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Polynomial model: (P, z¢) — P(- — xg).

Algebraic properties: Group G acting by reexpansions on P € T":
P(x —xz9) = P((x —x1) + x1 — o) = (on’le) (r — 1) .

For every I € GG, deg(I'P — P) < deg P and T'PQ = (I'P)(I'Q) .

Analytical properties: Homogeneous monomials vanish at base
point with order (speed) equal to their degree.



Another example

T linear span of 1 (degree 0) and W (degree 3).

Model: For some fixed H6Ider—% function W, set

(al + bW, 20) — a+ b(W(-) — W(xo)) .

Group G: T'yy 0, W = W + (W () — W (z1))1.
Ipgz1=1



Another example

T linear span of 1 (degree 0) and W (degree 3).

Model: For some fixed Hélder—% function W, set

(al + bW, 20) — a+ b(W(-) — W(xo)) .

Group G: T'yy 0, W = W + (W () — W (z1))1.
Ipgz1=1

Important property: For a given regularity structure, one can have
many different models. (Here: given by choice of 1)



What are they good for?

Construct robust solution theories for very singular SPDEs.
Examples:

Oth = 02h + (9:h)* + ¢, (d=1)
0P =AD — 33 4 ¢, (d=2,3)
Ovu = Au+ g;j(uw)Oiudju+ o(u)n , (d=2,3)
v = 02v + f(v) + o (v)€ . (d=1)

Here £ is space-time white noise and 7 is spatial white noise.
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v = 02v + f(v) + o (v)€ .
Here £ is space-time white noise and 7 is spatial white noise.

KPZ (h): universal model for interface propagation. Dynamical
<I>§: universal model for dynamics of near mean-field phase
transition models near critical temperature. PAM (u with g =0
and o(u) = u): universal model for weakly killed diffusions.
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Example of renormalisation

Try to define distribution "n(x) —Cé(x)".

_W

Problem: Integral of 1/|x| diverges, so we need to set “C' = 0"
to compensate!

Formal definition:

/cb m ()dx,

for some smooth compactly supported cut-off x with x(0) = 1.
Yields one-parameter family ¢ — 7. of models, but no canonical
“choice of origin" for c.

Approximation: 1/(e + |z|) — 2|loge| d(z) converges to 7. for
some c.
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Previous notions of solution

. If nonlinear term is o(u) &, Itd calculus can be used. Relies
crucially on martingale property, broken by regularisation.

. KPZ and 1D stochastic Burgers can be treated using
controlled rough paths by Lyons / Gubinelli (H. '11 / H. '13).
. Solve 8,7 = 827 + Z £ (SHE) and interpret h = log Z as
KPZ (Hopf '50 / Cole '51 / Bertini-Giacomin '97).

. Dynamical ®3 model: write ® = ¥ + & with ¥ solution to
linear equation and derive well-posed equation for ®
(Albeverio-Rockner '91 / Da Prato-Debussche '03).

. Alternative theory using paraproducts can in principle treat
KPZ and ®3 (Gubinelli-Imkeller-Perkowski '14).
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KPZ strong Universality conjecture: At large scales, the space-time
fluctuations of a large class of 1 + 1-dimensional interface
propagation model are described by a universal Markov process H,
self-similar with exponents 1 — 2 — 3:

ATTH(A?2, A3t) = H(x,t) .
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KPZ strong Universality conjecture: At large scales, the space-time
fluctuations of a large class of 1 + 1-dimensional interface
propagation model are described by a universal Markov process H,
self-similar with exponents 1 — 2 — 3:

ATTH(A?2, A3t) = H(x,t) .

Exactly solvable models: Borodin, Corwin, Quastel, Sasamoto,
Spohn, etc. Yields partial characterisation of limiting “KPZ fixed
point” (H): agrees with experimental evidence (Takeuchi & Al).
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Universality for symmetric interface fluctuation models: scaling
exponents 1 — 2 — 4, Gaussian limit. Heuristic picture of the
evolution of interface models under “zooming out”:

Gauss  KPZ === KPZ

KPZ equation: red line.
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Weak Universality conjecture

Conjecture: the KPZ equation is the only model on the “red line”.

Conjecture: Let he be any “natural” one-parameter family of
asymmetric interface models with € denoting the strength of the
asymmetry such that propagation speed ~ \/z.

As ¢ — 0 there is a choice of C. ~ ¢~! such that
Vehe(e71z,e672t) — C.t converges to solutions h to the KPZ
equation.

Height function of WASEP (Bertini-Giacomin '97).
Accumulation points satisfy weak version of KPZ for certain
generalisations of WASEP (Jara-Gongalves '10).
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with P an even polynomial, F' a Gaussian field with compactly
supported correlations p(t,z) s.t. [p=1.
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Weak universality result for KPZ

Class of models:
Othe = 02he + \/eP(dyh.) + F

with P an even polynomial, F' a Gaussian field with compactly
supported correlations p(t,z) s.t. [p=1.

Theorem (H., Quastel '14, in progress) As e — 0, there is a
choice of C. ~ 71 such that \/eh(e~'z,e72t) — C.t converges to
solutions to (KPZ), with A depending in a non-trivial way on all
coefficients of P.

Remark: Convergence to KPZ with \ # 0 even if P(u) = u*!!
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Case P(u) = u*

Write h.(z,t) = /eh(e 'z, e %t) — C.t. Satisfies
Othe = O2he + £(Ophe)* + & — Ct |
with & an e-approximation to white noise.

Fact: Derivatives of microscopic model do not converge to 0 as
e — 0: no small gradients! Heuristic: gradients have O(1)
fluctuations but are small on average over large scales... General
formula:

=5 [Pwutan. =1 [Pt +oq).

g

with © a Gaussian measure, explicitly computable variance.
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Main step in proof

Rewrite general equation in integral form as
H=7P(E@H)*+a(2H)*+E),

with £ an abstract “integration operator” of order 1, P
convolution with heat kernel.

Find two-parameter lift of noise {. — W, (&) so that h = RH
solves

Oth = %h + aHy (0, ¢) + aHy(0:h, ¢) + &
= 02h + a(9.h)* + (a — 60c)(9:h)* + (Bac® — ac) + &, .

Show that W, ;/.(&:) converges to same limit as Wy 1 /.(§:)!



Main step in proof

Rewrite general equation in integral form as
H=7P(E@H)*+a(2H)*+E),

with £ an abstract “integration operator” of order 1, P
convolution with heat kernel.

Find two-parameter lift of noise {. — W, (&) so that h = RH
solves

Oth = %h + aHy (0, ¢) + aHy(0:h, ¢) + &
= 02h + a(9.h)* + (a — 60c)(9:h)* + (Bac® — ac) + &, .

Show that W, ;/.(&:) converges to same limit as Wy 1 /.(§:)!
(Actually more complicated: logarithmic sub-divergencies...)
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Outlook

Many open questions remain:
1. Strong Universality without exact solvability???
2. Hyperbolic / dispersive problems??

3. Obtain convergence results for discrete models
(H.-Maas-Weber '12; Mourrat-Weber, in progress).

4. Non-Gaussian noise / fully nonlinear continuum models.
5. Control over larger scales = KPZ fixed point.

6. Characterisation of possible renormalisation maps. When does
it yield a modified equation in closed form?

7. Systematic way of choosing renormalisation procedure and
proving convergence (H.-Quastel; Bruned-H.-Zambotti, in
progress).



