these assumptions with β = 2. The
celebrated Schauder estimates assert that for any distribution ξ ∈ Bαp,q (that does
not grow too fast at infinity), the distribution P ∗ ξ obtained by convolving ξ with
P belongs to Bα+β

p,q . Notice that the growth condition is only required because the
kernel is not compactly supported. The core of the proof of the Schauder estimate
concerns the convolution with the singular part P+ of the kernel for which no growth
condition is required.

The goal of the present section is to lift this result to our spaces Dγp,q. Actually,
we will restrict ourselves to proving this result with P replaced by P+ =

∑
n≥0 Pn

since this is the only difficult part in the proof. As in [Hai14, Sec. 4], we assume
in this section that our regularity structure is equipped with an abstract integration
map of order β, namely a linear map I : T → T such that:

1. I : Tζ → Tζ+β ,

2. Iτ = 0 for all τ ∈ T̄ ,

3. IΓτ − ΓIτ ∈ T̄ for all τ ∈ T and all Γ ∈ G.

Second, we assume that our model is admissible in the sense that it satisfies the
identity:

ΠxIτ (y) = 〈Πxτ, P+(y − ·)〉 −
∑

k∈Nd:|k|<ζ+β

Xk

k!
〈Πxτ, ∂

kP+(x− ·)〉 ,
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for all τ ∈ Tζ and all ζ ∈ Aγ . (See again [Hai14, Sec. 4] for a discussion of the
meaning of this condition.) Then, we introduce the linear operator

Pγ+f (x) := I(f (x)) +
∑
ζ∈Aγ

∑
k∈Nd:|k|s<ζ+β

Xk

k!
〈ΠxQζf (x), ∂kP+(x− ·)〉

+
∑

k∈Nd:|k|s<ζ+β

Xk

k!
〈Rf −Πxf (x), ∂kP+(x− ·)〉 .

Theorem 5.1 Consider a regularity structure equipped with an integration map of
order β > 0 and an admissible model. Fix γ ∈ R+\N, and assume that γ + β /∈ N.
Then Pγ+ is a continuous linear map from Dγp,q into Dγ+β

p,q and we have the identity

RPγ+f = P+ ∗ Rf , (5.2)

for all f ∈ Dγp,q. Furthermore, if (Π̄, Γ̄) is another admissible model, then we have

|||Pγ+f,P
γ
+f̄ ||| . ‖Π‖(1 + ‖Γ‖)|||f, f̄ |||+ (‖Π− Π̄‖(1 + ‖Γ̄‖) + ‖Π̄‖‖Γ− Γ̄‖)|||f̄ ||| ,

uniformly over all models (Π,Γ), (Π̄, Γ̄), and all elements f, f̄ in Dγp,q, D̄γp,q.

Before we proceed to the proof, we introduce a few notations and state a useful
lemma. We set γ′ := γ + β. For all k ∈ Nd, we set

P k,γ
′

n,x,y(·) := ∂kPn(y − ·)−
∑

`∈Nd:|k+`|<γ′

(y − x)`

`!
∂k+`Pn(x− ·) ,

and P k,γ
′

x,y =
∑

n≥0 P
k,γ′
n,x,y. Let ei be the unit vector of Rd in the direction i ∈

{1, . . . , d}, and for every ` ∈ Nd set m(`) := inf{i : `i 6= 0}. We define

∂γ′ := {` ∈ Nd : |`|s > γ′, |`− em(`)|s < γ′} .

We then recall the following identity.

Lemma 5.2 (Prop 11.1 [Hai14]) For all x, y ∈ Rd and all k ∈ Nd such that
|k|s < γ, we have

P k,γ
′

n,x,y(·) =
∑

`:k+`∈∂γ′

∫
Rd
∂k+`Pn(x+ h− ·)µ`(y − x, dh) .

Here, µ`(y − x, dh) is a signed measure on Rd, supported in the set {z ∈ Rd : zi ∈
[0, yi − xi]} and whose total mass is given by (y−x)`

`! .

Proof of Theorem 5.1. We start with the local bound of the Dγp,q-norm. For every
ζ ∈ Aγ′\N, the only contributions of Pγ+f at level ζ come from I(f (x)) and we
have

‖Qζ+βI(f (x))‖Lp . ‖Qζf (x)‖Lp ,
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by the properties of I. Let us now consider k ∈ Nd such that |k|s < γ′. We have
the identity

k!QkPγ+f (x) =
∑
n≥0

( ∑
ζ∈Aγ :ζ>|k|s−β

〈ΠxQζf (x), ∂kPn(x− ·)〉 (5.3)

+ 〈Rf −Πxf (x), ∂kPn(x− ·)〉
)
.

