
Advanced functional analysis

M. Hairer, University of Warwick

1 Introduction
This course will mostly deal with the analysis of unbounded operators on a Hilbert
or Banach space with a particular focus on Schrödinger operators arising in quan-
tum mechanics. All the abstract notions presented in the course will be motivated
and illustrated by concrete examples. In order to be able to present some of the
more interesting material, emphasis will be put on the ideas of proofs and their
conceptual understanding rather than the rigorous verification of every little de-
tail.

After introducing the basic notions relevant here (adjoint, closed operator,
spectrum, etc), we will work towards our first milestone: the spectral decom-
position theorem. Once this is established, we will discuss the different types of
spectrum (pure point, essential, etc) and present Weyl’s criteria which tells us to
which category a given point in the spectrum belongs to.

If time permits, we will also discuss some of the basic results in the theory of
analytic semigroups and a simplified version of Calderón-Zygmund’s interpola-
tion theory.

The second part of the course will be mainly devoted to the study of Schrödin-
ger operators, which are operators of the form H = −∆ + V where ∆ is the
Laplacian and V is a potential function. One of the most important abstract results
in their study is the Kato-Rellich theorem which gives a very easily verifiable and
essentially sharp criterion in terms of V for H to be essentially selfadjoint. We
will then apply this criterion to the study of the hydrogen atom.

Another question of interest is to characterise the essential spectrum of a
Schrödinger operator in terms of its potential. We will present Weyl’s stability
theorem for the essential spectrum under relatively compact perturbations as well
as Rellich’s criterion for the absence of essential spectrum.
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1.1 Prerequisites
I will assume that the basic notions of functional analysis have already been mas-
tered. In particular, one should be familiar with the notions of Hilbert and Banach
space, reflexivity, separability, the Hahn-Banach theorem, the open mapping the-
orem, and the spectral decomposition theorem for compact operators.

1.2 References
Most of the material of these notes is taken in some form or the other from one of
the following references:

M. Reed and B. Simon, Methods of Modern Mathematical Physics
K. Yosida, Functional Analysis
T. Katō, Perturbation Theory for Linear Operators

2 Unbounded operators
Let B and B̄ be two Banach spaces.

Definition 2.1 An unbounded operator T from B to B̄ consists of a linear sub-
space D(T ) ⊂ B, called the domain of T , as well as a linear map T :D(T ) → B̄,
where we make the usual abuse of notation of identifying an operator with the
corresponding linear map.

An alternative way of viewing unbounded operators is to identify T with its
graph, which is the set Γ(T ) = {(x, y) ∈ B × B̄ : x ∈ D(T ) , y = Tx}. In this
way, an unbounded operator is nothing but a linear subspace T of B × B̄ with the
property that if (0, y) ∈ T , then y = 0.

Remark 2.2 Unless explicitly specified, we will always assume that D(T ) is
dense in B and that B is separable, i.e. there exists a countable dense subset of
B.

One typical example is given by B = B̄ = L2(R), D(T ) = C∞0 (R), the space
of smooth compactly supported functions, and

(Tf)(x) =
d2f

dx2
(x) ,

for any such smooth function f .

2



2.1 Closed operators
Typically, just as in the example just given, there is no natural way of extending
T to a linear map defined on all of B. This is not to say that it is impossible to do
so, just that any such extension would have rather strange properties. One way of
formulating this rigorously is to introduce the notion of a closed operator:

Definition 2.3 An operator T from B to B̄ is closed if Γ(T ) is a closed subset of
B × B̄.

One maybe more intuitive way of stating this is to say that T is closed if,
whenever (xn) is a sequence of elements in D(T ) converging to some element
x ∈ B is such that the sequence (Txn) converges to some y ∈ B̄, one has x ∈
D(T ) and Tx = y. Equivalently, if xn → 0 and Txn → y, then one necessarily
has y = 0.

An operator T is closable, if the closure of its graph is again the graph of an
unbounded operator. We call this new operator the closure of T and denote it by
T̄ . By definition, T̄ is an extension of T in the sense that the graph of T̄ contains
the graph of T .

Exercise 2.4 Convince yourself that our definitions are set up in such a way that
if T is closable, then T̄ is its smallest closed extension. Show furthermore by
contradiction that if T is not closable, then it admits no closed extension.

Note however that a given operator T could have more than one closed exten-
sion, even if it already defined on a dense subspace of B! This is illustrated by the
following example:

Example 2.5 Take H = L2([0, 1]) and define an operator T :H → H by setting
D(T ) = C∞0 ([0, 1]) and setting (Tf)(x) = f ′(x). Here, we denote by C∞0 ([0, 1])
the set of smooth functions which vanish at the boundaries of the interval [0, 1].

We first claim that T is closable. Indeed, let fn be any sequence of elements
in C∞0 such that fn → 0 in H and such that gn

def
= Tfn converges in H to some

function g. Note now that, for every n, one has the identity

fn(x) =

∫ x

0

gn(y) dy .

(In particular, one must have
∫ 1

0
gn(y) dy = 0 for every n.) An elementary es-

timate then shows that if gn → g in H, one also has fn → f with f(x) =
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∫ x
0
g(y) dy. Since f is identically 0 by assumption, it follows at once that g van-

ishes almost everywhere, so that g = 0 as an element inH.
This argument also shows that the domainD(T̄ ) of the closure T̄ of T consists

of all functions f ∈ H that are absolutely continuous, vanish at 0 and at 1, and
have a weak derivative that is itself an element ofH. Consider now the operator T̂
whose domain consists of all absolutely continuous functions with weak derivative
in H (i.e. without the assumption that they vanish at the boundaries). If we then
set T̂ f to be the weak derivative of f , a similar calculation to before shows that
T̂ is also a closed linear operator. Furthermore, it is obviously an extension of T̄ .

Example 2.6 TakeH as above and let this time T be the linear operator given by

(Tf)(x) = f(1/2) sin(πx) ,

with domain given by C∞0 as before. The operator T is not closable. This is
seen very easily by considering the sequence fn(x) = sinn(πx). Indeed, one has
fn → 0 inH, but (Tfn)(x) = sin(πx) independently of n.

We then have the following result:

Proposition 2.7 An operator T :B → B̄ with domain D(T ) = B is bounded if
and only if it is closed.

Proof. The fact that bounded implies closed is trivial, so we only need to prove
the converse.

By assumption, Γ(T ) is closed so that it is itself a Banach space under the
norm ‖(x, y)‖ = ‖x‖B + ‖y‖B̄. Consider now the projection operators Π1 and Π2

from Γ(T ) into B and B̄ respectively, namely

Π1(x, y) = x , Π2(x, y) = y .

Since the domain of T is all of B by assumption, the map Π1 is a bijection. Fur-
thermore, since y = Tx for every (x, y) ∈ Γ(T ), one has the identity

Tx = Π2Π−1
1 x .

Since Π2 is obviously bounded, the boundedness of T now follows from the
boundedness of Π1. This on the other hand is an immediate consequence of the
open mapping theorem. Indeed, the latter states that a bounded linear surjection
from a Banach space onto an other one maps open sets into open sets, so that its
inverse must necessarily be continuous.
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The following is an extremely important corollary of this fact:

Corollary 2.8 If T :B → B̄ is a closed operator which is a bijection from D(T )
to B̄, then its inverse T−1 is a bounded operator from B̄ to B.

Proof. Note that Γ(T−1) is obtained from Γ(T ) by simply switching the two com-
ponents.

Remark 2.9 In the case where B and B̄ are separable (i.e. they contain a count-
able dense subset), then a rather surprising by L. Schwartz states that if T is a
measurable linear map defined on all of B, then it is necessarily bounded. Since
pretty much every function that can be described unambigously is measurable,
this is another example of a statement showing that unbounded operators cannot
be extended to the whole space in any reasonable way.

2.2 Dual and adjoint operators
A very important notion is that of the dual of a linear operator. Recall that, given
a Banach space B, its dual space B∗ consists of all bounded linear functionals
from B to R, endowed with the operator norm. With this notation, we have the
following:

Definition 2.10 Let T :B → B̄ be a densely defined linear operator. Its dual
operator T ′: B̄∗ → B∗ is defined on the set D(T ′) of all ` ∈ B̄∗ such that there
exists m ∈ B∗ with the property that the identity

m(x) = `(Tx) , (1)

holds for every x ∈ D(T ). We then set T ′` = m.

In the particular case where B = B̄ = H is a separable Hilbert space, we use
Riesz’s representation theorem to identify H∗ with H. One can then identify the
dual of T with an operator fromH toH which we call the adjoint T ∗ of T . More
formally, if we denote by J :H → H∗ the map given by Riesz’s representation
theorem, then we set T ∗ = J−1T ′J . Note that the map J is antilinear in the sense
that J(λx) = λ̄Jx for any complex number λ. One can easily see that this is
necessary if one wants J to be such that (Jx)(x) = ‖x‖2.

Definition 2.11 Given a separable Hilbert space H and a densely defined closed
operator T :H → H, we say that T is selfadjoint if T ∗ = T .
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Remark 2.12 There is subtlety in the above definition, which is that we should
not only have T ∗x = Tx for every x ∈ D(T ), but we also impose that D(T ∗) =
D(T ). If T is only such that, for every pair (x, y) in D(T ), one has the identity
〈x, Ty〉 = 〈Tx, y〉, then we say that T is symmetric. As we will see later on,
the notion of a symmetric operator is strictly weaker than that of a selfadjoint
operator.

