Ergodic Properties of Markov Processes

Exercises for week 2

Exercise 1 Show that if \mathcal{F}' is the trivial σ-algebra, i.e. $\mathcal{F}' = \{\phi, \Omega\}$, then $X' = E(X \mid \mathcal{F}')$ is constant and equal to the expectation of X.

Exercise 2 Show that continuous functions are Borel-measurable. Give an example of a Borel-measurable function from \mathbb{R} to \mathbb{R} which is not continuous.

Exercise 3 Let $\Omega = [0, 1]^2$, $P(dx, dy) = (x + y)\, dx\, dy$, and let (X, Y) be a pair of random variables defined by $X(x, y) = x$ and $Y(x, y) = y$. Let \mathcal{F}_Y be the σ-algebra generated by Y. Find an explicit expression for $E(X \mid \mathcal{F}_Y)$ and give a function f such that $E(X \mid \mathcal{F}_Y) = f \circ Y$.

Exercise 4 Show that $\mathcal{F}_1 \vee \mathcal{F}_2$ can equivalently be characterised by the expressions:

- $\mathcal{F}_1 \vee \mathcal{F}_2 = \sigma\{A \cup B \mid A \in \mathcal{F}_1 \text{ and } B \in \mathcal{F}_2\}$,
- $\mathcal{F}_1 \vee \mathcal{F}_2 = \sigma\{A \cap B \mid A \in \mathcal{F}_1 \text{ and } B \in \mathcal{F}_2\}$,

where $\sigma\mathcal{G}$ denotes the smallest σ-algebra containing \mathcal{G}.

Exercise 5 Let $\Omega = \{1, \ldots, 6\}^3$. We interpret elements of Ω as the possible outcomes of throwing a dice three times. Describe the σ-algebra \mathcal{F} corresponding to knowing the value of the largest of the three throws.

* **Exercise 6** Show the following elementary properties of conditional expectations:
 - If $\mathcal{F}_1 \subset \mathcal{F}_2$, then $E(E(X \mid \mathcal{F}_2) \mid \mathcal{F}_1) = E(E(X \mid \mathcal{F}_1) \mid \mathcal{F}_2) = E(X \mid \mathcal{F}_1)$.
 - Find an example that shows that in general $E(E(X \mid \mathcal{F}_2) \mid \mathcal{F}_1) \neq E(E(X \mid \mathcal{F}_1) \mid \mathcal{F}_2)$.
 - If Y is \mathcal{F}_1-measurable, then $E(Y \mid \mathcal{F}_1) = Y \, E(X \mid \mathcal{F}_1)$.
 - If $\mathcal{F}_1 \subset \mathcal{F}_2$, and Y is \mathcal{F}_2-measurable then $E(Y \, E(X \mid \mathcal{F}_2) \mid \mathcal{F}_1) = E(Y \, E(X \mid \mathcal{F}_1))$.

 Hint For the first part, use the fact that if $\mathcal{F}_1 \subset \mathcal{F}_2$, then any \mathcal{F}_1-measurable function is also \mathcal{F}_2-measurable.

Exercise 7 You have probably seen Lebesgue measurable functions defined through the property that $f^{-1}(A)$ is Lebesgue measurable for every open set A. Show that every Borel measurable function is also Lebesgue measurable but that the converse is not true in the case of functions from \mathbb{R} to \mathbb{R}.

Show that if $f : \mathcal{X} \to \mathcal{Y}$ and $g : \mathcal{Y} \to \mathcal{Z}$ are Borel measurable functions, then $g \circ f$ is also Borel measurable. This property is not true for Lebesgue measurable functions. Try to find a continuous function $f : \mathbb{R} \to \mathbb{R}$ and a Lebesgue measurable function g (you can take an indicator function for g) such that $g \circ f$ is not Lebesgue measurable.

Hint: Remember that every measurable set A of positive Lebesgue measure contains a subset $A' \subset A$ which is not Lebesgue measurable. (Take this statement for granted if you haven’t seen it before.) Another useful ingredient for the construction of f is the Cantor function D (also called Devil’s staircase), depicted here. Use the fact that if C is the Cantor set, then $D(C)$ is a set of Lebesgue measure 1.