By (5.1), we have∥∥∥〈ΠxQζf (x), ∂kPn(x− ·)〉
∥∥∥
Lp
. ‖Qζf (x)‖Lp2

−n(ζ+β−|k|) ,

uniformly over all n ≥ 0. The sum over all n ≥ 0 of these norms is therefore
bounded by a term of order |||f ||| as required. Applying Theorem 3.1, we obtain a
similar bound for the second term on the right hand side of (5.3).

We turn to the translation bound. Regarding the terms at non-integer levels, the
bound derives from exactly the same argument as for the local bound. We focus on
terms at integer levels. Let k ∈ Nd such that |k|s < γ + β. A simple computation
based on [Hai14, Lemma 5.16] ensures that

k!Qk(Pγ+f (x+ h)− Γx+h,xPγ+f (x)) (5.4)

= 〈Rf −Πxf (x), P k,γ
′

x,x+h〉

−
∑
ζ∈Aγ

ζ≤|k|s−β

〈Πx+hQζ(f (x+ h)− Γx+h,xf (x)), ∂kP (x+ h− ·)〉 ,

which can also be written as

k!Qk(Pγ+f (x+ h)− Γx+h,xPγ+f (x)) (5.5)

= 〈Rf −Πx+hf (x+ h), ∂kP+(x+ h− ·)〉

− 〈Rf −Πxf (x),
∑

`∈Nd:|k+`|s<γ′

h`

`!
∂k+`P+(x− ·)〉

+
∑
ζ∈Aγ

ζ>|k|s−β

〈Πx+hQζ(f (x+ h)− Γx+h,xf (x)), ∂kP+(x+ h− ·)〉 .

Let n0 be the largest integer such that 2−n0 ≥ |h|. According to the relative values
of n and n0 we use either of these two expressions for the proof of the bound. We
start with the case n < n0. We have∥∥∥ ∑

n<n0

〈Rf −Πxf (x), P k,γ
′

n,x,x+h〉

‖h‖γ
′−|k|s

s

∥∥∥
Lp

.
∑
n<n0

∑
`∈∂γ′

2−n(γ′−|`|s)‖h‖|`−k|ss

‖h‖γ
′−|k|s

s

∥∥∥ sup
η∈Br

|〈Rf −Πxf (x), η2−n
x 〉|

2−nγ

∥∥∥
Lp

,
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uniformly over all h ∈ B(0, 2−n0)\B(0, 2−n0−1) and all n0 ≥ 0. Since

∑
n<n0

∑
`∈∂γ′

2−n(γ′−|`|s)‖h‖|`−k|ss

‖h‖γ
′−|k|s

s

. 1 ,

uniformly over the same parameters, we get using Jensen’s inequality that(∫
h∈B(0,1)

∥∥∥ ∑
n<n0

〈Rf −Πxf (x), P k,γ
′

n,x,x+h〉

‖h‖γ
′−|k|s

s

∥∥∥q
Lp

dh

‖h‖|s|s

) 1
q

.

(∫
h∈B(0,1)

∑
n<n0

∑
`∈∂γ′

2−(n−n0)(γ′−|`|s)

×
∥∥∥ sup
η∈Br

|〈Rf −Πxf (x), η2−n
x 〉|

2−nγ

∥∥∥q
Lp

dh

‖h‖|s|s

) 1
q

.

(∑
n≥0

∥∥∥ sup
η∈Br

|〈Rf −Πxf (x), η2−n
x 〉|

2−nγ

∥∥∥q
Lp

) 1
q

,

which is bounded by a term of order |||f ||| by Theorem 3.1. The second term on the
right hand side of (5.4) can be bounded similarly.

We turn to the case n ≥ n0, and we use (5.5). To bound the first term, we use a
change of variable at the second line to get∥∥∥ ∑

n≥n0

〈Rf −Πx+hf (x+ h), ∂kPn(x+ h− ·)〉
|h|γ′−|k|

∥∥∥
Lp

.
∑
n≥n0

∥∥∥〈Rf −Πxf (x), ∂kPn(x− ·)〉
|h|γ′−|k|

∥∥∥
Lp

.
∑
n≥n0

2−n(γ′−|k|)

|h|γ′−|k|
∥∥∥ sup
η∈Br

|〈Rf −Πxf (x), η2−n
x 〉|

2−nγ

∥∥∥
Lp

,

uniformly over all h ∈ B(0, 2−n0)\B(0, 2−n0−1) and all n0 ≥ 0. Since

∑
n≥n0

2−n(γ′−|k|)

|h|γ′−|k|
. 1 ,

uniformly over the same parameters, we apply Jensen’s inequality to get(∫
h∈B(0,1)

∥∥∥ ∑
n≥n0

〈Rf −Πx+hf (x+ h), ∂kPn(x+ h− ·)〉
|h|γ′−|k|

∥∥∥q
Lp

dh

|h||s|

) 1
q

.