Remark 2.13 Since D(T ) is dense, (1) defines m on a dense subset of B. Since
by assumption m is furthermore a bounded linear functional, this determines it
uniquely, so that T ∗ is indeed a linear operator.

Remark 2.14 The adjoint of an operator is not necessarily densely defined! Con-
sider indeed Example 2.6. Then, by the usual identification ofH∗ withH, D(T ∗)
consists of those functions g ∈ L2 such that there exists h ∈ L2 with∫ 1

0

h(x)f(x) dx = f(1/2)

∫ 1

0

g(x) sin(πx) dx , (2)

for every smooth and compactly supported function f . This is clearly impossible
since any such h would have some support away from 1

2
which in turn means that

it is possible to find a smooth f vanishing at 1
2

and such that the left hand side
of (2) doesn’t vanish, leading to a contradiction unless the right hand side also
vanishes.

As a consequence, D(T ∗) consists only of those elements g ∈ H that are
orthogonal to sin(πx) and one has T ∗g = 0.

The previous remark suggests that the problem of T ∗ not being densely defined
and that of T not being closable might be related. This is indeed the case. Before
proving it though, we need the following preliminary result. Recall that if V ⊂ B
is a (not necessarily closed) subspace of some Banach space, then its orthogonal
complement V ⊥ is defined as the subspace of B∗ given by

V ⊥ = {` ∈ B∗ : `(x) = 0 ∀x ∈ V } . (3)

Note that this is a straightforward extension of the usual notion of orthogonal
complement in Hilbert spaces. The usual result then holds:

Proposition 2.15 The space V ⊥ is always closed. Furthermore, if B is reflexive,
then one has (V ⊥)⊥ = V̄ , the closure of V .
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Proof. The fact that V ⊥ is closed follows immediately from (3). Regarding (V ⊥)⊥,
it follows from the reflexivity of B that we have the identity

(V ⊥)⊥ = {y ∈ B : `(y) = 0 ∀` ∈ V ⊥} .

Assume now that there exists some y ∈ (V ⊥)⊥ which is not in the closure of V .
By linearity, we can assume that ‖y‖ = 1 and that there exists δ > 0 such that
‖y − x‖ ≥ δ for every x ∈ V .

Denote now by W the closure of the space V + λy in B. Note that any z ∈ W
can be written in a unique way as z = x+λy with x ∈ V̄ and λ ∈ R. Furthermore,
it follows by assumption that ‖z‖/λ ≥ δ, so that λ ≤ ‖z‖/δ. As a consequence,
the linear functional `:W → R given by `(x+ λy) = λ is bounded and so can be
extended to all of B by the Hahn-Banach theorem. The resulting element of B∗
belongs to V ⊥ by construction, but it satisfies `(y) = 1, which is in contradiction
with the fact that y ∈ (V ⊥)⊥.

This result can now be applied to the study of the dual of a closed operator,
yielding the following result:

Proposition 2.16 The dual of a densely defined operator T :B → B̄ is always a
closed operator. Furthermore, if B and B̄ are reflexive, then T ′ is densely defined
if and only if T is closable.

Proof. Let us identify the dual of B × B̄ with B̄∗ × B∗ under the duality relation

〈(`,m), (x, y)〉 = 〈`, y〉 − 〈x,m〉 .

With this notation, it follows from the definitions that the graph Γ(T ′) of T ′ is
precisely given by Γ(T )⊥, so that it is necessarily closed by Proposition 2.15.

Applying Proposition 2.15 again, we also conclude that if the domain of T ′ is
dense, then we can define its dual (T ′)′ and one has

Γ((T ′)′) = Γ(T ′)⊥ = (Γ(T )⊥)⊥ = Γ(T ) .

Since Γ((T ′)′) is the graph of a linear operator, this shows that T is closable and
that (T ′)′ = T̄ , as required.

It remains to show that D(T ′) is dense if T is closable. Assuming by contra-
diction that it isn’t, we can again find an element ` ∈ B̄∗ and a value δ > 0 such
that ‖`‖ = 1 and such that ‖`− ¯̀‖ ≥ δ for every ¯̀∈ D(T ′). Similarly to before,
this implies that we can exhibit an element y ∈ (B̄∗)∗ = B̄ with the property that
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`(y) = 1, but ¯̀(y) = 0 for every ¯̀ ∈ D(T ′). This implies that (0, y) ∈ Γ(T ′)⊥.
Since on the other hand we have just seen that Γ(T ′)⊥ = Γ(T ), this implies that
Γ(T ) is not the graph of a single-valued operator, which in turn implies that T
isn’t closable.

Example 2.17 Let us consider again Example 2.5. For f ∈ C∞0 and g ∈ C∞ (i.e.
g is not required to vanish at the boundaries), we have the identity

〈g, Tf〉 =

∫ 1

0

g(x)f ′(x) dx = −
∫ 1

0

g′(x)f ′(x) dx = −〈g′, f〉 .

It follows that all such functions belong to the domain of T ∗ and that T ∗g = −g′
there.

2.3 The spectrum
We now have all the ingredients at hand to define the spectrum of an unbounded
operator. There are several characterisations of it, we choose to take the following
as our definition:

Definition 2.18 Given a closed operator T :B → B, a complex number λ ∈ C
belongs to the resolvent set %(T ) of T if the operator x 7→ λx− Tx is a bijection
between D(T ) and B. The spectrum σ(T ) of T is then defined as the complement
of the resolvent set.

Remark 2.19 In principle, the definition given above also makes sense for op-
erators that aren’t closed. However, it turns out that in this case one always has
σ(T ) = C, so that the notion of spectrum is rather useless in this case.

Given λ ∈ %(T ), the operator (λ−T )−1, which is bounded by Corollary 2.8, is
called the resolvent of T at λ. There are various ways in which λx−Txmight fail
to be a bijection. For example, it might fail to be injective. By linearity, this then
implies the existence of an eigenvector x of T with eigenvalue λ, i.e. a non-zero
element x ∈ D(T ) such that Tx = λx. If this is the case, we say that λ belongs
to the point spectrum σpp(T ).

On the other hand, λx−Tx might fail to be surjective. If λ is such that it isn’t
an eigenvalue of T but the range of λ−T is nevertheless not even dense in B, then
we say that λ belongs to the residual spectrum σre(T ). Elements in the residual
spectrum are slightly unusual: we will see that they do not exist if T is selfadjoint
for example. Elements in σ(T ) \ σre(T ) on the other hand behave “almost” like
eigenvalues of T in the sense that they admit approximate eigenfunctions:
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Proposition 2.20 One has λ ∈ σ(T )\σre(T ) if and only if there exists a sequence
xn ∈ D(T ) with ‖xn‖ = 1 and

lim
n→∞

‖Txn − λxn‖ = 0 .

(In general, the sequence xn does not converge to a limit though...)

Proof. If λ ∈ σpp(T ), the statement is trivial, so we can assume that λ − T is
injective and has dense range (otherwise one would have λ ∈ σre(T )). It follows
that (λ − T )−1 is a closed operator with domain given by the range of λ − T . (It
is closed because its graph is just the transpose of the graph of λ − T which is
closed.)

Since the range of λ − T is not all of B by the definition of the spectrum,
it follows from Proposition 2.7 that the operator (λ − T )−1 is unbounded. As a
consequence, one can find a sequence yn with ‖yn‖ = 1 and ‖(λ−T )−1yn‖ → ∞.
The claim now follows by setting

xn =
(λ− T )−1yn
‖(λ− T )−1yn‖

,

which is easily seen to have the required properties.

Example 2.21 Let H = L2(R) and let T be the closure of the operator f 7→ d2f
dx2

defined on C∞0 . In this case, one has σ(T ) = R−.
We can see that λ ∈ C\R− belongs to the resolvent set by building an explicit

inverse to λ− T . Indeed, denote by
√
λ the square root of λ with strictly positive

real part (such a square root exists unless λ ∈ R−) and let fλ: R → C be the
function defined by

fλ(x) =
e−
√
λ|x|

2
√
λ

.

We then define an operator Mλ by

(Mλg)(x) =

∫
R
fλ(x− y)g(y) dy .

Since fλ is in L1, it follows from Young’s inequality that Mλ is indeed a bounded
operator on L2. Performing two integrations by part, an explicit calculation then
shows that, at least for g ∈ C∞0 , one has the identity (λ−T )Mλg = g, as required.

To show that every λ = −ω2 ∈ R− lies in the spectrum of T , it suffices to
exhibit some g in L2 such that it is impossible to find f with (−ω2 − T )f = g.
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Take some function g which is compactly supported in [0, 1]. Then any function f
with (ω2 + T )f = −g must satisfy Tf = −ω2f outside of [0, 1]. Since for ω ∈ R,
all solutions to this equation are of the form A1 exp(iωx) + A2 exp(−iωx) for
some A1, A2 ∈ C, and since these functions are square integrable if and only
if they vanish, one must have f = 0 outside of [0, 1]. The problem is therefore
reduced to solving the equation

d2f(x)

dx2
= −ω2f(x)− g(x) , (4)

constrained to satisfy f(0) = f(1) = f ′(0) = f ′(1) = 0. Since f is determined
uniquely on [0, 1] by (4) and the initial condition f(0) = f ′(0) = 0, it is straight-
forward to see that one can find functions g such that the boundary condition at 1
is violated.

Exercise 2.22 Build explicit sequences of approximate eigenfunctions for λ ∈ R−
in the previous example.

Exercise 2.23 Show that for every x ∈ D(T ) and every λ ∈ %(T ) one has the
identity (λ− T )−1(λ− T )x = x.

Denote from now on the resolvent of T by Rλ = Rλ(T ) = (λ − T )−1, for
every λ ∈ %(T ). One then has:

Proposition 2.24 The set %(T ) is open and the map λ 7→ Rλ is analytic on %(T )
in the operator norm. Furthermore, for any two points λ, µ ∈ %(T ) one has the
identity

Rλ −Rµ = (µ− λ)RµRλ . (5)

In particular, the operators Rλ all commute.

Proof. A formal calculation suggests that if we set

R̃µ = Rλ

(
1 +

∞∑
n=1

(λ− µ)nRn
λ

)
, (6)

then one actually has R̃µ = Rµ for µ sufficiently close to λ. Note first that the
right hand side of the above expression does indeed converge as soon as |λ−µ| <
1/‖Rλ‖. Furthermore, one has

(µ− T )R̃µ = (µ− λ)R̃µ + (λ− T )R̃µ = (µ− λ)R̃µ +
(

1 +
∞∑
n=1

(λ− µ)nRn
λ

)
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= (µ− λ)Rλ −
∞∑
n=2

(λ− µ)nRn
λ + 1 +

∞∑
n=1

(λ− µ)nRn
λ = 1 ,

which is precisely what was claimed. It follows immediately that, given λ ∈ %(T ),
one also has

{µ ∈ C : |λ− µ| < 1/‖Rλ‖} ⊂ %(T ) ,

which shows that %(T ) is open. Furthermore, Rµ is given by a norm convergent
power series there, so it is analytic.

The identity (5) follows immediately from the fact that

Rλ −Rµ = Rλ(µ− T )Rµ −Rλ(λ− T )Rµ .

(The fact that the operators commute is obtained by simply interchanging λ and
µ.)

A useful notion for bounded operators is that of their spectral radius:

r(T ) = sup
λ∈σ(T )

|λ| .

In general, the spectral radius is less than the norm of T . However, it can be
approximated to arbitrary precision by considering the norm of a sufficiently high
power of T . More precisely, one has:

Proposition 2.25 Let T :B → B be bounded. Then

r(T ) = lim
n→∞

‖T n‖1/n = inf
n≥1
‖T n‖1/n .

Furthermore, if T is selfadjoint, then ‖T‖ = r(T ).

Proof. The claim is trivial if T = 0, so we assume that T 6= 0 from now on. We
first show that

lim
n→∞

1

n
log ‖T n‖ = inf

n≥1

1

n
log ‖T n‖ , (7)

which shows that the above expression makes sense. Indeed, given a fixed value
n, we can rewrite any integer m ≥ n as m = kn+ d with d < n. One then has

1

m
log ‖Tm‖ ≤ log ‖T n‖k‖T‖d

kn+ d
≤ log ‖T n‖

n
+

log ‖T‖d

m
,
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so that one has the bound

limsup
m→∞

1

m
log ‖Tm‖ ≤ 1

n
log ‖T n‖ .

This immediately implies that the identity (7) holds.
In order to obtain the relation with the spectral radius, it remains to show that

the Laurent series for Rλ around ∞ converges for every λ > limn→∞ ‖T n‖1/n.
This on the other hand follows almost immediately from the explicit identity

Rλ = λ−1
(

1 +
∑
n≥1

T n

λn

)
,

which can be checked in a way that is very similar to (6).
For the last statement, note first that if T is selfadjoint, then on the one hand

one has ‖T 2‖ ≤ ‖T‖2, and on the other hand

‖T 2‖ ≥ sup
‖x‖=1

〈x, T 2x〉 = sup
‖x‖=1

‖Tx‖2 = ‖T‖2 ,

so that ‖T 2‖ = ‖T‖2. The claim follows at once.

Example 2.26 One very nice example illustrating the different kind of spectra is
given by the shift operator. Let B = `1 and set

T (x0, x1, . . .) = (x1, x2, . . .) .

In this case, the dual space B∗ is given by `∞ and one has the identity

T ′(x0, x1, . . .) = (0, x0, x1, . . .) .

It is easy to see that T and T ′ have norm 1, so that every λ with |λ| > 1 belongs
to the resolvent set. It is clear that every λ with |λ| < 1 belongs to the spectrum
of T since the vector xλ = (1, λ, λ2, . . .) belongs to `1 and is an eigenvector with
eigenvalue λ.

Since the spectrum is closed and since the spectrum of T ′ equals the spectrum
of T , it follows that σ(T ) = σ(T ′) = {λ ∈ C : |λ| ≤ 1}. One also easily
sees that the equation T ′x = λx cannot have any non-zero solution in `∞ for any
λ ∈ C, so that T ′ has no point spectrum at all.

Let now |λ| < 1 and note that since (λ−T )xλ = 0, one has ((λ−T ′)y)(xλ) =
0 for every y ∈ `∞. Since on the other hand it is easy to find elements z ∈ `∞
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such that z(xλ) 6= 0 and since evaluation against xλ is a continuous operation,
this shows that the range of λ−T ′ cannot be dense. As a consequence, every such
λ belongs to the residual spectrum of T ′.

In order to obtain a full classification of the spectrum of T and T ′, it remains
to consider λ on the unit circle. Clearly, such points do not belong to the point
spectrum of T since xλ 6∈ `1. On the other hand, if λ were in the residual spectrum
of T , then one could find some element y ∈ `∞ such that y((λ − T )x) = 0 for
every x ∈ `1. This however would imply that (λ − T ′)y = 0, so that λ would be
in the point spectrum of T ′, which we have already shown is empty...

Finally, we show that every λ with |λ| = 1 does also belong to the residual
spectrum of T ′. For this, we proceed similarly to the case |λ| < 1, but we use an
approximation argument. Let λn = (1− 2−n)λ (say) so that |λn| < 1 and so that

‖xλn‖`1 =
∑
k≥0

|λkn| =
1

1− |λn|
= 2n .

For any y ∈ `∞, one then has

|((λ− T ′)y)(xλn)| = |(λ− λn) y(xn)| ≤ ‖y‖`∞ ,

uniformly in n. On the other hand, one has ‖xλ̄‖`∞ = 1 and

|xλ̄(xλn)| =
∑
k≥0

λ̄kλkn = 2n .

As a consequence, one has

‖(λ− T ′)y − xλ̄‖`∞ = sup
‖x‖`1=1

((λ− T ′)y − xλ̄)(x)

≥ sup
n≥1

2−n|((λ− T ′)y − xλ̄)(xλn)|

≥ sup
n≥1

(1− 2−n‖y‖∞) = 1 ,

which shows that xλ̄ does not belong to the closure of the range of (λ− T ′).

Exercise 2.27 Show that it is a general fact that if λ ∈ σre(T ) then λ ∈ σpp(T ′).

We conclude this section with the following fundamental result about the spec-
trum of selfadjoint operators.

13



Proposition 2.28 If T is selfadjoint, then σ(T ) ⊂ R. Furthermore, T cannot have
any residual spectrum and any two eigenvectors of T with different eigenvalues
are orthogonal.

Proof. The proof relies on the fact that, for λ and µ real, one has the identity

‖(T − λ+ iµ)x‖2 = ‖(T − λ)x‖2 + µ2‖x‖2 ≥ µ2‖x‖2 . (8)

In particular, this shows that T − λ + iµ is injective and has closed range. If its
range wasn’t the whole space then λ − iµ would be in the residual spectrum of
T . This however would imply that λ + iµ is in the point spectrum of T ∗ = T ,
which is again impossible by (8). Therefore, T − λ + iµ is a bijection, so that
λ− iµ ∈ %(T ) as required.

The fact that T has no residual spectrum is then an immediate consequence
of Exercise 2.27. The last statement is proven in the same way as for finite-
dimensional matrices.

3 The spectral theorem
One of the most important theorems in finite-dimensional linear algebra states that
every normal matrix (in particular every Hermitian matrix) can be diagonalised
by a unitary change of basis. In other words, if T : Cn → Cn is a normal matrix,
then there exists a basis {xk}nk=1 of Cn and complex values {λk}nk=1 such that
Txk = λkxk.

In this case, if F :σ(T ) → C is any function, then there is a natural way of
making sense of the expression F (T ). Indeed, one would simply set

F (T )xk = F (λk)xk .

Note that this definition is automatically consistent with the intuitive facts that if
F (t) = 1/t, one obtains the inverse of T (provided that no eigenvalue vanishes),
if F (t) = t2, one obtains the square of T in the sense of matrix multiplication, etc.
The aim of this section is to provide a far-reaching generalisation of these facts
for unbounded selfadjoint operators. The immediate question that arises is: what
does it actually mean to “diagonalise” a selfadjoint operator T ?

A naı̈ve guess would be to say that one can find an orthonormal basis {en}n≥0

ofH such that each of the en belongs toD(T ) and such that Ten = λnen for some
values λn. However, we have already seen that operators on infinite-dimensional
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spaces admit values in their spectrum for which there are no corresponding “true”
eigenfunctions, only “approximate” eigenfunctions. Consider for example the
space H = L2(R) and an arbitrary (possibly unbounded) function Λ: R → R.
One can then define the operator “multiplication by Λ” by

D(T ) = {f ∈ L2 : Λ f ∈ L2} , (Tf)(x) = f(x)Λ(x) .