(∫
h∈B(0,1)

∑
n≥n0

2−n(γ′−|k|)

|h|γ′−|k|
∥∥∥ sup
η∈Br

|〈Rf −Πxf (x), η2−n
x 〉|

2−nγ

∥∥∥q
Lp

dh

|h||s|

) 1
q
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. |||f ||| ,

as required. To bound the second and third terms arising from (5.5), one proceeds
similarly.

Let us now show thatRPγ+f = P+∗Rf . By the uniqueness part of Theorem 3.1,
it suffices to show that∥∥∥∥∥∥∥ sup

η∈Br

|〈P+ ∗ Rf −ΠxPγ+f (x), ηλx〉|
λγ′

∥∥∥
Lp

∥∥∥∥
Lqλ

<∞ .

By the restriction property of the spaces Dγp,q we can furthermore assume without
loss of generality that γ′ ∈ (0, 1) which simplifies a number of expressions below.
We have

〈P+ ∗ Rf −ΠxPγ+f (x), ηλx〉 =
∑
n≥0

∫
y
ηλx(y)

(
〈Rf, Pn(y − ·)〉 − 〈Πxf (x), Pn(y − ·)〉

− 〈Rf −Πxf (x), Pn(x− ·)〉
)
dy

=
∑
n≥0

〈
Rf −Πxf (x),

∫
y
ηλx(y)P 0,γ′

n,x,ydy
〉
.

Then, we argue differently according to the relative values of 2−n and λ. Let n0 be
the largest integer such that 2−n0 ≥ λ. If n ≤ n0, then

∫
y η

λ
x(y)P 0,γ′

n,x,y scales like a

function ψ2−n+1

x times a factor of order 2−nβ , for some ψ ∈ Br (depending on n
and y), uniformly over all n ≤ n0. Therefore, we get

∥∥∥ sup
η∈Br

∑
n≤n0

|〈Rf −Πxf (x),
∫
y η

λ
x(y)P γ,0n,x,y−xdy〉|

λγ′

∥∥∥
Lp

.
∑
n≤n0

∥∥∥ sup
ψ∈Br

|〈Rf −Πxf (x), ψ2−n+1

x 〉|
2−nγ

∥∥∥
Lp

2−(n−n0)γ′ ,

uniformly over all n0 ≥ 0 and all λ ∈ B(0, 2−n0)\B(0, 2−n0−1). Jensen’s inequal-
ity then yields∥∥∥∥∥∥∥ sup

η∈Br

∑
n≤n0

|〈Rf −Πxf (x),
∫
y η

λ
x(y)P 0,γ

n,x,ydy〉|
λγ′

∥∥∥
Lp

∥∥∥∥
Lq

.

(∫
λ∈B(0,1)

∑
n≤n0

2−(n−n0)γ′
∥∥∥ sup
ψ∈Br

|〈Rf −Πxf (x), ψ2−n
x 〉|

2−nγ

∥∥∥q
Lp

dλ

λ

) 1
q

.

(∑
n≥0

∥∥∥ sup
ψ∈Br

|〈Rf −Πxf (x), ψ2−n
x 〉|

2−nγ

∥∥∥q
Lp

) 1
q

,



CONVOLUTION WITH SINGULAR KERNELS 35

which is of order |||f ||| as required. We turn to the case n > n0. We bound
separately the contributions coming from each of the two terms in P γ

′,0
n,x,y. The

function
∫
y η

λ
x(y)Pn(y − ·)dy scales like ψ2λ

x (·) times a factor of order 2−βn, for
some ψ ∈ Br, uniformly over all n ≥ n0 and all λ ∈ B(0, 2−n0)\B(0, 2−n0−1).
This being given, we have∥∥∥∥∥∥∥ sup

η∈Br

∑
n>n0

|〈Rf −Πxf (x),
∫
y η

λ
x(y)Pn(y − ·)dy〉|

λγ′

∥∥∥
Lp

∥∥∥∥
Lq

.

∥∥∥∥ ∑
n>n0

2−βn
∥∥∥ sup
ψ∈Br

|〈Rf −Πxf (x), ψ2λ
x 〉|

λγ′

∥∥∥
Lp

∥∥∥∥
Lq

.

∥∥∥∥∥∥∥ sup
ψ∈Br

|〈Rf −Πxf (x), ψλx〉|
λγ

∥∥∥
Lp

∥∥∥∥
Lq

,

which is of order |||f ||| as required. The term with Pn(y− ·) replaced by Pn(x− ·) is
bounded analogously, thus concluding the proof of (5.2).

In the case where we deal with two models, the above arguments can be adapted,
using the reconstruction bound (3.2) as well as decompositions similar to what we
did in (3.9). �
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