It is straightforward to verify that T is selfadjoint. (In general, if Λ is complex-
valued, then T is still normal, but we haven’t defined this notion for unbounded
operators...) In some sense, T is also “diagonal”: for every x ∈ R, δx is formally
an eigenvector with eigenvalue Λ(x). Furthermore, and most importantly, for a
multiplication operator as above and a function F : R→ R, it is straightforward to
define what we mean by F (T ): this should simply be the multiplication operator
by F ◦ Λ.

This motivates the following result, which is the main theorem in this section:

Theorem 3.1 Let T be a selfadjoint operator on some separable Hilbert spaceH.
Then, there exists a measure space (E, µ), a unitary operator K:H → L2(E, µ),
and a function Λ:E → R such that

D(T ) = {f ∈ H : ΛKf ∈ L2(E, µ)} , (KTf)(λ) = Λ(λ)(Kf)(λ) , (9)

where λ ∈ E.

Remark 3.2 Separability isn’t actually needed, but the proof then requires trans-
finite induction...

3.1 Bounded selfadjoint operators
We first show that if T is a bounded selfadjoint operator, then there is a consistent
way of making sense of F (T ) as long as the map F :σ(T ) → C is continuous.
Note that since σ(T ) is both bounded and closed, it is compact. The idea then is
to use the Stone-Weierstrass theorem which states that every continuous function
defined on a compact subset of R can be approximated by polynomials in the
supremum norm.

As a consequence, we can build a continuous functional calculus as soon as
we have the following result:

Proposition 3.3 Let T :H → H be a bounded selfadjoint operator and let P be a
polynomial. Then, one has the identity ‖P (T )‖ = supλ∈σ(T ) |P (λ)|.

15



Proof. Note first that, similarly to the last argument of Proposition 2.25, one has

‖P (T )‖2 = ‖P (T )∗P (T )‖ = ‖(P̄P )(T )‖ .

It then follows from Proposition 2.25 that

‖P (T )‖2 = sup
λ∈σ((P̄P )(T ))

|λ| .

It therefore remains to argue that λ ∈ σ(P̄P (T )) if and only if there exists µ ∈
σ(T ) such that λ = |P (µ)|2.

Write Q = P̄P . If µ ∈ σ(T ), then Q(x) − Q(µ) = (x − µ)Q̃(x) for some
polynomial Q̃. As a consequence, Q(T )−Q(µ) = (T −µ)Q̃(T ) = Q̃(T )(T −µ),
so that since (T−µ) fails to either be surjective or injective, so doesQ(T )−Q(µ),
thus implying that Q(µ) ∈ σ(Q(T )).

Conversely, if λ ∈ σ(Q(T )), then we can factor the polynomial x 7→ Q(x)−λ
as

Q(x)− λ = C(x− µ1) · · · (x− µn) ,

where n is the degree of Q. We claim that one of the µk necessarily belongs to
σ(T ), which then shows the claim since Q(µk) − λ = 0 by construction. This
however follows immediately by contradiction, noting that otherwise the operator
C−1(T − µn)−1 · · · (T − µ1)−1 would provide an inverse for Q(x)− λ, in contra-
diction with the fact that λ ∈ σ(Q(T )).

Corollary 3.4 The map F 7→ F (T ) is an isometry from Cb(σ(T )) into the space
of bounded operators onH. Furthermore, one has the identities F (G(T )) = (F ◦
G)(T ), (FG)(T ) = F (T )G(T ), F (T )∗ = F̄ (T ), and (cF )(T ) = cF (T ). If x and
λ are such that Tx = λx, then F (T )x = F (λ)x. Finally, σ(F (T )) = F (σ(T )).

Proof. Proposition 3.3 shows that F 7→ F (T ) is an isometry when restricted to
polynomials. Since these are dense in Cb(σ(T )) by Stone-Weierstrass, the first
claim follows. The identities in the second claim are stable under norm conver-
gence and hold in the case of polynomials, so they hold for all F ∈ Cb(σ(T )). A
similar argument shows that F (T )x = F (λ)x if Tx = λx.

For the last statement, it is easy to see that σ(F (T )) ⊂ F (σ(T )). Actually,
one verifies the contrapositive, namely that if λ ∈ %(T ), then F (%) ∈ %(F (T )).
Indeed, it suffices to verify that by approximating the function G(x) = 1/(x −
F (λ)) with bounded continuous functions, one can ensure that the operator (G ◦
F )(T ) is indeed a bounded inverse for F (T )− F (λ).
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If λ ∈ σ(T ), then it follows from Proposition 2.20 and Exercise 2.27 that for
every ε > 0 there exists xε with ‖xε‖ = 1 such that

‖(T − λ)xε‖ ≤ ε .

On the other hand, for every δ > 0, there exists a polynomial Pδ such that
supλ∈σ(T ) |F (λ)− Pδ(λ)| ≤ δ. It follows that

‖F (T )xε − F (λ)xε‖ ≤ ‖F (T )xε − Pδ(T )xε‖+ ‖Pδ(T )xε − Pδ(λ)xε‖
+ ‖Pδ(λ)xε − F (λ)xε‖ ≤ 2δ + Cδε ,

where Cδ is a constant obtained as in the proof of Proposition 3.3. Choosing first δ
small and then ε small shows that the sequence xε is a sequence of approximating
eigenvectors for the operator F (T ) and the value F (λ) as required.

This is already quite close to building a functional calculus for T . However, in
the case of multiplication operators, we had no problems making sense of F (T )
as a bounded operator for arbitrary bounded (measurable) functions F , not just
continuous functions. In order to similarly extend our functional calculus to arbi-
trary bounded measurable functions, we first introduce the concept of a spectral
measure for T .

Definition 3.5 Let T be a bounded selfadjoint operator and let x ∈ H with ‖x‖ =
1. The associated spectral measure µx is the unique probability measure on σ(T )
such that the identity

〈x, F (T )x〉 =

∫
σ(T )

F (λ)µx(dλ) , (10)

holds for every continuous function F :σ(T )→ C.

Remark 3.6 The map F 7→ 〈x, F (T )x〉 is obviously linear and it is bounded as a
functional on Cb(σ(T )) by Corollary 3.4. It is also easy to see that 〈x, F (T )x〉 ≥ 0
as soon as F is positive since one then has 〈x, F (T )x〉 = ‖

√
F (T )x‖2. The

existence of a positive measure with the required properties thus follows from the
Riesz representation theorem. To see that it is automatically a probability measure,
just insert F = 1 into (10).

Wit this notation at hand, we have
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Lemma 3.7 In the above setting, let x ∈ H and let Hx be the smallest closed
subspace of H containing T kx for every k ≥ 0. Then, there is a unitary transfor-
mation U :Hx → L2(σ(T ), µx) such that, for any f ∈ L2(σ(T ), µx), one has the
identity

(UTU−1f)(λ) = λf(λ) . (11)

Proof. Note first that, for every bounded and continuous function F :σ(T ) → C,
one has F (T )x ∈ Hx. Furthermore, the set of such elements is obviously dense
in Hx. We can then define U on such elements by UF (T )x := F . Using the
definition of the spectral measure, one has the identity

‖F (T )x‖2 = 〈x, F (T )F (T )x〉 = 〈x, |F |2(T )x〉 =

∫
|F (λ)|2 µx(dλ) ,

which shows that U is indeed not only well-defined, but also unitary. To show
(11), note that if f is a continuous function, then (11) is satisfied by the definition
of U . The extension to arbitrary f again follows by density.

Lemma 3.8 Provided that H is separable, it is possible to find N ∈ N ∪ {∞}
and a sequence {xn} inH such thatH =

⊕N
n=0Hxn .

Proof. Fix an orthonormal basis {ek}k≥0, which exists by the separability of H.
Then set x0 = e0. Assuming that we have already constructed x0, . . . , xn, we set
Hn =

⊕
`<nHx` and we denote by Pn the orthogonal projection ontoHn inH.

We then set

xn+1 =
(1− Pn)ekn
‖(1− Pn)ekn‖

, kn = inf{k ≥ 0 : ek 6∈ Hn} ,

with the convention that e∞ = 0. The claim then follows by construction, pro-
vided that we let N be the first index such that kN = ∞, or N = ∞ if all kn are
finite.

We now have all the ingredients necessary for a version of Theorem 3.1 for
bounded operators:

Theorem 3.9 Let T be a bounded selfadjoint operator on some separable Hilbert
space H. Then, there exists a finite measure space (E, µ), a unitary operator
K:H → L2(E, µ), and a function Λ:E → R such that

(KTf)(λ) = Λ(λ)(Kf)(λ) , (12)

where λ ∈ E and f ∈ H.

18



Proof. Let {xn}Nn=0 be the sequence of vectors in H given by Lemma 3.8. Then,
we set E = {0, . . . , N} × σ(T ) and we endow it with the finite measure

µ =
N∑
n=0

2−2nE∗nµxn ,

where En: R→ E is given by En(λ) = (n, λ).
Denote by Un the unitary map from Hxn to L2(µxn) given by Lemma 3.7 and

denote by In:L2(µxn)→ L2(E, µ) the isometry given by

(Ing)(k, λ) = 2nδk,ng(λ) .

Finally, denote by Qn the orthogonal projection fromH toHxn . Then, the opera-
tor K and the map Λ:E → R are given by

K =
N∑
n=0

InUnPn , Λ(k, λ) = λ .

It is a straightforward exercise to verify that K is indeed unitary and that, as a
consequence of (11), the identity (9) holds.

This immediately gives us a bounded measurable functional calculus in the
sense that, if F :σ(T )→ R is any bounded measurable function, then we set

F (T )x = K−1F (Λ)Kx ,

where F (Λ) denotes the multiplication operator by the function F ◦ Λ. This
bounded functional calculus has all the properties one would intuitively expect,
as can easily be verified.

Another standard result from finite-dimensional linear algebra is that if two
Hermitian matrices commute, then they can be diagonalised simultaneously. In
our case, this can be restated as

Proposition 3.10 Let T1, . . . , Tn be a finite family of bounded selfadjoint oper-
ators on the separable Hilbert space H such that TiTj = TjTi for any i, j ∈
{1, . . . , n}. Then, there exists a finite measure space (E, µ), a unitary operator
K:H → L2(E, µ), and functions Λi:E → R such that

(KTif)(λ) = Λi(λ)(Kf)(λ) . (13)
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Proof. The proof is essentially the same as in the case of a single operator. The
main difference is that instead of considering spectral measures as above, one
considers joint spectral measures on Rn which are defined by the identity

〈x, F (T1, . . . , Tn)x〉 =

∫
Rn

F (λ1, . . . , λn)µx(dλ) .

Also, given x ∈ H, the space Hx is now defined as the smallest space containing
T k11 · · ·T knn x for any integer-valued vector k. On any such space, one obtains the
desired statement with E = Rn, µ = µx, and Λi(λ) = λi. The general statement
then follows exactly as before.

Corollary 3.11 If T is a bounded normal operator on H, then there exists a fi-
nite measure space (E, µ) a unitary operator K:H → L2(E, µ) and a function
Λ:E → C such that (12) holds.

Proof. If T is normal, one can write T = T1 + iT2 for T1 and T2 selfadjoint and
commuting. The claim then follows from Proposition 3.10.

3.2 Decomposition of the spectrum
So far, we have decomposed the spectrum of an arbitrary closed operator into a
pure point part, a residual part, and “everything else”. In the case of selfadjoint
operators, the residual part is always empty, but there is a finer decomposition
of “everything else”. Recall that a measure µ on R can always be decomposed
uniquely into an atomic part µpp, an absolutely continuous part µac, and a singular
continuous part µsc.

These are furthermore mutually singular and one has the direct sum decompo-
sition

L2(R, µ) = L2(R, µpp)⊕ L2(R, µac)⊕ L2(R, µsc) . (14)

Furthermore, an element ϕ ∈ L2(R, µ) belongs to L2(R, µpp) if and only if
ϕ(x) = 0 for µac-almost every x and for µsc-almost every x. Analogous state-
ments hold with µpp replaced by µac or µsc.

One then has the following result:

Proposition 3.12 Let µ be as above and let T be the operator of multiplication by
x. For ϕ ∈ L2(R, µ) of norm 1, denote as before by µϕ the corresponding spectral
measure.

Then µϕ is purely atomic iff ϕ ∈ L2(R, µpp), µϕ is absolutely continuous iff
ϕ ∈ L2(R, µac), and µϕ is singular continuous iff ϕ ∈ L2(R, µsc).
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Proof. We claim that µϕ is the measure given by µϕ(dx) = |ϕ(x)|2 µ(dx). Indeed,
one then has

〈ϕ, F (T )ϕ〉 =

∫
|ϕ(x)|2F (x)µ(dx) =

∫
F (x)µϕ(dx) .

The claim then follows from the fact that if ν � µ and µ is atomic / a.c. / s.c.,
then ν is also atomic / a.c. / s.c.

As a consequence of Proposition 3.12, the decomposition (14) can alterna-
tively by given as

L2(R, µac) = {0} ∪ {ϕ ∈ L2(R, µ) : µϕ is absolutely continuous} , (15)

and similarly forL2(R, µpp) andL2(R, µsc). We have seen above that any bounded
selfadjoint operator T on some Hilbert spaceH can be written as a (possibly infi-
nite) direct sum of operators of multiplication by x. As a consequence, we obtain
a direct sum decomposition

H = Hpp ⊕Hac ⊕Hsc ,

where this time we define

Hac = {0} ∪ {ϕ ∈ H : µϕ is absolutely continuous} ,

and similarly for Hpp and Hsc. It is clear from (15) that each of these spaces
is invariant under the action of T , so that the restriction of T to any of these
subspaces yields a selfadjoint operator on the subspace in question.

This motivates a further decomposition of the spectrum as

σac(T ) = σ(T � Hac) , σsc(T ) = σ(T � Hsc)

We also refer to the continuous spectrum as the union of the absolutely continuous
and the singular continuous spectrum.

Note that:
• One does have σpp(T )∪σsc(T )∪σac(T ) ⊂ σ(T ). One would have equality

had one defined σpp(T ) = σ(T � Hpp), but this could then yield elements
in σpp(T ) that are only accumulation points of eigenvalues.
• These sets are not disjoint in general and the intersection between any two

of them may be non-empty.
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Exercise 3.13 Show that in the case when T is the multiplication operator by x
on L2(R, µ), one has σac(T ) = suppµac, and similarly for σsc(T ).

A quite different, but also natural, decomposition of the spectrum of a selfad-
joint operator into two disjoint parts is given by the decomposition into discrete
and essential spectrum.

For A ⊂ R, the spectral projection of T onto A is given by

PA = 1A(T ) ,

where 1A denotes the indicator function of the set A. It follows from the spectral
representation theorem that PA is indeed an orthogonal projection operator for
every A ⊂ R and that PAPB = PA∩B. Loosely speaking, one should think of PA
as a continuous analogue to the projection onto the union of all the eigenspaces
with eigenvalues in A. Denote then byHA the range of PA.

Exercise 3.14 Show that the spectrum σ(T ) can be characterised as the set of
λ ∈ R such thatH[λ−ε,λ+ε] is non-zero for every ε > 0.

With this notation at hand, the discrete spectrum of T is given by the set of
λ ∈ σ(T ) such that H[λ−ε,λ+ε] is finite-dimensional for some ε > 0. Conversely,
the essential spectrum of T is given by those values such thatH[λ−ε,λ+ε] is infinite-
dimensional for every ε > 0.

We will see below that the reason for the terminology essential spectrum is
that it is a part of the spectrum that is stable under a large class of perturbations of
T .

3.3 Unbounded selfadjoint operators
Before we turn to the proof of Theorem 3.1, we should verify that the operator of
multiplication by Λ defined as in (9) does indeed give a selfadjoint operator. This
is the content of the following result.

Proposition 3.15 For any finite measure space (E, µ) and measurable function
Λ:E → R, the operator T defined by

D(T ) = {f ∈ L2(E, µ) : Λf ∈ L2(E, µ)} , Tf(x) = Λ(x)f(x) ,

is selfadjoint. Furthermore, one has σ(T ) = supp Λ∗µ.
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Proof. It is clear that T is symmetric. To see that it is also selfadjoint is a simple
consequence of a standard truncation argument (using the fact that if we set χN =
1|f |≥N , then χNf → f in H for every f ∈ H). The fact that σ(T ) = supp Λ∗µ is
left as an exercise.

We now finally have all the elements in place to give the

Proof of Theorem 3.1. Recall first that by Propositions 2.24 and 2.28, we already
know that both T + i and T − i have bounded inverses and commute. Since one
also has the identity ((T + i)−1)∗ = (T − i)−1 and similarly for T − i, it follows
that (T + i)−1 is normal. By Corollary 3.11 we can therefore find a measure
space (E, µ), an isometry K:H → L2(E, µ), and a bounded measurable function
g:E → C such that

K(T + i)−1K−1 = g .

Since we know that the kernel of (T + i)−1 is 0, it follows that g(x) 6= 0 for
µ-almost every point x ∈ E. We claim that setting Λ(x) = 1

g(x)
− i concludes the

proof.
To show that the domain of T can be characterised by (9), note that every

f ∈ D(T ) can be written as f = (T + i)−1ϕ for some ϕ ∈ H, so thatKf = gKϕ.
It immediately follows from the definition of Λ that ΛKf is indeed bounded. Con-
versely, if f is such that ΛKf is bounded, then in particular g−1Kf is bounded,
so that f is in the range of (T + i)−1, as required.

Finally, for f ∈ D(T ), writing f = (T + i)−1ϕ as before, one has

KTf = Kϕ− iKf = (g−1 − i)Kf = ΛKf ,

as required. The function Λ is necessarily real (almost everywhere), for otherwise
this would contradict the self-adjointness of T .

We immediately deduce from this that we can build a functional calculus
which gives an unambiguous meaning to F (T ) for any function F :σ(T ) → R;
we only require measurability.

In particular, we can define U(t) = eitH for any self-adjoint operator H and
any t ∈ R. This family of operators is particularly important in the context of
quantum mechanics since, at least formally, the solution to the Schrödinger equa-
tion

∂tϕ = iHϕ ,

is given by ϕ(t) = eitHϕ(0). In this context, the operator H describes the energy
of the system and plays a role analogous to that of the Hamiltonian in classical
mechanics. We have the following:
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Proposition 3.16 For any selfadjoint operator H , the family U(t) defined above
satisfies U(t + s) = U(t)U(s). Furthermore, one has limt→0 ‖U(t)ϕ − ϕ‖ = 0
and ϕ ∈ D(H) if and only if limt→0 t

−1(U(t)ϕ− ϕ) exists.

Proof. The proof is left as an exercise in the case where H is a multiplication
operator. The general case then follows from the spectral representation theorem.

3.4 Commuting operators
One natural question is to ask what it means for two selfadjoint operators to com-
mute. In the bounded case, T and U commute if TU = UT . What does this mean
in the unbounded case? As a matter of fact, what does TU even mean when both
T and U are unbounded?

If U :B → E and T : E → F , a natural general definition is to set

D(TU) = {x ∈ D(U) : Ux ∈ D(T )} ,

and to define TU as the composition of T with U on that set. In this case however,
stating that T and U commute if TU = UT as unbounded operators (i.e. with
D(UT ) = D(TU) and TU = UT on this common domain) is not very natural, as
the following example shows.

Example 3.17 TakeH = L2(R), Let (Tf)(x) = xf(x) with the domain as before
that makes it selfadjoint, and let U be the bounded operator given by (Uf)(x) =
f(x)/(1 + x2).

Then, one has D(UT ) = D(T ), while D(TU) = H, so that UT 6= TU .
On the other hand, by any “reasonable” definition of “commuting”, these two
operators do commute...

What this example also shows is that UT need not be closed, even if both U
and T are closed. Furthermore, there might well be situations in which UT isn’t
even densely defined! All this suggests that one should look for a more “robust”
version of the statement that U and T commute.

Note first that if U and T are bounded selfadjoint operators that commute, then
of course Un and Tm commute for any two powers n and m. As a consequence,
retracing the way we built our bounded functional calculus, one can see that F (U)
and G(T ) commute for any two bounded functions F and G. In particular, this is
true for the indicator functions of any two subsets of R. This on the other hand
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is a concept that makes sense for arbitrary unbounded selfadjoint operators. It
suggests that one might use this property to define what it means for two operators
to commute:

Definition 3.18 Let T and U be two selfadjoint operators on the same Hilbert
spaceH. Then T are said to commute if the bounded operators 1A(T ) and 1B(U)
commute for any two Borel sets A,B ⊂ R.

While this definition is a posteriori a very natural one, it is surprisingly diffi-
cult to find sufficent conditions for two operators to commute without computing
their spectral representation. In particular, the following statement which seems
like a reasonable conjecture is false:

Proposition 3.19 (THIS IS FALSE) Let D ⊂ H be invariant under both U and
T and such that T � D = T and U � D = U . If UTx = TUx for every x ∈ D,
then U and T commute.

Explain Nelson’s counterexample.

3.5 Selfadjoint and symmetric operators
As we have already seen, a closed operator can be symmetric without being self-
adjoint. In general, the adjoint of a symmetric operator T is an extension of T .
On the other hand, if we consider some operator U which is itself an extension of
T , then it is straightforward to verify that T ∗ is necessarily an extension of U∗.
In other words, the larger the domain of an operator, the smaller the domain of
its dual. This suggests that it might be the case that even though T itself is not
selfadjoint, it admits an extension which is.

The following two examples show that while this might indeed be the case, it
does not in general have to be the case.

Example 3.20 Take again for T the second derivative operator defined by Tf =
f ′′, this time on H = L2([0, 1]) and with domain D(T ) consisting of smooth
functions vanishing at 0 and 1, together with their derivative. (In fact, consider
T to be the closure of that operator.) By integrating by parts twice, it is easy to
see that T is indeed symmetric. However, T is certainly not selfadjoint since the
domain of its adjoint contains every smooth function, not only those vanishing to
high enough order at the boundary.
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Let us now try to look for selfadjoint extensions of T . The largest possible
“reasonable” extension is given by the adjoint of T , so selfadjoint extensions
of T are the same as selfadjoint restrictions of T ∗. The only way in which the
domains of T and T ∗ differ is through the boundary conditions imposed on their
elements, so it is natural to look for extensions of T that are obtained by relaxing
its boundary conditions. Take smooth functions f and g that do not obey any
specific boundary conditions. Then, one has the identity

〈f, T ∗g〉 = f̄(1)g′(1)− f̄(0)g′(0)− f̄ ′(1)g(1) + f̄ ′(0)g(0) + 〈T ∗f, g〉 . (16)

Denote by E:D(T ∗) → C4 the (bounded!) operator that maps a function g into
its boundary data: Eg = (g(0), g(1), g′(0), g′(1)). One can then verify that one
has the following relation between the domains of T and T ∗:

D(T ) = {f ∈ D(T ∗) : Ef = 0} .

With this notation in place, we see that (16) can be rewritten as

〈f, T ∗g〉 = i〈Ef,AEg〉+ 〈T ∗f, g〉 , (17)

where A is some Hermitian 4× 4 matrix and the first scalar product on the right
hand side denotes the canonical scalar product on C4.

Explicit inspection of the matrix A shows that its eigenvalues are given by
{±1}, and that each of these has an eigenspace V± of dimension 2. For any
x ∈ C4, denote henceforth by x± the orthogonal projection of x onto V±, so that

〈x,Ay〉 = 〈x+, y+〉 − 〈x−, y−〉 . (18)

Denote now by U an arbitrary unitary operator with U :V+ → V− and let TU be
the extension of T (and restriction of T ∗) with domain given by

D(TU) = {f ∈ D(T ∗) : (Ef)− = U(Ef)+} . (19)

Since components of E are not bounded operations in H, it follows from (17)
that the domain of T ∗U is given by the set of functions g ∈ D(T ∗) such that
〈Ef,AEg〉 = 0 for all f ∈ D(TU). Combining (18) with the definition (19)
of the domain of TU then implies that the functions g are such that

〈x, (Eg)+〉 = 〈Ux, (Eg)−〉 = 〈x, U∗(Eg)−〉 ,

for every x ∈ V+. This immediately implies that (Eg)+ = U∗(Eg)− which, since
U is unitary, is equivalent to the fact that (Eg)− = U(Eg)+, so that one does
indeed have D(T ∗U) = D(TU), as required.
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3.6 Criteria for selfadjointness
In the absence of an explicit spectral representation, checking whether a given
operator is selfadjoint (or essentially selfadjoint in the sense that its closure is
selfadjoint) can be a difficult task. It is therefore very useful to have criteria en-
suring that a given symmetric operator is selfadjoint. The most basic criterion is
given by the following:

Proposition 3.21 A symmetric operator T on a Hilbert space H is selfadjoint if
and only if its resolvent set contains µ and µ̄ for some complex number µ with
non-zero imaginary part.

Proof. We have already seen that selfadjoint operators have real spectrum, so it
remains to show the other implication.

Assume that the resolvent set of T contains µ and µ̄ with Imµ 6= 0. Replacing
T by aT +b for two suitably chosen real numbers a and b and noting that this does
not affect selfadjointness, we can assume without loss of generality that µ = i.
Since ±i belong to the resolvent set, both T + i and T − i have full range. As a
consequence, for any ϕ ∈ D(T ∗), we can find ψ ∈ D(T ) such that

(T − i)ψ = (T ∗ − i)ϕ ⇒ (T ∗ − i)(ψ − ϕ) = 0 ,

due to the fact that T ∗ is always an extension of T . Since, by assumption, T + i
also has full range, this implies that the kernel of T ∗ − i is zero, so that ψ = ϕ.
This shows that D(T ∗) = D(T ), so that T is indeed selfadjoint.

A simple consequence of this criterion is the following perturbation result for
selfadjoint operators.

Proposition 3.22 Let A be selfadjoint and let B be a symmetric operator on H
with D(A) ⊂ D(B) and such that there exist constants ε < 1 and C > 0 such
that the bound

‖Bx‖ ≤ ε‖Ax‖+ C‖x‖ ,

holds for every x ∈ D(A). Then, the operator Tx = Ax+Bx with domain D(A)
is also selfadjoint.

Proof. If we can show that iK belongs to the resolvent set of T + iK for |K| large
enough, then we are done, since it is obvious that T is symmetric. The trick is to
write

T + iK = A+B + iK = (1 +B(A+ iK)−1)(A+ iK)−1 ,
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so it remains to show that ‖B(A + iK)−1‖ < 1 for large enough K since we can
then build the inverse of 1 +B(A+ iK)−1 by its convergent Neumann series.

By assumption, we have the bound

‖B(A+ iK)−1x‖ ≤ ε‖A(A+ iK)−1x‖+ C‖(A+ iK)−1x‖ ≤ ε‖x‖+
C

K
‖x‖ .

Here, we have used the spectral representation theorem, combined with the fact
that |a/(a + iK)| ≤ 1 and 1/|a + iK| ≤ 1/K, uniformly over a ∈ R. The claim
then follows by taking K larger than C/(1− ε).

As a consequence of Proposition 3.22, it is quite straightforward to show that
the Schrödinger operator with Coulomb potential in R3 is indeed selfadjoint. To
show this, we will make use of the following Sobolev embedding theorem which
we state without proof:

Lemma 3.23 In dimensions d < 4, one has W 2,2(Rd) ⊂ Cb(Rd).

Corollary 3.24 In L2(R3), multiplication by V (x) = 1/|x| is relatively bounded
with respect to −∆.

Proof. Note first that, by writing everything in Fourier space, one sees that there
exists a constant such that

c(‖ϕ‖2 + ‖∆ϕ‖2) ≤ ‖ϕ‖2
W 2,2 ≤

1

c
(‖ϕ‖2 + ‖∆ϕ‖2) ,

so that in particular there exists a constant C > 0 such that

‖ϕ‖2
∞ ≤ C(‖∆ϕ‖2 + ‖ϕ‖2) ,

uniformly over all ϕ ∈ W 2,2(R3).

3.7 Deficiency indices
We have seen in Proposition 3.21 that a symmetric operator is selfadjoint if and
only if its resolvent set contains some points in both halves of the complex plane.
Actually, one can be much more precise than that. It turns out that a relatively
straightforward perturbation argument shows that the dimension of ker(λ − T ∗)
is necessarily constant for all λ located on the same side of the real axis:
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Proposition 3.25 Let T be a symmetric operator. Then dim ker(λ − T ∗) =
dim ker(µ− T ∗) if sgn Imλ = sgn Imµ.

Proof. Our aim is to show that dim ker(λ − T ∗) is locally constant in the sense
that dim ker(λ−T ∗) = dim ker(µ−T ∗) for all µ such that |µ−λ| ≤ |Imµ|/2. The
claim then follows immediately by a patching argument. Actually, it is sufficient
to show that dim ker(µ− T ∗) ≤ dim ker(λ− T ∗) for |µ− λ| ≤ |Imµ|, since the
reverse inequality is then obtained by exchanging the roles of µ and λ.

Since T is symmetric, one has

‖(λ̄− T )y‖2 = 〈λ̄y − Ty, λ̄y − Ty〉 = |λ|2‖y‖2 − (λ+ λ̄)〈y, Ty〉+ ‖Ty‖2

≥ |λ|2‖y‖2 − |Reλ|2‖y‖2 = |Imλ|2‖y‖2 . (20)

Recall furthermore that if U and V are two closed subspaces of H such that
dimU > dimV , then there exists x ∈ U ∩ V ⊥ with ‖x‖ = 1. Indeed, de-
note by Ū the orthogonal projection of U onto V . If U ∩ V ⊥ = {0}, then the
projection of a basis of U yields a basis of Ū , so that dim Ū = dimU , which is a
contradiction with the fact that dimU > dimV .

We now use this fact with U = ker(µ−T ∗) and V = ker(λ−T ∗). We want to
show that dimU ≤ dimV , so we assume by contradiction that dimU > dimV .
By the above argument, there exists some x with ‖x‖ = 1 and such that on the
one hand T ∗x = µx and on the other hand x ∈ ker(λ − T ∗)⊥ = ran(λ̄ − T ), so
that there exists y with x = (λ̄− T )y. We then have

0 = 〈µx− T ∗x, y〉 = 〈x, (µ̄− T )y〉 = ‖x‖2 + (λ̄− µ̄)〈x, y〉 .

As a consequence of (20), we know however that |〈x, y〉| ≤ ‖x‖2/|Imλ|, which
leads to a contradiction if |λ̄− µ̄| < |Imλ|, as required.

As a consequence of this statement, the spectrum of a closed symmetric oper-
ator is either a subset of R (if and only if the operator is selfadjoint), or all of C,
or one of the two closed half-spaces.

In the particular case when 〈x, Tx〉 ≥ 0 (say), one can strengthen (20) to
obtain

‖(λ̄− T )y‖2 ≥ |λ|2‖y‖2 ,

as soon as Reλ ≤ 0. This allows to show that in this case on has dim ker(λ−T ∗) =
dim ker(µ−T ∗) for any two complex numbers µ and ν in C\R+. This yields the
following corollary:
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Corollary 3.26 If T is symmetric and positive, then T is selfadjoint if and only if
ker(1 + T ∗) = {0}.

The dimensions of the kernels of T ∗± i are called the deficiency indices of the
closed symmetric operator T . In general, the deficiency indices can take any two
values, including +∞.

Remark 3.27 A symmetric operator T has selfadjoint extensions if and only if its
two deficiency indices are equal. In this case, the set of all selfadjoint extensions
is in one-to-one correspondence with the set of unitary transformations between
ker(T + i) and ker(T − i). This is a generalisation of Example 3.20.

The following example is very instructive:

Example 3.28 Consider H = L2(R+) and T such that Tf(x) = if ′(x) for f ∈
C∞0 (R+). Then it is easy to see that T is symmetric. Its closure has domain given
by

D(T ) = {f ∈ H1 : f(0) = 0} .
In this case, the domain of T ∗ is given by H1 and T ∗ acts on these functions by
T ∗f(x) = if ′(x). As a consequence, the kernel of T ∗ + i is given by the span of
e−x, while the kernel of T ∗ − i is empty. As a consequence, the deficiency indices
of T are (1, 0), and T has no selfadjoint extensions at all.

If we change R+ to R−, then the indices are (0, 1). By forming tensor prod-
ucts of these two examples, one can easily construct operators with arbitrary de-
ficiency indices.

4 Quadratic forms
We have already seen in Proposition ?? that closed positive quadratic forms are
in one-to-one correspondence with positive selfadjoint operators. In can be very
useful to be able to switch between these two points of view. As a consequence,
it will come as little surprise that many results available at the level of symmetric
/ selfadjoint operators have analogues at the level of quadratic forms. However, it
turns out that these analogues often cover slightly different situations. For exam-
ple, the analogue to Proposition ?? is:

Proposition 4.1 Let q be a closed symmetric and positive quadratic form. Let
furthermore β be a symmetric quadratic form defined on Q(q) and such that

|β(x, x)| ≤ εq(x, x)− C‖x‖2 , (21)
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for some constants ε ∈ (0, 1) and C ∈ R. Then, the form q + β is closed and
bounded from below.

Proof. Set q̄ = q + β. Then, one has

q̄(x, x) ≥ q(x, x)− εq(x, x)− C‖x‖2 ,

which immediately shows that q̄ is indeed bounded from below. Furthermore, for
K large enough, the norm q̄(x, x)+K‖x‖2 is equivalent to q(x, x)+‖x‖2, so that
q̄ is closed.

Note that there is no requirement on β being either positive or closed! As a
consequence of this result, we can define an operator “−∂2

x + cδ0” on L2(R), as
seen in the following example:

Example 4.2 Let H = L2(R) and let q be the form with domain Q(q) = H1

given by

q(f, f) =

∫
|f ′(x)|2 dx .

Let furthermore β be given by

β(f, f) = c|f(0)|2 , c ∈ R .

Note that, given any f ∈ H1, for any K > 0 there must be some value xK ∈ R
with |xK | ≤ 1/

√
2K such that |f(x)| ≤ K‖f‖. One then has

|f(0)| ≤ K‖f‖+
∣∣∣∫ 0

xK

f ′(y) dy
∣∣∣ ≤ K‖f‖+

√
|xK |

∫
|f ′(y)|2 dy ,

which shows that the bound (21) holds provided that we choose K large enough.
This shows that there is indeed a unique selfadjoint operator associated to the
quadratic form

∫
|f ′(x)|2 dx + |f(0)|2 with domain H1. It is a good exercise to

determine the expression and domain of that operator.

Another nice example is the following, which shows that the borderline case
for having a well-defined meaning for−∆ + c|x|−α is given by α = 2. This is not
so surprising since one would expect, at least at a formal level, that |x|−2 has the
same “strength” as −∆. For example, both act in very similar ways when applied
to polynomials.
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Example 4.3 In dimension d ≥ 3, the inequality∫
|f(x)|2

|x|2
dx ≤ 4

(d− 2)2

∫
|∇f(x)|2 dx ,

is valid for every smooth compactly supported function f . To show this, one actu-
ally shows the slightly stronger statement that∫

|f(x)|2

|x|2
dx ≤ 4

(d− 2)2

∫
|∂rf(x)|2 dx ,

where ∂rf denotes the derivative of f in the radial direction. One then makes use
of the identity

∂rf = |x|−β∂r(|x|βf)− β

|x|
f ,

noting that the particular choice β = d−2
2

leads to a cancellation of the cross-term
that appears when integrating the square of the right hand side of this expression.

One nice thing about positive closed forms is that their sum is always a positive
closed form. Indeed, one has:

Proposition 4.4 Let q1 and q2 be two symmetric positive closed forms and set
q = q1 + q2 with form domain given by Q(q) = Q(q1) ∩ Q(q2). Then, q is again
a symmetric positive closed form.

Proof. We only need to show that q is closed. Let {xn} be a sequence of elements
of H which is Cauchy in the norm ‖x‖2

q = q(x, x) + ‖x‖2. In particular, the
sequence {xn} is Cauchy in the norm ‖ · ‖q1 so that, since q1 is closed, there exists
an element x ∈ Q(q1) such that ‖xn−x‖q1 → 0. Similarly, there exists an element
x̄ ∈ Q(q2) such that ‖xn − x̄‖q2 → 0.

However, one must have x = x̄ since we also know that {xn} is Cauchy in H
and that the limit must coincide with the limit inH.

This result allows to give a meaning to the operator −∆ + V on Rn for any
potential V that is measurable and bounded from below. However, it might in
general be exceedingly difficult to obtain a good characterisation for the domain
of such an operator.

Note that one crucial assumption in the study of quadratic forms is that the
form in question is closed. Indeed, as the example q(f, f) = |f(0)|2 shows, non-
closed quadratic forms do not in general come from any linear operator. However,
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one could hope that the situation is improved if we consider a quadratic form q that
is defined with the help of a symmetric (but not necessarily selfadjoint) operator
T . If such a form were to be closable, then this would give us a canonical way of
finding a selfadjoint extension for any symmetric operator that is bounded from
below. For once, life is kind and this is indeed the case:

Proposition 4.5 Let T be a positive symmetric operator on H and let q be the
corresponding quadratic form with domain Q(q) = D(T ). Then q is closable in
H.

Remark 4.6 The selfadjoint operator T̂ associated to q is called the Friedrichs
extension of T . It is in general strictly larger than the closure of T . For example,
if we take for T the Laplacian on (0, 1) with domain C∞0 , then T̂ is the Dirichlet
Laplacian.

Proof. Denote byH+ the (abstract) closure of D(T ) under the norm

‖x‖2
+ = 〈x, Tx〉+ ‖x‖2 .

Then all we need to show is that H+ ⊂ H in a canonical way. Denoting by
ι:D(T ) → H the identity map, it follows from the bound ‖ · ‖+ ≥ ‖ · ‖ that ι
extends uniquely to a map fromH+ toH, so all that needs to be shown is that ι is
injective.

Assume that x ∈ H+ is such that ιx = 0. Then there exists a sequence
xn ∈ D(T ) such that ‖xn − x‖+ → 0 and ‖ιxn‖ → 0 (as a consequence of the
boundedness of ι). One then has

‖x‖2
+ = lim

m→∞
lim
n→∞
〈xn, xm〉+ = lim

m→∞
lim
n→∞

(〈xn, Txm〉+ 〈xn, xm〉) = 0 , (22)

so that ι is indeed injective as claimed.

Remark 4.7 It is very important that q comes from an operator T . In the case
of our favourite example, namely q(f) = |f(0)|2, one can see that the inclusion
H+ ⊂ H fails. The argument given above fails at the second identity in (22) which
fails to makes sense. A good exercise is to give an explicit representation of H+

in that case and an interpretation of the operator corresponding to the closure of q.

However, even if T is the closure of an operator with a “nice” domain that we
understand well, like C∞0 , the Friedrichs extension of T might have a substantially
larger domain. In the particular case of operators of the form−∆+V with positive
V , this tends however not to be the case. Indeed, we have the following criterion
due to Katô:
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Theorem 4.8 Let V : Rn → R+ be in L2
loc(Rn) and let T = −∆ +V with domain

C∞0 (Rn). Then T is essentially selfadjoint in L2(Rn).

Proof. By Corollary 3.26, it is enough to verify that there cannot be any g ∈
D(T ∗) such that

(T ∗ + 1)g = 0 .

Since the domain of T is given by C∞0 , this precisely says that there cannot be any
L2 function g such that

(−∆ + V + 1)g = 0 , (23)

in the sense of distributions. (Note that all three terms appearing here make perfect
sense as distributions since V ∈ L2

loc.) Note now that if g ∈ L2 with ∆g in L1
loc,

then
∆|g| ≥ Re

( ḡ
|g|

∆g
)

,

in the sense of distributions. Indeed, assuming first that g is smooth, one can set
gε =

√
|g|2 + ε and one verifies that

∆gε ≥ Re
( ḡ
gε

∆g
)
.

The claim then follows by a standard approximation argument.
Returning to (23), we note that since g ∈ L2 and V ∈ L2

loc, one has V g ∈ L1
loc

and therefore ∆g ∈ L1
loc. It follows that one has the distributional inequality

∆|g| ≥ Re
( ḡ
|g|

∆g
)

= Re
( ḡ
|g|

(V + 1)g
)

= |g|(V + 1) ≥ |g| .

In particular, if gε = ϕε ? |g| with ϕε a delta-sequence consisting of positive
functions, one has

∆gε = ϕε ?∆|g| ≥ ϕε ? |g| = gε ,

so that 〈∆gε, gε〉 ≥ 0. But for any smooth gε in L2 we know that 〈∆gε, gε〉 ≤ 0,
so that one must have |g| = 0, as required.

Exercise 4.9 Consider the case where V ≥ 0 as above and V ∈ L1
loc. Show then

that if T = −∆ + V is the Friedrich’s extension of the operator defined on C∞0 ,
then

D(T ) = {f ∈ L2 : V f ∈ L1
loc & −∆f + V f ∈ L2} .

Here, the expression−∆f+V f should be interpreted in the sense of distributions,
which makes sense since V f ∈ L1

loc by assumption.
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5 Compactness of the resolvent
In this section, we give conditions for the resolvent of a Schrödinger operator to
be compact. For a normal operator, being compact is equivalent to being bounded
and having purely discrete spectrum, except at 0. As a consequence, the resolvent
of a selfadjoint operator T is compact if and only if σ(T ) = σdisc(T ) or, in other
words, if σess(T ) = ∅. We also have:

Proposition 5.1 A positive selfadjoint operator T has compact resolvent if and
only if the set

1T = {x ∈ Q(q) : ‖x‖2 + q(x, x) ≤ 1} ,

is compact, where q is the quadratic form associated to T .

Proof. As a consequence of the spectral theorem, T has compact resolvent if and
only if

√
T has compact resolvent. The set 1T is nothing but the unit ball of

D(
√
T ) equipped with the graph norm of

√
T , which on the other hand is precisely

the image of the unit ball under (
√
T + i)−1.

Remark 5.2 The set 1T is automatically closed as a consequence of the spectral
decomposition theorem. Therefore, it actually suffices to show that 1T is precom-
pact to conclude that T has compact resolvent.

One also has the following alternative characterisation:

Proposition 5.3 In the same setting, let µm be defined as

µm = sup
Vm⊂H

inf
x∈V ⊥

m

〈x, Tx〉
‖x‖2

,

where the supremum runs over all m-dimensional subspaces Vm ofH. Then

lim
m→∞

µm = inf σess(T ) ∈ [0,∞] .

In particular, T has compact resolvent if and only if µm →∞.

Proof. The proof is a rather straightforward consequence of the spectral represen-
tation theorem, so we leave it as an exercise.
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Since the set 1T is closed for every selfadjoint operator T , this implies in
particular that if T and U are two selfadjoint operators with associated forms q
and r such that Q(r) ⊂ Q(q) and

q(x, x) ≤ r(x, x) ,

then U has compact resolvent as soon as T has. Indeed, it suffices to remark that
any closed subset of a compact set is again compact.

This suggests that an important tool in the derivation of criteria for the com-
pactness of the resolvent of T should be given by the stability of the essential
spectrum under relatively compact perturbations. Recall also that the set of com-
pact operators is closed in the topology of operator norm convergence and that
any integral operator of the type

Kf(x) =

∫
K(x, y) f(y) dy ,

is compact on L2 if the kernel K is itself in L2, whatever the underlying measure
space is. (ActuallyK is even Hilbert-Schmidt in this case as can easily be checked,
at least formally.)

In this section, we will always takeH = L2(Rn). We then make the following
abuse of notation. For a function W : Rn → R, we denote by V the multiplication
operator given by

(Wf)(x) = W (x)f(x) ,

and by Ŵ the operator

(FŴf)(k) = W (k)(Ff)(k) ,

where F denotes the Fourier transform, viewed as an isometry on H. Given any
two positive functions V,W : Rn → R+, we then consider the operator

T = Ŵ + V ,

defined as a sum of quadratic forms. We will always assume that V and W are
such that T is densely defined, which is true as soon as they belong to L1

loc with
some growth condition at infinity. We then have:

Theorem 5.4 (Rellich) If both V and W grow at infinity in the sense that {x :
V (x) ≤ K} is bounded for every K (and similarly for W ), then T defined as
above has compact resolvent.
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Proof. Note first that we can assume without loss of generality that one has V (x) ≤
|x|2 and similarly for W . Indeed, increasing V or W decreases the set 1T , so
that compactness of T for one pair (V,W ) implies precompactness (and therefore
compactness by Remark 5.2) of T for any larger pair.

Note now that if V̄ ≤ V and we denote by µ̄m the sequence associated to
T̄ = Ŵ + V̄ , then µ̄m ≤ µm. As a consequence it remains to show that for every
K > 0, it is possible to find such a V̄ such that limm→∞ µ̄m ≥ K. We claim that
a possible choice of V̄ is given by

V̄ (x) = V (x) ∧K .

Note that V̄ can be written as V̄ (x) = K+U(x), where the function U is bounded
with compact support. We claim that the operator of multiplication by U is rel-
atively compact with respect to Ŵ . Assuming that this is true, we know that
σess(Ŵ +U) = σess(Ŵ ) ⊂ R+. As a consequence, σess(T̄ ) ⊂ [K,∞), so that one
does indeed have limm→∞ µ̄m ≥ K by Proposition 5.3.

It remains to show that X := U(1 + Ŵ )−1 is compact. For this, recall that if
(E, µ) is a measure space and K:E × E → R is a kernel in L2(E × E, µ ⊗ µ),
then the integral operator Kψ(x) =

∫
K(x, y)ψ(y)µ(dy) is Hilbert-Schmidt on

L2(E, µ). As a consequence, since U belongs to L2(Rn) and p 7→ (1 + W (p) +
ε|p|2n)−1 is in L2 for every ε > 0, the operator

Xε := U(1 + Ŵ + ε(−∆)n)−1

is Hilbert-Schmidt for every ε → 0. Furthermore, since W → ∞, the function
(1 +W (p) + ε|p|2n)−1 converges to (1 +W (p))−1 in L∞(Rn), so that Xε → X in
operator norm. Since the set of compact operators is closed under operator norm
convergence, this shows that X is indeed compact, as required.

6 Bloch wave decomposition
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7 Announcements
Students should register with gradstud@maths.ox.ac.uk

Deadline: 8th of June for Warwick. 2 weeks before exam board meetings for
others.

Possible subjects:
- Work out details for functional calculus for commuting operators.
- Explain Bloch wave decomposition
- Work out conditions for −∆ + V to have compact resolvent even if V does

not grow to infinity at infinity.
- Characterise selfadjoint extensions of symmetric operators and work out an

example.
- Work out boundary conditions / selfadjoint extensions for −∂2

x + V in 1-D.
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